
Mathematical Programming (2019) 176:497–544
https://doi.org/10.1007/s10107-018-01357-w

FULL LENGTH PAPER

Series B

Distributed nonconvex constrained optimization over
time-varying digraphs

Gesualdo Scutari1 · Ying Sun1

Received: 24 July 2017 / Accepted: 16 December 2018 / Published online: 16 February 2019
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019

Abstract
This paper considers nonconvex distributed constrained optimization over networks,
modeled as directed (possibly time-varying) graphs.We introduce the first algorithmic
framework for the minimization of the sum of a smooth nonconvex (nonseparable)
function—the agent’s sum-utility—plus a difference-of-convex function (with non-
smooth convex part). This general formulation arises in many applications, from
statisticalmachine learning to engineering. The proposed distributedmethod combines
successive convex approximation techniques with a judiciously designed perturbed
push-sum consensus mechanism that aims to track locally the gradient of the (smooth
part of the) sum-utility. Sublinear convergence rate is proved when a fixed step-size
(possibly different among the agents) is employed whereas asymptotic convergence to
stationary solutions is proved using a diminishing step-size. Numerical results show
that our algorithms compare favorably with current schemes on both convex and
nonconvex problems.

Mathematics Subject Classification 90C33 · 90C90 · 91A10 · 49M27 · 65K15 ·
65K10

Part of this work has been presented at the 2016 Asilomar Conference on System, Signal, and Computers
[42] and the 2017 IEEE ICASSP Conference [41].

This work was supported by the USA National Science Foundation, Grants CIF 1564044 and CIF
1719205; the Office of Naval Research, Grant N00014-16-1-2244; and the Army Research Office, Grant
W911NF1810238.

B Gesualdo Scutari
gscutari@purdue.edu

Ying Sun
sun578@purdue.edu

1 School of Industrial Engineering, Purdue University, West Lafayette, IN, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-018-01357-w&domain=pdf
http://orcid.org/0000-0002-6453-6870

498 G. Scutari, Y. Sun

1 Introduction

This paper focuses on the following (possibly) nonconvex multiagent composite opti-
mization problem:

min
x∈K

U (x) �
I∑

i=1

fi (x)

︸ ︷︷ ︸
F(x)

+ G+ (x) − G− (x)︸ ︷︷ ︸
G(x)

, (P)

where fi : Rm → R is the cost function of agent i , assumed to be smooth (possibly)
nonconvex; G : R

m → R is a DC function, whose concave part −G− is smooth;
and K is a closed convex subset of Rm . The function G is generally used to promote
some extra structure on the solution, like sparsity. Note that, differently from most
of the papers in the literature, we do not require the (sub)gradient of fi , G− or G+
to be (uniformly) bounded on K. Agents are connected through a communication
network, modeled as a directed graph, possibly time-varying. Moreover, each agent
i knows only its own function fi (as well as G and K). In this setting, the agents
want to cooperatively solve Problem (P) leveraging local communications with their
immediate neighbors.

Distributed nonconvex optimization in the form (P) has found a wide range of
applications in several areas, including network information processing, telecommu-
nications,multi-agent control, andmachine learning. In particular, Problem (P) is a key
enabler of many emerging nonconvex “big data” analytic tasks, including nonlinear
least squares, dictionary learning, principal/canonical component analysis, low-rank
approximation, and matrix completion [18], just to name a few. Moreover, the DC
structure of G allows to accommodate in an unified fashion convex and nonconvex
sparsity-inducing surrogates of the �0 cardinality function (cf. Sect. 2). Time-varying
communications arise, for instance, in mobile wireless networks (e.g., ad-hoc net-
works), wherein nodes are mobile and/or communicate throughout fading channels.
Moreover, since nodes generally transmit at different power and/or communication
channels are not symmetric, directed links is the natural assumption.

In most of the above scenarios, data processing and optimization need to be per-
formed in a distributed but collaborative manner by the agents within the network. For
instance, this is the case in data-intensive (e.g., sensor-network) applications wherein
the sheer volume and spatial/temporal disparity of scattered data render centralized
processing and storage infeasible or inefficient.

While distributed methods for convex optimization have been widely studied in the
literature, there are no such schemes for (P) (cf. Sect. 1.1). We propose the first family
of distributed algorithms that converge to stationary solutions of (P) over time-varying
(directed) graphs. Asymptotic convergence is proved, under the use of either constant
uncoordinate step-sizes from the agents or diminishing ones. When a constant step-
size is employed, the algorithms are showed to achieve sublinear convergence rate.
Furthermore, the technical tools we introduce are of independent interest. Our analysis
hinges on a descent technique valid for nonconvex, nonsmooth, constrained problems
based on a novel Lyapunov-like function (see Sect. 1.2 for the list of contributions).

123

Distributed nonconvex constrained optimization over… 499

1.1 Related works

The design of distributed algorithms for (P) faces the following challenges: (i) U is
nonconvex and nonseparable; (ii)G+ is nonsmooth; (iii) there are constraints; (iv) the
graph is directed and time-varying, with no specific structure; and (v) the (sub)gradient
of U is not assumed to be bounded on K. We are not aware of any distributed design
addressing (even a subset of) challenges (i)–(v), as documented next. Since the focus
of this work is on distributed algorithms working on general network architectures, we
omit to discuss the vast literature of schemes implementable on specific topologies,
such as hierarchical networks (e.g., master-slave or sharedmemory systems); see, e.g.,
[6,15,16,32,36,37,48] and references therein for an entry point of this literature.

Distributed convex optimization Although the focus of this paper is mainly on non-
convex optimization, we begin overviewing themuch abundant literature of distributed
algorithms for convex problems.We show in fact that, even in this simpler setting, some
of the challenges (ii)–(v) remain unaddressed.
Primal methods While substantially different, primal methods can be generically
abstracted as a combination of a local (sub)gradient-like step and a subsequent
consensus-like update (or multiple consensus updates); examples include [23,27,31,
38,39]. Algorithms for adaptation and learning tasks based on in-network diffusion
techniques were proposed in [8,11,35]. Schemes in [8,11,23,31,38,39] are applica-
ble only to undirected graphs; [8,23,31,38,39] require the consensus matrices to be
double-stochastic whereas [11] uses two matrices that are row/column-stochastic,
respectively; furthermore, [11] is applicable only to strictly convex agents’ cost func-
tions having a common minimizer. When the graph is directed, double-stochastic
weight matrices compliant to the graph might not exist or are not easy to be con-
structed in a distributed way [20]. This requirement was removed in [27] where the
authors combined the sub-gradient algorithm [31] with push-sum consensus [24].
Other schemes applicable to digraphs are [49,50]. However, [31,49,50] cannot handle
constraints. In fact, up until this work (and the associated conference papers [41,42])
it was not clear how to leverage push-sum-like protocols to deal with constraints
over digraphs. Finally, as far as challenge (v) is concerned, only recent proposals
[30,33,38,39,49,50,52] removed the assumption that the (sub-)gradient of U has to
be bounded; however [30,33,38,49,50,52] can handle only smooth and unconstrained
problems while [33,38,39,50,52] are not implementable over digraphs.
Dual-based methods This class of algorithms is based on a different approach: slack
variables are first introduced to decouple the sum-utility function while forcing consis-
tency among these local copies by adding consensus equality constraints (compliant
with the graph topology). Lagrangian dual variables are then introduced to deal with
such coupling constraints. The resulting algorithms build on primal–dual updates, aim-
ing at converging to a saddle point of the (augmented) Lagrangian function. Examples
of such algorithms include ADMM-like methods [9,22,46] as well as inexact primal–
dual instances [10,25,26]. All these algorithms can handle only static and undirected
graphs. Their extensions to time-varying graphs or digraphs seemnot possible, because
it is not clear how to enforce consensus via equality constraints over time-varying or

123

500 G. Scutari, Y. Sun

directed networks. Furthermore, all the above schemes but [9] requireU to be smooth
and (P) to be unconstrained.

In summary, even restricting to convex instances of (P), there exists no distributed
algorithm in the literature that can dealwith either constraints [issue (iii)] or nonsmooth
U [issue (ii)] with unbounded (sub-)gradient [issue (v)] over (time-varying) digraphs.
Also, it is not clear how to extend the convergence analysis developed in the above
papers when U is no longer convex.

Distributed nonconvex optimization Distributed algorithms dealing with special
instances of Problem (P) are scarce; they include primal methods [4,12,43,45] and
dual-based schemes [21,54]. The key features of these algorithms are summarized in
Table 1 and discussed next.
Primal methods The scheme in [4] combines the distributed stochastic projection
algorithm, employing a diminishing step-size, with the random gossip protocol. It can
handle smooth objective functions over undirected static graphs; no rate analysis of the
scheme is known. In [43], the authors showed that the (randomly perturbed) push-sum
gradient algorithm with diminishing (square summable) step-size, earlier proposed
for convex objectives in [27], converges also when applied to nonconvex smooth
unconstrained problems. Asymptotic convergence and a sublinear convergence rate
were proved (the latter under the assumption that the set of stationary points of U is
finite). The first, to our knowledge, provably convergent distributed scheme for (P),
withG+ �= 0 and constraintsK, over time-varyinggraphs isNEXT[12]. The algorithm
requires the consensus matrices to be doubly-stochastic. Asymptotic convergence was
proved, when a diminishing step-size is employed; no rate analysis was provided. In
[45], the authors studied smooth (possibly nonconvex)U over undirected static graphs
and proposed a distributed instance of the Frank–Wolfe algorithm, coupled with the
idea of gradient tracking, first introduced in NEXT (see discussion below for more
details on the idea of gradient tracking). Under a diminishing step-size (and further
technical assumptions on the set of stationary solutions), a sublinear convergence rate
is proved. Finally, all the algorithms discussed above require that the (sub)gradient of
U is bounded on K (or Rm). This is a key assumption to prove convergence: in the
analysis of descent, it permits to treat the optimization and consensus steps separately,
with the consensus error being a summable perturbation.
Dual-based methods In [54] a distributed approximate dual subgradient algorithm,
coupled with a consensus scheme (using double-stochastic weight matrices), is intro-
duced to solve (P) over time-varying graphs. Assuming zero-duality gap, the algorithm
is proved to asymptotically find a pair of primal–dual solutions of an auxiliary prob-
lem, which however might not be stationary for the original problem; also, consensus
is not guaranteed. No rate analysis is provided. In [21], a proximal primal–dual algo-
rithm is proposed to solve an unconstrained, smooth instance of (P) over undirected
static graphs. The algorithm employs either a constant or increasing penalty parameter
(which plays the role of the step-size); a global sublinear convergence rate is proved.
The algorithm can also deal with nonsmooth convex regularizes and norm constraints
when it is applied to some distributed matrix factorization problems.

Gradient-tracking The proposed algorithmic framework leverages the idea of gradi-
ent tracking: each agent updates its own local variables along a direction that is a proxy

123

Distributed nonconvex constrained optimization over… 501

of the sum-gradient
∑I

i=1 ∇ fi at the current iteration, an information that is not locally
available. The idea of tracking the gradient averages through the use of consensus cou-
pled with distributed optimization was independently introduced in [12–14] (NEXT
framework) for constrained, nonsmooth, nonconvex instances of (P) over time-varying
graphs and in [52] for the case of strongly convex, unconstrained, smooth optimiza-
tion over static undirected graphs. This tracking protocol was extended to arbitrary
(time-varying) digraphs (without requiring doubly-stochastic weight matrices) in our
conference work [42]. A convergence rate analysis of the scheme in [52] was later
developed in [30,33], with [30] considering (time-varying) directed graphs. We refer
the reader to Sect. 3 for a more detailed discussion on this topic.

1.2 Summary of contributions

We summarize our major contributions as follows; see also Table 1.

1. Novel algorithmic framework We propose the first provably convergent dis-
tributed algorithmic framework for the general class of Problem (P), addressing all
challenges (i)–(iv). The proposed approach hinges on SuccessiveConvexApproxi-
mation (SCA) techniques, coupledwith a judiciously designed perturbed push-sum
consensus mechanism that aims to track locally the gradient of F . Both com-
munication and tracking protocols are implementable on arbitrary time-varying
undirected or directed graphs, and in the latter case only column-stochasticity of
the weight matrices is required. Also, feasibility of the iterates is preserved at each
iteration. Either constant or diminishing step-size rules can be used in the same
scheme, and convergence to stationary solutions of Problem (P) is established.

2. Iteration complexity We prove that the proposed scheme has sublinear con-
vergence rate as long as the positive step-size is smaller than an explicit upper
bound; different step-sizes among the agents can also be used. To the best of
our knowledge, this is the first convergence/complexity result of distributed algo-
rithms employing a constant step-size for nonconvex (constrained) optimization
over (time-varying) digraphs.

3. New Lyapunov-like function and descent techniqueWe improve upon existing
convergence techniques and introduce new ones. Current analysis of distributed
algorithms has trouble handling nonconvex, nonsmooth, constrained optimization.

Table 1 Distributed nonconvex optimization: current works and contribution of this paper

43

45

123

502 G. Scutari, Y. Sun

Moreover, in the presence of unbounded (sub-)gradients of the objective function,
descent on the objective function while treating optimization and consensus errors
separately no longer works. A new convergence analysis is introduced to overcome
this difficulty based on a novel “Lyapunov”-like function that properly combines
suitably defined weighted average dynamics, consensus and tracking disagree-
ments.

4. Broader class of problems and convergence results The proposed algorith-
mic framework and convergence results are applicable to a significantly larger
class of (constrained) optimization problems and network topology than current
distributed schemes, including several instances arising from machine learning,
signal processing, and data analytic applications (cf. Sect. 2.1). Moreover, we
contribute to the theory of distributed algorithms also for convex problems, being
our schemes the first able to provably deal with either constraints [issue (iii)] or
nonsmooth U [issue (ii)] with nonbounded (sub-)gradient [issue (v)] over (time-
varying) digraphs. Finally, our algorithm contains as special cases several recently
gradient-based algorithms whose convergence was proved under more restrictive
assumptions on the optimization problem and network topology (cf. Sect. 5).

Finally, preliminary numerical results show that the proposed schemes compare
favorably with state-of-the-art algorithms.

The rest of the paper is organized as follows. The problem setting is discussed in
Sect. 2 along with some motivating applications. Some preliminary results, including
a perturbed push-sum consensus scheme over time-varying digraphs, are introduced
in Sect. 3. Section 4 describes the proposed algorithmic framework along with its
convergence properties, whose proofs are given in Sect. 6. Finally, some numerical
results are presented in Sect. 7.

Notation The set of nonegative (resp. positive) natural number is denoted byN+ (resp.
N++). A vector x is viewed as a column vector; matrices are denoted by bold letters.
We work with the space R

m , equipped with the standard Euclidean norm, which is
denoted by ‖ • ‖; when the argument of ‖ • ‖ is a matrix, the default norm is the
spectral norm. When some other (vector or matrix) norms are used, such as �1-norm,
or infinity-norm, wewill use the notation ‖•‖p with the corresponding value of p. The
transpose of a vector x is denoted by x�. The Kronecker product is denoted by ⊗. We
use 1 to denote a vector with all entries equal to 1, and I to denote the identity matrix;
With some abuse of notation, the dimensions of 1 and I will not be given explicitly
but understood within the context. Given I ∈ N++, we define [I] � {1, . . . , I }.

2 Problem setup andmotivating examples

We study Problem (P) under the following assumptions.

Assumption A (On Problem (P)) Given Problem (P), suppose that

A.1 The set K ⊆ R
m is (nonempty) closed and convex;

A.2 Each fi : O → R is C1, where O ⊇ K is an open set, and ∇ fi is Li -Lipschitz
on K;

123

Distributed nonconvex constrained optimization over… 503

A.3 G+ : K → R is convex (possibly nonsmooth), and G− : O → R is C1 with
∇G− being LG -Lipschitz on K;

A.4 U is lower bounded on K.

We also made the blanket assumption that each agent i knows only its own function
fi and the regularizer G but not the functions of the other agents.
Assumptions A.1 A.2 and A.4 are quite standard and satisfied by several problems

of practical interest.We remark that, as amajor departure frommost of the literature on
distributed algorithms, we do not assume that the gradient of F (and G−) is bounded
on the feasible set K. This, together with the nonconvexity of G as stated in A.3,
opens the way to design for the first time distributed algorithms for a gamut of new
applications, including several big-data problems in statistical learning; see Sect. 2.1
for details.

