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Abstract

This paper considers nonconvex distributed constrained optimization over networks,
modeled as directed (possibly time-varying) graphs. We introduce the first algorithmic
framework for the minimization of the sum of a smooth nonconvex (nonseparable)
function—the agent’s sum-utility—plus a difference-of-convex function (with non-
smooth convex part). This general formulation arises in many applications, from
statistical machine learning to engineering. The proposed distributed method combines
successive convex approximation techniques with a judiciously designed perturbed
push-sum consensus mechanism that aims to track locally the gradient of the (smooth
part of the) sum-utility. Sublinear convergence rate is proved when a fixed step-size
(possibly different among the agents) is employed whereas asymptotic convergence to
stationary solutions is proved using a diminishing step-size. Numerical results show
that our algorithms compare favorably with current schemes on both convex and
nonconvex problems.
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1 Introduction

This paper focuses on the following (possibly) nonconvex multiagent composite opti-
mization problem:

1
min U (x) = Zl fi®)+Gt(x) -G (x), (P)
= G(x)
F(x)

where f; : R™ — R is the cost function of agent i, assumed to be smooth (possibly)
nonconvex; G : R™ — R is a DC function, whose concave part —G~ is smooth;
and /C is a closed convex subset of R™. The function G is generally used to promote
some extra structure on the solution, like sparsity. Note that, differently from most
of the papers in the literature, we do not require the (sub)gradient of f;, G~ or G
to be (uniformly) bounded on K. Agents are connected through a communication
network, modeled as a directed graph, possibly time-varying. Moreover, each agent
i knows only its own function f; (as well as G and K). In this setting, the agents
want to cooperatively solve Problem (P) leveraging local communications with their
immediate neighbors.

Distributed nonconvex optimization in the form (P) has found a wide range of
applications in several areas, including network information processing, telecommu-
nications, multi-agent control, and machine learning. In particular, Problem (P) is akey
enabler of many emerging nonconvex “big data” analytic tasks, including nonlinear
least squares, dictionary learning, principal/canonical component analysis, low-rank
approximation, and matrix completion [18], just to name a few. Moreover, the DC
structure of G allows to accommodate in an unified fashion convex and nonconvex
sparsity-inducing surrogates of the £( cardinality function (cf. Sect. 2). Time-varying
communications arise, for instance, in mobile wireless networks (e.g., ad-hoc net-
works), wherein nodes are mobile and/or communicate throughout fading channels.
Moreover, since nodes generally transmit at different power and/or communication
channels are not symmetric, directed links is the natural assumption.

In most of the above scenarios, data processing and optimization need to be per-
formed in a distributed but collaborative manner by the agents within the network. For
instance, this is the case in data-intensive (e.g., sensor-network) applications wherein
the sheer volume and spatial/temporal disparity of scattered data render centralized
processing and storage infeasible or inefficient.

While distributed methods for convex optimization have been widely studied in the
literature, there are no such schemes for (P) (cf. Sect. 1.1). We propose the first family
of distributed algorithms that converge to stationary solutions of (P) over time-varying
(directed) graphs. Asymptotic convergence is proved, under the use of either constant
uncoordinate step-sizes from the agents or diminishing ones. When a constant step-
size is employed, the algorithms are showed to achieve sublinear convergence rate.
Furthermore, the technical tools we introduce are of independent interest. Our analysis
hinges on a descent technique valid for nonconvex, nonsmooth, constrained problems
based on a novel Lyapunov-like function (see Sect. 1.2 for the list of contributions).
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1.1 Related works

The design of distributed algorithms for (P) faces the following challenges: (i) U is
nonconvex and nonseparable; (ii) G is nonsmooth; (iii) there are constraints; (iv) the
graph is directed and time-varying, with no specific structure; and (v) the (sub)gradient
of U is not assumed to be bounded on K. We are not aware of any distributed design
addressing (even a subset of) challenges (i)—(v), as documented next. Since the focus
of this work is on distributed algorithms working on general network architectures, we
omit to discuss the vast literature of schemes implementable on specific topologies,
such as hierarchical networks (e.g., master-slave or shared memory systems); see, e.g.,
[6,15,16,32,36,37,48] and references therein for an entry point of this literature.

Distributed convex optimization Although the focus of this paper is mainly on non-
convex optimization, we begin overviewing the much abundant literature of distributed
algorithms for convex problems. We show in fact that, even in this simpler setting, some
of the challenges (ii)—(v) remain unaddressed.

Primal methods While substantially different, primal methods can be generically
abstracted as a combination of a local (sub)gradient-like step and a subsequent
consensus-like update (or multiple consensus updates); examples include [23,27,31,
38,39]. Algorithms for adaptation and learning tasks based on in-network diffusion
techniques were proposed in [8,11,35]. Schemes in [8,11,23,31,38,39] are applica-
ble only to undirected graphs; [8,23,31,38,39] require the consensus matrices to be
double-stochastic whereas [11] uses two matrices that are row/column-stochastic,
respectively; furthermore, [11] is applicable only to strictly convex agents’ cost func-
tions having a common minimizer. When the graph is directed, double-stochastic
weight matrices compliant to the graph might not exist or are not easy to be con-
structed in a distributed way [20]. This requirement was removed in [27] where the
authors combined the sub-gradient algorithm [31] with push-sum consensus [24].
Other schemes applicable to digraphs are [49,50]. However, [31,49,50] cannot handle
constraints. In fact, up until this work (and the associated conference papers [41,42])
it was not clear how to leverage push-sum-like protocols to deal with constraints
over digraphs. Finally, as far as challenge (v) is concerned, only recent proposals
[30,33,38,39,49,50,52] removed the assumption that the (sub-)gradient of U has to
be bounded; however [30,33,38,49,50,52] can handle only smooth and unconstrained
problems while [33,38,39,50,52] are not implementable over digraphs.

Dual-based methods This class of algorithms is based on a different approach: slack
variables are first introduced to decouple the sum-utility function while forcing consis-
tency among these local copies by adding consensus equality constraints (compliant
with the graph topology). Lagrangian dual variables are then introduced to deal with
such coupling constraints. The resulting algorithms build on primal—dual updates, aim-
ing at converging to a saddle point of the (augmented) Lagrangian function. Examples
of such algorithms include ADMM-like methods [9,22,46] as well as inexact primal—
dual instances [10,25,26]. All these algorithms can handle only static and undirected
graphs. Their extensions to time-varying graphs or digraphs seem not possible, because
it is not clear how to enforce consensus via equality constraints over time-varying or
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directed networks. Furthermore, all the above schemes but [9] require U to be smooth
and (P) to be unconstrained.

In summary, even restricting to convex instances of (P), there exists no distributed
algorithm in the literature that can deal with either constraints [issue (iii)] or nonsmooth
U [issue (ii)] with unbounded (sub-)gradient [issue (v)] over (time-varying) digraphs.
Also, it is not clear how to extend the convergence analysis developed in the above
papers when U is no longer convex.

Distributed nonconvex optimization Distributed algorithms dealing with special
instances of Problem (P) are scarce; they include primal methods [4,12,43,45] and
dual-based schemes [21,54]. The key features of these algorithms are summarized in
Table 1 and discussed next.

Primal methods The scheme in [4] combines the distributed stochastic projection
algorithm, employing a diminishing step-size, with the random gossip protocol. It can
handle smooth objective functions over undirected static graphs; no rate analysis of the
scheme is known. In [43], the authors showed that the (randomly perturbed) push-sum
gradient algorithm with diminishing (square summable) step-size, earlier proposed
for convex objectives in [27], converges also when applied to nonconvex smooth
unconstrained problems. Asymptotic convergence and a sublinear convergence rate
were proved (the latter under the assumption that the set of stationary points of U is
finite). The first, to our knowledge, provably convergent distributed scheme for (P),
with GT # 0and constraints K, over time-varying graphs is NEXT [12]. The algorithm
requires the consensus matrices to be doubly-stochastic. Asymptotic convergence was
proved, when a diminishing step-size is employed; no rate analysis was provided. In
[45], the authors studied smooth (possibly nonconvex) U over undirected static graphs
and proposed a distributed instance of the Frank—Wolfe algorithm, coupled with the
idea of gradient tracking, first introduced in NEXT (see discussion below for more
details on the idea of gradient tracking). Under a diminishing step-size (and further
technical assumptions on the set of stationary solutions), a sublinear convergence rate
is proved. Finally, all the algorithms discussed above require that the (sub)gradient of
U is bounded on KC (or R™). This is a key assumption to prove convergence: in the
analysis of descent, it permits to treat the optimization and consensus steps separately,
with the consensus error being a summable perturbation.

Dual-based methods In [54] a distributed approximate dual subgradient algorithm,
coupled with a consensus scheme (using double-stochastic weight matrices), is intro-
duced to solve (P) over time-varying graphs. Assuming zero-duality gap, the algorithm
is proved to asymptotically find a pair of primal—dual solutions of an auxiliary prob-
lem, which however might not be stationary for the original problem; also, consensus
is not guaranteed. No rate analysis is provided. In [21], a proximal primal—dual algo-
rithm is proposed to solve an unconstrained, smooth instance of (P) over undirected
static graphs. The algorithm employs either a constant or increasing penalty parameter
(which plays the role of the step-size); a global sublinear convergence rate is proved.
The algorithm can also deal with nonsmooth convex regularizes and norm constraints
when it is applied to some distributed matrix factorization problems.

Gradient-tracking The proposed algorithmic framework leverages the idea of gradi-
ent tracking: each agent updates its own local variables along a direction that is a proxy
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of the sum-gradient lez 1 V fi atthe current iteration, an information that is not locally
available. The idea of tracking the gradient averages through the use of consensus cou-
pled with distributed optimization was independently introduced in [12-14] (NEXT
framework) for constrained, nonsmooth, nonconvex instances of (P) over time-varying
graphs and in [52] for the case of strongly convex, unconstrained, smooth optimiza-
tion over static undirected graphs. This tracking protocol was extended to arbitrary
(time-varying) digraphs (without requiring doubly-stochastic weight matrices) in our
conference work [42]. A convergence rate analysis of the scheme in [52] was later
developed in [30,33], with [30] considering (time-varying) directed graphs. We refer
the reader to Sect. 3 for a more detailed discussion on this topic.

1.2 Summary of contributions

We summarize our major contributions as follows; see also Table 1.

1. Novel algorithmic framework We propose the first provably convergent dis-
tributed algorithmic framework for the general class of Problem (P), addressing all
challenges (i)—(iv). The proposed approach hinges on Successive Convex Approxi-
mation (SCA) techniques, coupled with a judiciously designed perturbed push-sum
consensus mechanism that aims to track locally the gradient of F. Both com-
munication and tracking protocols are implementable on arbitrary time-varying
undirected or directed graphs, and in the latter case only column-stochasticity of
the weight matrices is required. Also, feasibility of the iterates is preserved at each
iteration. Either constant or diminishing step-size rules can be used in the same
scheme, and convergence to stationary solutions of Problem (P) is established.

2. Iteration complexity We prove that the proposed scheme has sublinear con-
vergence rate as long as the positive step-size is smaller than an explicit upper
bound; different step-sizes among the agents can also be used. To the best of
our knowledge, this is the first convergence/complexity result of distributed algo-
rithms employing a constant step-size for nonconvex (constrained) optimization
over (time-varying) digraphs.

3. New Lyapunov-like function and descent technique We improve upon existing
convergence techniques and introduce new ones. Current analysis of distributed
algorithms has trouble handling nonconvex, nonsmooth, constrained optimization.

Table 1 Distributed nonconvex optimization: current works and contribution of this paper

Proj- Push-sum Prox-
NEXT SONATA
DGM DGM PDA DeFW [45]
[12] This work
[4] (43] (21)
nonsmooth G+ v v
constraints v v K compact v
unbounded gradient v v
network time-varying v v v
topology digraph restricted v v
. constant v v
step-size:
diminishing v v v v v v
complexity v v v v
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Moreover, in the presence of unbounded (sub-)gradients of the objective function,
descent on the objective function while treating optimization and consensus errors
separately no longer works. A new convergence analysis is introduced to overcome
this difficulty based on a novel “Lyapunov”-like function that properly combines
suitably defined weighted average dynamics, consensus and tracking disagree-
ments.

4. Broader class of problems and convergence results The proposed algorith-
mic framework and convergence results are applicable to a significantly larger
class of (constrained) optimization problems and network topology than current
distributed schemes, including several instances arising from machine learning,
signal processing, and data analytic applications (cf. Sect. 2.1). Moreover, we
contribute to the theory of distributed algorithms also for convex problems, being
our schemes the first able to provably deal with either constraints [issue (iii)] or
nonsmooth U [issue (ii)] with nonbounded (sub-)gradient [issue (v)] over (time-
varying) digraphs. Finally, our algorithm contains as special cases several recently
gradient-based algorithms whose convergence was proved under more restrictive
assumptions on the optimization problem and network topology (cf. Sect. 5).

