
Mathematical Programming
https://doi.org/10.1007/s10107-019-01408-w

FULL LENGTH PAPER

Series A

Asynchronous parallel algorithms for nonconvex
optimization

Loris Cannelli1 · Francisco Facchinei2 · Vyacheslav Kungurtsev3 ·
Gesualdo Scutari1

Received: 5 October 2017 / Accepted: 4 June 2019
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019

Abstract
We propose a new asynchronous parallel block-descent algorithmic framework for the
minimization of the sum of a smooth nonconvex function and a nonsmooth convex
one, subject to both convex and nonconvex constraints. The proposed framework
hinges on successive convex approximation techniques and a novel probabilisticmodel
that captures key elements of modern computational architectures and asynchronous
implementations in a more faithful way than current state-of-the-art models. Other key
features of the framework are: (1) it covers in a unified way several specific solution
methods; (2) it accommodates a variety of possible parallel computing architectures;
and (3) it can deal with nonconvex constraints. Almost sure convergence to stationary
solutions is proved, and theoretical complexity results are provided, showing nearly
ideal linear speedup when the number of workers is not too large.

Keywords Asynchronous algorithms · Nonconvex constraints · Parallel methods ·
Probabilistic model

Mathematics Subject Classification 90C30 · 90C26 · 65K05 · 68W10

The work of Cannelli and Scutari was supported by the USA NSF under Grants CIF 1564044, and CIF
1719205; and the Army Research Office under Grant W911NF1810238. Facchinei was partially
supported by the Italian Ministry of Education, Research and University, under the PLATINO (PLATform
for INnOvative services in future internet) PON project, Grant Agreement No. PON01_01007.
Kungurtsev was supported by the Czech Science Foundation Project 17-26999S and the OP VVV project
CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics”.
Part of this work has been presented to the 50th Asilomar Conference on Signals, Systems, and Computers
[6] and the 42nd IEEE International Conference on Acoustics, Speech, and Signal Processing [5]. A
two-part preliminary technical report was posted on arxiv on July 2016 [3] and January 2017 [4].

B Francisco Facchinei
francisco.facchinei@uniroma1.it

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-019-01408-w&domain=pdf
http://orcid.org/0000-0002-7714-1210

L. Cannelli et al.

1 Introduction

We study asynchronous parallel block-descent methods for the following class of
nonconvex nonsmooth minimization problems:

min
x�(x1,...,xN)

F(x) � f (x) +
N∑

i=1
gi (xi)

xi ∈ Xi , i = 1, . . . , N ,

(P)

where f is a smooth, possibly nonconvex function, gi are possibly nonsmooth, convex
functions, and Xi ⊆ R

ni is a closed, possibly nonconvex set.
Instances of Problem (P) arise in many fields, including compressed sensing,

machine learning, data mining, and genomics, just to name a few. Typically, in data-
driven applications f might measure the misfit between the observations and the
postulated model, parametrized on x, while the regularizers gi encode structural con-
straints on the solution, such as sparsity.

Many of the aforementioned applications give rise to extremely large-scale prob-
lems, which naturally call for asynchronous, parallel solution methods. In fact, well
suited to modern computational architectures, asynchronous methods reduce the idle
times of workers, mitigate communication and/or memory-access congestion, and
make algorithms more fault-tolerant. In this paper, we introduce a general asyn-
chronous block-descent algorithm for finding stationary solutions of Problem (P).

We consider a generic multi-worker architecture (e.g., shared memory system,
message passing-based system, cluster computer, cloud federation) wherein multiple
workers, continuously and without coordination with each other, update a block-
variable by solving a strongly convex block-model of Problem (P). More specifically,
at iteration k, a worker updates a block-variable xk

ik of xk to xk+1
i k , with i k in the set

N � {1, . . . , N }, thus generating the vector xk+1. When updating block i k , in gen-
eral, the worker does not have access to the current vector xk , but it will use instead

the local estimate xk−dk � (x
k−dk

1
1 , x

k−dk
2

2 , . . . , x
k−dk

N
N), where dk � (dk

1 , dk
2 , . . . , dk

N)

is the “vector of delays”, whose components dk
i are nonnegative integers. Note that

xk−dk
is nothing else but a combination of delayed, block-variables. The way each

worker forms its own estimate xk−dk
depends on the particular architecture under

consideration and it is immaterial to the analysis of the algorithm. We only observe
here that if all delays dk

i are zeros, the model reduces to a standard synchronous one.