On the network topology Agents communicate through a (possibly) time-varying
network. Specifically, time is slotted with n denoting the iteration index (time-slot); in
each time-slot n, the communication network of agents ismodeled as a (possibly) time-
varying digraphGn = ([I], En), where [I] = {1, . . . , I } denotes the set of agents—the
vertices of the graph—and the set of edges En represents the agents’ communication
links; we use (i, j) ∈ En to indicate that the link is directed from node i to node j .
The in-neighborhood of agent i at time n is defined asN in

i [n] = { j | (j, i) ∈ En}∪{i}
(we included in the set node i itself, for notational simplicity); it represents the set of
agents which node i can receive information from. The out-neighborhood of agent i is
N out

i [n] = { j | (i, j) ∈ En} ∪ {i}—the set of agents receiving information from node
i (including node i itself). The out-degree of agent i is defined as dni �

∣∣N out
i [n]

∣∣.
To let information propagate over the network, we assume that the graph sequence
{Gn}n∈N+ possesses some “long-term” connectivity property, as formally stated next.

Assumption B (On graph connectivity) The graph sequence {Gn}n∈N+ is B-strongly
connected, i.e., there exists a finite integer B > 0 such that the graph with edge set
∪k+B−1
t=k E t is strongly connected, for all k ≥ 0.

We conclude this section discussing some instances of Problem (P) in the context
of statistical learning.

2.1 Distributed sparse statistical learning

We consider two distributed nonconvex problems in statistical learning, namely: (i) a
nonconvex sparse linear regression problem; and (ii) the sparse Principal Component
Analysis (PCA) problem.

Nonconvex Sparse Linear Regression Consider the problem of retrieving a sparse
signal x ∈ R

m from the observations {bi }Ii=1, where each bi = Aix is a linear
measurement of the signal acquired by agent i . Amainstream approach in the literature
is to solve the following optimization problem

min
x

I∑

i=1

‖bi − Aix‖2 + λ · G (x) , (1)

123

504 G. Scutari, Y. Sun

Table 2 Examples of nonconvex surrogates of the �0 function having a DC structure [cf. (2)]

Penalty function Expression

Exp [7] gexp(x) = 1 − e−θ |x |

�p(0 < p < 1) [19] g
�+
p
(x) = (|x | + ε)1/θ ,

�p(p < 0) [34] g
�−
p
(x) = 1 − (θ |x | + 1)p

SCAD [17] gscad(x)=

⎧
⎪⎪⎨

⎪⎪⎩

2θ
a+1 |x |, 0 ≤ |x | ≤ 1

θ
−θ2|x |2+2aθ |x |−1

a2−1
, 1

θ
< |x | ≤ a

θ

1, |x | > a
θ

Log [47] glog(x) = log(1+θ |x |)
log(1+θ)

where the quadratic term measures the model fitness whereas the regularizer G is
used to promote sparsity in the solution, and λ > 0 is chosen to balance the trade-off
between the model fitness and solution sparsity. Problem (1) is clearly an instance of
(P). Note that each agent knows only its own function fi (since bi is own only by
agent i). Also, ∇ fi is not bounded on R

m .
To promote sparsity on the solution, the ideal choice for G would be the cardinality

of x (a.k.a. �0 “norm” of x). However, its combinatorial nature makes the resulting
optimization problem numerically intractable as the variable dimension m becomes
large. Several convex and, more recently, also nonconvex surrogates of the �0 function
have been proposed in the literature. The structure of G, as stated in Assumption A.3,
captures either choices. For instance, one can choose as regularizer in (1), the �2 or
�1 norm of x (and thus G− = 0), which leads to the ridge and LASSO regression
problems, respectively. Moreover, a vast class of nonconvex surrogates can also be
considered, including the SCAD [17], the “transformed” �1 [53], the logarithmic [47],
and the exponential [7]; see Table 2. It is well documented that nonconvex regularizers
outperform the �1 norm in enhancing solution sparsity. Quite interestingly, all the
widely used nonconvex surrogates listed in Table 2 enjoy the following separable DC
structure (see, e.g., [1,44] and references therein)

G(x) =
m∑

i=1

g(xi), with g (xi) = η (θ) |xi |︸ ︷︷ ︸
�g+(xi)

− (η (θ) |xi | − g (xi)
)

︸ ︷︷ ︸
�g−(xi)

, (2)

where the expression of g : R → R is given in Table 2; and η (θ) is a fixed given
function, defined in Table 3 for each of the surrogate g listed in Table 2. The parameter
θ controls the tightness of the approximation of the �0 function: in fact, it holds that
limθ→+∞ g(xi) = 1 if xi �= 0, otherwise limθ→+∞ g(xi) = 0. Note that g− is convex
and has Lipschitz continuous first derivative dg−/dx [44], whose closed form is given
in Table 3.

It is not difficult to check that Problem (1), with any of the regularizers discussed
above, is an instance of (P) and satisfies Assumption A. Also, note that the gradient
of the smooth part is not bounded on Rm .

123

Distributed nonconvex constrained optimization over… 505

Table 3 Explicit expression of
η(θ) and dg−/dx [cf. (2)]

g η(θ) dg−
θ /dx

gexp θ sign(x) · θ · (1 − e−θ |x |)

g
�+
p

1
θ ε1/θ−1 1

θ sign(x) · [ε 1
θ
−1 − (|x | + ε)

1
θ
−1]

g
�−
p

−p · θ −sign(x) · p · θ · [1 − (1 + θ |x |)p−1]

gscad
2θ
a+1

⎧
⎪⎨

⎪⎩

0, |x | ≤ 1
θ

sign(x) · 2θ(θ |x |−1)
a2−1

, 1
θ < |x | ≤ a

θ

sign(x) · 2θ
a+1 , otherwise

glog
θ

log(1+θ)
sign(x) · θ2|x |

log(1+θ)(1+θ |x |)

Sparse PCA Consider finding the sparse principal component of a distributed data set
given by the rows of a set of matrices Di ’s (each Di is own by agent i). The problem
can be formulated as

max‖x‖2≤1

I∑

i=1

‖Dix‖2 − λ · G (x) , (3)

where G can be any of the sparse-promoting regularizers discussed in the previous
example. Clearly, Problem (3) is another (nonconvex) instance of Problem (P) (satis-
fying Assumption A).

3 Preliminaries: the perturbed condensed push-sum algorithm

The proposed algorithmic framework combines local optimization based on SCAwith
constrained consensus and tracking of gradient averages over digraphs.

The consensus problem over graphs has been widely studied in the literature;
a renowned distributed scheme solving this problem over (possibly time-varying)
digraphs is the so-called push-sum algorithm [24]. A perturbed version of the push-
sum scheme has been introduced in [27] to solve unconstrained optimization problems
over (time-varying) digraphs. However, it is not clear how to leverage the push-sum
update and extend these optimization schemes to deal with constraints. In this sec-
tion, we introduce a reformulation of the perturbed push-sum protocol [27]—termed
perturbed condensed push-sum—that is more suitable for the integration with con-
strained optimization. This schemewill be then used to build the gradient tracking and
constrained consensus mechanisms embedded in the proposed algorithmic framework
(cf. Sect. 4).

Consider a network of I agents, as introduced in Sect. 2, communicating over a
time-varying digraph (cf. Assumption B). Each agent i controls a vector of variables
x(i) ∈ R

m as well as a scalar φi that are iteratively updated, based upon the information
received from its immediate neighbors. Let xn(i) and φn

i denote the values of x(i) and φi

at iteration n ∈ N+. We let agents’ updates be subject to a(n adversarial) perturbation;
we denote by δni ∈ R

m the perturbation injected in the update of agent i at iteration n.
Given xn(i) and φn

i , the perturbed condensed consensus algorithm reads:

123

506 G. Scutari, Y. Sun

φn+1
i =

I∑

j=1

ani jφ
n
j , (4a)

xn+1
(i) = 1

φn+1
i

I∑

j=1

ani jφ
n
j x

n
(j) + δn+1

i , (4b)

for all n ∈ N+ and i ∈ [I], where x0(i) are arbitrarily chosen and φ0
i are positive scalars

such that
∑I

i=1 φ0
i = I ; and An � (ani j)

I
i, j=1 is a (possibly) time-varying matrix of

weights whose nonzero pattern is compliant with the topology of the graph Gn , in the
sense of the assumption below.

Assumption C (On the weight matrixAn) EachAn � (ani j)
I
i, j=1 is compliant with Gn ,

that is,

C1. anii ≥ κ > 0, for all i ∈ [I];
C2. ani j ≥ κ > 0, if (j, i) ∈ En ; and ani j = 0 otherwise.

Under Assumption C, the protocol (4) is implementable in a distributed fashion: each
agent i updates its own variables using only the information φn

j x
n
(j) and φn

j received
from its current in-neighbors (and its own). We study convergence of (4) under the
following further (standard) assumption on An .

Assumption D (Column stochasticity) Each matrix An is column stochastic, that is,
1�An = 1�.

The role of the extra variables φi is to dynamically rebuild the row stochasticity of
the equivalent weight matrix governing variables’ updates, which is a key condition
to lock consensus. This can be easily seen rewriting the dynamics (4b) in terms of the
equivalent weights Wn � (wi j)

I
i, j=1:

xn+1
(i) =

I∑

j=1

wn
i j x

n
(j), wn

i j �
ani jφ

n
j

φn+1
i

. (5)

It is not difficult to check that, under Assumption D, Wn is row-stochastic.
To state the main convergence result in compact form, we introduce the following

notation. Let

xn �
[
xn �
(1) , . . . , x�

(I)

]�
, (6a)

φn �
[
φn
1 , . . . , φn

I

]�
, (6b)

δn �
[
δn �
1 , . . . , δn �

I

]�
. (6c)

Noting that, in the absence of perturbation (i.e., δn = 0), theweighed sum
∑I

i=1 φn
i x

n
(i)

is an invariant of (4), that is,
∑I

i=1 φn+1
i xn+1

(i) = · · · = ∑I
i=1 φ0

i x
0
(i). We define the

consensus disagreement at iteration n as the deviation of each xn(i) from the weighted

average (1/I)
∑I

i=1 φn
i x

n
(i):

123

Distributed nonconvex constrained optimization over… 507

enx � xn − 1 ⊗ 1

I

I∑

i=1

φn
i x

n
(i). (7)

The dynamics of the error enx are studied in the following proposition (whose proof is
postponed to Sect. 3.2).

Proposition 1 Let {Gn}n∈N+ be a sequence of digraphs satisfying Assumption B, and
let {(φn, xn)}n∈N+ be the sequence generated by the perturbed condensed push-
sum protocol (4), for a given perturbation sequence {δn}n∈N+ and weight matrices
{An}n∈N+ satisfying Assumptions C–D. Then, there hold:

(i) [Bounded {φn}n∈N+]:

inf
n∈N+

min
i∈[I] φ

n
i ≥ φlb, φlb � κ2(I−1)B,

sup
n∈N+

max
i∈[I] φ

n
i ≤ φub, φub � I − κ2(I−1)B,

(8)

with B ≥ 1 and κ ∈ (0, 1) defined in Assumptions B and C, respectively;
(ii) [Error decay]: For all n, k ∈ N+, n ≥ k,

‖enx‖ ≤ λk ‖en−k
x ‖ + λt ·

k−1∑

t=0

‖δn−t‖, (9)

where

λt � min

{√
2 I , 2 c0 I (ρ)

⌊
t

(I−1)B

⌋}
,

and

c0 � 2
(
1 + κ̃−(I−1)B

)
, ρ � 1 − κ̃ (I−1)B, κ̃ � κ2(I−1)B+1/I . (10)

Furtheremore, there exists a finite B̄ ∈ N+ such that ρB̄ � 2c0 I (ρ)

⌊
B̄

(I−1)B

⌋
< 1.

Remark 1 The perturbed consensus algorithm (4) was mainly designed for digraphs.
However, when the graph is undirected, one can choose the weight matrix An to be
double stochastic and get rid of the auxiliary variables φn , just setting in (4) φ0 = 1.
As a consequence, φn ≡ 1 and Wn ≡ An , for all n ∈ N+. In this case, using
[29, Lemma 9], the expression of λt in Proposition 1 can be tightened by letting

λt � min{1, (ρ)�t/B�}, with ρ �
√
1 − κ/

(
2I 2
)
.

3.1 Discussion

Proposition 1 provides a unified set of convergence conditions of the perturbed con-
densed push-sum scheme that are applicable to any given perturbation sequence

123

508 G. Scutari, Y. Sun

{δn}n∈N+ . We discuss next two special cases, namely: the plain average consensus
problem and the distributed tracking of time-varying signals.

1. (Weighted) average consensus Setting in (4) δn = 0, for all n ∈ N+, (4) reduces
to the plain (condensed) push-sum scheme. whose geometric convergence to the
(weighted) average of the initial values, (1/I)

∑I
i=1 φ0

i x
0
(i), follows readily from

Proposition 1. More specifically, using
∑I

i=1 φn+1
i xn+1

(i) = · · · = ∑I
i=1 φ0

i x
0
(i), (9)

yields

∥∥∥∥∥x
n+1 − 1 ⊗ 1

I

I∑

i=1

φ0
i x

0
(i)

∥∥∥∥∥ ≤ 2 c0 I (ρ)
� n+1

(I−1)B � ∥∥∥e0x
∥∥∥ , n ∈ N+. (11)

Note that, since the weight matrixWn in (5) is row stochastic, if the initial values x0(i)
all belong to a common setK, then xn(i) ∈ K, for all n ∈ N++; that is feasibility of the
iterates is preserved.

2. Tracking of time-varying signals’ averages Consider the problem of tracking
distributively the average of time-varying signals. At each iteration n ∈ N+, each agent
i evaluates (or generates) a signal sample uni ∈ R

m from the (time-varying) sequence
{uni }n∈N+ . The goal is to design a distributed algorithm obeying the communication
structure of the graphs Gn that tracks the average of the signals {uni }n∈N+ , that is,

lim
n→∞

∥∥xn − 1 ⊗ ūn
∥∥ = 0, ūn � 1

I

I∑

i=1

uni . (12)

The perturbed condensed push-sum algorithm (4) can be readily used to accomplish
this task by setting

δn+1
i = 1

φn+1
i

(
un+1
i − uni

)
, i ∈ [I], n ∈ N+, (13)

and x0i = u0i , i ∈ [I]. Convergence of this scheme is stated next.

Corollary 2 Let {uni }n∈N+ be a given sequence such that limn→∞ ‖un+1
i − uni ‖ = 0,

for all i ∈ [I]. Consider the perturbed condensed push-sum protocol (4), under the
assumptions of Proposition 1; and set δn+1

i as in (13), x0i = u0i , and φ0
i = 1 for all

i ∈ [I]. Then, (12) holds.
Proof The proof follows readily from Proposition 1 and the following two facts:

(i) (1/I)
∑I

i=1 φn+1
i xn+1

(i) = ūn+1; and (ii) [28, Lemma 7]

lim
n→∞ ‖δn‖ = 0 ⇒ lim

n→∞

n−1∑

t=0

(ρ)
� t

(I−1)B � ‖δn−t‖ = 0.