Finally, preliminary numerical results show that the proposed schemes compare
favorably with state-of-the-art algorithms.

The rest of the paper is organized as follows. The problem setting is discussed in
Sect. 2 along with some motivating applications. Some preliminary results, including
a perturbed push-sum consensus scheme over time-varying digraphs, are introduced
in Sect. 3. Section 4 describes the proposed algorithmic framework along with its
convergence properties, whose proofs are given in Sect. 6. Finally, some numerical
results are presented in Sect. 7.

Notation The set of nonegative (resp. positive) natural number is denoted by N (resp.
N4 4). A vector x is viewed as a column vector; matrices are denoted by bold letters.
We work with the space R™, equipped with the standard Euclidean norm, which is
denoted by || e ||; when the argument of || e || is a matrix, the default norm is the
spectral norm. When some other (vector or matrix) norms are used, such as £1-norm,
or infinity-norm, we will use the notation || e || , with the corresponding value of p. The
transpose of a vector X is denoted by x . The Kronecker product is denoted by ®. We
use 1 to denote a vector with all entries equal to 1, and I to denote the identity matrix;
With some abuse of notation, the dimensions of 1 and I will not be given explicitly
but understood within the context. Given I € N, we define [/]1 £ {1, ..., I}.

2 Problem setup and motivating examples

We study Problem (P) under the following assumptions.
Assumption A (On Problem (P)) Given Problem (P), suppose that

A.1 The set L € R"™ is (nonempty) closed and convex;
A.2 Each f; : O — Ris C!, where ©® D K is an open set, and V f; is L;-Lipschitz
on IC;
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A3 GT : K — Ris convex (possibly nonsmooth), and G~ : O — Ris C! with
VG~ being Lg-Lipschitz on K;
A.4 U is lower bounded on /C.

We also made the blanket assumption that each agent i knows only its own function
fi and the regularizer G but not the functions of the other agents.

Assumptions A.1 A.2 and A.4 are quite standard and satisfied by several problems
of practical interest. We remark that, as a major departure from most of the literature on
distributed algorithms, we do not assume that the gradient of F' (and G™) is bounded
on the feasible set K. This, together with the nonconvexity of G as stated in A.3,
opens the way to design for the first time distributed algorithms for a gamut of new
applications, including several big-data problems in statistical learning; see Sect. 2.1
for details.

On the network topology Agents communicate through a (possibly) time-varying
network. Specifically, time is slotted with n denoting the iteration index (time-slot); in
each time-slot n, the communication network of agents is modeled as a (possibly) time-
varying digraph G" = ([I], £"), where [I] = {1, ..., I} denotes the set of agents—the
vertices of the graph—and the set of edges £" represents the agents’ communication
links; we use (i, j) € £" to indicate that the link is directed from node i to node j.
The in-neighborhood of agent i at time 7 is defined as Mi“ (m1={jl(,i) € EU{i}
(we included in the set node i itself, for notational simplicity); it represents the set of
agents which node i can receive information from. The out-neighborhood of agent i is
J\/i"“t [n]={j| (@, j) € E"}U{i}—the set of agents receiving information from node
i (including node i itself). The out-degree of agent i is defined as d' & |./\/i°llt [n] |
To let information propagate over the network, we assume that the graph sequence
{G" }nen, possesses some “long-term” connectivity property, as formally stated next.

Assumption B (On graph connectivity) The graph sequence {G"},cn, is B-strongly
connected, i.e., there exists a finite integer B > 0 such that the graph with edge set
Ufi,f et is strongly connected, for all k£ > 0.

We conclude this section discussing some instances of Problem (P) in the context
of statistical learning.

2.1 Distributed sparse statistical learning

We consider two distributed nonconvex problems in statistical learning, namely: (i) a
nonconvex sparse linear regression problem; and (ii) the sparse Principal Component
Analysis (PCA) problem.

Nonconvex Sparse Linear Regression Consider the problem of retrieving a sparse
signal x € R™ from the observations {bi}l.’: |» where each b; = A;x is a linear
measurement of the signal acquired by agenti. A mainstream approach in the literature
is to solve the following optimization problem

I
min Y b — x|’ + 4 G (%), M

i=1
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Table 2 Examples of nonconvex surrogates of the £( function having a DC structure [cf. (2)]

Penalty function Expression

Exp [7] gexp(x) = 1 — e~ 01

£p(0 < p<1[19] g @) = (x| + )17,

£p(p < 0) [34] 8- (0 =1 - @lx| + 1P
2], O<ll=<j
—02x12 _

SCAD [17] gsead (1) = SRR g1 < 4
1, x| > &

log(14+6
Log [47] Zlog () = EHIRD

where the quadratic term measures the model fitness whereas the regularizer G is
used to promote sparsity in the solution, and A > 0 is chosen to balance the trade-off
between the model fitness and solution sparsity. Problem (1) is clearly an instance of
(P). Note that each agent knows only its own function f; (since b; is own only by
agent i). Also, V f; is not bounded on R™.

To promote sparsity on the solution, the ideal choice for G would be the cardinality
of x (a.k.a. £p “norm” of x). However, its combinatorial nature makes the resulting
optimization problem numerically intractable as the variable dimension m becomes
large. Several convex and, more recently, also nonconvex surrogates of the £( function
have been proposed in the literature. The structure of G, as stated in Assumption A.3,
captures either choices. For instance, one can choose as regularizer in (1), the £, or
£1 norm of x (and thus G~ = 0), which leads to the ridge and LASSO regression
problems, respectively. Moreover, a vast class of nonconvex surrogates can also be
considered, including the SCAD [17], the “transformed” ¢; [53], the logarithmic [47],
and the exponential [7]; see Table 2. It is well documented that nonconvex regularizers
outperform the £; norm in enhancing solution sparsity. Quite interestingly, all the
widely used nonconvex surrogates listed in Table 2 enjoy the following separable DC
structure (see, e.g., [ 1,44] and references therein)

G(x) = Zg(xz'), with g (x;) =0 ©) |xil — (1 0) |xi| — g (xi)). (2
i=1 e
=gT(x;) ég*(x,-)

where the expression of g : R — R is given in Table 2; and 7 (9) is a fixed given
function, defined in Table 3 for each of the surrogate g listed in Table 2. The parameter
0 controls the tightness of the approximation of the £ function: in fact, it holds that
limg_, 400 g(x;) = lifx; # 0, otherwise limg_, 4o g(x;) = 0. Note that g~ is convex
and has Lipschitz continuous first derivative dg~ /dx [44], whose closed form is given
in Table 3.

It is not difficult to check that Problem (1), with any of the regularizers discussed
above, is an instance of (P) and satisfies Assumption A. Also, note that the gradient
of the smooth part is not bounded on R™.
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Table 3 Explicit expression of

1(6) and dg— /dx [cf.(2)] 8 n(©) dgg [dx
Gexp 6 sign(x) - 0 - (1 — e~?1xl)
1_ 1_
8t yel/o-t bsign() [0 — (x| + 07"
8¢, —p-0 —sign(x) - p -0 -[1 — (1 +0[xhP~1]
0, Kl < §
. 200|x]—1
8scad % sign(x) - %, % <lxl = %
sign(x) - %, otherwise
0 - ) 62|x
8log Tog(150) SIgN(Y) - {55130y 140])

Sparse PCA Consider finding the sparse principal component of a distributed data set
given by the rows of a set of matrices D;’s (each D; is own by agent i). The problem
can be formulated as

1
max Y Dix|* =G (%), 3)
i=1

Ixl>=<1

where G can be any of the sparse-promoting regularizers discussed in the previous
example. Clearly, Problem (3) is another (nonconvex) instance of Problem (P) (satis-
fying Assumption A).

3 Preliminaries: the perturbed condensed push-sum algorithm

The proposed algorithmic framework combines local optimization based on SCA with
constrained consensus and tracking of gradient averages over digraphs.

The consensus problem over graphs has been widely studied in the literature;
a renowned distributed scheme solving this problem over (possibly time-varying)
digraphs is the so-called push-sum algorithm [24]. A perturbed version of the push-
sum scheme has been introduced in [27] to solve unconstrained optimization problems
over (time-varying) digraphs. However, it is not clear how to leverage the push-sum
update and extend these optimization schemes to deal with constraints. In this sec-
tion, we introduce a reformulation of the perturbed push-sum protocol [27]—termed
perturbed condensed push-sum—that is more suitable for the integration with con-
strained optimization. This scheme will be then used to build the gradient tracking and
constrained consensus mechanisms embedded in the proposed algorithmic framework
(cf. Sect. 4).

Consider a network of I agents, as introduced in Sect. 2, communicating over a
time-varying digraph (cf. Assumption B). Each agent i controls a vector of variables
X(;) € R™ as well as a scalar ¢; that are iteratively updated, based upon the information
received from its immediate neighbors. Let X;) and ¢/ denote the values of X ;) and ¢;
atiteration n € N. We let agents’ updates be subject to a(n adversarial) perturbation;
we denote by 87 € R the perturbation injected in the update of agent i at iteration n.
Given x?l.) and ¢!, the perturbed condensed consensus algorithm reads:
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¢!t Z afi ¢}, (4a)
+1 +1
X = pr Z aji$ix(y + 8 (4b)

foralln € Ny andi € [/], where X?l-) are arbitrarily chosen and ¢ZQ are positive scalars

such that Z{:l qb? = J;and A" & (al."j)l.l’ i=1 is a (possibly) time-varying matrix of

weights whose nonzero pattern is compliant with the topology of the graph G", in the
sense of the assumption below.

Assumption C (On the weight matrix A™) Each A" £ (al."j){ j=1 is compliant with G",
that is,

Cl. af; >« > 0, foralli € [/];

C2. af’j >k > 0,if (j,i) € £"; and af’j = 0 otherwise.

Under Assumption C, the protocol (4) is implementable in a distributed fashion: each
agent i updates its own variables using only the information ¢! X’(’) and ¢" received
from its current in-neighbors (and its own). We study convergence of (4) under the
following further (standard) assumption on A”.

Assumption D (Column stochasticity) Each matrix A" is column stochastic, that is,
1TA" =1T.

The role of the extra variables ¢; is to dynamically rebuild the row stochasticity of
the equivalent weight matrix governing variables’ updates, which is a key condition
to lock consensus. This can be easily seen rewriting the dynamics (4b) in terms of the

equivalent weights W” £ (w; ])l =1

! a?‘.d;'.’

n+ n o n n & UJrJ

Xi) Zwi/‘ Xor Wi e ®)
' i

It is not difficult to check that, under Assumption D, W" is row-stochastic.
To state the main convergence result in compact form, we introduce the following
notation. Let

.
x" £ [X?J, e ,XJ)] , (6a)
o' 2 (o), e1]" (6b)
§n o [57T,._.,5';T]T. (6¢)

Noting that, in the absence of perturbation (i.e., §" = 0), the weighed sum le | oF ’(1:)

is an invariant of (4), that is, Y./_; ¢/ 'x ZJ{I =...=Y7 1¢>0 . We deﬁne the
consensus disagreement at iteration n as the dev1at10n of each x( ) from the weighted

average (1/1) Y[_; ¢!'x(;):
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1
1
Lx —1Q® i Zgb;lxg.). (7
i=1

The dynamics of the error €/ are studied in the following proposition (whose proof is
postponed to Sect. 3.2).

Proposition 1 Let {G"},en, be a sequence of digraphs satisfying Assumption B, and
let {(@",x")}pen, be the sequence generated by the perturbed condensed push-
sum protocol (4), for a given perturbation sequence {8"},en, and weight matrices
{A"}en, satisfying Assumptions C-D. Then, there hold:

() [Bounded {¢"}nen, I

inf min ¢! > ¢rp, ¢y 2 k2B,

neNy ie[l] (8)
sup max ¢! < Bup.  pup = 1 — 1> 7VE,
neN, i€ll]
with B > 1 and k € (0, 1) defined in Assumptions B and C, respectively;
(i) [Error decay]: Foralln, k € Ny, n >k,
k—1
ler < A% e g+ a0 18I, ©)
t=0
where
A" £ min {\/51, 2¢01 (p)L(I—tl)BJ } ,
and

02?2 (1 +;2*<’*”B) , p 21 —gUDE g A 2U-DBH (1)

_ B
Furtheremore, there exists a finite B € N such that pg £ 2¢0l(p) |-<’*‘)BJ < 1.

Remark 1 The perturbed consensus algorithm (4) was mainly designed for digraphs.
However, when the graph is undirected, one can choose the weight matrix A” to be
double stochastic and get rid of the auxiliary variables ¢, just setting in (4) ¢° = 1.
As a consequence, ¢" = 1 and W" = A", for all n € Ni. In this case, using
[29, Lemma 9], the expression of A’ in Proposition 1 can be tightened by letting

A" £ min(l, (p)"/B1}, with p £ /1 — k/ (21?).