Given xk−dk
and i k , block xk

ik is updated by solving the following strongly convex
block-approximation of Problem (P):

x̂i k (xk−dk
) � argmin

xik ∈X̃ik (xk−dk
)

f̃i k (xi k ; xk−dk
) + gik (xi k), (1)

and then setting

xk+1
i k = xk

ik + γ
(
x̂i k (xk−dk

) − xk
ik

)
. (2)

123

Asynchronous parallel algorithms for nonconvex…

In (1), f̃i k and X̃i k represent a strongly convex surrogate of f and a convex set
obtained replacing the nonconvex functions defining Xi k by suitably chosen upper
convex approximations, respectively; both f̃i k and X̃i k are built using the out-of-sync

information xk−dk
. If the set Xi k is convex, then we will always take X̃i k = Xi k . In

(2), γ ∈ (0, 1] is the stepsize. Note that, in the above asynchronous model, the worker
that is in charge of the computation (1) and the consequent update (2) is immaterial.

Major contributions Our main contributions are:

1. A new probabilistic model for asynchrony fixing some unresolved issues: almost all
modern asynchronous algorithms for convex and nonconvex problems are modeled in
a probabilistic way. We put forth a novel probabilistic model describing the statistics
of (i k,dk) that differs markedly from existing ones. This new model allows us not
only to fix some important theoretical issues that mar most of the papers in the field
(see discussion below on related work), but it also lets us analyze for the first time
in a sound way several practically used and effective computing settings and new
asynchronous algorithms. For instance, it is widely accepted that in shared-memory
systems, the best performance are obtained by first partitioning the variables among
cores, and then letting each core update in an asynchronous fashion their own block-
variables, according to some randomized cyclic rule. To the best of our knowledge,
this is the first work proving convergence of such practically effective methods in an
asynchronous setting.

2. The ability to effectively deal with nonconvex constraints: all the works in the
literature but [9,10] can deal only with unconstrained or convex constrained problems.
On the other hand, the algorithms in [9,10] require at each iteration the computation of
the global optimal solution of nonconvex subproblems, which, except in few special
cases, can be as difficult as solving the original nonconvex problem. Our method is
the first asynchronous method that allows one to deal (under adequate assumptions)
with nonconvex constraints while solving only strongly convex subproblems.

3. The possibility to leverage potentially complex, but effective subproblems (1):
asynchronous methods so far are all built around a proximal linearization method,
which corresponds, in our framework, to setting

f̃i (xi k ; xk−dk
) = ∇xik f

(
xk−dk

)T
(

xi k − x
k−dk

ik

ik

)

+ β ‖xi k − x
k−dk

ik

ik ‖22,

for some constant β > 0. This choice often leads to efficient solution methods
and, in some cases, even to subproblems that admit a solution in closed-form. For
instance, it has been shown to be very efficient on composite quadratic problems, like
LASSO. However, moving to more nonlinear problems, one may want to use more
complex/higher order models. In fact, the more sophisticated the subproblem (1), the
better the overall behavior of the algorithm (at least in terms of iterations) is. This
happens at the price of computationally more expensive subproblems. But in asyn-
chronous and distributed methods, the bottleneck is often given by the communication
cost. In these cases, it might be desirable to reduce the communication overhead at the
price of more complex subproblems to solve. Furthermore, there are many application

123

L. Cannelli et al.

for which one can define subproblems that, while not being proximal linearizations,
still admit closed-form solutions (see. e.g., [8,32]). Overall, the ability to use more
complex subproblems is an additional degree of freedom that one may want to exploit
to improve the performance of the algorithm.

4. Almost sure convergence and complexity analysis: we prove (i) almost sure
convergence to stationary solutions of Problem (P); and (ii) convergence to ε-stationary
solutions in an O(ε−1) number of iterations. We remark that our convergence results
match similar ones in the literature [9,10,21,22,27], which however were obtained
in a simplified setting (e.g., only for unconstrained or convex constrained problems)
and under unrealistic probabilistic assumptions on the pair index-delay (i k,dk) (see
discussion on related work). Our analysis builds on an induction technique based on
our probabilisticmodel and a novel Lyapunov function that properly combines variable
dynamics and their delayed versions.