��

123

Distributed nonconvex constrained optimization over… 509

3.2 Proof of Proposition 1

To prove Proposition 1, it is convenient to rewrite the perturbed consensus protocol
(4) in a vector–matrix form. To do so, let us introduce the following quantities: given
the weight matrix An compliant with Gn (cf. Assumption C) and Wn defined in (5),
let

Dφn � Diag
(
φn) , (14a)

D̂φn � Dφn ⊗ I, (14b)

Ân � An ⊗ I, (14c)

Ŵn � Wn ⊗ I, (14d)

where Diag(•) denotes a diagonal matrix whose diagonal entries are the elements of
the vector argument, and I is them×m identitymatrix. Under the column stochasticity
of An , it is not difficult to check that the following holds:

Wn =
(
Dφn+1

)−1
An Dφn and Ŵn =

(
D̂φn+1

)−1
Ân D̂φn . (15)

Using the above notation and (6), the perturbed push-sum protocol (4) can be rewritten
in matrix–vector form as

φn+1 = Anφn and xn+1 = Ŵnxn + δn+1. (16)

To study convergence of (16), it is convenient to introduce the following matrix prod-
ucts: given n, k ∈ N+, with n ≥ k,

An:k �
{
AnAn−1 · · ·Ak, if n > k,

An, if n = k,

Wn:t �
{
WnWn−1 · · ·Wk, if n > k,

Wn, if n = k,

(17)

and

Ân:k � An:k ⊗ I, Ŵn:k � Wn:k ⊗ I. (18)

Define the weight-averaging matrix

Jφn � 1

I

(
1 (φn)�

)
⊗ I, (19)

so that Jφn xn = 1 ⊗ 1
I

∑I
i=1 φn

i x
n
(i). Also, it is not difficult to check the following

chain of equalities hold among Jnφ , Ŵ
n:t , and Ân:t : for n, k ∈ N+, with n ≥ k,

123

510 G. Scutari, Y. Sun

Jφn+1 Ŵn:k (a)= J1D̂φk = Jφk
(b)= Ŵn:k Jφk , (20)

where in (a) we used the definition of Ŵn [cf. (15)], Jφn+1 [cd. (20)], and the column

stochasticity of Ân ; and (b) is due to the row stochasticity of Ŵn:k .
The consensus error enx in (7) can be rewritten as enx = (I − Jφn)xn .
To study the evolution of enx , we apply the x-update (16) recursively and obtain

xn = Ŵn−1:n−k xn−k +
k−1∑

t=1

Ŵn−1:n−tδn−t + δn . (21)

Using (20) and (21), the weighted average Jφnxn can be written as

Jφnxn = Jφn−kxn−k +
k−1∑

t=1

Jφn−t δn−t + Jφnδn . (22)

Subtracting (22) from (21) and using
(
Ŵn−1:n−k − Jφn−k

)
Jφn−k = 0 [cf. (20)], we

can bound the consensus error en+1
x as

‖enx‖ ≤
∥∥∥Ŵn−1:n−k − Jφn−k

∥∥∥ ‖en−k
x ‖ +

k−1∑

t=1

∥∥∥Ŵn−1:n−t − Jφn−t

∥∥∥ ‖δn−t‖

+
∥∥∥I − Jφφφn

∥∥∥ ‖δn‖.
(23)

Convergence of the perturbed consensus protocol reduces to studying the dynamics
of the matrix product ‖Ŵn:k − Jφk‖, as done in the lemma below.

Lemma 3 Let {Gn}n∈N+ be a sequence of digraphs satisfying Assumption B; let
{An}n∈N+ be a sequence of weight matrices satisfying Assumptions C–D; and let
{Wn}n∈N+ be the sequence of row stochastic matrices related to {An}n∈N+ by (15).
There holds:

∥∥∥Ŵn:k − Jφk

∥∥∥ ≤ min

{√
2 I , 2 c0 I (ρ)

⌊
n−k+1
(I−1)B

⌋}
, n, k ∈ N+, n ≥ k, (24)

where c0 and ρ are defined in Proposition 1.

Proof See Appendix A. ��

The error decay law (9) comes readily from (23), Lemma 3, and the following fact:∥∥I− Jφn
∥∥ ≤ √

2 I ≤ λ0 � min{2c0 I ,
√
2I }, which is proved below. Let z ∈ R

I ·m be
an arbitrary vector; let us partition z as z = [z�

1 , . . . , z�
I]�, with each zi ∈ R

m . Then,

123

Distributed nonconvex constrained optimization over… 511

∥∥(I − Jφn) z
∥∥ ≤ ‖z − J1 z‖ + ∥∥J1z − Jφnz

∥∥ (a)≤ ‖z‖ +
√
I

I

∥∥∥∥∥

I∑

i=1

zi −
I∑

i=1

φn
i zi

∥∥∥∥∥

≤‖z‖ +
√
I

I

√
I 2 − I ‖z‖ ≤ √

2 I ‖z‖ ,

(25)

where in (a) we used ‖I − J1‖ = 1. ��

4 Algorithmic design

We are ready to introduce the proposed distributed algorithm for Problem (P). To
shed light on the core idea of the novel framework, we begin introducing an informal
and constructive description of the algorithm (cf. Sect. 4.1), followed by its formal
statement along with its convergence properties (cf. Sect. 4.2).

4.1 SONATA at-a-glance

Each agent i maintains and updates iteratively a local copy x(i) of the global variable
x, along with an auxiliary variable y(i) ∈ R

m ; let xn(i) and y
n
(i) denote the values of x(i)

and y(i) at iteration n, respectively. Roughly speaking, the update of these variables
is designed so that all the xn(i) will be asymptotically consensual, converging to a
stationary solution of (P); and eachy(i) tracks locally the average of the gradients (1/I)·∑I

i=1 ∇ fi , an information that is not available at the agent’s side. More specifically,
the following two steps are performed iteratively and in parallel across the agents.

Step 1: Local SCA The nonconvexity of fi together with the lack of knowledge of∑
j �=i f j in F , prevent agent i to solve Problem (P) directly. To cope with these

issues, we leverage SCA techniques: at each iteration n, given the current iterate xn(i)
and yn(i), agent i solves instead a convexification of (P), having the following form:

x̃n(i) � argmin
x(i)∈K

F̃i
(
x(i); xn(i), yn(i)

)
+ G+ (x(i)

)
, (26)

and updates its x(i) according to

xn+1/2
(i) = xn(i) + αn

(
x̃n(i) − xn(i)

)
, (27)

where αn ∈ (0, 1) is a step-size (to be properly chosen). In (26), F̃i (•; xn(i), yn(i)) is
chosen as:

F̃i
(
x(i); xn(i), yn(i)

)
� f̃i

(
x(i); xn(i)

)− ∇G−(xn(i)
)�(x(i) − xn(i)

)

+ (I · yn(i) − ∇ fi
(
xn(i)
))�(x(i) − xn(i)

)
,

(28)

123

512 G. Scutari, Y. Sun

where f̃i (•; xn(i)) is a strongly convex approximation of fi at the current iterate xn(i)
(see Assumption E below); the second term is the linearization of the smooth non-
convex function −G−; and yn(i), as anticipated, aims at tracking the gradient average

(1/I)
∑I

j=1 ∇ f j (xn(i)), that is, limn→∞ ‖yn(i)− (1/I)
∑I

j=1 ∇ f j (xn(i))‖ = 0. This
sheds light on the role of the last term in (28): under the claimed tracking properties
of yn(i), there would hold:

lim
n→∞

∥∥∥∥∥∥

(
I · yn(i) − ∇ fi

(
xn(i)
))−

∑

j �=i

∇ f j (xn(i))

∥∥∥∥∥∥
= 0. (29)

Therefore, the last term in (28) can be seen as a proxy of the gradient sum∑
j �=i ∇ f j (xn(i)), which is not available at agent i’s site. Building on the perturbed

condensed push-sum protocol introduced in Sect. 3 we will show in Step 2 below how
to update yn(i) so that (29) holds, using only local information.

The surrogate function f̃i satisfies the following assumption.

Assumption E (On surrogate function f̃i) Let f̃i : K×K → R be a C1 function with
respect to its first argument, and such that

E1. ∇ f̃i (x; x) = ∇ fi (x), for all x ∈ K;
E2. f̃i (•; y) is uniformly strongly convex on K, with constant τi ;
E3. ∇ f̃i (x; •) is uniformly Lipschitz continuous on K, with constant L̃i ;

where ∇ f̃i (x; y) denotes the partial gradient of f̃i with respect to the first argument,
evaluated at (x, y).

Conditions E1–E3 are quite natural: f̃i should be regarded as a (simple) convex,
local, approximation of fi at x that preserves the first order properties of fi . A gamut
of choices for f̃i satisfying Assumption E are available; some representative examples
are discussed in Sect. 4.4.

Step 2: Information mixing and gradient tracking To complete the description of the
algorithm, we need to introduce a mechanism to ensure that

(i) the local estimates xn(i)’s asymptotically converge to a common value; and
(ii) each yn(i) tracks the gradient sum

∑
j �=i ∇ f j (xn(i)). To this end, we leverage

the perturbed condensed push-sum protocol introduced in Sect. 3. Specifically, given
xn+1/2
(j) ’s, each x(i) is updated according to [cf. (4)]

φn+1
i =

I∑

j=1

ani jφ
n
j , xn+1

(i) = 1

φn+1
i

I∑
j=1

ani j φ
n
j x

n+1/2
(j) , (30)

where the ani j are chosen to satisfy Assumption C. Note that, the updates in (30) can
be performed in a distributed way: each agent j only needs to select the set of weights
{ani j }Ii=1 and send ani jφ

n
j and ani jφ

n
j x

n+1/2
(j) to its out-neighbors while summing up the

information received from its in-neighbors.

123

Distributed nonconvex constrained optimization over… 513

To update the yn(i)’s we leverage again the perturbed condensed push-sum scheme

(4), with with εn+1
i = (1/φn+1

i)
(∇ fi (x

n+1
(i)) − ∇ fi (xn(i))

)
[cf. (13)]. The resulting

gradient tracking mechanism reads

yn+1
(i) = 1

φn+1
i

I∑

j=1

ani jφ
n
j y

n
(j) + 1

φn+1
i

(
∇ fi
(
xn+1
(i)

)− ∇ fi
(
xn(i)
))

, (31)

with y0(i) = ∇ fi (x0(i)).
Note that the update of yn(i) can be performed locally by agent i , with the same

signaling of that of (30).

4.2 The SONATA algorithm

We can now formally introduce the proposed algorithm, SONATA, just combining
steps (26), (27), (30), and (31)—see Algorithm 1.

Algorithm 1 SONATA
Data: x0

(i) ∈ K, for all i ; φ0 = 1; y0 = g0. Set n = 0.

[S.1] If xn satisfies termination criterion: STOP;
[S.2] [Distributed Local Optimization] Each agent i

Compute locally x̃n
(i) solving problem (26);

Update its local variable xn+1/2
(i) � xn

(i) + αn (̃xn
(i) − xn

(i));
[S.3] [Information Mixing] Each agent i compute

(a) Consensus

φn+1
i =

I∑

j=1

ani jφ
n
j (32)

xn+1
(i) = 1

φn+1
i

I∑

j=1

ani j φn
j x

n+1/2
(j) ; (33)

(b) Gradient tracking

yn+1
(i) = 1

φn+1
i

I∑

j=1

ani jφ
n
j y

n
(j) + 1

φn+1
i

(
∇ fi

(
xn+1
(i)

)− ∇ fi
(
xn(i)
)) ; (34)

[S.4] n ←− n + 1, go to [S.1]

Note that the algorithm is distributed. Indeed, in Step 2, the optimization (26) is
performed locally by each agent i , computing its own x̃n(i). To do so, agent i needs to
know the current xn(i) and yn(i), which are both available locally. There are then two
consensus steps (Step 3) whereby agents transmit/receive information only to/from

123

514 G. Scutari, Y. Sun

their out/in neighbors: one is on the optimization variables xn(i) (and the auxiliary
scalars φn

i)—see (32)–(33)—and one is on the variables yn(i)—see (34).

4.3 Convergence and complexity analysis of SONATA

To prove convergence, in addition to Assumptions A–E, one needs some conditions on
the step-size αn . Since line-search methods are not practical in a distributed environ-
ment, there are two other options, namely: i) a fixed (sufficiently small) step-size; and
ii) a diminishing step-size. We prove convergence using either choices. Recalling the
definition of the network parameters c0, B̄, ρB̄ , φlb, and φub as given in Proposition 3
[see also (10)] and introducing the problem parameters [cf. Assumptions A, E]

L �
I∑

i=1

Li , L̃mx � max
1≤i≤I

L̃ i + LG , Lmx � max
1≤i≤I

Li ,

cτ � min
1≤i≤I

τi , cL �
(
L
√
I + Lmx + L̃mx

)
/I , (35)

the step-size can be chosen as follows.

Assumption F The step-size {αn}n∈N+ satisfies either one of the following conditions:

F1. (diminishing) (0, 1] � αn ↓ 0 and
∑∞

n=0 αn = ∞;
F2. (fixed) αn ≡ α, for all n ∈ N+, with

α ≤ min

{(
1 − ρB̄

)
σ√

2 c B̄
,

2cτ φlb

Iφub

(
L + LG

I
+ 2cL B̄c

1 − ρB̄

√
2

1 − σ 2 + 12Lmxφ
−1
lb B̄2c2

(1 − ρB̄)2

√
1

1 − σ 2

)−1
⎫
⎬

⎭ ,

(36)

where σ is an arbitrary constant σ ∈ (0, 1) and c = I
√
2I .

In addition, if all An are double stochastic, the upper bound in (36) holds with c = 1,
B̄ = B, φlb = φub = 1, and ρB̄ = (1 − κ/(2 I 2)

)1/2.

We can now state the convergence results of the proposed algorithm, postponing all
the proofs to Sect. 6. Given {xn � (xn(i))

I
i=1}n∈N+ generated by Algorithm 1, conver-

gence is stated measuring the distance of the average sequence x̄n � (1/I) ·∑I
i=1 x

n
(i)

from optimality and well as the consensus disagreement among the local variables
xn(i)’s. Distance from stationarity is measured by the following function:

J (x̄n) �∥∥∥∥x̄
n − argmin

z∈K

{(
∇F(x̄n) − ∇G−(x̄n

))�
(z − x̄n) + 1

2
‖z − x̄n‖2 + G(z)+

}∥∥∥∥ .

(37)

123

Distributed nonconvex constrained optimization over… 515

Note that J is a valid measure of stationarity because it is continuous and J (x̄∞) =
0 if and only if x̄∞ is a d-stationary solution of Problem (P) [16]. The consensus
disagreement at iteration n is defined as

D(xn) � ‖xn − 1I ⊗ x̄n‖.

Note that D is equal to zero if and only if all the xn(i)’s are consensual. We combine
the metrics J and D in a single merit function, defined as

M(xn) � max
{
J (x̄n)2, D(xn)2

}
.

We are now ready to state the main convergence results for Algorithm 1.

Theorem 4 (asymptotic convergence) Given Problem (P) and Algorithm 1, suppose
that Assumptions A–F are satisfied; and let {xn}n∈N+ be the sequence generated by
the algorithm. Then, there holds limn→∞ M(xn) = 0.

Proof See Sect. 6. ��
Under a constant step-size (Assumption F.2), the next theorem provides an upper

bound on the number of iterations needed to decrease M(xn) below a given accuracy
ε > 0.

Theorem 5 (complexity) Suppose that Assumptions A–E are satisfied; and let
{xn}n∈N+ be the sequence generated by Algorithm 1, with a constant step-size αn = α,
satisfying Assumption F.2. Given ε > 0, let Tε be the first iteration n such that
M(xn) ≤ ε. Then Tε = O(1/ε).

Proof See the companion paper [40]. ��
Remark 6 (generalizations) Theorems 4 and 5 can be established with minor modi-
fications under the setting wherein each agent i uses different constant step-size αi .
Also the assumption on the strongly convexity of the surrogate function f̃i (Assump-
tion E.2) can be weakened to just convexity, if the feasible set K is compact. With
mild additional assumptions on G+—see [12]—we can extend convergence results
in Theorem 4 to the case wherein agents solve their subproblems (26) inexactly. We
omit further details because of space limitation.

4.4 Discussion

Theorem 4 (resp. Theorem 5) provides the first convergence (resp. complexity) result
of distributed algorithms for constrained and/or composite optimization problems over
time-varying (undirected or directed) graphs, which significantly enlarges the class of
convex and nonconvex problems which distributed algorithms can be applied to with
convergence guarantees.

SONATA represents a gamut of algorithms, each of themcorresponding to a specific
choice of the surrogate function f̃i , step-size αn , and matrices An . Convergence is
guaranteed under several choices of the free parameters of the algorithms, some of
which are briefly discussed next.

123

516 G. Scutari, Y. Sun

• On the choice of f̃i . Examples of f̃i satisfying Assumption E are

– Linearization Linearize fi and add a proximal regularization (to make f̃i
strongly convex), which leads to

f̃i
(
x(i); xn(i)

) = fi
(
xn(i)
)+ ∇ fi

(
xn(i)
)�(x(i) − xn(i)

)+ τi

2

∥∥x(i) − xn(i)
∥∥2
2;

– Partial Linearization Consider the case where fi can be decomposed as
fi (x(i)) = f (1)

i (x(i))+ f (2)
i (x(i)), where f (1)

i is convex and f (2)
i is nonconvex

with Lipschitz continuous gradient. Preserving the convex part of fi while
linearizing f (2)

i leads to the following valid surrogate

f̃i (x(i); xn(i)) = f (1)
i (x(i)) + f (2)

i (xn(i)) + τi

2
‖xi − xn(i)‖2

+ ∇ f (2)
i (xn(i))

�(xi − xn(i));

– Partial Convexification Consider the case where x(i) is partitioned as
(x(i,1), x(i,2)), and fi is convex in x(i,1) but not in x(i,2). Then, one can con-
vexify only the nonconvex part of fi , which leads to the surrogate:

f̃i (x(i); xn(i)) = fi (x(i,1), xn(i,2)) + τi

2
‖x(i,2) − xn(i,2)‖2

+ ∇(2) fi (xn(i))
�(x(i,2) − xn(i,2)),

where ∇(2) fi denotes the gradient of fi with respect to x(i,2). Other choices
of surrogates can be obtained hinging on [15,16,36].