3.1 Discussion

Proposition 1 provides a unified set of convergence conditions of the perturbed con-
densed push-sum scheme that are applicable to any given perturbation sequence
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{6"}ren, . We discuss next two special cases, namely: the plain average consensus
problem and the distributed tracking of time-varying signals.

1. (Weighted) average consensus Setting in (4) §" = 0, for all n € N, (4) reduces
to the plain (condensed) push-sum scheme. whose geometric convergence to the
(weighted) average of the initial values, (1/1) le lqbo (()l.), follows readily from
Prol%osmon 1. More specifically, using Zl 1¢>"+1 ’ZZJ)” = ... = Z{:l qb?x?l.), 9)
yields

LZig] [0
<2¢01 (p)LT1E Hexﬂ neN,. (1)

1
1
1 0,0
1o ) eix)
i=1

Note that, since the weight matrix W” in (5) is row stochastic, if the initial values XOZ.)

all belong to a common set K, then X?i) € I, for all n € N ; that is feasibility of the
iterates is preserved.

2. Tracking of time-varying signals’ averages Consider the problem of tracking
distributively the average of time-varying signals. Ateachiterationn € N, each agent
i evaluates (or generates) a signal sample u!’ € R™ from the (time-varying) sequence
{u!},en, . The goal is to design a distributed algorithm obeying the communication
structure of the graphs G" that tracks the average of the signals {u'},cn, , that is,

I
,,ILH;OHX —1@u"| =0, u"éjzu?. (12)
iz

The perturbed condensed push-sum algorithm (4) can be readily used to accomplish
this task by setting

1
81t = e (' —u), ielll, neNg, (13)

i

and X? = u?, i € [I]. Convergence of this scheme is stated next.

Corollary 2 Ler {ul'},cn, be a given sequence such that lim,_, o ||u”+1 u'|| =0,

foralli € [I]. Consider the perturbed condensed push- sum protocol (4), under the
assumptions of Proposition 1; and set 3”+1 as in (13), X = u and d)o = 1 for all
i € [I]. Then, (12) holds.

Proof The proof follows readily from Proposition 1 and the following two facts:

) (/D) Y], ¢ H'xi = @+ and (ii) [28, Lemma 7]

n—1

lim 118" =0 = lim Z(p
=0

e =
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3.2 Proof of Proposition 1

To prove Proposition 1, it is convenient to rewrite the perturbed consensus protocol
(4) in a vector—matrix form. To do so, let us introduce the following quantities: given
the weight matrix A" compliant with G" (cf. Assumption C) and W” defined in (5),
let

Dy £ Diag (¢"), (14a)
Dy 2Dy ®1, (14b)
A"EATRI, (14¢)
W' AW I, (14d)

where Diag(e) denotes a diagonal matrix whose diagonal entries are the elements of
the vector argument, and I is the m x m identity matrix. Under the column stochasticity
of A", it is not difficult to check that the following holds:

—1 P ~ -1 o <
W = (DWI) A"Dy and W' = (D¢n+1) A" Dy (15)

Using the above notation and (6), the perturbed push-sum protocol (4) can be rewritten
in matrix—vector form as

¢" T =A"¢" and X"T' = W'x" + 8"t (16)

To study convergence of (16), it is convenient to introduce the following matrix prod-
ucts: given n, k € N, withn > k,

ATk & A"ALAR D ifn >k,
~|An, ifn =k,

a7)

—— wWrwrl L WE i > k,

w7, if n =k,

and
Xn:k L pAmk I, Wn:k A Wn:k L (18)
Define the weight-averaging matrix
A 1 nyT

25 (1@)7) 8L (19)

so that Jg» x" = 1® } > ¢;'x(;)- Also, it is not difficult to check the following
chain of equalities hold among J”, W” and A" forn, k € N,, withn >k,
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Tyt Wk @ 3B = 30 & Wk g, (20)

where in (a) we used the definition of wr [cf. (15)], J ¢+l [cd. (20)], and the column

stochasticity of A"; and (b) is due to the row stochasticity of wrk,
The consensus error e} in (7) can be rewritten as ey = (I — Jgn)x".
To study the evolution of e/, we apply the x-update (16) recursively and obtain

k—1
X' — anlznfk ank + Z anl:nftsnft + 8", 1)
t=1
Using (20) and (21), the weighted average Jg»x" can be written as
k—1
Jprx" = J¢n_kx"—k + Z Jgnt8" "+ Jgn 8" (22)

=1

Subtracting (22) from (21) and using (W"~!"—* — Jgni)d g = 0 [cf. 20)], we
can bound the consensus error e *! as

el < Wtk — gy 18"

k—1
”eﬁ—k“ + Z Hwn—lin—l‘ _ J¢rl*t
-1 (23)

+ HI —Jg || 16”1

Convergence of the perturbed consensus protocol reduces to studying the dynamics
of the matrix product Wk — g ok I, as done in the lemma below.

Lemma3 Let {G"},en, be a sequence of digraphs satisfying Assumption B; let
{A"}en, be a sequence of weight matrices satisfying Assumptions C-D; and let
{W"}en, be the sequence of row stochastic matrices related to {A"},en, by (15).
There holds:

. n—k+1
HW”']‘—JMHSmin{ﬁl,ZcoI(P)L“SBJ}, n,keNy, nz=k, (24

where co and p are defined in Proposition 1.
Proof See Appendix A. O

The error decay law (9) comes readily from (23), Lemma 3, and the following fact:

JT—Jgn | <21 <2%2 min{2col, +/21}, which is proved below. Let z € R/ be
an arbitrary vector; let us partition z as z = [le, el ZIT]T, with each z; € R™. Then,
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[@=Jgz| < Iz = Juzl + |J1z — Jgrz

1 1
(a) 1
| < il + 4 dozi—) $lu

i=1 i=1

Vi
<llzll + Tvﬂ — 1zl = V21 |z,
(25)

where in (a) we used ||I — Jy|| = 1. m]

4 Algorithmic design

We are ready to introduce the proposed distributed algorithm for Problem (P). To
shed light on the core idea of the novel framework, we begin introducing an informal
and constructive description of the algorithm (cf. Sect. 4.1), followed by its formal
statement along with its convergence properties (cf. Sect. 4.2).

4.1 SONATA at-a-glance

Each agent i maintains and updates iteratively a local copy X(;y of the global variable
X, along with an auxiliary variable y(;) € R™; letx(;) and yf;) denote the values of x;)
and y(;) at iteration n, respectively. Roughly speaking, the update of these variables
is designed so that all the X?l-) will be asymptotically consensual, converging to a
stationary solution of (P); and each y;) tracks locally the average of the gradients (1/1)-
Z{zl V fi, an information that is not available at the agent’s side. More specifically,
the following two steps are performed iteratively and in parallel across the agents.

Step 1: Local SCA The nonconvexity of f; together with the lack of knowledge of
> i fj in F, prevent agent i to solve Problem (P) directly. To cope with these
issues, we leverage SCA techniques: at each iteration n, given the current iterate x?l.)
and yz'l.), agent i solves instead a convexification of (P), having the following form:

i?i) L argmin FN'I (X(,'); X?i)’ y’é)) + G+ (X(i)) s (26)

X(,‘)GIC
and updates its X(;y according to

n+1/2 ~
X =Xt (X?i) - X?i)) ’ (27)

where o” € (0, 1) is a step-size (to be properly chosen). In (26), Fi(e; X?i), y?i)) is
chosen as:

Fi(x(i)? X?i)’ y?i)) 2 JNCi(X(i)? X?i)) - VG—(XZ'))T(X(I') - X?i))

) T . (28)
+ (1 Yo — Vfi(x(i))) (X(i) - X(i))’
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where f, (o; x’(“l.)) is a strongly convex approximation of f; at the current iterate X?i)
(see Assumption E below); the second term is the linearization of the smooth non-
convex function —G™; and yZ‘i), as anticipated, aims at tracking the gradient average
/0 Z§:1 ij(x’(’l.)), that is, lim,_, ||y?l.)— (1/1) 2521 ij(x?l.))n = 0. This
sheds light on the role of the last term in (28): under the claimed tracking properties
of y?l.), there would hold:

lim |[(1-y0) = V() = D VA =0. (29)

n—o00
J#

Therefore, the last term in (28) can be seen as a proxy of the gradient sum
> iz Vi (x’(’i)), which is not available at agent i’s site. Building on the perturbed
condensed push-sum protocol introduced in Sect. 3 we will show in Step 2 below how
to update y?i) so that (29) holds, using only /ocal information.

The surrogate function ﬁ satisfies the following assumption.

Assumption E (On surrogate function f; ) Let f : K x K — RbeaC! function with
respect to its first argument, and such that

EL. Vf; (x;x) = V f; (%), for all x € K;
E2. f, (e;y) is uniformly strongly convex on K, with constant 7;;
E3. V fl (x; @) is uniformly Lipschitz continuous on /C, with constant Li;

where V fi (x; y) denotes the partial gradient of fi with respect to the first argument,
evaluated at (x, y).

Conditions E1-E3 are quite natural: f, should be regarded as a (simple) convex,
local, approximation of f; at x that preserves the first order properties of f;. A gamut
of choices for f; satisfying Assumption E are available; some representative examples
are discussed in Sect. 4.4.

Step 2: Information mixing and gradient tracking To complete the description of the
algorithm, we need to introduce a mechanism to ensure that

(i) the local estimates x( )'S asymptotically converge to a common value; and

(i1) each y(i) tracks the gradient sum ) i Vfi (x?i)). To this end, we leverage
the perturbed condensed push-sum protocol introduced in Sect. 3. Specifically, given

E’;l/ ’s, each X(; is updated according to [cf. (4)]

I

n oanntl/2
i PixGg) (30)

1
n+1 n+1 _
Za (l) - ¢n+1
i

where the a; are chosen to satisfy Assumption C. Note that, the updates in (30) can
be performed in a distributed way: each agent j only needs to select the set of weights
{afj}{: , and send a,”j¢>” and a; ¢>’/1 'Z;l/ % toits out-neighbors while summing up the

information received from its in-neighbors.
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To update the yZ’i)’s we leverage again the perturbed condensed push-sum scheme

(4), with with e;’“ = (1/¢l’?+1) (Vfi(xZ’iTl) - Vfl-(x’(’l.))) [cf. (13)]. The resulting
gradient tracking mechanism reads

viy' = ,,HZW i+ g (VA = AG) . oD

1

with ) = V £ (x(;))-
Note that the update of y?i) can be performed locally by agent i, with the same
signaling of that of (30).

4.2 The SONATA algorithm

We can now formally introduce the proposed algorithm, SONATA, just combining
steps (26), (27), (30), and (31)—see Algorithm 1.

Algorithm 1 SONATA

Datax eIC forallt¢0_1y —g Setn =0.

[Ss.1] Ifx satisfies termination criterion: STOP;
[S.2] [Distributed Local Optimization] Each agenti
Compute locally X X(:) solving problem (26);
Update its local variable x'(ql.-)’_l/2 = (l) + a”(N’(’l) x’(’i));
[S.3] [Information Mixing] Each agenti compute
(a) Consensus

n+1 Z“z]¢n (32)
! +1/2,
n+l n
Xy = 7 (V)N (33)
(b) Gradient tracking
+1 +1 .
Yo = 4+1 Z a9 ¥ij) + ¢n+l( fieG ) = V) ) (34)

l 1

[S.4] n<—n+1,goto [S.1]

Note that the algorithm is distributed. Indeed, in Step 2, the optimization (26) is
performed locally by each agent i, computing its own X7, To do so, agent i needs to
know the current xE’i) and y’(’i), which are both available locally. There are then two
consensus steps (Step 3) whereby agents transmit/receive information only to/from
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their out/in neighbors: one is on the optimization variables x;, (and the auxiliary
scalars ¢} )—see (32)—(33)—and one is on the variables y?i)—see (34).

4.3 Convergence and complexity analysis of SONATA

To prove convergence, in addition to Assumptions A—E, one needs some conditions on
the step-size «”. Since line-search methods are not practical in a distributed environ-
ment, there are two other options, namely: 1) a fixed (sufficiently small) step-size; and
ii) a diminishing step-size. We prove convergence using either choices. Recalling the
definition of the network parameters cy, B, Pg» Pip, and ¢y, as given in Proposition 3
[see also (10)] and introducing the problem parameters [cf. Assumptions A, E]

I
L éX:L,-, I:mxé maxlii—f-LG, L 2 max L;,

X I<i< 1<i<I
i=1

e 2 min 7, o2 (Lﬁ+ Lunx + imx) /1, (35)

1<i<I

the step-size can be chosen as follows.