5. A theoretical almost linear speedup for a wide range of number of cores: the holy
grail of asynchronous methods is the ideal linear speedup (with respect to the number
of workers). This theoretical limit is not achievable in practice; in fact, as the number
of workers increases, the effective speedup is always limited by associated overheads
(communication costs, conflicts, etc.), which make the linear growth impossible to
achieve for arbitrarily large number of workers. By using the number of iterations
needed to achieve an ε-stationary solution as a proxy for the computational time and
leveraging our new Lyapunov function, we are able to show almost linear speedup in
many settings of practical interest. This is the first theoretical result on speedup, based
on a realistic probabilistic model for asynchrony (see discussion in contribution 1).

Related work Although asynchronous block-methods have a long history (see, e.g.,
[1,2,7,14,34]), their revival and probabilistic analysis have taken place only in recent
years; this is mainly due to the current trend towards huge scale optimization and the
availability of ever more complex computational architectures that call for efficient
and resilient algorithms. Indeed, asynchronous parallelism has been applied to many
state-of-the-art optimization algorithms, including stochastic gradient methods [16,
19,20,23–26] andADMM-like schemes [15,17,36]. Block-CoordinateDescent (BCD)
methods are part of the folklore in optimization; more recently, they have been proven
to be particularly effective in solving very large-scale problems arising, e.g., from
data-intensive applications. Their asynchronous counterpart has been introduced and
studied in the seminal work [21], which motivated and oriented much of subsequent
research in the field, see e.g. [9,10,22,27,28]. We refer the interested reader to [37]
and references therein for a detailed overview of BCD methods. There are several
differences between the above methods and the framework proposed in this paper, as
detailed next.

• On the probabilistic model All current probabilisticmodels for asynchronousBCD
methods are based on the (implicit or explicit) assumption that the random vari-
ables i k and dk are independent; this greatly simplifies the convergence analysis.
However, in reality there is a strong dependence of the delays dk on the updated
block i k . Consider the setting where the variables are partitioned among twowork-
ers and each worker updates only its own block-variables; let N1 and N2 be the
index set of the blocks controlled by worker 1 and 2, respectively. It is clear that

123

Asynchronous parallel algorithms for nonconvex…

in the updates of worker 1 it will always be dk
i = 0, for all i ∈ N1 and k, while

(at least some) delays dk
i associated with the blocks i ∈ N2 will be positive; the

opposite happens to worker two. The independence assumption is unrealistic also
in settings where all the workers share all the variables. Blocks that are updated
less frequently than others, when updated, will have larger associated delays. This
happens, for instance, in problems where (i) some blocks are more expensive to
update than others, because they are larger, bear more nonzero entries, or data
retrieval requires longer times; or (ii) the updates are carried by heterogeneous
workers (e.g., some are faster or busier than others). We tested this assumption,
performing an asynchronous algorithm on two different architectures and measur-
ing the average delay corresponding to different blocks updated. The experiments
were performed on a shared-memory systemwith 10 cores of an Intel E5-2699Av4
processor. An asynchronous algorithmwas applied to a LASSO problem [33] with
10,000 variables, partitioned uniformly into 100 contiguous blocks; the Hessian
matrix was generated with high sparsity on several rows. All the cores can update
any block, selected uniformly at random. We found that blocks associated with
the sparse rows of the Hessian have delays dk with components between 0 and
3, while the delays of the other blocks were all bigger than 20. Even when the
computing environment is homogeneous and/or the block updates have the same
cost, the aforementioned dependence persists. We simulated a message-passing
system on Purdue Community Cluster Snyder; we used two nodes of the cluster,
each of them equipped with 10 cores of an Intel Xeon-E5 processors and its own
shared memory. Every node can update every block, selected uniformly at ran-
dom. We ran an asynchronous algorithm on the same LASSO problem described
above but now with a dense Hessian matrix. The blocks updated by node 1 have
an average delay of 12 while those updated by node 2 experience an average delay
of 22. This can be due to several uncontrollable factors, like operation system and
memory schedulers, buses controllers, etc., which are hard to rigorouslymodel and
analyze.

Another unrealistic assumption often made in the literature [9,21,22,25] is that the
block-indices i k are selected uniformly at random. While this assumption simplifies
the convergence analysis, it limits the applicability of the model; see Examples 4 and
5 in Sect. 3.1. In a nutshell, this assumption may be satisfied only if all workers have
the same computational power and have access to all variables.