• On the choice of the step-size Several options are possible for the step-size
sequence {αn}n satisfying the diminishing-rule in Assumption F.1; see, e.g.,
[2]. Two instances we found to be effective in our experiments are: i) αn =
α0/ (n + 1)β , with α0 > 0 and 0.5 < β ≤ 1; and ii) αn = αn−1

(
1 − μαn−1

)
,

with α0 ∈ (0, 1], and μ ∈ (0, 1).
• On the choice of matrix An When dealing with digraphs, the key requirement
of Assumption B is that each An is column stochastic. Such matrices can be built
locally by the agents: each agent j can simply choose weight ani j for i ∈ N out

j [n]
so that

∑
i∈N out

j [n] ani j = 1. As a special case, An can be set to be the following

push-sum matrix [24]: ani j = 1/dnj , if (j, i) ∈ En ; and ani j = 0, otherwise; where
dni is the out-degree of agent i . In this case, the information mixing process in
Step 2 becomes a broadcasting protocol, which requires from each agent only the
knowledge of its out-degree.

When the digraphs Gn admit a double-stochastic matrix (e.g., they are undirected),
as already observed in Sect. 3 (cf. Remark 1), one can chooseAn as double-stochastic;
and the consensus and tracking protocols in Step 3 reduce respectively to

123

Distributed nonconvex constrained optimization over… 517

xn+1
(i) =

I∑

j=1

ani j
(
xn(j) + αn (̃xn(j) − xn(j))

)

yn+1
(i) =

I∑

j=1

ani jy
n
(j) + ∇ fi (x

n+1
(i)) − ∇ fi (xn(i)).

(38)

Several choices have been proposed in the literature to build in a distributed way
a double stochastic matrix An , including: the Laplacian, Metropolis–Hastings, and
maximum-degree weights; see, e.g., [51].
• ATC/CAA updates. In the case of unconstrained optimization, the information
mixing step in Algorithm 1 can be performed following two alternative protocols,
namely: i) the Adapt-Then-Combine-based (ATC) scheme; and ii) the Combine-And-
Adapt-based (CAA) approach (termed “consensus strategy” in [35]). The former is
the one used in (30)—each agent i first updates its local copy xn(i) along the direction
x̃n(i) − xn(i), and then combines its new update with that of its neighbors via consensus.
Alternatively, in the CAA update, agent i first mixes its own local copy xn(i) with that
of its neighbors via consensus, and then performs its local optimization-based update
using x̃n(i) − xn(i), that is

xn+1
(i) = 1

φn+1
i

I∑

j=1

ai jφ
n
j x

n
(j) + φn

i

φn+1
i

· αn (̃xn(i) − xn(i)).

It is not difficult to check that SONATA based on CAA updates converges under the
same conditions as in Theorem 4.

5 SONATA and special cases

In this section, we contrast SONATAwith related algorithms proposed in the literature
[12–14,52] and very recent proposals [30,33,50] for special instances of Problem (P).
We show that algorithms in [30,33,50,52] are all special cases of SONATA and NEXT,
proposed in our earlier works [12–14,42].

We preliminarily rewrite Algorithm 1 in a matrix–vector form. Similarly to xn ,
define the concatenated vectors

x̃n �
[
x̃n�
(1) , . . . , x̃

n�
(I)

]�
, (39)

yn �
[
yn�
(1) , . . . , y

n�
(I)

]�
, (40)

gn �
[
gn�
1 , . . . , gn�

I

]�
, gni � ∇ fi (xn(i)), (41)

Δxn � x̃n − xn, (42)

123

518 G. Scutari, Y. Sun

where x̃n(i) and yn(i) are defined in (26) and (34), respectively. Using the above nota-
tion and the matrices introduced in (14a), SONATA [cf. (32)–(34)] can be written in
compact form as

φn+1 = Anφn (43)

xn+1 = Ŵn(xn + αnΔxn) (44)

yn+1 = Ŵnyn + (D̂φn+1)−1
(
gn+1 − gn

)
. (45)

5.1 Preliminaries: NEXT and SONATA-L

Since [30,33,50,52] are applicable only to unconstrained (K = R
m), smooth (G = 0)

and convex (each fi is convex) multiagent problems, in the following, we consider
only such an instance of Problem (P). Choose each f̃i as first order approximation of
fi plus a proximal term, that is,

f̃i (x(i); xn(i)) = fi (xn(i)) + ∇ fi (xn(i))
�(x(i) − xn(i)) + τi

2
‖x(i) − xn(i)‖2,

and set τi = I . Then, x̃n(i) can be computed in closed form [cf. (26)]:

x̃n(i) = argmin
x(i)

(I · yn(i))�(x(i) − xn(i)) + I

2
‖x(i) − xn(i)‖2

= argmin
x(i)

I

2

∥∥x(i) − xn(i) + yn(i)
∥∥2 = xn(i) − yn(i).

(46)

Therefore, Δxn(i) = x̃n(i) − xn(i) = yn(i).
Substituting (46) into (44) and using either ATC or CAA mixing protocols, Algo-

rithm 1 reduces to

φn+1 = An φn

xn+1 =
⎧
⎨

⎩
Ŵn (xn − αn yn) (ATC-based update)

Ŵnxn − αn
(
D̂φn+1

)−1
D̂φnyn (CAA-based update)

(47)

yn+1 =
⎧
⎨

⎩
Ŵn
(
yn + (D̂φn

)−1
(gn+1 − gn)

)
(ATC-based update)

Ŵnyn +
(
D̂φn+1

)−1 (
gn+1 − gn

) ; (CAA-based update)
(48)

which we will refer to as (ATC/CAA-)SONATA-L (L stands for “linearized”).
When the digraph Gn admits a double-stochastic matrix An , and An in (43) is

chosen so, the iterates (47) can be further simplified as reduces to

123

Distributed nonconvex constrained optimization over… 519

xn+1 =
{
Ŵn (xn − αnyn) (ATC-based update)

Ŵnxn − αnyn (CAA-based update)
(49)

yn+1 =
{
Ŵn
(
yn + gn+1 − gn

)
(ATC-based update)

Ŵnyn + gn+1 − gn, (CAA-based update)
(50)

where Wn = An and thus Ŵn = Wn ⊗ Im . The ATC-based updates coincide with
our previous algorithm NEXT [based on the surrogate (46)], introduced in [12–14].
We will refer to (49) as (ATC/CAA-)NEXT-L.

5.2 Connection with current algorithms

We can now show that the algorithms recently studied in [30,33,50,52] are all special
cases of SONATA and NEXT, earlier proposed in [12–14].

Aug-DGM [52] and Algorithm in [33]. Introduced in [52] for undirected, time-
invariant graphs, the Aug-DGM algorithm reads

xn+1 = Ŵ
(
xn − Diag (α ⊗ 1m) yn

)

yn+1 = Ŵ
(
yn + gn+1 − gn

) (51)

where Ŵ � W ⊗ Im ; W is a double stochastic matrix satisfying Assumption C, and
α is the vector of agents’ step-sizes αi ’s.

A similar algorithm was proposed independently in [33] (in the same networking
setting of [52]), which reads

xn+1 = Ŵ
(
xn − αyn

)

yn+1 = Ŵyn + gn+1 − gn .
(52)

6 Convergence Proof of SONATA

ClearlyAug-DGM[52] in (51)with theαi ’s equal, andAlgorithm [33] in (52) coincide
with (ATC-)NEXT-L [cf. (49)].

(Push-)DIGing [30]. Appeared in [30] and applicable to B-strongly connected undi-
rected graphs, the DIGing Algorithm reads

xn+1 = Ŵnxn − αyn

yn+1 = Ŵnyn + gn+1 − gn,
(53)

where Wn is a double-stochastic matrix satisfying Assumption C. Clearly, DIGing
coincides with (CAA-)NEXT-L [12–14][cf. (49)]. The push-DIGing algorithm, stud-
ied in the same paper [30], extends DIGing to B-strongly connected digraphs. It

123

520 G. Scutari, Y. Sun

Table 4 Connection of SONATA with current algorithms

turns out that push-DIGing coincides with (ATC-)SONATA-L [cf. Eq. (47)] when
ani j = 1/dnj .

ADD-OPT [50]. Finally, we mention the ADD-OPT algorithm, proposed in [50] for
strongly connected static digraphs, which takes the following form:

zn+1 = Âzn − αỹn

φn+1 = Aφn

xn+1 =
(
D̂φn+1

)−1
zn+1

ỹn+1 = Â ỹn + gn+1 − gn,

(54)

where A is a column stochastic matrix satisfying Assumption C, and Â = A ⊗ Im .
Defining yn = (D̂φn+1)−1̃yn , it is not difficult to check that (54) can be rewritten as

φn+1 = Aφn, W =
(
D̂φn+1

)−1
Â D̂φn

xn+1 = Ŵxn − α
(
D̂φn+1

)−1
D̂φn yn

yn+1 = Ŵyn +
(
D̂φn+1

)−1 (
gn+1 − gn

)
.

(55)

123

Distributed nonconvex constrained optimization over… 521

Comparing Eqs. (47) and (55), one can see that ADD-OPT coincides with (CAA-
)SONATA-L.

We summarize the connections between the different versions of SONATA(-NEXT)
and its special cases in Table 4.

In this section, we prove convergence of SONATA; because of space limitation
we prove only Theorem 4; the proof of Theorem 5 can be found in the companion
paper [40]. The proof consists in studying the dynamics of a suitably chosen Lyapunov
function along the weighted average of the agents’ local copies, and of the consensus
disagreement and tracking errors. We begin introducing some convenient notation
along with some preliminary results. For the sake of simplicity, all the results of the
forthcoming subsections are stated under Assumptions A–F.

6.1 Notations and preliminaries

The weighted average and associated consensus disagreement are denoted by

x̄φn � 1

I

(
φn� ⊗ Im

)
xn and enx � xn − Jφnxn, (56)

respectively. Similar quantities are defined for the tracking variables yn(i):

ȳφn � 1

I

(
φn� ⊗ Im

)
yn and eny � yn − Jφnyn . (57)

Recalling (39), define the deviation of the local solution x̃n(i) of each agent from the
weighted average as

Δx̃n(i),φ � x̃n(i) − x̄φn , (58)

and the associated stacked vector

Δx̃nφ � x̃n − Jφnxn . (59)

Note that Δxn [cf. (39)] can be rewritten as

Δxn = Δx̃nφ − enx . (60)

Using the above notation, the dynamics of x̄φn and ȳφn generated by Algorithm 1
are given by [cf. (44) and (45)]:

123

522 G. Scutari, Y. Sun

x̄φn+1 = x̄φn + αn

I

(
(φn)� ⊗ Im

)
Δx̃nφ (61a)

ȳφn+1 = ȳφn + ḡn+1 − ḡn . (61b)

Note that, since y0 = g0 and φ0
i = 1, we have ȳφn = ḡn , for all n ∈ N+.

Finally, we introduce the error-free local solution map of each agent i , denoted by
x̂(i) : K → K: Given z ∈ K and i = 1, . . . , I , let

x̂(i)(z) � argmin
x(i)∈K

{
f̃i
(
x(i); z

)− ∇G− (z)�
(
x(i) − z

)

+
(∑

j �=i ∇ f j (z)
)� (

x(i) − z
)+ G+(z)

}
.

(62)

It is not difficult to check that x̂(i)(•) enjoys the following properties (the proof of the
next lemma follows similar steps as in [16, Prop. 8] and thus is omitted).

Lemma 7 Each x̂(i)(•) satisfies:

i) [Lipschitz continuity] x̂(i)(•) is L̂-Lipschitz continuous on K, that is,
there exits a finite L̂ > 0 such that

∥∥̂x(i)(z) − x̂(i)(w)
∥∥ ≤ L̂ ‖z − w‖ , ∀z, w ∈ K; (63)

ii) [Fixed-points] The set of fixed points of x̂(i)(•) coincides with the set of
d-stationary solutions of Problem (P).

The next result shows that, as expected, the disagreement between agent i’s solu-
tion x̃n(i) and its error-free counterpart x̂(i)(xn(i)) asymptotically vanishes if both the
consensus error enx and the tracking error eny do so.

Lemma 8 x̃n(i) [cf. (26)] and x̂i (xn(i)) [cf. (62)] satisfy:

∥∥∥̂xi (xn(i)) − x̃n(i)

∥∥∥ ≤ I

τi

∥∥∥eny
∥∥∥+ 2 I L

τi
‖enx‖. (64)

Therefore, ‖enx‖, ‖eny‖ −→
n→∞ 0 ⇒ ‖̂xi (xn(i)) − x̃n(i)‖ −→

n→∞ 0.

The last result of this section is a standard martingale-like result; the proof follows
similar to that of [3, Lemma1] and thus is omitted.

Lemma 9 Let {Xn}n∈N+ , {Yn}n∈N+ and {Zn}n∈N+ be three sequences such that Xn

and Zn are nonnegative, for all n ∈ N+. Suppose that

B̄−1∑

k=0

Yn+B̄+k ≤
B̄−1∑

k=0

Yn+k −
B̄−1∑

k=0

Xn+k +
B̄−1∑

k=0

Zn+k, n = 0, 1, . . . , (65)

and that
∑∞

n=0 Z
n < +∞. Then, either

∑B̄−1
k=0 Yn+k → −∞, or else

∑B̄−1
k=0 Yn+k

converges to a finite value and
∑∞

n=0 X
n < +∞.

123

Distributed nonconvex constrained optimization over… 523

6.2 Average descent

We begin our analysis studying the dynamics of U along the trajectory of x̄φn . We
define the total energy of the optimization input αnΔx̃nφ and consensus errors enx and

eny in B̄ consecutive iterations [B̄ is defined in Lemma 3]:

En
Δx̃ �

B̄−1∑

t=0

(
αn+t)2

∥∥∥Δx̃n+t
φ

∥∥∥
2
, En

x⊥ �
B̄−1∑

t=0

∥∥en+t
x

∥∥2 , En
y⊥ �

B̄−1∑

t=0

∥∥∥en+t
y

∥∥∥
2
.

(66)

Recalling the definitions of cτ , φlb, and φub [see (8) and (35)], we have the following.

Lemma 10 Let {(xn, yn)}n∈N+ be the sequence generated by Algorithm 1. Then, there
holds

B̄−1∑

k=0

U
(
x̄
φn+B̄+k

)

≤
B̄−1∑

k=0

U
(
x̄φn+k

)
− cτ φlb

I
·
B̄−1∑

k=0

B̄−1∑

t=0

αn+k+t
∥∥∥Δx̃n+k+t

φ

∥∥∥
2

+ φub

2

(
L + LG

I
φub + cLεx + εy

) B̄−1∑

k=0

En+k
Δx̃ + φub

2

B̄−1∑

k=0

(
cLε−1

x En+k
x⊥ + ε−1

y En+k
y⊥

)

︸ ︷︷ ︸
term iv

,

(67)

where εx > 0 and εy > 0 are arbitrary, finite constants.