Assumption F The step-size {«"},,c, satisfies either one of the following conditions:

Fl. (diminishing) (0, 1] 3 o | O and Y ooy " = 00;
F2. (fixed) «" = «, for all n € N4, with

1—pzn)o
o < min %
V2¢B
= ~ -1
2e:¢y (L+Lg | 2c.Be [ 2 12L ey, B2 [ 1
L dup I 1—pzV1—-02 (1—pp)? 1—-o02 ’

(36)

where o is an arbitrary constant o € (0, 1) and ¢ = I +/21.

In addition, if all A" are double stochastic, the upper bound in (36) holds with ¢ = 1,
= 12
B=B,¢p=duw=1andpz = (1-x/21%)".

We can now state the convergence results of the proposed algorithm, postponing all
the proofs to Sect. 6. Given {x" £ (X’Zl.)) i[=1 Jnen, generated by Algorithm 1, conver-

gence is stated measuring the distance of the average sequence X" = (1/1) - Zil=1 X?i)
from optimality and well as the consensus disagreement among the local variables
x’gi) ’s. Distance from stationarity is measured by the following function:

J(X") &

T 1
X" — argmin { (VFE) = VG~ (%)) @+ 2= %[> + G(z)+} H .
2eK 2

(37)
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Note that J is a valid measure of stationarity because it is continuous and J (X*°) =
0 if and only if X*° is a d-stationary solution of Problem (P) [16]. The consensus
disagreement at iteration n is defined as

D(x") £ X" —1; @ X"|I.

Note that D is equal to zero if and only if all the x’&.)’s are consensual. We combine
the metrics J and D in a single merit function, defined as

M(x") £ max {J(&")?, D(x")*}.

We are now ready to state the main convergence results for Algorithm 1.

Theorem 4 (asymptotic convergence) Given Problem (P) and Algorithm 1, suppose
that Assumptions A-F are satisfied; and let {X"},cN, be the sequence generated by
the algorithm. Then, there holds lim,_, o M (x"*) = 0.

Proof See Sect. 6. O

Under a constant step-size (Assumption F.2), the next theorem provides an upper
bound on the number of iterations needed to decrease M (x") below a given accuracy
€ > 0.

Theorem 5 (complexity) Suppose that Assumptions A-E are satisfied;, and let
{x"}nen, be the sequence generated by Algorithm 1, with a constant step-size " = «,
satisfying Assumption F.2. Given € > 0, let T, be the first iteration n such that
M") < €. Then T, = O(1/e).

Proof See the companion paper [40]. O

Remark 6 (generalizations) Theorems 4 and 5 can be established with minor modi-
fications under the setting wherein each agent i uses different constant step-size «;.
Also the assumption on the strongly convexity of the surrogate function f; (Assump-
tion E.2) can be weakened to just convexity, if the feasible set K is compact. With
mild additional assumptions on GT—see [12]—we can extend convergence results
in Theorem 4 to the case wherein agents solve their subproblems (26) inexactly. We
omit further details because of space limitation.

4.4 Discussion

Theorem 4 (resp. Theorem 5) provides the first convergence (resp. complexity) result
of distributed algorithms for constrained and/or composite optimization problems over
time-varying (undirected or directed) graphs, which significantly enlarges the class of
convex and nonconvex problems which distributed algorithms can be applied to with
convergence guarantees.

SONATA represents a gamut of algorithms, each of them corresponding to a specific
choice of the surrogate function f,-, step-size ", and matrices A". Convergence is
guaranteed under several choices of the free parameters of the algorithms, some of
which are briefly discussed next.
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e On the choice of j?; . Examples of f, satisfying Assumption E are

— Linearization Linearize f; and add a proximal regularization (to make fl
strongly convex), which leads to

. .
Filasxgy) = fi(xy) + Vi ()" (xor = xG) + 5 [ -

— Partial Linearization Consider the case where f; can be decomposed as
fix@) = fi(l)(X(,-)) + fl-(z) (X(iy), where fi(l) is convex and fi(z) is nonconvex
with Lipschitz continuous gradient. Preserving the convex part of f; while
linearizing fl.(z) leads to the following valid surrogate

2
ﬁmmay—f”mm+f“@y+ Ix; — X |12

2
+vﬁ%%p(&—yy;

— Fartial Convexification Consider the case where X is partitioned as
(X(i,1), X(i,2)), and f; is convex in X(; 1) but not in X(; 2y. Then, one can con-
vexify only the nonconvex part of f;, which leads to the surrogate:

MWJW—ﬂ%m%y+ L X2 — X0 oI

+ V(2)fi(x?i)) (X@,2) — X(iyz)),

where V@ f; denotes the gradient of f; with respect to X(;,2). Other choices
of surrogates can be obtained hinging on [15,16,36].

e On the choice of the step-size Several options are possible for the step-size
sequence {o"}, satisfying the diminishing-rule in Assumption F.1; see, e.g.,
[2]. Two instances we found to be effective in our experiments are: i) o =
ao/ (n+ 1P, withap > 0and 0.5 < B < 1;and i) " = "' (1 — pa" 1),
with «® € (0, 1], and i € (0, 1).

e On the choice of matrix A” When dealing with digraphs, the key requirement
of Assumption B is that each A" is column stochastic. Such matrices can be built
locally by the agents each agent j can simply choose weight a” fori e N out[p]
so that ) ;. Nt ) ;i = 1. As a special case, A" can be set to be the followmg

push-sum matrlx [24]: a =1 /d" if (j,i) € &M anda = 0, otherwise; where
d! is the out-degree of agent i. In this case, the information mixing process in
Step 2 becomes a broadcasting protocol, which requires from each agent only the
knowledge of its out-degree.

When the digraphs G" admit a double-stochastic matrix (e.g., they are undirected),
as already observed in Sect. 3 (cf. Remark 1), one can choose A" as double-stochastic;
and the consensus and tracking protocols in Step 3 reduce respectively to
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+1
X(i) Z aj; (x(;) + " &) = x{;))
(38)

Yo = Z“uym + Vi = VGG,

Several choices have been proposed in the literature to build in a distributed way
a double stochastic matrix A”, including: the Laplacian, Metropolis—Hastings, and
maximum-degree weights; see, e.g., [S1].

e ATC/CAA updates. In the case of unconstrained optimization, the information
mixing step in Algorithm 1 can be performed following two alternative protocols,
namely: i) the Adapt-Then-Combine-based (ATC) scheme; and ii) the Combine-And-
Adapt-based (CAA) approach (termed “consensus strategy” in [35]). The former is
the one used in (30)—each agent i first updates its local copy x( ) along the direction
i?l.) ( iy and then combines its new update with that of its neighbors via consensus.
Alternatively, in the CAA update, agent i first mixes its own local copy X(!) with that
of its neighbors via consensus, and then performs its local optimization-based update
using ')Z'Z’i) (1), that is

n+1 ¢ n
Xo = _,,HZ @i 97Xp + ast Ky =X
1

l

It is not difficult to check that SONATA based on CAA updates converges under the
same conditions as in Theorem 4.

5 SONATA and special cases

In this section, we contrast SONATA with related algorithms proposed in the literature
[12-14,52] and very recent proposals [30,33,50] for special instances of Problem (P).
We show that algorithms in [30,33,50,52] are all special cases of SONATA and NEXT,
proposed in our earlier works [12—14,42].

We preliminarily rewrite Algorithm 1 in a matrix—vector form. Similarly to x",
define the concatenated vectors

.

~ ~n onT

SO T /A1 I (39)
T

y' = [y<1),...,y?,T)] : (40)
T

g2l T g VAR, (41

AX" £X — X", (42)
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where X x and y are defined in (26) and (34), respectively. Using the above nota-
tion and the matrlces introduced in (14a), SONATA [cf. (32)—(34)] can be written in
compact form as

¢n+1 =An¢n (43)
+1 — Wﬂ (X}’l + anAxn) (44)
Y= Wiyt (ﬁ¢n+1)_1 (g”“ _ gn)‘ (45)

5.1 Preliminaries: NEXT and SONATA-L

Since [30,33,50,52] are applicable only to unconstrained (IC = R™), smooth (G = 0)
and convex (each f; is convex) multiagent problems, in the following, we consider
only such an instance of Problem (P). Choose each ﬁ as first order approximation of
fi plus a proximal term, that is,

Fixay: X)) = fixf) + VAKE) T (xa) — x(l))+ Ll — X0 12,

and set 7; = I. Then, i’fi) can be computed in closed form [cf. (26)]:

i’é) = argmin (I ~y2‘i))T(x(1) x(l)) + = IIX(,) x?i)”2
X(i
0 , (46)
. 2
= ar%mm 5 HX(,‘) — X?i) + y’(’,-) ” = X?i) - Y?,'y
0

l’l n

Therefore, Ax; X( — X = Yy
Substituting (46) into (44) and usmg either ATC or CAA mixing protocols, Algo-
rithm 1 reduces to

¢n+l — A" ¢n
wr x" —a"y") (ATC-based update)

n+1 1
Woxn — o (le) Dyy"  (CAA-based update)

X =

. wr (y” + (ﬁd,n)_l (gt — g")) (ATC-based update) )
y =\ ~ ~ -1
Wiy 4 <D¢n+1) (g —g"); (CAA-based update)

which we will refer to as (ATC/CAA-)SONATA-L (L stands for “linearized”).
When the digraph G" admits a double-stochastic matrix A", and A" in (43) is
chosen so, the iterates (47) can be further simplified as reduces to
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N W (x" — ay") (ATC-based update) (49)
T wexn — o y” (CAA-based update)
ntl W’ (y" +g"*! —g")  (ATC-based update) (50)
Y T e y' +g'"t!l —g"  (CAA-based update)

where W = A" and thus W" = W" ® I,,,. The ATC-based updates coincide with
our previous algorithm NEXT [based on the surrogate (46)], introduced in [12-14].
We will refer to (49) as (ATC/CAA-)NEXT-L.

5.2 Connection with current algorithms

We can now show that the algorithms recently studied in [30,33,50,52] are all special
cases of SONATA and NEXT, earlier proposed in [12—14].

Aug-DGM [52] and Algorithm in [33]. Introduced in [52] for undirected, time-
invariant graphs, the Aug-DGM algorithm reads

X" =W (x" — Diag (@ ® 1,,) y")

~ (51)
yn+1 - W (yn + gn+1 _ gn)

where W 2 W ® I,,; W is a double stochastic matrix satisfying Assumption C, and
«a is the vector of agents’ step-sizes «;’s.

A similar algorithm was proposed independently in [33] (in the same networking
setting of [52]), which reads

X' =W (x" — ay")

yn+l — Wyn + gn+1 —g". (52

6 Convergence Proof of SONATA
Clearly Aug-DGM [52] in (51) with the «; ’s equal, and Algorithm [33] in (52) coincide
with (ATC-)NEXT-L [cf. (49)].
(Push-)DIGing [30]. Appeared in [30] and applicable to B-strongly connected undi-
rected graphs, the DIGing Algorithm reads

X't = ann —ay"

yn+1 — Wnyn + gn+1 _ gn’ (53)

where W” is a double-stochastic matrix satisfying Assumption C. Clearly, DIGing
coincides with (CAA-)NEXT-L [12—14][cf. (49)]. The push-DIGing algorithm, stud-
ied in the same paper [30], extends DIGing to B-strongly connected digraphs. It
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Table 4 Connection of SONATA with current algorithms

. Connection with Instance of Graph topology/
Algorithms
SONATA Problem (P) Weight matrix
F nonconvex
NEXT special case of G40 time-varying digraph/
[12] SONATA (38) doubly-stochastic weights
KCR™
F' convex
Aug-DGM ATC-NEXT-L G0 static undirected graph/
[33,52] (= aly) (49) IC : - doubly-stochastic weights
F convex
DIGing CAA- G0 time-varying digraph/
[30] NEXT-L (49) © : g doubly-stochastic weights
. F' convex ) ) .
push-DIGing  ATC- G=o0 time-varying digraph/
[30] SONATA-L (47) © : - column-stochastic weights
F' convex
ADD-OPT ATC- Gep static digraph/
[50] SONATA-L (47) < B - column-stochastic weights

turns out that push-DIGing coincides with (ATC-)SONATA-L [cf. Eq. (47)] when
afj =1 /d;’.

ADD-OPT [50]. Finally, we mention the ADD-OPT algorithm, proposed in [50] for
strongly connected static digraphs, which takes the following form:

2 = A7 — oF"

¢n+1 — A¢n

o (ﬁ¢n+1)71 S (54)
'5;n+1 — K'S;n +gn+l _ gn7

where A is a column stochastic matrix satisfying Assumption C, and A=AQI,.
Defining y* = (D¢n+1 )’1'5;”, it is not difficult to check that (54) can be rewritten as

PN

¢n+1 — A¢n’ W = (ﬁ¢n+l) AD¢n
~ ~ -1 <

X = Wx' —a (Dynr) Dy y" (55)
~ ~ —1

yn+1 — Wyn + <D¢n+l) <gn+1 _ gn) )
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Comparing Eqgs. (47) and (55), one can see that ADD-OPT coincides with (CAA-
)SONATA-L.