We conclude the discussion on probabilistic models underlying asynchronous
algorithms mentioning the line of work dealing with stochastic gradient methods.
Stochastic gradient methods are similar to block-descent approaches in that at each
iteration sampling is performed to determine the nature of the update, but sampling is
done among functions in an optimization problem minimizing the sum of functions,
as opposed to block variables. A related, albeit different, issue of independence in the
probabilistic models used in stochastic gradient methods was first noted in the techni-
cal report [23], see also [19,26] for further developments. These papers circumvent the
issue by enforcing independence (a) using a particular manner of labeling iterations
as well as (b) reading the entire vector of variables regardless of the sparsity pattern
among the summand functions in the objective. However, the analysis in [19,23,26]

123

L. Cannelli et al.

is (c) only performed in the context of strongly convex unconstrained problems, (d)
involves uniform sampling and (e) is only applicable for the shared memory setting.
Thus, while the analysis and procedures described in the references above are inter-
esting, on the whole requirements (b)–(e) make these proposals of marginal interest
in the context of block-descent methods (even assuming they can actually be adapted
to our setting).

Differently from the aforementioned works, our more general and sophisticated
probabilisticmodel neither postulates the independence between i k anddk nor requires
artificial changes in the algorithm [e.g., costly unnecessary readings, as in (b)] to
enforce it; it handles instead the potential dependency among variables directly. By
doing so, one can establish convergence without requiring any of the restrictive condi-
tions (b)–(e), and significantly enlarge the class of computational architecture falling
within the model [e.g., going beyond (d) and (e)]−see Sect. 3.1 for several examples.
The necessity of a new probabilistic model of asynchrony in BCD methods was first
observed in our conference works [5,6] while the foundations of our approach were
presented in our technical reports [3,4] along with some numerical results. Here we
improve the analysis of [3,4] by relaxing considerably the assumptions for convergence
and tightening the complexity bounds.

• Nonconvex constraints Another important feature of our algorithm is the ability
to handle nonconvex objective functions and nonconvex constraints by an algo-
rithm that only needs to solve, at each iteration, a strongly convex optimization
subproblem. Almost all asynchronous methods cited above can handle only con-
vex optimization problems or, in the case of fixed point problems, nonexpansive
mappings. The exceptions are [20,39] and, more relevant to our setting, [9,10] that
study unconstrained and constrained nonconvex optimization problems, respec-
tively. However, the papers dealing with constrained problems, i.e. [9,10], propose
algorithms that require, at each iteration, the global solution of nonconvex subprob-
lems. Except for few cases, the subproblems could be hard to solve and potentially
as difficult as the original one.

• Successive convex approximation All the asynchronous algorithms described so
far use proximal linearization to define subproblems. As already pointed out, this
is the first paper where subproblem models able to capture more structure of the
objective functions are considered. This offers more freedom and flexibility to
tailor the minimization algorithm to the problem structure, in order to obtain more
efficient solution methods.

Notation All vectors are denoted by bold letters and assumed to be column vectors;
matrices are denoted by capital bold letters. The set of natural numbers is denoted
by N and the set of nonnegative natural numbers by N+. Underlined symbols will
denote random variables, e.g., xk , xk−dk

, whereas the same symbols with no underline
are the corresponding realizations. As already stated in (P), f and gi will denote,
respectively, the smooth nonconvex term and the nonsmooth convex terms of the
overall cost function F .

123

Asynchronous parallel algorithms for nonconvex…

2 Asynchronous algorithmic framework

In this section we introduce the assumptions on Problem (P) along with the formal
description of the proposed algorithm. For simplicity of presentation, we begin study-
ing (P) assuming that there are only convex constraints, i.e., all Xi are convex. This
unnecessary assumption will be removed in Sect. 5.

Assumption A (On Problem (P))

(A1) Each set Xi ⊆ R
ni is nonempty, closed, and convex;

(A2) f : O → R is C1, where O is an open set containing X � X1 × · · · × XN ;
(A3) ∇xi f is L f -Lipschitz continuous on X ;
(A4) Each gi : Oi → R is convex, and possibly nonsmooth, where Oi is an open

set containing Xi ;
(A5) F is coercive on X , i.e., limx∈X ,‖x‖→∞ F(x) = +∞.

These assumptions are rather standard. For example, A3 holds trivially ifX is bounded
and ∇ f is locally Lipschitz. We remark that in most practical cases the gi ’s are norms
or polyhedral functions andA4 is readily satisfied. Finally, A5 guarantees the existence
of a solution.