Proof Denote for simplicity F̄ � F − G−. Since f̃i is strongly convex and G+ is
convex, by the first order optimality of x̃n(i), we have

(
Δx̃n(i),φ

)� (
I · yn(i) + ∇ f̃i (x̄φn ; xn(i)) − ∇G−(xn(i)) − ∇ fi (xn(i))

)

+G+(̃xn(i)) − G+(x̄φn) ≤ −τi‖Δx̃n(i),φ‖2. (68)

Since ∇ fi and ∇G− are Li and LG -Lipschitz, respectively, ∇F is (L + LG)-
Lipschitz, where L �

∑I
i=1 Li [cf. def. (35)]. Applying the descent lemma to F̄ and

using (61a) yields

F̄
(
x̄φn+1

)

≤ F̄
(
x̄φn
)+ αn

I
∇ F̄

(
x̄φn
)� (

(φn)� ⊗ Im
)

Δx̃nφ

+ L + LG

2
· (αn)2

I

∥∥∥
(
(φn)� ⊗ Im

)
Δx̃nφ

∥∥∥
2

123

524 G. Scutari, Y. Sun

(a)≤ F̄
(
x̄φn
)+ L + LG

2
· (αn)2

I
φ2
ub

∥∥∥Δx̃nφ

∥∥∥
2

− αn

I

I∑

i=1

φn
i

(
τi

∥∥∥Δx̃n(i),φ

∥∥∥
2 + G+(̃xn(i)) − G+(x̄φn)

)

+ αn

I

I∑

i=1

φn
i

(
∇ F̄

(
x̄φn
)+ ∇G−(xn(i)) − I · ȳφn + I · ȳφn − I · yn(i)

)�
Δx̃n(i),φ

+ αn

I

I∑

i=1

φn
i

(
∇ fi (xn(i)) − ∇ fi (x̄φn) + ∇ f̃i (x̄φn ; x̄φn) − ∇ f̃i (x̄φn ; xn(i))

)�
Δx̃n(i),φ

(b)≤ F̄
(
x̄φn
)+ L + LG

2
· (αn)2

I
φ2
ub ‖Δx̃nφ‖2

− αn

I

I∑

i=1

φn
i

(
τi‖Δx̃n(i),φ‖2 + G+(̃xn(i)) − G+(x̄φn)

)

+ αn

I

I∑

i=1

φn
i

∥∥∥∥∥∥
∇ F̄(x̄φn) −

(I∑

j=1

∇ f j (xn(j)) − ∇G−(xn(i))
)
∥∥∥∥∥∥

∥∥∥Δx̃n(i),φ

∥∥∥

+ αn
I∑

i=1

φn
i ‖ȳφn − yn(i)‖ ‖Δx̃n(i),φ‖

+ αn

I

I∑

i=1

φn
i

∥∥∥∇ fi (xn(i)) − ∇ fi
(
x̄φn
)∥∥∥ ‖Δx̃n(i),φ‖

+ αn

I

I∑

i=1

φn
i

∥∥∥∇ f̃i (x̄φn ; x̄φn) − ∇ f̃i (x̄φn ; xn(i))
∥∥∥ ‖Δx̃n(i),φ‖

(c)≤ F̄
(
x̄φn
)+ L + LG

2
· (αn)2

I
φ2
ub ‖Δx̃nφ‖2

− αn

I

I∑

i=1

φn
i

(
τi‖Δx̃n(i),φ‖2 + G+(̃xn(i)) − G+(x̄φn)

)

+ αn

I

I∑

i=1

φn
i

⎛

⎝
I∑

j=1

L j‖x̄φn − xn(j)‖ + LG‖x̄φn − xn(i)‖
⎞

⎠ ‖Δx̃n(i),φ‖

+ αn
I∑

i=1

φn
i ‖ȳφn − yn(i)‖‖Δx̃n(i),φ‖

+ αn

I

I∑

i=1

φn
i

(
Li‖xn(i) − x̄φn‖ ‖Δx̃n(i),φ‖ + L̃i‖xn(i) − x̄φn‖ ‖Δx̃n(i),φ‖

)

(d)≤ F̄
(
x̄φn
)+ L + LG

2
· (αn)2

I
φ2
ub

∥∥∥Δx̃nφ

∥∥∥
2

123

Distributed nonconvex constrained optimization over… 525

− αn

I

I∑

i=1

φn
i

(
τi‖Δx̃n(i),φ‖2 + G+(̃xn(i))−G+(x̄φn)

)

+ αncLφub
∥∥enx
∥∥
∥∥∥Δx̃nφ

∥∥∥+ αn φub

∥∥∥eny
∥∥∥
∥∥∥Δx̃nφ

∥∥∥ , (69)

where in (a)we used (68),AssumptionE.1, and the bound (109) (alongwith somebasic
manipulations); in (b) we used ȳφn = ḡn [cf. (61b)]; (c) follows from the Li -Lipschitz
continuity of ∇ fi , LG-Lipschitz continuity of ∇G−, and the uniformly L̃i -Lipschitz
continuity of ∇ f̃i (x; •); and in (d) we used the inequality ‖x‖1 ≤ √

n ‖x‖, and the
definition of cL [cf. (35)].

Invoking the convexity of G+ and using (61a), we can write

G+ (x̄φn+1

)
≤ (1 − αn)G+ (x̄φn

)+ αn

I

I∑

i=1

φn
i G

+(̃xn(i)),

which combined with (69) yields

U
(
x̄φn+1

)

≤ U
(
x̄φn
)− αn

I
φlb cτ

∥∥∥Δx̃nφ

∥∥∥
2 + L + LG

2
· (αn)2

I
φ2
ub

∥∥∥Δx̃nφ

∥∥∥
2

+ αn cLφub
∥∥enx
∥∥
2

∥∥∥Δx̃nφ

∥∥∥+ αn φub

∥∥∥eny
∥∥∥
∥∥∥Δx̃nφ

∥∥∥

≤ U
(
x̄φn
)− αn

I
φlb cτ

∥∥∥Δx̃nφ

∥∥∥
2 + L + LG

2
· (αn)2

I
φ2
ub

∥∥∥Δx̃nφ

∥∥∥
2

+ φub

2

(
cLεx + εy

) (
αn)2

∥∥∥Δx̃nφ

∥∥∥
2 + φub

2
cL ε−1

x

∥∥enx
∥∥2 + φub

2
ε−1
y

∥∥∥eny
∥∥∥
2
,

where the last inequality follows from the Young’s inequality, with εx > 0 and εy > 0.
Applying the above inequality recursively for B̄ steps, with B̄ defined in Lemma 3,
yields

U
(
x̄
φn+B̄

)
≤ U

(
x̄φn
)− cτ φlb

I

B̄−1∑

t=0

αn+t
∥∥∥Δx̃n+t

φ

∥∥∥
2

+φub

2

(
L + LG

I
· φub + cL εx + εy

)
En

Δx̃

+φub

2

(
cLε−1

x En
x⊥ + ε−1

y En
y⊥

)
. (70)

Summing up (70) over B̄ consecutive iterations leads to the desired result. ��
Since, for sufficiently small αn , the negative term on the RHS of (67) dominates

the positive third term, to prove convergence of {U (x̄
φn+B̄+k))}n∈N+ , descent-based

techniques used in the literature of distributed gradient-based algorithms would call

123

526 G. Scutari, Y. Sun

for the summability of the consensus error {En
x⊥}n∈N+ and tracking error {En

y⊥}n∈N+
sequences. However, under constant step-size or unbounded (sub-)gradient of U , it
seems not possible to infer such a result by just studying the dynamics of {En

x⊥}n∈N+
and {En

y⊥}n∈N+ independently from the optimization error Δx̃nφ . Therefore, exploring
the interplay between these quantities, we put forth a new analysis, based on the
following steps:

– Step 1 We first bound En
x⊥ and En

y⊥ [specifically, term iv in (67)] as a function of
En

Δx̃ (and thus Δx̃nφ)—see Proposition 12 [cf. Sect. 6.3.1]. Using Proposition 12,
we then prove that {En

x⊥}n∈N+ and {En
y⊥}n∈N+ are summable, if {En

Δx̃}n∈N+ is
so−see Proposition 14 [cf. Sect. 6.3.2].

– Step 2 Using Propositions 12 and 14, we build a new Lyapunov function
[cf. Sect. 6.4], whose convergence implies the summability of {En

Δx̃}n∈N+ and
thus convergence of all error sequences [cf. Sect. 6.5], as stated in Theorem 4.

6.3 Interplay among Enx⊥ , E
n
y⊥ and En1x̃

6.3.1 Bounding Enx⊥ and Eny⊥

We first study the dynamics of ‖enx‖ and ‖eny‖.
Lemma 11 The disagreements ‖enx‖ and ‖eny‖ satisfy

‖en+B̄
x ‖ ≤ ρB̄

∥∥enx
∥∥+ c

B̄−1∑

t=0

αn+t
∥∥Δxn+t

∥∥ , (71)

‖en+B̄
y ‖ ≤ ρB̄

∥∥∥eny
∥∥∥+ c Lmx φ−1

lb

B̄−1∑

t=0

(
2 ‖en+t

x ‖ + αn+t‖Δxn+t‖) , (72)

where c = I
√
2I . Furthermore, if all An are double stochastic, then (71) and (72)

hold with B̄ = B, ρB̄ = √1 − κ/(2I 2) and c = 1.

Proof See Appendix B. ��
Using Lemma 11, we now study the dynamics of the weighted sum of the disagree-

ments ‖enx‖ and ‖eny‖ over B̄ consecutive iterations.

Proposition 12 The sequences {‖enx‖2}n∈N+ and {‖eny‖2}n∈N+ satisfy

B̄−1∑

k=0

k + 1 + (B̄ − k − 1)ρ̃

1 − ρ̃

∥∥∥en+B̄+k
x

∥∥∥
2 ≤

B̄−1∑

k=0

k + 1 + (B̄ − k − 1)ρ̃

1 − ρ̃

∥∥∥en+k
x

∥∥∥
2

−
(
1 −

(
ε−1 + B̄

) 2B̄c2

1 − ρ̃

(
αn
mx

)2
)

︸ ︷︷ ︸
μn

B̄−1∑

k=0

En+k
x⊥ +

(
ε−1 + B̄

) 2B̄c2

1 − ρ̃︸ ︷︷ ︸
cΔ

B̄−1∑

k=0

En+k
Δx̃ ,

(73)

123

Distributed nonconvex constrained optimization over… 527

B̄−1∑

k=0

k + 1 + (B̄ − k − 1)ρ̃

1 − ρ̃

∥∥∥en+B̄+k
y

∥∥∥
2 ≤

B̄−1∑

k=0

k + 1 + (B̄ − k − 1)ρ̃

1 − ρ̃

∥∥∥en+k
y

∥∥∥
2

−
B̄−1∑

k=0

En+k
y⊥ +

(
ε−1 + B̄

) 2B̄c2

1 − ρ̃
L2
mx φ−2

lb
︸ ︷︷ ︸

c⊥

(
2 + αn

mx

)2
B̄−1∑

k=0

En+k
x⊥

+
(
ε−1 + B̄

) 2B̄c2

1 − ρ̃
L2
mx φ−2

lb
︸ ︷︷ ︸

c⊥

B̄−1∑

k=0

En+k
Δx̃ , (74)

where αn
mx � maxk=0,...,2B̄−2 αn+k; ρ̃ � ρ2

B̄

(
1 + B̄ε

)
; and ε > 0 is any constant

such that ρ̃ < 1.

Proof We prove only (73); (74) can be proved using similar steps. Squaring both sides
of the inequality (71) leads to

∥∥∥en+B̄
x

∥∥∥
2

≤ ρ2
B̄

∥∥enx
∥∥2 +

⎛

⎝c ·
B̄−1∑

t=0

αn+t
∥∥Δxn+t

∥∥

⎞

⎠
2

+ 2
B̄−1∑

t=0

c ρB̄ αn+t
∥∥enx
∥∥ ∥∥Δxn+t

∥∥

(a)≤ ρ2
B̄

(
1 + B̄ε

) ∥∥enx
∥∥2 +

B̄−1∑

t=0

(
1

ε
+ B̄

)
c2 (αn+t)2

∥∥Δxn+t
∥∥2

(b)≤ ρ̃
∥∥enx
∥∥2 +

B̄−1∑

t=0

(
1

ε
+ B̄

)
2 c2 (αn+t)2

(∥∥∥Δx̃n+t
φ

∥∥∥
2 + ∥∥en+t

x

∥∥2
)

, (75)

where (a) follows from theYoung’s inequality, with ε > 0, and the Jensen’s inequality;
and in (b) we used (60). Note that, since ρB̄ < 1, ρ̃ = ρ2

B̄

(
1 + B̄ε

)
< 1, for all

ε ∈
(
0,
(
1 − ρ2

B̄

)
/(ρ2

B̄
B̄)
)
.

Denote α̃n
mx � maxk=0,...,B̄−1 αn+k . Multiplying (75) by 1/(1 − ρ̃)

[resp. ρ̃/(1 − ρ̃)], adding ‖enx‖2 (resp. ‖en+B̄
x ‖2) to both sides, and using the defi-

nitions of En
Δx̃ and En

x⊥ [cf. (66)], yield

1

1 − ρ̃
‖en+B̄

x ‖2 + ‖enx‖2

≤ ρ̃

1 − ρ̃

∥∥enx
∥∥2 + ∥∥enx

∥∥2 + 2 c2

1 − ρ̃

(
1

ε
+ B̄

)(
En

Δx̃ + (α̃n
mx

)2
En
x⊥

)

= 1

1 − ρ̃

∥∥enx
∥∥2 + 2 c2

1 − ρ̃

(
1

ε
+ B̄

)(
En

Δx̃ + (α̃n
mx

)2
En
x⊥

)
(76)

123

528 G. Scutari, Y. Sun

and

ρ̃

1 − ρ̃

∥∥∥en+B̄
x

∥∥∥
2 +
∥∥∥en+B̄

x

∥∥∥
2 = 1

1 − ρ̃

∥∥∥en+B̄
x

∥∥∥
2

≤ ρ̃

1 − ρ̃

∥∥enx
∥∥2 + 2 c2

1 − ρ̃

(
1

ε
+ B̄

)(
En

Δx̃ + (α̃n
mx

)2
En
x⊥

)
,

(77)

respectively.

We write now
∑B̄−1

k=0 En+k
x⊥ as

B̄−1∑

k=0

En+k
x⊥ =

(∥∥∥en+2B̄−2
x

∥∥∥
2 + 2

∥∥∥en+2B̄−3
x

∥∥∥
2 + · · · + (B̄ − 1)

∥∥∥en+B̄
x

∥∥∥
2
)

+
(
B̄
∥∥∥en+B̄−1

x

∥∥∥
2 + (B̄ − 1)

∥∥∥en+B̄−2
x

∥∥∥
2 + · · · + ∥∥enx

∥∥2
)

.

(78)

Using (76) and (77) on the two terms in (78), we obtain the following bounds:

ρ̃

1 − ρ̃

(∥∥∥en+2B̄−2
x

∥∥∥
2 + 2

∥∥∥en+2B̄−3
x

∥∥∥
2 + · · · + (B̄ − 1)

∥∥∥en+B̄
x

∥∥∥
2
)

+
(∥∥∥en+2B̄−2

x

∥∥∥
2 + 2

∥∥∥en+2B̄−3
x

∥∥∥
2 + · · · + (B̄ − 1)

∥∥∥en+B̄
x

∥∥∥
2
)

≤ ρ̃

1 − ρ̃

(∥∥∥en+B̄−2
x

∥∥∥
2 + 2

∥∥∥en+B̄−3
x

∥∥∥
2 + · · · + (B̄ − 1)

∥∥enx
∥∥2
)

+ 2 c2

1 − ρ̃

(
1

ε
+ B̄

)[(
En+B̄−2

Δx̃ +
(
α̃n+B̄−2
mx

)2
En+B̄−2
x⊥

)
+ · · ·

+ (B̄ − 1
) (

En
Δx̃ + (α̃n

mx

)2
En
x⊥

)]
, (79)

and

1

1 − ρ̃

(
B̄
∥∥∥en+2B̄−1

x

∥∥∥
2 + (B̄ − 1)

∥∥∥en+2B̄−2
x

∥∥∥
2 + · · · +

∥∥∥en+B̄
x

∥∥∥
2
)

+
(
B̄
∥∥∥en+B̄−1

x

∥∥∥
2 + (B̄ − 1)

∥∥∥en+B̄−2
x

∥∥∥
2 + · · · + ∥∥enx

∥∥2
)

≤ 1

1 − ρ̃

(
B̄
∥∥∥en+B̄−1

x

∥∥∥
2 + (B̄ − 1)

∥∥∥en+B̄−2
x

∥∥∥
2 + · · · + ∥∥enx

∥∥2
)

+ 2 c2

1 − ρ̃

(
1

ε
+ B̄

)[
B̄

(
En+B̄−1

Δx̃ +
(
α̃n+B̄−1
mx

)2
En+B̄−1
x⊥

)
+ · · ·

+
(
En

Δx̃ + (α̃n
mx

)2
En
x⊥

)]
. (80)

123

Distributed nonconvex constrained optimization over… 529

Summing (79) and (80) and rearranging terms while using (78), it is not difficult to
check that

B̄−1∑

k=0

k + 1 + (B̄ − k − 1)ρ̃

1 − ρ̃

∥∥∥en+B̄+k
x

∥∥∥
2 +

B̄−1∑

k=0

En+k
x⊥

≤
B̄−1∑

k=0

k + 1 + (B̄ − k − 1)ρ̃

1 − ρ̃

∥∥∥en+k
x

∥∥∥
2

+
(
1

ε
+ B̄

)
2B̄c2

1 − ρ̃

B̄−1∑

k=0

En+k
Δx̃ +

(
1

ε
+ B̄

)
2B̄c2

1 − ρ̃

(
αn
mx

)2
B̄−1∑

k=0

En+k
x⊥ ,

(81)

which leads to the desired result (73). ��
We use now Proposition 12 in conjunction with Lemma 9 to prove the summability

of {En
x⊥}n∈N+ and {En

y⊥}n∈N+ , under that of {En
Δx̃}n∈N+ . Let

αmx � σ ·
√

1 − ρ̃

2B̄
(
B̄ + ε−1

)
c2

(82)

with σ ∈ (0, 1). This implies [recall the definition of μn in (73)]

μn ≥ μmin �
(
1 −

(
ε−1 + B̄

) 2B̄c2

1 − ρ̃
α2
mx

)
= 1 − σ 2 > 0, ∀αn

mx ≤ αmx.