We summarize the connections between the different versions of SONATA(-NEXT)
and its special cases in Table 4.

In this section, we prove convergence of SONATA; because of space limitation
we prove only Theorem 4; the proof of Theorem 5 can be found in the companion
paper [40]. The proof consists in studying the dynamics of a suitably chosen Lyapunov
function along the weighted average of the agents’ local copies, and of the consensus
disagreement and tracking errors. We begin introducing some convenient notation
along with some preliminary results. For the sake of simplicity, all the results of the
forthcoming subsections are stated under Assumptions A-F.

6.1 Notations and preliminaries

The weighted average and associated consensus disagreement are denoted by
1
R 2 (¢ﬂ ® Im> X" and € £ x" — Jyx", (56)

respectively. Similar quantities are defined for the tracking variables y?i):

g 2 (qS”T QL ) " and el 2y — Jpy'. (57)

Recalling (39), define the deviation of the local solution X x of each agent from the
weighted average as

ARl g = Xy = X (58)
and the associated stacked vector
ARG £ — Jyx". (39)
Note that Ax" [cf. (39)] can be rewritten as
Ax" = AX — el (60)

Using the above notation, the dynamics of X¢» and y4» generated by Algorithm 1
are given by [cf. (44) and (45)]:
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_ _ o -~
Ryl = Xgr + = <(¢”)T ® 1,,,) AR (61a)
Yoot =Yg + 2 — 2", (61b)

Note that, since y° = g° and ¢? =1, we have y4» = g", foralln € N,.
Finally, we introduce the error-free local solution map of each agent i, denoted by
XK — K:Givenze Kandi =1,...,1,let

X(i)(2) £ argmin {E (x(,-); z) - VG ()" (x(i) - z) (62)

x(l-)EIC

-
+ (Zj;éi ij(z)) (xi) —2z) + G+(z)} )

It is not difficult to check that X;) (e) enjoys the following properties (the proof of the
next lemma follows similar steps as in [16, Prop. 8] and thus is omitted).

Lemma7 EachX((e) satisfies:

i) [Lipschitz continuity]Xg(e) is i-Lipschitz continuous on IC, that is,
there exits a finite L > 0 such that

%)@ —=aoyW)| <L llz—wl, Yz, weK; (63)

i) [Fixed-points] The set of fixed points of X(i)(e) coincides with the set of
d-stationary solutions of Problem (P).

The next result shows that, as expected, the disagreement between agent i’s solu-
tion ')ZZ) and its error-free counterpart i(i)(x’gi)) asymptotically vanishes if both the
consensus error €y and the tracking error €} do so.

Lemma8 X! [cf (26)] and i (x(\,) [cf (62)] satisfy:

|

Therefore, |let ], €}] — 0= ||§Z,~(X’(’i)) —3{’(1’.)” — 0.
- n—oo n— oo

2L,
+t— llell- (64)

1

- ~ 1
R0 % | =
1

n
e),

The last result of this section is a standard martingale-like result; the proof follows
similar to that of [3, Lemmal] and thus is omitted.

Lemma9 Let {X"} en,, (Y")nen, and {Z"},en, be three sequences such that X"
and Z" are nonnegative, for all n € N. Suppose that

B—1 . B—1 B—1 B—1
Z Yn+B+k < Z Yn+k _ Z Xn-‘rk + Z Zn+k, n = O, 1’ o (65)
k=0 k=0 k=0 k=0

and that Y02 s Z" < +oo. Then, either Zf:_ol Yk s —oo, or else Zf:_ol yn+k
converges 1o a finite value and y - X" < +00.
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6.2 Average descent

We begin our analysis studying the dynamics of U along the trajectory of Xg». We
define the total energy of the optimization input o A?(g and consensus errors €/ and

e; in B consecutive iterations [B is defined in Lemma 3]:

B-1 2 B-1 Bl
et @) o om e e B2 Y

t=0 t=0 t=0

n+t 2

y

(&
(66)

Recalling the definitions of ¢, ¢;p, and ¢, [see (8) and (35)], we have the following.

Lemma 10 Ler {(x",y")},en, be the sequence generated by Algorithm 1. Then, there
holds

1

U (i¢n+é+k )

0

~
Il

1 1B—1

3 o N ktt | agnthtt
=Y U(x Hk)— : o | gy H
= [
k=0 k=0 =0 (67)
bur (L + L -« ntk 4 Pub o —lpntk 1tk
+ ) Gub + cLEx + €y ZE TZ<(’L€X EXL +€y Eyl ),

k=0

=~

term iv
where €, > 0 and €, > 0 are arbitrary, finite constants.

Proof Denote for simplicity F £ F — G~. Since f: is strongly convex and G is
convex, by the first order optimality of i?i), we have

T ~ - —
(Ax(‘i)’(b) (1 Vi + ViR X)) — VG (X)) — Vf,-(x?l.)))
+GT®G) — GF &g =~ 4K, 47, (68)
Since V f; and VG are L; and Lg-Lipschitz, respectively, VF is (L + Lg)-

Lipschitz, where L = Z i—1 Li [cf. def. (35)]. Applying the descent lemma to F and
using (61a) yields

F <i¢n+1)
< F(3)+ 5V (5g) " (97 ©1,) A%,

N L+Lg (@")?
2 !

(@7 o m) x|
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N L+Lg (a?
2 1

A

+ G+(§(i)) - G+(i¢” ))

T

n 1
y X (X X e n
+ 7 ;4) (Vfl (X(l) vﬁ(X¢;x) + vfi(X¢n§ X¢n) — Vfi(x¢n; x(i))) Ax(z) 6

) L+Lg @ ,
< F (Xgn) + ] ¢ub | AXG ||

1
o - ~ _
=20 (AR 4P + GG — G )
i=1
1

+—Z¢ VF(X¢”)—(ZVfJ(Xu>) VG (Xm)) HA <'>’¢H

i=1

+a" Z¢?||y¢n — Y HIAKG) 4
i=1

Q' &
n
T
i=1
1
al’l n
o
iz

| 145, 41

V&) = Vi (Rgr)

i Rgn: Rgr) — V Ji Ry x;',.))H | AZ 4

L+ Lg (Ol")
2 1

< F()_(¢") + o b | AXG ||

1
o —
T Z ¢/ (ml A 4 + G &) — G )

1
a B _ ~
7 2 E Lj||X¢n — X?j) I+ LG||X¢" - X?,)” ||AX’(1,) 4,”

1
+ " Z ¢ln ||}_’¢" - y’(l[) I ||A§([),¢”
i=1

1
o _ - ~ _ ~
+ 2 0 (Lillxgy — el IR, gl + Lol — % 11455 1)
i=1

i L+Lc (@)’ o |?
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1
(1 ~ ~ —
T Z (’i 1A%G o112 + G+(XZ>)_G+(X¢”))

n
|1

where in (a) we used (68), Assumption E. 1, and the bound (109) (along with some basic
manipulations); in (b) we used y4» = g" [cf. (61b)]; (c) follows from the L;-Lipschitz
continuity of V f;, Lg-Lipschitz continuity of VG~, and the uniformly L;-Lipschitz
continuity of Vﬁ(x; e); and in (d) we used the inequality ||x||; < /7 |x], and the
definition of ¢y, [cf. (35)].

Invoking the convexity of GT and using (61a), we can write

+acLgu €] | 4% (69)

G* (Rgrn) = (1-a") G* (Rgr) + — Z‘ﬁ"G’L(N(,)
which combined with (69) yields

U <i¢)1+l>
_ a”t 2 L+Lg (a?
SU(X¢")—T¢1bCr + :

2 1

2 n 2
0% | 4%,

Sn
Ax¢ H

+a cgus €], | 4%

_ a 2 L+LG (an)Z ) 2
< U (%) — T b e | AXg | + T Pup H AXy
Dub 20 e I2 . Pub ¢ b 2
+ 2 e+ ) @) | A%y |+ Bl eel elP+ S e

where the last inequality follows from the Young’s inequality, with €, > Oand €, > 0.
Applying the above inequality recursively for B steps, with B defined in Lemma 3,
yields

B—1

2
U <i¢n+[§) <U ()_(¢'l) - Cr;blb Z an+l Ai;—l—t
t=0
$up (L+Lg
5 b teLete | Elg
12 (e B 4 ED (70)
7 \CL€ Exy 7€ By, )
Summing up (70) over B consecutive iterations leads to the desired result. O

Since, for sufficiently small «”, the negative term on the RHS of (67) dominates
the positive third term, to prove convergence of {U (X ¢,,+g+k))}neN » descent-based

techniques used in the literature of distributed gradient-based algorithms would call
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for the summability of the consensus error {EY },en, and tracking error {E;’ | Ineny
sequences. However, under constant step-size or unbounded (sub-)gradient of U, it
seems not possible to infer such a result by just studying the dynamics of {EY }nen,
and {E? | Inen, independently from the optimization error AX" . Therefore, exploring
the interplay between these quantities, we put forth a new analysis, based on the
following steps:

— Step 1 We first bound Ey and E;l | [specifically, term iv in (67)] as a function of
E"\s (and thus A’)Z;‘S)—see Proposition 12 [cf. Sect. 6.3.1]. Using Proposition 12,
we then prove that {Ey }nen, and {E;‘L}MEN+ are summable, if {E"¢}qen, is
so—see Proposition 14 [cf. Sect. 6.3.2].

— Step 2 Using Propositions 12 and 14, we build a new Lyapunov function
[cf. Sect. 6.4], whose convergence implies the summability of {E’\¢},en, and
thus convergence of all error sequences [cf. Sect. 6.5], as stated in Theorem 4.

6.3 Interplay among E

n n
1’ EYL and EA?('

6.3.1 Bounding E{, and Ej,

1
We first study the dynamics of ||e/} || and ||e; II.

Lemma 11 The disagreements ||€}|| and ||e’;,|| satisfy

B—1
e 21 < pg e +¢ Dot ax*, (71)
t=0
_ B—1
le2t 8 < pg |l€n] +c L' D 21X+ ax" ), (72)
=0

where ¢ = Iv/21. Furthermore, if all A" are double stochastic, then (71) and (72)
hold with B =B, pg = /1 —k/(2I%) and ¢ = 1.

Proof See Appendix B. O

Using Lemma 11, we now study the dynamics of the weighted sum of the disagree-
ments ||e?|| and ||e’;|| over B consecutive iterations.

Proposition 12 The sequences {]e’ ||2},,€N+ and {||e; ||2},1€N+ satisfy

B—1

5 k+1+B—k-1)p "”MHZ Nkl B-k—1) e”kHz
~ X — ~ x
k=0 I=0 k=0 I=s
_\ 2Bc? Bl _\ 2Bc? 31
(1 (e B) 2 ) St () 125 S
p k=0 - P
ut €A
(73)
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B b 1+ B k=10 | opirl? k14 (B— k—l)p e
> ) >

1—5 = 1 ©
k=0 -r k=0 N
~ B—1
2Bc¢? 2
k -1 2 -2 k
ZEn+ ( +B) 1—5 me¢lb (2+arr;1x) ZE;T_
p k=0
cL
_ 2Bc? _
+ (E : + ) ~ mx ¢lb2 Z EZ_;k’ (74)
cL
where o]}, max;_ 252 'tk 0 £ ,012§ (1 + Be); and € > 0 is any constant

such that p < 1.

Proof We prove only (73); (74) can be proved using similar steps. Squaring both sides
of the inequality (71) leads to

en+gH2
X
5 B— 2 B—1
<pplletl” + [ Do A | +2 ) cpga Jei] ax"]
=l t=0

(i) PB +Be ‘e H + Z( +B)c (an+t)2 ||Ax”+’ ”

(b)

< plen|* + Z( +B) 262 (a"+f)2<HA~”+’

et ). as

where (a) follows from the Young’s inequality, with € > 0, and the Jensen’s inequality;
and in (b) we used (60). Note that, since pz < 1, p = ,012} (1 + Be) < 1, for all

¢ € (0, (1 - p%) /(pél:?)).

Denote &, = max;_q p_ la’“‘k. Multiplying (75) by 1/(1 —p)

[resp. p/(1 — p)], adding ||ex||2 (resp. ||e;‘+é||2) to both sides, and using the defi-
nitions of E’j¢ and Ey [cf. (66)], yield

1 -
T,s ||e2+3||2 + lle}11?