We introduce now our algorithmic asynchronous framework. The asynchronous
iterations performed by the workers are given in (1) and (2) [cf. Sect. 1]. However,
the analysis of the algorithm based directly on (1)–(2) is not a simple task. The key
idea is then to introduce a “global view” of (1)–(2) that captures through a unified,
general, probabilistic model several specific computational architectures/systems and
asynchronous modus operandi. The iteration k → k + 1 is triggered when a block-
component i k of the current xk is updated by some worker using (possibly) delayed
information xk−dk

, thus generating the new vector xk+1. Note that, in this model,
the worker that performs the update is immaterial. Given (1) and (2), it is clear that
the update xk → xk+1 is fully determined once i k and dk are specified. In several
asynchronous methods, the index i k is chosen randomly. Even when this is not the
case, the values of i k and dk are difficult to preview beforehand, because they depend
on several factors which are hard to model mathematically, such as the computa-
tional architecture, the specific hardware, the communication protocol employed by
theworkers, possible hardware failures, etc.. Therefore,wemodel the sequence of pairs
{(i k,dk)}k∈N+ generated by the algorithmic process as a realization of a stochastic pro-
cess; the probabilistic space associated to this stochastic process is formally introduced
in Sect. 3. The proposed general asynchronous model is summarized in Algorithm 1,
which we term Asynchronous FLexible ParallEl Algorithm (AsyFLEXA).

Discussion on Algorithm 1 Several comments are in order.

1. On the generality of the model: Algorithm 1 represents a gamut of asynchronous
schemes and architectures, all captured in an abstract and unified way by the stochastic
process modeling the specific mechanism of generation of the delay vectors dk and
indices i k of the blocks to updates. For concreteness, we show next how Algorithm 1

123

L. Cannelli et al.

Algorithm 1 Asynchronous FLexible ParallEl Algorithm (AsyFLEXA)

Initialization: k = 0, x0 ∈ X , γ ∈ (0; 1].
while a termination criterion is not met do

(S.1) The random variable (ik , dk) is realized as (ik , dk);

(S.2) x̂ik (xk−dk
) is computed:

x̂ik (xk−dk
) � argmin

xik ∈Xik

f̃ik (xik ; xk−dk
) + gik (xik), (3)

(S.3) xk
ik is acquired;

(S.4) The block ik is updated:

xk+1
i =

{
xk

i + γ (x̂i (xk−dk
) − xk

i), if i = ik

xk
i if i �= ik

(4)

(S.5) k ← k + 1;
end while

customizes whenmodeling asynchrony in shared-memory andmessage passing-based
architectures.

Example 1: Shared-memory systems Consider a shared-memory system wherein mul-
tiple cores update in an asynchronous fashion blocks of the vector x, stored in a
shared memory. An iteration k → k + 1 of Algorithm 1 is triggered when a core
writes the (block) update xk+1

i k in the shared memory (Step 4). Note that the cores
need not know the global iteration index k. No memory lock is assumed, implying
that components of the variables may be written by some cores while other com-
ponents are simultaneously read by others. This inconsistent read produces vectors

xk−dk = (x
k−dk

1
1 , x

k−dk
2

2 , . . . , x
k−dk

N
N), to be used in the computation of x̂i k (Step 2),

whose (block) component x
k−dk

i
i is a (possibly) delayed version of block i read by the

core that is going to perform the update. Note that, while x
k−dk

i
i existed in the shared

memory at some point in time, the entire delayed vector xk−dk
might have not at any

time. Also, in Step 4, it is tacitly assumed that the update of a block is atomic (the
block is written in the shared memory as a whole) and while a core is writing that
block no other core can modify the same block. This is minor requirement, which can
be easily enforced in modern architectures either by a block-coordinate look or using
a dual-memory writing approach, see [27, Section 1.2.1].