(83)

Proposition 13 Suppose that i)
∑∞

n=0(α
n)2‖Δx̃nφ‖2 < ∞; and ii) αn ≤ αmx, for

all but finite n ∈ N+. Then, the consensus and tracking disagreements satisfy∑∞
n=0 ‖enx‖2 < ∞ and

∑∞
n=0 ‖eny‖2 < ∞, respectively.

Proof It follows from (66) that it is sufficient to prove
∑∞

n=0 E
n
x⊥ < ∞ (for∑∞

n=0 ‖enx‖2 < ∞) and
∑∞

n=0 E
n
y⊥ < ∞ (for

∑∞
n=0 ‖eny‖2 < ∞). We prove next

only the former result.
By Assumption F and (83), there exists a sufficiently large n, say n̄, such that

μn ≥ μmin > 0, for all n ≥ n̄. We assume, without loss of generality, that n̄ = 0.
Applying Lemma 9 to (73) [cf. Proposition 12], we have

∑∞
n=0 E

n
Δx̃ < +∞ �⇒∑∞

n=0 E
n
x⊥ < +∞. It is then sufficient to prove that

∑∞
n=0(α

n)2‖Δx̃nφ‖2 < ∞ �⇒∑∞
n=0 E

n
Δx̃ < +∞. This comes readily from the following chain of inequalities:

n∑

k=0

Ek
Δx̃ =

n∑

k=0

B̄−1∑

t=0

(
αk+t

)2 ∥∥∥Δx̃k+t
φ

∥∥∥
2 ≤ B̄

n+B̄−1∑

k=0

(
αk
)2 ∥∥∥Δx̃kφ

∥∥∥
2
.

��

123

530 G. Scutari, Y. Sun

6.3.2 Bounding term iv in (67)

We are now ready to bound term iv in (67), as stated next.

Proposition 14 Suppose that αn ≤ αmx, then

ε−1
y

B̄−1∑

k=0

k + 1 + (B̄ − k − 1)ρ̃

1 − ρ̃

∥∥∥en+B̄+k
y

∥∥∥
2

+ 1

μmin

(
cLε−1

x + ε−1
y c⊥ (2 + αmx)

2
) B̄−1∑

k=0

k + 1 + (B̄ − k − 1)ρ̃

1 − ρ̃

∥∥∥en+B̄+k
x

∥∥∥
2

≤ ε−1
y

B̄−1∑

k=0

k + 1 + (B̄ − k − 1)ρ̃

1 − ρ̃

∥∥∥en+k
y

∥∥∥
2 −

B̄−1∑

k=0

(
cLε−1

x En+k
x⊥ + ε−1

y En+k
y⊥

)

︸ ︷︷ ︸
term iv

+ 1

μmin

(
cLε−1

x + ε−1
y c⊥ (2 + αmx)

2
) B̄−1∑

k=0

k + 1 + (B̄ − k − 1)ρ̃

1 − ρ̃

∥∥∥en+k
x

∥∥∥
2

+
((

ε−1
y c⊥ (2 + αmx)

2 + cLε−1
x

) cΔ

μmin
+ ε−1

y c⊥
) B̄−1∑

k=0

En+k
Δx̃ (84)

Proof Multiplying (74) by ε−1
y on both sides we have

ε−1
y

B̄−1∑

k=0

k + 1 + (B̄ − k − 1)ρ̃

1 − ρ̃

∥∥∥en+B̄+k
y

∥∥∥
2

≤ ε−1
y

B̄−1∑

k=0

k + 1 + (B̄ − k − 1)ρ̃

1 − ρ̃

∥∥∥en+k
y

∥∥∥
2

− ε−1
y

B̄−1∑

k=0

En+k
y⊥ + ε−1

y c⊥
(
2 + αn

mx

)2
B̄−1∑

k=0

En+k
x⊥ + ε−1

y c⊥
B̄−1∑

k=0

En+k
Δx̃

= ε−1
y

B̄−1∑

k=0

k + 1 + (B̄ − k − 1)ρ̃

1 − ρ̃

∥∥∥en+k
y

∥∥∥
2

− ε−1
y

B̄−1∑

k=0

En+k
y⊥ − cLε−1

x

B̄−1∑

k=0

En+k
x⊥

+
(
ε−1
y c⊥

(
2 + αn

mx

)2 + cLε−1
x

) B̄−1∑

k=0

En+k
x⊥ + ε−1

y c⊥
B̄−1∑

k=0

En+k
Δx̃ . (85)

123

Distributed nonconvex constrained optimization over… 531

Since αn ≤ αmx, we have αn
mx ≤ αmx and μn ≥ μmin. Equation (73) then implies

B̄−1∑

k=0

k + 1 + (B̄ − k − 1)ρ̃

1 − ρ̃

∥∥∥en+B̄+k
x

∥∥∥
2

≤
B̄−1∑

k=0

k + 1 + (B̄ − k − 1)ρ̃

1 − ρ̃

∥∥∥en+k
x

∥∥∥
2 − μmin

B̄−1∑

k=0

En+k
x⊥ + cΔ

B̄−1∑

k=0

En+k
Δx̃ .

Multiplying both sides of the above inequality by (ε−1
y c⊥ (2 + αmx)

2 + cLε−1
x)/μmin

and using the fact that αn
mx ≤ αmx, we have

1

μmin

(
cLε−1

x + ε−1
y c⊥ (2 + αmx)

2
) B̄−1∑

k=0

k + 1 + (B̄ − k − 1)ρ̃

1 − ρ̃

∥∥∥en+B̄+k
x

∥∥∥
2

≤ 1

μmin

(
cLε−1

x + ε−1
y c⊥ (2 + αmx)

2
) B̄−1∑

k=0

k + 1 + (B̄ − k − 1)ρ̃

1 − ρ̃

∥∥∥en+k
x

∥∥∥
2

−
(
cLε−1

x + ε−1
y c⊥ (2 + αmx)

2
) B̄−1∑

k=0

En+k
x⊥

+
(
cLε−1

x + ε−1
y c⊥ (2 + αmx)

2
) cΔ

μmin

B̄−1∑

k=0

En+k
Δx̃ (86)

Adding (86) to (85) leads to the desired result. ��

6.4 Lyapunov-like function and its descent properties

We are now in the position to construct a function whose descent properties (every
B̄ iterations) will used to prove Theorem 4. Because of that, we will refer to such a
function as Lyapunov-like function.

Adding (67) and (84) (multiplied by φub/2), yields

B̄−1∑

k=0

U
(
x̄
φn+B̄+k

)
+ φub

2
ε−1
y

B̄−1∑

k=0

k + 1 + (B̄ − k − 1)ρ̃

1 − ρ̃

∥∥∥en+B̄+k
y

∥∥∥
2

+ φub

2μmin

(
cLε−1

x + ε−1
y c⊥ (2 + αmx)

2
) B̄−1∑

k=0

k + 1 + (B̄ − k − 1)ρ̃

1 − ρ̃

∥∥∥en+B̄+k
x

∥∥∥
2

≤
B̄−1∑

k=0

U
(
x̄φn+k

)
+ φub

2
ε−1
y

B̄−1∑

k=0

k + 1 + (B̄ − k − 1)ρ̃

1 − ρ̃

∥∥∥en+k
y

∥∥∥
2

123

532 G. Scutari, Y. Sun

+ φub

2μmin

(
cLε−1

x + ε−1
y c⊥ (2 + αmx)

2
) B̄−1∑

k=0

k + 1 + (B̄ − k − 1)ρ̃

1 − ρ̃

∥∥∥en+k
x

∥∥∥
2

− cτ

I
φlb

B̄−1∑

k=0

B̄−1∑

t=0

αn+k+t
∥∥∥Δx̃n+k+t

φ

∥∥∥
2

+ φub

2

(
L + LG

I
· φub + cLεx + εy + ε−1

y c⊥
) B̄−1∑

k=0

En+k
Δx̃

+ φub

2μmin

(
cLε−1

x + ε−1
y c⊥ (2 + αmx)

2
)
cΔ

B̄−1∑

k=0

En+k
Δx̃ . (87)

Define

Vn �
B̄−1∑

k=0

U
(
x̄
φn+k

)
+ φub

2
ε−1
y

B̄−1∑

k=0

k + 1 + (B̄ − k − 1)ρ̃

1 − ρ̃

∥∥∥en+k
y

∥∥∥
2

+ φub

2μmin

(
cLε−1

x + ε−1
y c⊥ (2 + αmx)

2
) B̄−1∑

k=0

k + 1 + (B̄ − k − 1)ρ̃

1 − ρ̃

∥∥∥en+k
x

∥∥∥
2
,

(88)

and

βn � cτ

I
φlb − φub

2
αn
(
L + LG

I
· φub + cLεx + εy + ε−1

y c⊥

+ cΔ

μmin

(
cLε−1

x + ε−1
y c⊥ (2 + αmx)

2
))

. (89)

Substituting (88) and (89) in (87), we obtain the desired descent property of V n : for
sufficiently large n, it holds

V n+B̄ ≤ V n −
B̄−1∑

k=0

B̄−1∑

t=0

βn+k+tαn+k+t
∥∥∥Δx̃n+k+t

φ

∥∥∥
2
. (90)

6.5 Proof of Theorem 4

The proof consists in two steps, namely:

– Step 1 Leveraging the descent property of the Lyapunov-like function, we first
show that limn→∞ ‖Δx̃nφ‖ = 0, either using a diminishing or constant step-size
αn (satisfying Assumption F); and

– Step 2 Using the results in Step 1, we conclude the proof showing that i)
limn→∞ D(xn) = 0 and ii) limn→∞ J (x̄n) = 0

123

Distributed nonconvex constrained optimization over… 533

6.5.1 Step 1: limn→∞ ‖1x̃n�‖ = 0

Let us distinguish the two choices of step-size, namely: αn is constant (satisfying
Assumption F.1); or αn is diminishing (satisfying Assumption F.2).

Case 1: constant step-size. Set αn ≡ α for all n ∈ N+. To obtain the desired descent
on V n [cf. (90)], α has to be chosen so that βn = β > 0 [cf. (89)]. We show next that
if α satisfies (36) [cf. Assumption F.2], then β > 0.

Recall that (90) holds under the assumption that α ≤ αmx, with αmx defined in (82).
Substituting the expressions of αmx and μmin = 1 − σ 2 [cf. (83)] in (89) and using
the definitions of cΔ and c⊥ [cf. Proposition 12], one can check that βn = β > 0
[cf. (89)] if, in addition to α ≤ αmx, α satisfies also

α ≤ 2 cτ φlb

Iφub

(
L + LG

I
· φub + cLεx + εy + cΔ

1 − σ 2

(
cLε−1

x + 9 c⊥ε−1
y

))−1

,(91)

where εx , εy > 0 are free parameters. The above upperbound is maximized by

εx =
√

cΔ

1 − σ 2 = c

√
2B̄
(
ε−1 + B̄

)

(1 − ρ̃)(1 − σ 2)

εy =
√
9 c⊥cΔ

1 − σ 2 = 6 Lmx φ−1
lb (ε−1 + B̄)

B̄c2

1 − ρ̃

√
1

1 − σ 2

Combining α ≤ αmx and (91), we get the following bound for α:

α ≤ min

⎧
⎨

⎩σ

√
1 − ρ̃

2c2 B̄
(
B̄ + ε−1

) ,
2cτ φlb

Iφub

⎛

⎝ L + LG
I

· φub + 2c · cL
√

2B̄
(
ε−1 + B̄

)

(1 − ρ̃)(1 − σ 2)

+12 Lmx φ−1
lb (ε−1 + B̄)

B̄c2

1 − ρ̃

√
1

1 − σ 2

)−1⎫⎬

⎭ , (92)

where recall that ε < (1 − ρ2
B̄
)/(ρ2

B̄
B̄) [cf. Proposition 12]. Since (1 − ρ̃)/(ε−1 + B̄)

is maximized by ε = (1 − ρB̄)/(ρB̄ · B̄) with the corresponding value being(
1 − ρB̄

)2
/B̄, we obtain from (92) the final bound (36).

Under (36), using (90) and Lemma 9 (recall that lim infn→∞ V n > −∞, since U
is bounded from below on K) we get limn→∞ ‖Δx̃nφ‖ = 0 and, by Proposition 13,
limn→∞ ‖enx‖ = 0 and limn→∞ ‖eny‖ = 0.

Case 2: diminishing step-size. Since αn is diminishing, there exists a sufficiently
large n2 so that βn ≥ β > 0 for all n ≥ n2, implying

∞∑

n=0

B̄−1∑

t=0

αn+t
∥∥∥Δx̃n+t

φ

∥∥∥
2

< ∞, (93)

123

534 G. Scutari, Y. Sun

which together with
∑∞

n=0 αn = ∞ and Proposition 13 yield

lim inf
n→∞

∥∥∥Δx̃nφ

∥∥∥ = 0; (94)

lim
n→∞

∥∥enx
∥∥ = 0 and lim

n→∞
∥∥∥eny
∥∥∥ = 0. (95)

We prove next that lim supn→∞ ‖Δx̃nφ‖ = 0, which together with (94) implies
limn→∞ ‖Δx̃nφ‖ = 0. Suppose that lim supn→∞ ‖Δx̃nφ‖ > 0. This, together with
lim infn→∞ ‖Δx̃nφ‖ = 0, implies that there exists an infinite set of indicesN such that
for all n ∈ N , one can find an integer in > n such that:

∥∥∥Δx̃nφ

∥∥∥ < η, ‖Δx̃inφ ‖ > 2η (96)

η ≤ ‖Δx̃ j
φ‖ ≤ 2η, n < j < in . (97)

Denote x̂n(i) � x̂i (xn(i)) and x̂n � [̂xn�
(1) , . . . , x̂

n�
(I)]�. We have:

η ≤
∥∥∥Δx̃inφ

∥∥∥−
∥∥∥Δx̃nφ

∥∥∥ ≤
∥∥∥Δx̃inφ − Δx̃nφ

∥∥∥

≤
∥∥∥̃xin − x̃n

∥∥∥+
∥∥∥Jφin xin − Jφnxn

∥∥∥

≤
∥∥∥̂xin − x̂n

∥∥∥+
∥∥∥̃xin − x̂in

∥∥∥+ ∥∥̃xn − x̂n
∥∥

︸ ︷︷ ︸
en1

+
∥∥∥Jφin xin − Jφnxn

∥∥∥

(a)≤ L̂
∥∥∥xin − xn

∥∥∥+
∥∥∥Jφin xin − Jφnxn

∥∥∥+ en1

≤ L̂
(∥∥∥xin − Jφin xin

∥∥∥+ ∥∥xn − Jφnxn
∥∥+ √

I
∥∥∥x̄φin − x̄φn

∥∥∥
)

+ √
I
∥∥∥x̄φin − x̄φn

∥∥∥+ en1

≤
(
L̂ + 1

)√
I
∥∥∥x̄φin − x̄φn

∥∥∥+ L̂
(∥∥∥einx

∥∥∥+ ∥∥enx
∥∥
)

︸ ︷︷ ︸
en2

+ en1

(b)≤
(
L̂ + 1

)√
I
in−1∑

t=n

αt
∥∥∥∥
1

I

(
(φt)� ⊗ Im

)
Δx̃tφ

∥∥∥∥+ en2 + en1

≤
(
L̂ + 1

)√
I

in−1∑

t=n+1

αt
∥∥∥Δx̃tφ

∥∥∥+ (L̂ + 1)
√
Iαn

∥∥∥Δx̃nφ

∥∥∥
︸ ︷︷ ︸

en3

+en2 + en1

(c)≤ (L̂ + 1)
√
I η−1

in−1∑

t=n+1

αt
∥∥∥Δx̃tφ

∥∥∥
2 + en3 + en2 + en1 , (98)

123

Distributed nonconvex constrained optimization over… 535

where in (a) we used (63) [cf. Lemma 7]; (b) follows from (61a); and in (c) we used
the lower bound in (97).