IA

2¢2 (1 3
Il +||e i s 25 (L4 B) (B @)7EL) a0

1 o

1
= el £ (L B) (B @R L)
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and
- ) ) | )
1 p_ e§+BH n n+B” =13 :;+BH
:5 n|2 2C2 1 D n \2 on (77)
= 1 ~ ” x” 1-5 ; + B (EAX+( mx) EXL)
respectively.
We write now ZB ! Erf as
. n—+k n+2B8-2|? n+2B-3? n+B 2
S et = (et 2 2B B 1 et
= (78)
5 || n+B—1 2 n n+B—2 2 n 2
(8] B[P+ - p et +or ).
Using (76) and (77) on the two terms in (78), we obtain the following bounds:
5 ) =2 _ =~ 112
2 ([ w2l s v o)
n+2B-2|? n+2B-3|? n n+B|?
+ (err2E2) w2 e (B - 1) e B
p n+B-2|? ntB-3 2 5 0|2
2¢ (1 - 5 BN\ B
(e )
+ (B 1) (Es + @) Ex )| (79)
and
=2 _ 2
5( 2 1” C B e;z+23—2” F— e;+3”)
_ =2
+< n-‘rB l +(B—1) eﬁﬂ-B—ZH ++HeZH2>
_ _ =2
< 1_/.5(8 l’l+B 1” +(B—1) e¥+372H ++||e;l”2>
2¢2 (1 D B-1 ~ntB-1)> B—1
+ ,5( +B>[B(Eg§ + (@) et >+
+ (Bl + (@) B2, ) } : (80)
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Summing (79) and (80) and rearranging terms while using (78), it is not difficult to
check that

_X:]k+l+(B k—1)p

n+B+k ” + Z En+k

k=
B—1 ~ ~
YRR B ko7 &n
—= ~ X
k=0 I=p
1 282 B! 2B
Herp) gm0 8)] S ZE::rk,
which leads to the desired result (73). O

We use now Proposition 12 in conjunction with Lemma 9 to prove the summability
of {EY }nen, and {E;L}neNJr, under that of {E”<},en, . Let

1—p
™ 2B (B +e1)c? (82
with o € (0, 1). This implies [recall the definition of ©” in (73)]
n A —1 D 2362 2 2 n
W= Umin = 1—(6 +B>1_1504mX =1-0°>0, Vo, <omx.
(83)

Proposition 13 Suppose that i) Y .- O(a”)2||A 12 < oo; and ii) o < amy, for
all but finite n € Ni. Then, the consensus and tracking disagreements satisfy
Yulo lle?]|> < oo and Yoo ||e§’,||2 < 00, respectively.

Proof 1t follows from (66) that it is sufficient to prove Z?f’:o EY < oo (for
Yo%, llet? < oo) and 0%, Ey < oo (for > ||e;||2 < 00). We prove next
only the former result.

By Assumption F and (83), there exists a sufficiently large n, say n, such that
W > pmin > 0, for all n > n. We assume, without loss of generality, that n = 0.
Applying Lemma 9 to (73) [cf. Proposition 12], we have ) .~ E/jz < +00 —>
fo’:o EY < +oo. Itis then sufficient to prove that > O(oe”)2||A ||2 <00 —
oo o E'\x < +00. This comes readily from the following chain of lnequahtles

-1

Z EX. = Z Z ( k+z)2 H A’)‘("]qz-‘rl

k=0 t=0

2 _ n+B—1 2 2
) ]
k=0
O
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6.3.2 Bounding termiv in (67)

We are now ready to bound term iv in (67), as stated next.

Proposition 14 Suppose that o < oy, then

e;+3+k

_IZ +1+(B k Dp H2

B—1 = -
_ _ k+14+(B—-k—-1 - 2
+ (CLéx "tele 2+ amx)2> > (k= Do e it H
M min =0 1—p
B—1 ~ B—1
k+14 (B k=15 2 B B
Yy ) = Y (e B B
term iv
B 4 (B—k—1)p 2
+ (CLGX_I +e el 24 Olmx)2> > = et H
Mmin - Y

k=0

+ (5L 2 2 -1} 4
y 1 2+ omx) +cLe,
M min

> Z En+k (84)

Proof Multiplying (74) by €’ ! on both sides we have

Z k41 +(B k— 1)p en+é+kH2
y
- ) i
- k+1+(B—k—-1p en+kH2
k=0 1= ’

B—1 -
! Z Erfpeler 2+an)’ Y B e lel Y ENE
k=0 =

’—1 -~ -
_ k+1+B—-—k—1p
y —

k=0 I=p

;1 Z En+k -1 Z En+k

2
—€ en+k H

y

+(ey_1cj_(2+a tere; )ZE”+k+e_1c ZE"+]‘. (85)
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Since o < amx, we have o), < ormx and u”* > pmin. Equation (73) then implies

—

k+1+B—-k-1p
1—p

= 2
n+B+k
o]

=~

2—: +1+B-k—1)p
k=0

IA

n+k n+k n+k
1—5 H _MmmZE +CAZE .

Multiplying both sides of the above inequality by (e; ler @+ otmx)2 +cr ex_l) / min

and using the fact that o}, < amx, we have

—1

_ _ k+1+B—-k-1p
(e +e e @+ amo?) Y
=0

1—p

= 2
n+B+k
o]

Mmin

=~

B-1 - ~
_ _ k+1+(B—-k—-1
=< (CLGx "teler (2+amx)2> > ( L

en+k
. 1-5 x
Mmin =0 Y

I

B—1
— (e e ler @t am?) Y B
k=0

B—1
C
+ (CLG +eler (2+amx)2) 2N Btk (86)
Mmln k 0

Adding (86) to (85) leads to the desired result. O

6.4 Lyapunov-like function and its descent properties

We are now in the position to construct a function whose descent properties (every
B iterations) will used to prove Theorem 4. Because of that, we will refer to such a
function as Lyapunov-like function.

Adding (67) and (84) (multiplied by ¢, /2), yields

~1
- ¢b ‘k+ 14+ (B—k—1)p Bk ||
kX:(:) U (X¢n+1§+k) et Z =5 e§+3+k H
B—1 = ~
bub < k+14+B—-k—1p 1Bkl
+ CLE, Pperlel 2+ amy) — e’ H
2 tmin ? " )kX: 1—p *
B—1
k 1 B — k—l 2
< U (i¢n+k) ¢ub IZ + +( )P eTkH
k=0
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—_

_ _ k+1+(B—-—k—-1p
(e’ +e e @+amo?) Y
=0

1—p

¢ub

2 M min

+

2
n+k
|

=~

B—1B-1

¢ n+k+t H n+k+t H
— b o AX
7@ >
k=0 t=0

—1
n—+k
Ejz
0

¢ub (L + Lg

) 7 '¢ub+CL€x+€y+Ey_lCL>

k=
bub =

_Pub_ (cLe;l +e el (2+Olmx)2) ca Y ENE 87)

2:u'min k=0

Define

B—-1

VA S U (Rt ) + ¢ub .~ Z k+1+1(B_pk—1)p
k=0

¢ub
2/me

2
n+k
|

B—1 A -

_ _ k+1+B—-k—-1p
(CLEXI+€yICl(2+Olmx)2>Z =7
k=0

(88)

and

= _¢lb - “Pup +crex + ey +e el

¢ub o <L+LG
1

(C'LEX_1 + G;lCl (2 + Olmx)z)) . (89)

Mmin
Substituting (88) and (89) in (87), we obtain the desired descent property of V": for
sufficiently large n, it holds

B—1B-1

Vn+l§ <y — Z Zﬁn+k+z n+k—+t

k=0 t=0

A~$+k+t H (90)

6.5 Proof of Theorem 4

The proof consists in two steps, namely:

— Step 1 Leveraging the descent property of the Lyapunov-like function, we first
show that lim,,_, o, || AX" || = 0, either using a diminishing or constant step-size
o (satisfying Assumptlon F); and

— Step 2 Using the results in Step 1, we conclude the proof showing that i)
lim,—~ D(x") = 0and ii) lim;— J(X") =0
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6.5.1 Step 1: limy_, oo |AX || = 0

Let us distinguish the two choices of step-size, namely: «” is constant (satisfying
Assumption F.1); or «” is diminishing (satisfying Assumption F.2).

Case 1: constant step-size. Set «” = « for all n € N.. To obtain the desired descent
on V" [cf. (90)], « has to be chosen so that 87 = 8 > 0 [cf. (89)]. We show next that
if o satisfies (36) [cf. Assumption F.2], then 8 > 0.

Recall that (90) holds under the assumption that @ < oy, With oy defined in (82).
Substituting the expressions of oy and pmin = 1 — o2 [cf. (83)] in (89) and using
the definitions of ¢4 and ¢, [cf. Proposition 12], one can check that 8" = g > 0
[cf. (89)] if, in addition to & < oy, r satisfies also

_ 2¢e Qi <L + Lg

—1
€A -1 -1
o < Tow, 7 cQup + CcrLEx +€y+m (CLEX +9Cl€y )) 91

where €,, €, > 0 are free parameters. The above upperbound is maximized by

ZB e 1+B
1—02 (1—9)(1—02)
9cica . 1
6y= 11— _6me¢lb (6 m
Combining o < apmx and (91), we get the following bound for «:
. =5 2ere L+ Lo 2B (e~ + B)
— , . 2¢ - v
aSmln[G 2(‘23 (B+€_l) I¢uh ( Ji ¢ub+ C-Cr, (l—ﬁ)(l—O’z)
Bc? 7
—1 —1 = C
+12 Lmx ¢lh (e + B)] — ,5 11— 02) } s (92)

where recall thate < (1 — p%)/(p%é) [cf. Proposition 12]. Since (1 — 2)/(e™' + B)
is maximized by € = (1— pz)/(pj - B) with the corresponding value being
(1 —-p B)z /B, we obtain from (92) the final bound (36).

Under (36), using (90) and Lemma 9 (recall that lim inf,,_, o, V" > —o0, since U
is bounded from below on K) we get lim,,_, || AX": || = 0 and, by Proposition 13,
lim,— o €7 ]| = 0 and lim;, . ”e | =0.

Case 2: diminishing step-size. Since «” is diminishing, there exists a sufficiently
large ny so that " > B > 0 for all n > n,, implying

oo
§ : an—i—t

n=0 t=0

2
"+' < 00, (93)
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which together with Y_>° ; &" = oo and Proposition 13 yield

lim inf H Az =o; (94)
n—>oo
lim He H =0 and lim (e} =0. (95)
n— 00 n—oo ||
We prove next that lim sup,_, o | AX]} || = 0, which together with (94) implies
lim,,_, o0 || AX" || 0. Suppose that hm SUp,,_, oo 1 AXY || > 0. This, together with
liminf, o || A || = 0, implies that there exists an 1nﬁn1te set of indices \V such that

foralln € NV, one can find an integer i,, > n such that:

<, ||A~l"|| > 2n (96)
n = ||AX¢|| <2y, n<j<iy 7
Denote X}, é’)Z,-(x?i)) and X' £ [’)Z?IT) (1)]T We have:
0= |axy| - | 4%y < |axg -
< 'ii,l _x" Xi” _ J¢nxn
< ”'}ZI" — X — Jgnx"
ef
@ i n n
< L|x X" — Jgrx H—i—el
<L ( X" — J¢f,,xi” X" — Jynx" H +1 Hi‘ﬁi” — Xy )
+ \/7 ”f(w,, — )_(¢'l + 8’11
< (B4 1) VT &g =590 + L ([feir] + fer) + et
&
® P
T ~
< (L+ l)fz 7 (@07 8L,) A% | + e + ¢
< (L + 1) Vi Z
e
© in—1 5
<L +DVIn™! Z ol | AKG |+ el + o5 + e, (98)

t=n-+1
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where in (a) we used (63) [cf. Lemma 7]; (b) follows from (61a); and in (c) we used
the lower bound in (97).

Since (i) limy,— o0 fl€} ]| = 0 and lim,—, oo [[€]]] = O [cf. (95)]; (ii) lim, 00 X" —
K| = 0 [cf. Lemma 8]; iii) and 3°° ) S5 a"+f||A§g+f||2 < 00 [cf. (93)], there
exists a sufficiently large n3 such that the right-hand-side of (98) is less than #, for all
n > n3, which leads to a contradiction. Therefore, lim sup,,_, o, ||A3Z$I| =0.