Figure 1 shows few iterations of the algorithm dynamics in the asynchronous setting
described above. The (continuous) time when operations (reading, writing, computa-
tion) are performed is indicated in the top horizontal axes whereas the global (discrete)
iteration counter is reported in the bottom axes. The asynchronous updates happen as
follows. At iteration k = 3, Core 3 writes x31 ; therefore, x

3 differs from x2 in the
first component. Core 2 locks x23 to quickly read it and perform the linear combina-

tion with x̂3(x3−d3) [cf. (4)], and updates x3; therefore x4 differs from x3 in just the

123

Asynchronous parallel algorithms for nonconvex…

time

iteration
k=3

t=1

Core 1
Reads
x1

Core 1
Reads
x2

Core 1
Reads
x3

Core 3 Reads
x1, x2, x3

Core 2
Locks

Core 2
Writes

k=4

x3 x3

Core 3
Locks
x2

Core 3
Writes
x2x1

t=1.2

Core 2 Reads
x1, x2, x3

Core 1
Locks
x3

Core 1
Writes
x3

t=3.7 t=4.1

k=5 k=6

Core 3
Writes

Fig. 1 AsyFLEXA modeling block asynchronous updates in a shared-memory system: three cores, vector
variables x ∈ R

3, scalar blocks (ni = 1, for all i)

3rd component. Note that core 2 reads x23 which is equal to x33 , so d3
3 = 0; this is

because between the lock and the writing of core 2, no other cores wrote x3 (core 3
updates x1). At iteration k = 5, core 3 writes x52 . In this case x4−d4 , used to compute

x52 = (1 − γ)x42 + γ x̂2(x4−d4), is exactly equal to x4, since core 3 reads the vector
entirely after the last update, so d4 = 0. A different situation happens when iteration
k = 6 is triggered by core 1: the vector used by the core to perform its update is x5−d5 ,

which is such that x5−d5
1 = x21 �= x31 , x5−d5

2 = x22 , and x5−d5
3 = x43 �= x23 ; therefore,

x5−d5 never existed in the shared memory at any time. It can be seen that the vector
of delays at k = 6 reads d5 = (3, 1, 0)T. Note that the delay vector dk used at a given
iteration may not be unique: different values for the components dk

i may produce the

same delayed vector xk−dk
. For instance, in the example above, the vector (3, 2, 0)T

could have been used in place of d5.

Example 2: Message-passing systems. Consider the following distributed computa-
tional architecture as studied for example in [2,35]: multiple workers (e.g., clouds,
cluster computers) are connected through a (directed) graph, modeling the communi-
cation pattern among them. All the workers aim at cooperatively solve Problem (P),
in an asynchronous fashion. Each worker i knows f , gi andXi in (P), and is in charge
of the update of the subset of variables xi ; this means that only worker i can update
xi (possibly a subset of them at each iteration). However, to solve its subproblem,
each worker also needs to build a local estimate, possibly outdated, of the variables
of the other workers. This can be done via suitably designed communication proto-
cols, involving information exchange between immediate neighboring nodes. Note
that workers can perform their local computations as well as communicate (possibly
in parallel) with their neighbors at any time, without any form of coordination or cen-

123

L. Cannelli et al.

tralized scheduling. In this setting, xk−dk
corresponds to the most recent information

a worker has received from the others at the time of its update. Algorithm 1 can thus
model also asynchronous updates and communications in such distributed systems
with no shared memory.

There are of course other message-passing-based architectures where the proposed
asynchronous model cannot be directly applied. For instance, this is the case of some
multi-agent systems wherein the cost function F is the sum of the local objectives of
the agents, and each agent does not have access to the function of the others.

2. On the surrogate functions f̃i . A degree of freedom offered by the proposed
framework is the choice of the surrogate function used in the subproblems (3) solved
by the workers at each iteration. We consider the following general class of surro-
gate functions (we denote by ∇ f̃i the partial gradient of f̃i with respect to the first
argument).

Assumption B (On the surrogate functions f̃i ’s) Given f̃i : Xi ×X → R, with i ∈ N ,
we assume:

(B1) f̃i (•; y) is C1 on an open set containing Xi , and c f̃ -strongly convex on Xi , for
all y ∈ X ;

(B2) ∇ f̃i (yi ; y) = ∇yi f (y), for all y ∈ X ;
(B3) ∇ f̃i (yi ; •) is L B-Lipschitz continuous on X , for all yi ∈ Xi ;
(B4) ∇ f̃i (•; y) is L E -Lipschitz continuous on Xi , for all y ∈ X .