Since (i) limn→∞ ‖enx‖ = 0 and limn→∞ ‖eny‖ = 0 [cf. (95)]; (ii) limn→∞ ‖̃xn −
x̂n‖ = 0 [cf. Lemma 8]; iii) and

∑∞
n=0
∑B̄−1

t=0 αn+t‖Δx̃n+t
φ ‖2 < ∞ [cf. (93)], there

exists a sufficiently large n3 such that the right-hand-side of (98) is less than η, for all
n > n3, which leads to a contradiction. Therefore, lim supn→∞ ‖Δx̃nφ‖ = 0.

6.5.2 Step 2: limn→∞ M(xn) = 0

Recall that in the previous subsection we proved that i)limn→∞ ‖Δx̃nφ‖ = 0; ii)
limn→∞ ‖enx‖ = 0; and iii) limn→∞ ‖eny‖ = 0, using either a constant step-size αn ≡
α, with α satisfying (36), or a diminishing one. The statement limn→∞ D(xn) = 0
follows readily from point ii) and

lim
n→∞ ‖xn(i) − x̄n‖ ≤ lim

n→∞ ‖xn(i) − x̄φn‖ + lim
n→∞

∥∥x̄φn − x̄n
∥∥

≤ lim
n→∞ ‖xn(i) − x̄φn‖ + lim

n→∞
1

I

I∑

j=1

‖xn(j) − x̄φn‖ = 0.
(99)

Next we show limn→∞ J (x̄n) = 0. Recall the definition J (x̄n) � ‖x̄(x̄n) − x̄n‖,
where for notation simplicity, we set

x̄(x̄n) � argmin
z∈K

{(
∇F(x̄n) − ∇G−(x̄n

))�
(z − x̄n) + 1

2
‖z − x̄n‖2 + G(z)+

}
.

(100)

Since

J (x̄n) ≤ ‖̂xi (x̄n) − x̄n‖ + ‖x̄(x̄n) − x̂i (x̄n)‖, (101)

it is sufficient to show that the two terms on the right hand side are asymptotically
vanishing, which is proved below.

• limn→∞ ‖̂xi (x̄n) − x̄n‖ = 0. We bound ‖̂xi (x̄n) − x̄n‖ as

‖̂xi (x̄n) − x̄n‖ ≤ ‖̂xi (x̄φn) − x̄φn‖ + ‖x̄φn − x̄n‖ + ‖̂xi (x̄n) − x̂i (x̄φn)‖
(a)≤ ‖̂xi (x̄φn) − x̄φn‖ + (1 + L̂)‖x̄φn − x̄n‖,

(102)

where (a) follows from Lemma 7. From (99) we know limn→∞ ‖x̄φn − x̄n‖ = 0.
To show ‖̂xi (x̄φn) − x̄φn‖ is asymptotically vanishing, we bound it as

‖̂xi (x̄φn) − x̄φn‖ ≤ ‖̂xi (x̄φn) − x̂i (xn(i))‖ + ‖̂xi (xn(i)) − x̃n(i)‖
+ ‖̃xn(i) − x̄φn‖. (103)

123

536 G. Scutari, Y. Sun

The result limn→∞ ‖̂xi (x̄φn) − x̄φn‖ = 0 follows from Lemma 7, Lemma 8 and
points (i)–(iii).
From (102) and (103) we conclude

lim
n→∞ ‖̂xi (x̄n) − x̄n‖ = 0. (104)

• We prove limn→∞ ‖x̄(x̄n) − x̂i (x̄n)‖ = 0. Using the first order optimality condi-
tions of x̄(x̄n) and x̂i (x̄n), we can bound their difference as

‖x̄(x̄n) − x̂i (x̄n)‖ ≤ ‖∇ f̃i
(
x̂i (x̄n); x̄n

)− ∇ fi (x̄n) − x̂i (x̄n) + x̄n‖
≤ ‖∇ f̃i

(
x̂i (x̄n); x̄n

)− ∇ fi (̂xi (x̄n))‖
+ ‖∇ fi (̂xi (x̄n)) − ∇ fi (x̄n)‖ + ‖̂xi (x̄n) − x̄n‖

≤ (L̃i + Li + 1)‖̂xi (x̄n) − x̄n‖.

(105)

Using (104) we have

lim
n→∞ ‖x̄(x̄n) − x̂i (x̄n)‖ = 0. (106)

The proof is completed just combining (101), (104) and (106).

7 Numerical results

7.1 Sparse regression

In this section, we test the performance of SONATA on the sparse linear regression
problem (1) [cf. Sect. 2.1].Wegenerated the data set as follows. The ground truth signal
x� ∈ R

500 is built by first drawing randomly a vector from the normal distribution
N (0, I), then thresholding the smallest 80% of its elements to zero. The underlying
linear model is bi = Aix� + ni , where the observation matrix Ai ∈ R

20×500 is
generated by first drawing i.i.d. elements from the distribution N (0, 1), and then
normalizing the rows to unit norm; and ni is the additive noise, with i.i.d. entries from
N (0, 0.1). We simulated 100Monte Carlo trials, generating in each trial newAi ’s and
ni ’s.We considered a time-varying digraph, composed of I = 30 agents. In every time
slot, a new digraph is generated according to the following procedure: each agent i has
two out-neighbors, one of them belonging to a chain connecting all the agents and the
other one picked uniformly at random. To promote sparsity we use the (nonconvex) log
function G(x) = λ ·∑i log(1 + θ |xi |)/ log(1 + θ), where the parameter θ controls
the tightness of the approximation of the �0 function. We set λ = 0.1 and θ = 2.
It is convenient to rewrite G(x) in the DC form G(x) = G+(x) − G−(x), with
G+(x) = ‖x‖1 · (θ/ log(1 + θ)). It is not difficult to check that such G+ and G−
satisfy Assumption A.3; see, e.g., [1].

123

Distributed nonconvex constrained optimization over… 537

We run SONATA considering two alternative choices of f̃i , namely:

• SONATA-PL (PL stands for partial linearization) Since fi = ‖bi − Aix‖2 is
convex, one can keep fi unalterated and set in (28) f̃i (x(i)) = fi (x(i))+ (τPL/2) ·
‖x(i)−xn(i)‖2.We set τPL = 1.5. The unique solution x̃n(i) of the resulting subprob-
lem (26) is computed using the FLEXA algorithm, with the following tuning (see
[16] for details): the initial point is selected randomly; the proximal parameter in
the subproblems solved by FLEXA is set to be 2; and the step-size of FLEXA is
chosen according to the diminishing rule γ r = γ r−1

(
1 − μγ r−1

)
,with γ 0 = 0.5

and μ = 0.01, with r denoting the (inner) iteration index. We terminate FLEXA
when Jr(i) ≤ 10−8, with Jr(i) � ‖xn,r

(i) − Sηλ(x
n,r
(i) − 2A�

i (Aix
n,r
(i) − bi) − τPL ·

(xn,r
(i) − xn(i)) + π̃n

i + λ∇G−(xn(i)))‖∞, where xn,r
(i) denotes the value of x(i) at the

n-th outer and the r -th inner iteration, and Sβ (x) � sign (x) ·max{|x| − λ1, 0} is
the soft-thresholding operator (intended to be applied to x component-wise).

• SONATA-L (L stands for linearization) To obtain a closed form expression for
x̃n(i) in (28), one can choose f̃i as linearization of fi (plus the proximal term), that

is, f̃i (x(i)) = 2A�
i (Aixn(i) − bi + (τL/2) · ‖x(i) − xn(i)‖2. We set τL = 1.5.

The solution x̃n(i) of the resulting subproblem (28) has the following closed form

expression x̃n(i) = Sηλ/τL (x
n
(i) − 1

τL
(2A�

i (Aixn(i) − bi) + π̃n
i − λ∇G−(xn(i)))).

As benchmark, we also simulated the subgradient-push algorithm [27] with dimin-
ishing step-size. Note that there is no proof of convergence for such a scheme, when
applied to the nonconvex, nonsmooth problem (1). For all the algorithms, we use the
same step-size rule: αn = αn−1

(
1 − μαn−1

)
, with α0 = 0.5 and μ = 0.01. Also, for

all algorithms, we set x0(i) = 0, for all i .
We monitor the progresses of the algorithms towards stationarity and consen-

sus using respectively the following two functions: i) Jn � ‖x̄n − Sηλ(x̄n −
2
∑

i A
�
i

(
Ai x̄n − bi) + λ∇G− (x̄n)

) ‖∞; and ii) Dn � ‖xn − Jxn‖∞.
It is not difficult to check that Jn is a valid distance of the average iterates Jxn

from stationarity: it is continuous and zero if and only if its argument is a stationary
solution of (1). We also use the normalized mean squared error (NMSE), defined as
NMSEn � ‖xn − (1 ⊗ I) x�‖2/(I · ‖x�‖2).

In Fig. 1, we plot log10 J
n and log10 D

n [subplot (a)] and the NMSE [subplot (b)]
versus the number of agents’ message exchanges, averaged over 100 Monte-Carlo
trials (we applied the log10 transform to Jn and Dn so that their distribution is closer
to the normal one). The figures show that both versions of SONATA are much faster
than the distributed gradient algorithm. This seemsmainly due to the gradient tracking
mechanism put forth by the proposed scheme. Under the same tuning, SONATA-PL
converges faster thanSONATA-L.According to our intensive simulations (not reported
here), SONATA-PL becomes up to one order of magnitude faster than SONATA-L
when τPL is reduced whereas reducing τL slows down SONATA-L.

123

538 G. Scutari, Y. Sun

200 400 600 800
10−5

10−4

10−3

10−2

10−1

100

101

Jn)

Dn

Jn

Dn

Message exchanges

SONATA-L
SONATA-PL
Gradient

200 400 600 800
0

0.2

0.4

0.6

0.8

NMSE = 0.026

Message exchanges

N
M
SE

SONATA-L
SONATA-PL
Gradient

(b)(a)

Fig. 1 Sparse regression problem (1) with log regularizer: SONATA-PL, SONATA-L, and subgradient-
push; average of log10 Jn and log10 Dn versus agent’s message exchange [subplot (a)]; average of NMSE
versus agent’s message exchange [subplot (b)]

7.2 Distributed PCA

Our second application is the distributed PCA problem

min‖x‖2≤1
F (x) � −

I∑

i=1

‖Dix‖2 , (107)

with I = 30.
Each agent i locally owns a data matrix Di ∈ R

di×m and communicate via a time-
varying digraph generated in the same way as the previous sparse regression example
(cf. Sect. 7.1).

Since fi (x) � −‖Dix‖2 is concave, to apply SONATAwe construct f̃i by lineariz-
ing fi , which leads to F̃i (x(i); xn(i)) = (I · yn(i))�(x(i) − xn(i)) + (τ/2) · ‖x(i) − xn(i)‖2.
The solution x̃n(i) of the resulting subproblem has the closed form solution x̃n(i) =
P‖x(i)‖≤1(xn(i) − I · yn(i)/τ), where P denotes the Euclidean projection onto the set
{x(i) : ‖x(i)‖ ≤ 1}. As benchmark, we implemented also the gradient projection
algorithm [4], adapted to time-varying network. Note that there is no formal proof of
this algorithm in the simulated setting. The performance of the algorithms is tested on
both synthetic and real data sets, as detailed next.

7.2.1 Synthetic data

Each agent i locally owns a data matrixDi ∈ R
30×500, whose rows are i.i.d., drawn by

the N (0,Σ). The covariance matrix Σ , whose eigendecomposition is Σ = UΛUT ,
is generated as follows: we synthesize U by first generating a square matrix whose
entries follow the i.i.d. standard normal distribution, then perform the QR decompo-
sition to obtain its orthonormal basis; and the eigenvalues diag(Λ) are i.i.d. uniformly
distributed in [0, 1].

123

Distributed nonconvex constrained optimization over… 539

100 200 300 400 500 600
10−4

10−3

10−2

10−1

100

Dn

Jn

Dn

Jn

number of message exchanges

SONATA-L
Gradient

0 100 200 300 400 500 600
0

0.5

1

1.5

2

number of message exchanges

N
M
SE

SONATA-L
Gradient

(b)(a)

Fig. 2 Distributed PCA problem (1) on synthetic data set: SONATA and gradient projection algorithm;
average of log10 Jn and log10 Dn versus agent’s message exchange [subplot (a)]; average of NMSE versus
agent’s message exchange [subplot (b)]

The algorithms are tuned as follows: x0(i) is generated with i.i.d elements drawn
by the standard Normal distribution. The step-size αn is chosen according to the
diminishing rule used in the previous example, where we set α0 = 1 and μ = 10−3

for SONATA and α0 = 1 and μ = 10−2 for the gradient algorithm. The proximal
parameter τ for SONATA is set to be 1. The distance of x̄n from stationarity ismeasured
by Jn � ‖x̄n − P‖x(i)‖≤1(x̄n − ∇F(x̄n))‖∞,

while the consensus disagreement Dn and theNMSEn are defined as in the previous
example; in the definition of NMSEn the ground truth signal x� is now the leading
eigenvector of matrix

∑I
i=1 D

�
i Di .

In Fig. 2, we plot log10 J
n and log10 D

n [subplot (a)] and the NMSE [subplot (b)]
versus the number of agents’ message exchanges, averaged over 100 Monte-Carlo
trials. In each trial,Σ is fixed while theDi ’s are randomly generated. Figure 2a clearly
shows that SONATA can find a stationary point efficiently while the gradient algorithm
progresses very slowly. More interestingly, Fig. 2b shows that SONATA always find
the leading eigenvector whereas the gradient algorithm fails to achieve a small NMSE
value.

7.2.2 Gene expression data

This second experiment tests SONATA on a real-world data set. Specifically, we used
the breast cancer gene expression data set [5], which consists of d = 158 samples
and m = 12,625 genes per sample. We first uniformly randomly permute the order
the samples and then equally divided the samples among the I = 30 agents. To avoid
the issue that d is not divisible by I , we let the first I − 1 agents owing di = �d/I�
samples each, while the I -th agent owning the remaining samples. The samples are
preprocessed by subtracting the mean from all of them. Note that this can be achieved
distributively by running an average consensus algorithm beforehand.

The rest of the setting and tuning of the algorithms are the same of those described
in Sect. 7.2.1. In Fig. 3, we plot log10 J

n and log10 D
n [subplot (a)] and the NMSE

123

540 G. Scutari, Y. Sun

20 40 60 80 100
10−4

10−3

10−2

10−1

100
Dn

Jn

Dn

Jn

number of message exchanges

SONATA-L
Gradient

20 40 60 80 100
0

0.5

1

1.5

number of message exchanges

M
SE

SONATA-L
Gradient

(b)(a)

Fig. 3 Distributed PCA problem (1) on gene expression data set: SONATA and gradient projection algo-
rithm; average of log10 Jn and log10 Dn versus agent’s message exchange [subplot (a)]; average of NMSE
versus agent’s message exchange [subplot (b)]

[subplot (b)] versus the number of agents’ message exchanges, averaged over 100
Monte-Carlo trials. In each trial, samples are randomly partitioned among the agents.
From the figure we can see that the behavior of the algorithms on the gene expression
data set is similar to that on synthetic data set. Moreover, SONATA converges quite
fast even though the variable dimension of the real data set we adopted is massive.

8 Appendix

A Proof of Lemma 3

We begin introducing the following intermediate result.

Lemma 15 In the setting of Lemma 3, the following hold:

(i) The elements of An:0, n ∈ N+, can be bounded as

inf
t∈N+

(
min
1≤i≤I

(
At :01

)

i

)
≥ φlb, (108)

sup
t∈N+

(
max
1≤i≤I

(
At :01

)

i

)
≤ φub, (109)

where φlb and φub are defined in (8);
(ii) For any given n, k ∈ N+, n ≥ k, there exists a stochastic vector ξ k �

[ξ k1 , . . . ξ kI]� (i.e., ξ k > 0 and 1� ξ k = 1) such that

∣∣∣Wn:k
i j − ξ kj

∣∣∣ ≤ c0 (ρ)

⌊
n−k+1
(I−1)B

⌋
, ∀i, j ∈ [I], (110)

where c0 and ρ are defined in (10).