6.5.2 Step 2:lim,_, oo M(x") =0

Recall that in the previous subsection we proved that i)lim,_, oo ||Ai$|| = 0; ii)
lim,_,  [l€} || = 0; and iii) lim,,—, o0 ||e’; | = 0, using either a constant step-size " =

a, with o satisfying (36), or a diminishing one. The statement lim, o D(x*) = 0
follows readily from point ii) and

: n on : n < : = =n
Iy =% = lim Iy = Rgell+ Jim, % — %]
1
1 (99)
L .
< nli)ngo ||X([) — Xg" Il + nll)ﬂéo 7 § ||X(j) — Xg" | =0.

j=1

Next we show lim,_, o J(X"*) = 0. Recall the definition J (") £ ||X(X") — X"|,
where for notation simplicity, we set

2(®") 2 argmin {(VF()Z”) - VG_()'(”))T(Z C®Y 4+ Lz + G(z)+} .
zelC 2
(100)
Since

JE") < X EY — X" + IXE") - X&), (101

it is sufficient to show that the two terms on the right hand side are asymptotically
vanishing, which is proved below.

o lim,_ o0 IR (X") — X"|| = 0. We bound ||X; (X") — X" as

IX; (X") = X"[| < [IXi (Xgr) — X [l + [IXgr — X" | + [[%; (X") — X (Rgr) |

@ ) . ) 102)
< X (Xgr) — Xgn || + (1 + L) [[Xgr — X",
where (a) follows from Lemma 7. From (99) we know lim;,—, o [|Xg» — X" || = 0.
To show ||X; (X¢n) — Xg || is asymptotically vanishing, we bound it as
IR (Rgr) — X [l < IR () — i (X5 + IR (%) — X0 | 103)

+ IR, — Zgr .
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The result lim,_, o [|X; (X¢7) — Xgn|| = 0 follows from Lemma 7, Lemma 8 and
points (i)—(iii).
From (102) and (103) we conclude

lim |[% ") — x| = 0. (104)
n—oo

e We prove lim,,_,  [|X(X") —X; (X")|| = 0. Using the first order optimality condi-
tions of X(X"*) and X; (x"*), we can bound their difference as

IRE") =% @) < IV (®RE"); R") - VAR —%&") + 5|
< IVA®EE):; &) - VA& E))

— _ 105
+IVA®EY) — VAR + % &) — x| (105)
< (Li + Li + DX (X" — %"
Using (104) we have
lim X&) — R &) = 0. (106)

The proof is completed just combining (101), (104) and (106).

7 Numerical results
7.1 Sparse regression

In this section, we test the performance of SONATA on the sparse linear regression
problem (1) [cf. Sect. 2.1]. We generated the data set as follows. The ground truth signal
x* € R is built by first drawing randomly a vector from the normal distribution
N (0, 1), then thresholding the smallest 80% of its elements to zero. The underlying
linear model is b; = A;x* + n;, where the observation matrix A; € R20%300 jg
generated by first drawing i.i.d. elements from the distribution N'(0, 1), and then
normalizing the rows to unit norm; and n; is the additive noise, with i.i.d. entries from
N (0, 0.1). We simulated 100 Monte Carlo trials, generating in each trial new A;’s and
n;’s. We considered a time-varying digraph, composed of I = 30 agents. In every time
slot, a new digraph is generated according to the following procedure: each agent i has
two out-neighbors, one of them belonging to a chain connecting all the agents and the
other one picked uniformly at random. To promote sparsity we use the (nonconvex) log
function G(x) = A - Y _; log(1 + 0 |x;])/log(1 + 6), where the parameter 6 controls
the tightness of the approximation of the ¢y function. We set A = 0.1 and 6 = 2.
It is convenient to rewrite G(x) in the DC form G(x) = GT(x) — G (x), with
GT(x) = |x|l1 - (8/log(1 + 6)). It is not difficult to check that such G™ and G~
satisfy Assumption A.3; see, e.g., [1].
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We run SONATA considering two alternative choices of f, , hamely:

e SONATA-PL (PL stands for partial linearization) Since f; = |b; — Aix||? is
convex, one can keep f; unalterated and set in (28) f; (x(;)) = fi (X)) + (zpL/2) -
Xy — X?i) 2. We set tp;, = 1.5. The unique solution X(;, of the resulting subprob-
lem (26) is computed using the FLEXA algorithm, with the following tuning (see
[16] for details): the initial point is selected randomly; the proximal parameter in
the subproblems solved by FLEXA is set to be 2; and the step-size of FLEXA is
chosen according to the diminishing rule y” = y"~! (1 — uy" 1), with y* = 0.5
and = 0.01, with r denoting the (inner) iteration index. We terminate FLEXA
when J(; < 108, with JGy 2 IXG = Sy — 2A] (Aix(yy —bi) — TP -
(x?i’)’ —X(;)) + &} + VG (x(;))lloo, Where x’(“l.’)r denotes the value of x;) at the
n-th outer and the r-th inner iteration, and Sg (x) £ sign (x) - max{|x| — A1, 0} is
the soft-thresholding operator (intended to be applied to x component-wise).

e SONATA-L (L stands for linearization) To obtain a closed form expression for
i?l.) in (28), one can choose ﬁ as linearization of f; (plus the proximal term), that

is, fi(x@)) = 2AiT(A,-x'g,.) —b; + (72./2) - Xy — x(;) 2. We set 7, = 1.5.

The solution i{’i) of the resulting subproblem (28) has the following closed form
expression i?l.) =S (X’ZI.) — %(ZA;r (A[x’(“i) —b) +7! - AVG_(X’(’i)))).

As benchmark, we also simulated the subgradient-push algorithm [27] with dimin-
ishing step-size. Note that there is no proof of convergence for such a scheme, when
applied to the nonconvex, nonsmooth problem (1). For all the algorithms, we use the
same step-size rule: o” = o~ (1 - ;wc"_l), with «® = 0.5 and ;« = 0.01. Also, for
all algorithms, we set X(()l-) =0, foralli.

We monitor the progresses of the algorithms towards stationarity and consen-
sus using respectively the following two functions: i) J* £ [X" — S, (X" —
2% Al.T (Aii” —b;) +AVG™ (i”)) loos and ii) D" 2 [|X" — JX" || co-

It is not difficult to check that J” is a valid distance of the average iterates Jx”
from stationarity: it is continuous and zero if and only if its argument is a stationary
solution of (1). We also use the normalized mean squared error (NMSE), defined as
NMSE" £ ||x" — A @ I)x*[|2/( - [|Ix*]|?).

In Fig. 1, we plot log;, J" and log;, D" [subplot (a)] and the NMSE [subplot (b)]
versus the number of agents’ message exchanges, averaged over 100 Monte-Carlo
trials (we applied the log; transform to J” and D" so that their distribution is closer
to the normal one). The figures show that both versions of SONATA are much faster
than the distributed gradient algorithm. This seems mainly due to the gradient tracking
mechanism put forth by the proposed scheme. Under the same tuning, SONATA-PL
converges faster than SONATA-L. According to our intensive simulations (not reported
here), SONATA-PL becomes up to one order of magnitude faster than SONATA-L
when 7py is reduced whereas reducing 77, slows down SONATA-L.
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Message exchanges Message exchanges
(a) (b)

Fig. 1 Sparse regression problem (1) with log regularizer: SONATA-PL, SONATA-L, and subgradient-
push; average of log; J" and log;y D" versus agent’s message exchange [subplot (a)]; average of NMSE
versus agent’s message exchange [subplot (b)]

7.2 Distributed PCA

Our second application is the distributed PCA problem

I
A 2
min - F (0 2:; IDix|?. (107)
with I = 30.

Each agent i locally owns a data matrix D; € R%*™ and communicate via a time-
varying digraph generated in the same way as the previous sparse regression example
(cf. Sect. 7.1).

Since f;(x) & — D> x||? is concave, to apply SONATA we construct f~, by lineariz-
ing f;, which leads to F; (X X(;)) = (I - y?l.))T(x(i) —x(;) + (2/2) - Xy — x{;, 2.
The solution i?l.) of the resulting subproblem has the closed form solution i’(“[.) =
Pix i<t (X?i) —-1- y’fi) /7), where P denotes the Euclidean projection onto the set
{x¢@y  IIx@ll < 1}. As benchmark, we implemented also the gradient projection
algorithm [4], adapted to time-varying network. Note that there is no formal proof of
this algorithm in the simulated setting. The performance of the algorithms is tested on
both synthetic and real data sets, as detailed next.

7.2.1 Synthetic data

Each agent i locally owns a data matrix D; € R30%3%0 whose rows are i.i.d., drawn by
the A (0, X). The covariance matrix ¥, whose eigendecomposition is ¥ = UAU7,
is generated as follows: we synthesize U by first generating a square matrix whose
entries follow the i.i.d. standard normal distribution, then perform the QR decompo-
sition to obtain its orthonormal basis; and the eigenvalues diag(A) are i.i.d. uniformly
distributed in [0, 1].
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10
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Fig. 2 Distributed PCA problem (1) on synthetic data set: SONATA and gradient projection algorithm;
average of logy( J” and log;( D" versus agent’s message exchange [subplot (a)]; average of NMSE versus
agent’s message exchange [subplot (b)]

The algorithms are tuned as follows: X(()l-) is generated with i.i.d elements drawn
by the standard Normal distribution. The step-size «” is chosen according to the
diminishing rule used in the previous example, where we set «® = 1 and u = 1073
for SONATA and «” = 1 and u = 1072 for the gradient algorithm. The proximal
parameter T for SONATA is set to be 1. The distance of X" from stationarity is measured
by J" £ X" = Pl <1 &' = VEE") oo,

while the consensus disagreement D" and the NMSE" are defined as in the previous
example; in the definition of NMSE” the ground truth signal x* is now the leading
eigenvector of matrix Y /_; D,/ D;.

In Fig. 2, we plot log;, J" and log;, D" [subplot (a)] and the NMSE [subplot (b)]
versus the number of agents’ message exchanges, averaged over 100 Monte-Carlo
trials. In each trial, ¥ is fixed while the D;’s are randomly generated. Figure 2a clearly
shows that SONATA can find a stationary point efficiently while the gradient algorithm
progresses very slowly. More interestingly, Fig. 2b shows that SONATA always find
the leading eigenvector whereas the gradient algorithm fails to achieve a small NMSE
value.

7.2.2 Gene expression data

This second experiment tests SONATA on a real-world data set. Specifically, we used
the breast cancer gene expression data set [5], which consists of d = 158 samples
and m = 12,625 genes per sample. We first uniformly randomly permute the order
the samples and then equally divided the samples among the / = 30 agents. To avoid
the issue that d is not divisible by I, we let the first I — 1 agents owing d; = |d /1]
samples each, while the /-th agent owning the remaining samples. The samples are
preprocessed by subtracting the mean from all of them. Note that this can be achieved
distributively by running an average consensus algorithm beforehand.

The rest of the setting and tuning of the algorithms are the same of those described
in Sect. 7.2.1. In Fig. 3, we plot log;, J" and log;o D" [subplot (a)] and the NMSE
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Fig. 3 Distributed PCA problem (1) on gene expression data set: SONATA and gradient projection algo-
rithm; average of log; J" and log;( D" versus agent’s message exchange [subplot (a)]; average of NMSE
versus agent’s message exchange [subplot (b)]

[subplot (b)] versus the number of agents’ message exchanges, averaged over 100
Monte-Carlo trials. In each trial, samples are randomly partitioned among the agents.
From the figure we can see that the behavior of the algorithms on the gene expression
data set is similar to that on synthetic data set. Moreover, SONATA converges quite
fast even though the variable dimension of the real data set we adopted is massive.

8 Appendix

A Proof of Lemma 3

We begin introducing the following intermediate result.
Lemma 15 In the setting of Lemma 3, the following hold:

(i) The elements of A°, n € N, can be bounded as

inf <min (A”Ol) > > dun, (108)
teNy \I<i<I i

A1) ) < . 109
o (s, (1), ) = o 109

where ¢yp and ¢yp are defined in (8);
(i) For any given n,k € Ni, n > k, there exists a stochastic vector «Sk =
(€, . EFT (e, £ > 0 and 17 &% = 1) such that

n—k+1

Wit — &t <co L] i e, (10)
where cy and p are defined in (10).
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The proof Lemma 15 follows similar steps as those in [31, Lemma 2, Lemma 4] and
thus is omitted, although the results in [31] are established under a stronger condition
on G" than Assumption B.

We provenow Lemma3.Letz € R/"™bean arbitrary vector. Foreach¢ =1, ..., m,
definez; £ (I; ® ez—) z, where ey is the £-th canonical vector; we denote by z, ; the
Jj-th component of z;, with j € [I]. We have

2
(111)

[CEERE e

(wrt = 1897 )2

o0

We bound next the above term. Given ’§k as in Lemma 15 [cf. (110)], define E"F £
Wk — 1(€5)T, whose i j-th element is denoted by El.”j:k. We have

. 1 . 1 T__ .

H <1 - ;1 (¢"+1)T> B 2

o0

e¢]

¢n+l 1 1 ¢r;+1 I
i n:k . J’ n:k .
< max (1‘ 1 )Z‘Eﬁ el + 3 0[5 e
j=1 J'# j=1
n—k+1 n—k+1
< 2¢0 L] 2oy < 200 () LEETH) VT el (112)

Combining (111) and (112) we obtain

n—k+1

, < 2C0[(p)L(171)BJ. (113)

H Wn:k _ J¢k

Moreover, the matrix difference above can be alternatively uniformly bounded as
follows:

~ . ~ . ~ o (@)
[ W7 = 3| = 1= ) W < L= B [IW? ) = V2T VT,
where (a) follows from (25) and |[W"* || < +/I. This completes the proof. O

B Proof of Lemma 11

Recall the SONATA update written in vector—matrix form in (43)—(45). Note that the
x-update therein is a special case of the perturbed condensed push-sum algorithm (16),
with perturbation 8" ! = o W”x". We can then apply Proposition 1 and readily obtain
71).
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To prove (72), we follow a similar approach: noticing that the y-update in (45) is a
special case of (16), with perturbation 8t = (D¢n+1)’] (g”+1 — g”), we can write

_ B—1
s B < pgllehl + V21 Y 1Dy~ (84 — g |
=0
B—1 N
<pp e; + ﬁl meqjl;l Z HW”H(X"H +ot”+tAx”+t) _ H
t=0
B—-1 _ _
<pj|€h] + V21 Linxdy,' (Wt + et || + o W Ax )
t=0
B—1
< pp 8| + V21 Lwa! 30 (VT4 1) b |+ VT [ axm+))
=0
B—1
<pg|ey| + I@med)l_b] Z 2 e + o | ax" ).
t=0
This completes the proof. O
References

1. Ahn, M., Pang, J., Xin, J.: Difference-of-convex learning: directional stationarity, optimality, and
sparsity. SIAM J. Optim. 27(3), 1637-1665 (2017). https://doi.org/10.1137/16M 1084754

2. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

3. Bertsekas, D.P., Tsitsiklis, J.N.: Gradient convergence in gradient methods with errors. SIAM J. Optim.
10(3), 627-642 (2000)

4. Bianchi, P, Jakubowicz, J.: Convergence of a multi-agent projected stochastic gradient algorithm for
non-convex optimization. IEEE Trans. Autom. Control 58(2), 391-405 (2013)

5. Bild, A.H.,, et al.: Oncogenic pathway signatures in human cancers as a guide to targeted therapies.
Nature 439(7074), 353 (2006)

6. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM
Rev. 60(2), 223-311 (2018)

7. Bradley, P.S., Mangasarian, O.L.: Feature selection via concave minimization and support vector
machines. In: Proceedings of the Fifteenth International Conference on Machine Learning (ICML
1998), vol. 98, pp. 82-90 (1998)

8. Cattivelli, F.S., Sayed, A.H.: Diffusion LMS strategies for distributed estimation. IEEE Trans. Signal
Process. 58(3), 1035-1048 (2010)

9. Chang, T.H.: A proximal dual consensus ADMM method for multi-agent constrained optimization.
IEEE Trans. Signal Process. 64(14), 3719-3734 (2014)

10. Chang, T.H., Hong, M., Wang, X.: Multi-agent distributed optimization via inexact consensus ADMM.
IEEE Trans. Signal Process. 63(2), 482497 (2015)

11. Chen, J., Sayed, A.H.: Diffusion adaptation strategies for distributed optimization and learning over
networks. IEEE Trans. Signal Process. 60(8), 42894305 (2012)

12. Di Lorenzo, P., Scutari, G.: NEXT: in-network nonconvex optimization. IEEE Trans. Signal Inf. Pro-
cess. Netw. 2(2), 120-136 (2016)

13. Di Lorenzo, P., Scutari, G.: Distributed nonconvex optimization over networks. In: Proceedings of the
IEEE 6th International Workshop on Computational Advances in Multi-sensor Adaptive Processing
(CAMSAP 2015), Cancun, Mexico (2015)

@ Springer


https://doi.org/10.1137/16M1084754

Distributed nonconvex constrained optimization over... 543

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

35.

36.

37.

38.

39.

Di Lorenzo, P., Scutari, G.: Distributed nonconvex optimization over time-varying networks. In: Pro-
ceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP
16), Shanghai (2016)

Facchinei, F., Lampariello, L., Scutari, G.: Feasible methods for nonconvex nonsmooth problems with
applications in green communications. Math. Program. 164(1-2), 55-90 (2017)

Facchinei, F., Scutari, G., Sagratella, S.: Parallel selective algorithms for nonconvex big data optimiza-
tion. IEEE Trans. Signal Process. 63(7), 1874-1889 (2015)

Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am.
Stat. Assoc. 96(456), 1348-1360 (2001)

Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning: Data Mining, Inference,
and Prediction. Springer Series in Statistics, vol. 1. Springer, New York (2009)

. Fu, W.J.: Penalized regressions: the bridge versus the lasso. J. Comput. Graph. Stat. 7(3), 397416

(1998)

Gharesifard, B., Cortés, J.: When does a digraph admit a doubly stochastic adjacency matrix? In:
Proceedings of the 2010 American Control Conference, pp. 2440-2445 (2010)

Hong, M., Hajinezhad, D., Zhao, M.: Prox-PDA: the proximal primal-dual algorithm for fast dis-
tributed nonconvex optimization and learning over networks. In: Proceedings of the 34th International
Conference on Machine Learning (ICML 2017), vol. 70, pp. 1529-1538 (2017)

Jakovetic, D., Xavier, J., Moura, J.M.: Cooperative convex optimization in networked systems: aug-
mented Lagrangian algorithms with directed gossip communication. IEEE Trans. Signal Process. 59(8),
3889-3902 (2011)

Jakoveti¢, D., Xavier, J., Moura, J.M.: Fast distributed gradient methods. IEEE Trans. Autom. Control
59(5), 1131-1146 (2014)

Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In: Proceedings
of the 44th Annual IEEE Symposium on Foundations of Computer Science, Cambridge, MA, USA,
pp. 482-491 (2003)

Mokhtari, A., Shi, W., Ling, Q., Ribeiro, A.: DQM: decentralized quadratically approximated alter-
nating direction method of multipliers. arXiv:1508.02073 (2015)

Mokhtari, A., Shi, W., Ling, Q., Ribeiro, A.: A decentralized second-order method with exact linear
convergence rate for consensus optimization. IEEE Trans. Signal Inf. Process. Netw. 2(4), 507-522
(2016)

Nedic, A., Olshevsky, A.: Distributed optimization over time-varying directed graphs. IEEE Trans.
Autom. Control 60(3), 601-615 (2015)

Nedic, A., Ozdaglar, A., Parrilo, P.A.: Constrained consensus and optimization in multi-agent networks.
IEEE Trans. Autom. Control 55(4), 922-938 (2010)

Nedich, A., Olshevsky, A., Ozdaglar, A., Tsitsiklis, J.N.: On distributed averaging algorithms and
quantization effects. IEEE Trans. Autom. Control 54(11), 2506-2517 (2009)

Nedich, A., Olshevsky, A., Shi, W.: Achieving geometric convergence for distributed optimization over
time-varying graphs. SIAM J. Optim. 27(4), 2597-2633 (2017)

Nedich, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent optimization. IEEE Trans.
Autom. Control 54(1), 48-61 (2009)

Palomar, D.P., Chiang, M.: Alternative distributed algorithms for network utility maximization: frame-
work and applications. IEEE Trans. Autom. Control 52(12), 2254-2269 (2007)

Qu, G., Li, N.: Harnessing smoothness to accelerate distributed optimization. arXiv:1605.07112 (2016)
Rao, B.D., Kreutz-Delgado, K.: An affine scaling methodology for best basis selection. IEEE Trans.
Signal Process. 47(1), 187-200 (1999)

Sayed, A.H., et al.: Adaptation, learning, and optimization over networks. Found. Trends Mach. Learn.
7(4-5),311-801 (2014)

Scutari, G., Facchinei, F., Lampariello, L.: Parallel and distributed methods for constrained nonconvex
optimization. Part I: theory. IEEE Trans. Signal Process. 65(8), 1929-1944 (2017)

Scutari, G., Facchinei, F., Song, P., Palomar, D.P., Pang, J.S.: Decomposition by partial linearization:
parallel optimization of multi-agent systems. IEEE Trans. Signal Process. 62(3), 641-656 (2014)
Shi, W., Ling, Q., Wu, G., Yin, W.: EXTRA: an exact first-order algorithm for decentralized consensus
optimization. SIAM J. Optim. 25(2), 944-966 (2015)

Shi, W., Ling, Q., Wu, G., Yin, W.: A proximal gradient algorithm for decentralized composite opti-
mization. IEEE Trans. Signal Process. 63(22), 6013-6023 (2015)

@ Springer


http://arxiv.org/abs/1508.02073
http://arxiv.org/abs/1605.07112

544

G. Scutari, Y. Sun

40.

41.

42.

43.

44.

45.

46.

47.

48.
49.

50.

S1.

52.

53.

54.

Sun, Y., Daneshmand, A., Scutari, G.: Convergence rate of distributed convex and nonconvex opti-
mization methods based on gradient tracking. Technical report, Purdue University (2018)

Sun, Y., Scutari, G.: Distributed nonconvex optimization for sparse representation. In: Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
4044-4048 (2017)

Sun, Y., Scutari, G., Palomar, D.: Distributed nonconvex multiagent optimization over time-varying
networks. In: Proceedings of the Asilomar Conference on Signals, Systems, and Computers (2016).
Appeared on arXiv on July 1, (2016)

Tatarenko, T., Touri, B.: Non-convex distributed optimization. arXiv:1512.00895 (2016)

Thi, H.L., Dinh, T.P,, Le, H., Vo, X.: DC approximation approaches for sparse optimization. Eur. J.
Oper. Res. 244(1), 26-46 (2015)

Wai, H.T., Lafond, J., Scaglione, A., Moulines, E.: Decentralized Frank—Wolfe algorithm for convex
and non-convex problems. arXiv:1612.01216 (2017)

Wei, E., Ozdaglar, A.: On the o(1/k) convergence of asynchronous distributed alternating direction
method of multipliers. In: Proceedings of the IEEE Global Conference on Signal and Information
Processing (GlobalSIP 2013), Austin, TX, USA, pp. 551-554 (2013)

Weston, J., Elisseeff, A., Scholkopf, B., Tipping, M.: Use of the zero-norm with linear models and
kernel methods. J. Mach. Learn. Res. 3, 1439-1461 (2003)

Wright, S.J.: Coordinate descent algorithms. Math. Program. 151(1), 3-34 (2015)

Xi, C., Khan, U.A.: On the linear convergence of distributed optimization over directed graphs.
arXiv:1510.02149 (2015)

Xi, C., Khan, U.A.: ADD-OPT: accelerated distributed directed optimization. arXiv:1607.04757
(2016). Appeared on arXiv on July 16 (2016)

Xiao, L., Boyd, S., Lall, S.: A scheme for robust distributed sensor fusion based on average consensus.
In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks,
Los Angeles, CA, pp. 63-70 (2005)

Xu,J.,Zhu, S., Soh, Y.C., Xie, L.: Augmented distributed gradient methods for multi-agent optimization
under uncoordinated constant stepsizes. In: Proceedings of the 54th IEEE Conference on Decision and
Control (CDC 2015), Osaka, Japan, pp. 2055-2060 (2015)

Zhang, S., Xin, J.: Minimization of transformed L penalty: theory, difference of convex function
algorithm, and robust application in compressed sensing. arXiv:1411.5735 (2014)

Zhu, M., Martinez, S.: An approximate dual subgradient algorithm for multi-agent non-convex opti-
mization. IEEE Trans. Autom. Control 58(6), 1534-1539 (2013)

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


http://arxiv.org/abs/1512.00895
http://arxiv.org/abs/1612.01216
http://arxiv.org/abs/1510.02149
http://arxiv.org/abs/1607.04757
http://arxiv.org/abs/1411.5735

	Distributed nonconvex constrained optimization over time-varying digraphs
	Abstract
	1 Introduction
	1.1 Related works
	1.2 Summary of contributions

	2 Problem setup and motivating examples
	2.1 Distributed sparse statistical learning

	3 Preliminaries: the perturbed condensed push-sum algorithm
	3.1 Discussion
	3.2 Proof of Proposition 1

	4 Algorithmic design
	4.1 SONATA at-a-glance
	4.2 The SONATA algorithm
	4.3 Convergence and complexity analysis of SONATA
	4.4 Discussion

	5 SONATA and special cases
	5.1 Preliminaries: NEXT and SONATA-L
	5.2 Connection with current algorithms

	6 Convergence Proof of SONATA
	6.1 Notations and preliminaries
	6.2 Average descent
	6.3 Interplay among Exn, Eyn and EΔwidetildexn
	6.3.1 Bounding Exn and Eyn 
	6.3.2 Bounding term iv in (67)

	6.4 Lyapunov-like function and its descent properties
	6.5 Proof of Theorem 4
	6.5.1 Step 1: limntoinfty"026B30D Δwidetildexφn"026B30D  = 0
	6.5.2 Step 2: limntoinfty M(xn)=0


	7 Numerical results
	7.1 Sparse regression
	7.2 Distributed PCA
	7.2.1 Synthetic data
	7.2.2 Gene expression data


	8 Appendix
	A Proof of Lemma 3
	B Proof of Lemma 11
	References