123

Distributed nonconvex constrained optimization over… 541

The proof Lemma 15 follows similar steps as those in [31, Lemma 2, Lemma 4] and
thus is omitted, although the results in [31] are established under a stronger condition
on Gn than Assumption B.

WeprovenowLemma3.Let z ∈ R
I ·m be an arbitrary vector. For each � = 1, . . . ,m,

define z� � (II ⊗ e�
�) z, where e� is the �-th canonical vector; we denote by z�, j the

j-th component of z�, with j ∈ [I]. We have

∥∥∥
(
Ŵn:k − Jφk

)
z
∥∥∥
2

≤
√√√√I ·

m∑

�=1

∥∥∥∥

(
Wn:k − 1

I
1 (φk)�

)
z�

∥∥∥∥
2

∞
. (111)

We bound next the above term. Given ξ k as in Lemma 15 [cf. (110)], define En:k �
Wn:k − 1(ξ k)�, whose i j-th element is denoted by En:k

i j . We have

∥∥∥∥

(
Wn:k − 1

I
1(φk)�

)
z�

∥∥∥∥∞
(15)=

∥∥∥∥

(
Wn:k − 1

I
1
(
φn+1

)�
Wn:k

)
z�

∥∥∥∥∞

=
∥∥∥∥

(
I − 1

I
1
(
φn+1

)�)
En:k z�

∥∥∥∥∞

≤ max
1≤i≤I

⎛

⎝
(
1 − φn+1

i

I

)
I∑

j=1

∣∣∣En:k
i j

∣∣∣
∣∣z�, j

∣∣+
I∑

j ′ �=i

φn+1
j ′

I

I∑

j=1

∣∣∣En:k
j ′ j

∣∣∣
∣∣z�, j

∣∣

⎞

⎠

≤ 2 c0 (ρ)

⌊
n−k+1
(I−1)B

⌋
‖z�‖1 ≤ 2 c0 (ρ)

⌊
n−k+1
(I−1)B

⌋√
I ‖z�‖2 . (112)

Combining (111) and (112) we obtain

∥∥∥Ŵn:k − Jφk

∥∥∥
2

≤ 2c0 I (ρ)

⌊
n−k+1
(I−1)B

⌋
. (113)

Moreover, the matrix difference above can be alternatively uniformly bounded as
follows:

∥∥∥Ŵn:k − Jφk

∥∥∥ = ‖(I − Jφn+1)Ŵn:k‖ ≤ ‖I − Jφn+1‖‖Ŵn:k‖ (a)≤ √
2I · √

I ,

where (a) follows from (25) and ‖Ŵn:k‖ ≤ √
I . This completes the proof. ��

B Proof of Lemma 11

Recall the SONATA update written in vector–matrix form in (43)–(45). Note that the
x-update therein is a special case of the perturbed condensed push-sum algorithm (16),
with perturbation δn+1 = αnŴnxn .We can then apply Proposition 1 and readily obtain
(71).

123

542 G. Scutari, Y. Sun

To prove (72), we follow a similar approach: noticing that the y-update in (45) is a
special case of (16), with perturbation δn+1 = (D̂φn+1)−1

(
gn+1 − gn

)
, we can write

‖en+B̄
y ‖ ≤ ρB̄‖eny‖ + √

2I
B̄−1∑

t=0

‖(D̂
φn+t+1)

−1
(
gn+t+1 − gn+t

)
‖

≤ ρB̄

∥∥∥eny
∥∥∥+ √

2I Lmxφ
−1
lb

B̄−1∑

t=0

∥∥Ŵn+t (xn+t + αn+tΔxn+t) − xn+t∥∥

≤ ρB̄

∥∥∥eny
∥∥∥+ √

2I Lmxφ
−1
lb

B̄−1∑

t=0

(∥∥Ŵn+ten+t
x
∥∥+ ∥∥en+t

x
∥∥+ αn+t ∥∥Ŵn+tΔxn+t∥∥)

≤ ρB̄

∥∥∥eny
∥∥∥+ √

2I Lmxφ
−1
lb

B̄−1∑

t=0

(
(
√
I + 1)

∥∥en+t
x
∥∥+ αn+t

√
I
∥∥Δxn+t∥∥

)

≤ ρB̄

∥∥∥eny
∥∥∥+ I

√
2I Lmxφ

−1
lb

B̄−1∑

t=0

(
2
∥∥en+t

x
∥∥+ αn+t ∥∥Δxn+t∥∥) .

This completes the proof. ��

References

1. Ahn, M., Pang, J., Xin, J.: Difference-of-convex learning: directional stationarity, optimality, and
sparsity. SIAM J. Optim. 27(3), 1637–1665 (2017). https://doi.org/10.1137/16M1084754

2. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)
3. Bertsekas, D.P., Tsitsiklis, J.N.: Gradient convergence in gradient methods with errors. SIAM J. Optim.

10(3), 627–642 (2000)
4. Bianchi, P., Jakubowicz, J.: Convergence of a multi-agent projected stochastic gradient algorithm for

non-convex optimization. IEEE Trans. Autom. Control 58(2), 391–405 (2013)
5. Bild, A.H., et al.: Oncogenic pathway signatures in human cancers as a guide to targeted therapies.

Nature 439(7074), 353 (2006)
6. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM

Rev. 60(2), 223–311 (2018)
7. Bradley, P.S., Mangasarian, O.L.: Feature selection via concave minimization and support vector

machines. In: Proceedings of the Fifteenth International Conference on Machine Learning (ICML
1998), vol. 98, pp. 82–90 (1998)

8. Cattivelli, F.S., Sayed, A.H.: Diffusion LMS strategies for distributed estimation. IEEE Trans. Signal
Process. 58(3), 1035–1048 (2010)

9. Chang, T.H.: A proximal dual consensus ADMM method for multi-agent constrained optimization.
IEEE Trans. Signal Process. 64(14), 3719–3734 (2014)

10. Chang, T.H., Hong,M.,Wang, X.: Multi-agent distributed optimization via inexact consensus ADMM.
IEEE Trans. Signal Process. 63(2), 482–497 (2015)

11. Chen, J., Sayed, A.H.: Diffusion adaptation strategies for distributed optimization and learning over
networks. IEEE Trans. Signal Process. 60(8), 4289–4305 (2012)

12. Di Lorenzo, P., Scutari, G.: NEXT: in-network nonconvex optimization. IEEE Trans. Signal Inf. Pro-
cess. Netw. 2(2), 120–136 (2016)

13. Di Lorenzo, P., Scutari, G.: Distributed nonconvex optimization over networks. In: Proceedings of the
IEEE 6th International Workshop on Computational Advances in Multi-sensor Adaptive Processing
(CAMSAP 2015), Cancun, Mexico (2015)

123

https://doi.org/10.1137/16M1084754

Distributed nonconvex constrained optimization over… 543

14. Di Lorenzo, P., Scutari, G.: Distributed nonconvex optimization over time-varying networks. In: Pro-
ceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP
16), Shanghai (2016)

15. Facchinei, F., Lampariello, L., Scutari, G.: Feasible methods for nonconvex nonsmooth problems with
applications in green communications. Math. Program. 164(1–2), 55–90 (2017)

16. Facchinei, F., Scutari, G., Sagratella, S.: Parallel selective algorithms for nonconvex big data optimiza-
tion. IEEE Trans. Signal Process. 63(7), 1874–1889 (2015)

17. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am.
Stat. Assoc. 96(456), 1348–1360 (2001)

18. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning: Data Mining, Inference,
and Prediction. Springer Series in Statistics, vol. 1. Springer, New York (2009)

19. Fu, W.J.: Penalized regressions: the bridge versus the lasso. J. Comput. Graph. Stat. 7(3), 397–416
(1998)

20. Gharesifard, B., Cortés, J.: When does a digraph admit a doubly stochastic adjacency matrix? In:
Proceedings of the 2010 American Control Conference, pp. 2440–2445 (2010)

21. Hong, M., Hajinezhad, D., Zhao, M.: Prox-PDA: the proximal primal–dual algorithm for fast dis-
tributed nonconvex optimization and learning over networks. In: Proceedings of the 34th International
Conference on Machine Learning (ICML 2017), vol. 70, pp. 1529–1538 (2017)

22. Jakovetic, D., Xavier, J., Moura, J.M.: Cooperative convex optimization in networked systems: aug-
mentedLagrangian algorithmswith directed gossip communication. IEEETrans. Signal Process. 59(8),
3889–3902 (2011)

23. Jakovetić, D., Xavier, J., Moura, J.M.: Fast distributed gradient methods. IEEE Trans. Autom. Control
59(5), 1131–1146 (2014)

24. Kempe,D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In: Proceedings
of the 44th Annual IEEE Symposium on Foundations of Computer Science, Cambridge, MA, USA,
pp. 482–491 (2003)

25. Mokhtari, A., Shi, W., Ling, Q., Ribeiro, A.: DQM: decentralized quadratically approximated alter-
nating direction method of multipliers. arXiv:1508.02073 (2015)

26. Mokhtari, A., Shi, W., Ling, Q., Ribeiro, A.: A decentralized second-order method with exact linear
convergence rate for consensus optimization. IEEE Trans. Signal Inf. Process. Netw. 2(4), 507–522
(2016)

27. Nedic, A., Olshevsky, A.: Distributed optimization over time-varying directed graphs. IEEE Trans.
Autom. Control 60(3), 601–615 (2015)

28. Nedić, A.,Ozdaglar,A., Parrilo, P.A.: Constrained consensus and optimization inmulti-agent networks.
IEEE Trans. Autom. Control 55(4), 922–938 (2010)

29. Nedich, A., Olshevsky, A., Ozdaglar, A., Tsitsiklis, J.N.: On distributed averaging algorithms and
quantization effects. IEEE Trans. Autom. Control 54(11), 2506–2517 (2009)

30. Nedich, A., Olshevsky, A., Shi,W.: Achieving geometric convergence for distributed optimization over
time-varying graphs. SIAM J. Optim. 27(4), 2597–2633 (2017)

31. Nedich, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent optimization. IEEE Trans.
Autom. Control 54(1), 48–61 (2009)

32. Palomar, D.P., Chiang, M.: Alternative distributed algorithms for network utility maximization: frame-
work and applications. IEEE Trans. Autom. Control 52(12), 2254–2269 (2007)

33. Qu, G., Li, N.: Harnessing smoothness to accelerate distributed optimization. arXiv:1605.07112 (2016)
34. Rao, B.D., Kreutz-Delgado, K.: An affine scaling methodology for best basis selection. IEEE Trans.

Signal Process. 47(1), 187–200 (1999)
35. Sayed, A.H., et al.: Adaptation, learning, and optimization over networks. Found. TrendsMach. Learn.

7(4–5), 311–801 (2014)
36. Scutari, G., Facchinei, F., Lampariello, L.: Parallel and distributed methods for constrained nonconvex

optimization. Part I: theory. IEEE Trans. Signal Process. 65(8), 1929–1944 (2017)
37. Scutari, G., Facchinei, F., Song, P., Palomar, D.P., Pang, J.S.: Decomposition by partial linearization:

parallel optimization of multi-agent systems. IEEE Trans. Signal Process. 62(3), 641–656 (2014)
38. Shi, W., Ling, Q., Wu, G., Yin, W.: EXTRA: an exact first-order algorithm for decentralized consensus

optimization. SIAM J. Optim. 25(2), 944–966 (2015)
39. Shi, W., Ling, Q., Wu, G., Yin, W.: A proximal gradient algorithm for decentralized composite opti-

mization. IEEE Trans. Signal Process. 63(22), 6013–6023 (2015)

123

http://arxiv.org/abs/1508.02073
http://arxiv.org/abs/1605.07112

544 G. Scutari, Y. Sun

40. Sun, Y., Daneshmand, A., Scutari, G.: Convergence rate of distributed convex and nonconvex opti-
mization methods based on gradient tracking. Technical report, Purdue University (2018)

41. Sun, Y., Scutari, G.: Distributed nonconvex optimization for sparse representation. In: Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
4044–4048 (2017)

42. Sun, Y., Scutari, G., Palomar, D.: Distributed nonconvex multiagent optimization over time-varying
networks. In: Proceedings of the Asilomar Conference on Signals, Systems, and Computers (2016).
Appeared on arXiv on July 1, (2016)

43. Tatarenko, T., Touri, B.: Non-convex distributed optimization. arXiv:1512.00895 (2016)
44. Thi, H.L., Dinh, T.P., Le, H., Vo, X.: DC approximation approaches for sparse optimization. Eur. J.

Oper. Res. 244(1), 26–46 (2015)
45. Wai, H.T., Lafond, J., Scaglione, A., Moulines, E.: Decentralized Frank–Wolfe algorithm for convex

and non-convex problems. arXiv:1612.01216 (2017)
46. Wei, E., Ozdaglar, A.: On the o(1/k) convergence of asynchronous distributed alternating direction

method of multipliers. In: Proceedings of the IEEE Global Conference on Signal and Information
Processing (GlobalSIP 2013), Austin, TX, USA, pp. 551–554 (2013)

47. Weston, J., Elisseeff, A., Schölkopf, B., Tipping, M.: Use of the zero-norm with linear models and
kernel methods. J. Mach. Learn. Res. 3, 1439–1461 (2003)

48. Wright, S.J.: Coordinate descent algorithms. Math. Program. 151(1), 3–34 (2015)
49. Xi, C., Khan, U.A.: On the linear convergence of distributed optimization over directed graphs.

arXiv:1510.02149 (2015)
50. Xi, C., Khan, U.A.: ADD-OPT: accelerated distributed directed optimization. arXiv:1607.04757

(2016). Appeared on arXiv on July 16 (2016)
51. Xiao, L., Boyd, S., Lall, S.: A scheme for robust distributed sensor fusion based on average consensus.

In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks,
Los Angeles, CA, pp. 63–70 (2005)

52. Xu, J., Zhu, S., Soh,Y.C.,Xie, L.:Augmented distributed gradientmethods formulti-agent optimization
under uncoordinated constant stepsizes. In: Proceedings of the 54th IEEE Conference on Decision and
Control (CDC 2015), Osaka, Japan, pp. 2055–2060 (2015)

53. Zhang, S., Xin, J.: Minimization of transformed L1 penalty: theory, difference of convex function
algorithm, and robust application in compressed sensing. arXiv:1411.5735 (2014)

54. Zhu, M., Martínez, S.: An approximate dual subgradient algorithm for multi-agent non-convex opti-
mization. IEEE Trans. Autom. Control 58(6), 1534–1539 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1512.00895
http://arxiv.org/abs/1612.01216
http://arxiv.org/abs/1510.02149
http://arxiv.org/abs/1607.04757
http://arxiv.org/abs/1411.5735

	Distributed nonconvex constrained optimization over time-varying digraphs
	Abstract
	1 Introduction
	1.1 Related works
	1.2 Summary of contributions

	2 Problem setup and motivating examples
	2.1 Distributed sparse statistical learning

	3 Preliminaries: the perturbed condensed push-sum algorithm
	3.1 Discussion
	3.2 Proof of Proposition 1

	4 Algorithmic design
	4.1 SONATA at-a-glance
	4.2 The SONATA algorithm
	4.3 Convergence and complexity analysis of SONATA
	4.4 Discussion

	5 SONATA and special cases
	5.1 Preliminaries: NEXT and SONATA-L
	5.2 Connection with current algorithms

	6 Convergence Proof of SONATA
	6.1 Notations and preliminaries
	6.2 Average descent
	6.3 Interplay among Exn, Eyn and EΔwidetildexn
	6.3.1 Bounding Exn and Eyn
	6.3.2 Bounding term iv in (67)

	6.4 Lyapunov-like function and its descent properties
	6.5 Proof of Theorem 4
	6.5.1 Step 1: limntoinfty"026B30D Δwidetildexφn"026B30D = 0
	6.5.2 Step 2: limntoinfty M(xn)=0

	7 Numerical results
	7.1 Sparse regression
	7.2 Distributed PCA
	7.2.1 Synthetic data
	7.2.2 Gene expression data

	8 Appendix
	A Proof of Lemma 3
	B Proof of Lemma 11
	References