The surrogate f̃i (•; xk) should be regarded as a (simple) strongly convex local approx-
imation of f around xk ∈ X , that preserves the first order properties of f at
xk . Indeed, the key assumption B2 simply stipulates the value of the gradient of
f̃i (•; xk) computed at xk

i is equal to ∇xi f (xk). Finding a surrogate f̃i that satis-
fies Assumption B is in general non difficult; in any case, one can always choose
f̃i (xi ; xk) = ∇xi f (xk)T(xi − xk

i) + β‖xi − xk
i ‖22, where β is a positive constant,

which leads to the classical proximal-gradient update. However, having the possibil-
ity to use a different f̃i may be useful to exploit some potential structure in the problem;
of course, a trade-off is expected: the more complex the f̃i , the more information will
be retained in x̂i (xk), but also the more intensive its computation is expected to be. On
the other hand, the solution of more complex subproblems will in general decrease
the number of information exchanges in the system, which may be a key advantage in
many applications. Some valid instances of f̃i ’s going beyond the proximal-gradient
choice are discussed next.

For further examples we refer the interested reader to [12,13], where these types of
approximations were extensively used.

• If f (x1, . . . , xN) is block-wise uniformly convex, instead of linearizing f
one can exploit a second-order approximation and set f̃i (xi ; xk) = f (xk) +
∇xi f (xk)T(xi − xk

i) + 1
2 (xi − xk

i)
T∇2

xixi
f (xk)(xi − xk

i) + β‖xi − xk
i ‖22;• In the same setting as above, one can also better preserve the partial con-

vexity of f and set f̃i (xi ; xk) = f (xi , xk
−i) + β‖xi − xk

i ‖22, where x−i �
(x1, . . . , xi−1, xi+1, . . . , xN);

123

Asynchronous parallel algorithms for nonconvex…

• As a last example, suppose that f is the difference of two convex functions f (1)

and f (2), i.e., f (x) = f 1(x) − f 2(x), one can preserve the partial convexity in f
setting f̃i (xi ; xk) = f (1)(xi , xk

−i) − ∇xi f 2(xk)T(xi − xk
i) + β ‖xi − xk

i ‖22.

3 AsyFLEXA: probabilistic model

In this section, we complete the description of AsyFLEXA, introducing the proba-
bilistic model underlying the generation of the pairs index-delays.

Given Problem (P) and an initial point x0, the pair (i k,dk) in Step 1 of Algorithm 1,
for each k, is a realization of a random vector ωk � (i k,dk), taking values onN ×D,
whereD is the set of all possible delay vectors. We anticipate that all the delays dk

i are
assumed to be bounded (Assumption C below), i.e., dk

i ≤ δ, for all k and i . Hence, D
is contained in the set of all possible N -length vectors whose components are integers
between 0 and δ. LetΩ be the sample space of all the sequences ω � {(i k,dk)}k∈N+ .

1

We will use the following shorthand notation: we set ω0:k � (ω0,ω1, . . . ,ωk) (the
first k + 1 random variables); ω0:k � (ω0,ω1, . . . ,ωk) (k + 1 possible values for the
random variables ω0:k); and ω0:k � (ω0,ω1, . . . ,ωk) (the first k + 1 elements of ω).
We introduce next the probability space that will be used to build our probabilistic
model.

The sample space is Ω . To define a σ -algebra on Ω , we consider, for k ≥ 0 and
every ω0:k ∈ N × D, the cylinder

Ck(ω0:k) � {ω ∈ Ω : ω0:k = ω0:k},

i.e.,Ck(ω0:k) is the subset ofΩ of all sequencesωwhosefirst k elements areω0, . . . ωk .
Let us denote by Ck the set of all possible Ck(ω0:k) when ωt , t = 0, . . . , k, takes all
possible values; note, for future reference, that Ck is a partition of Ω . Denoting by
σ
(Ck

)
the σ -algebra generated by Ck , define for all k,

Fk � σ
(
Ck
)

and F � σ
(∪∞

t=0Ct) . (5)

We haveFk ⊆ Fk+1 ⊆ F for all k. The latter inclusion is obvious, the former derives
easily from the fact that any cylinder in Ck−1 can be obtained as a finite union of
cylinders in Ck .

The desired probability space is fully defined once P(Ck(ω0:k)), the probabilities of
all cylinders, are given. These probabilities should satisfy some very natural, minimal
consistency properties, namely: (i) the probabilities of the union of a finite number
of disjoint cylinders should be equal to the sum of the probabilities assigned to each
cylinder; and (ii) suppose that a cylinder Ck(ω0:k) is contained in the union U of a
countably infinite number of other cylinders, then P(Ck(ω0:k)) ≤ P(U). Suppose
now that such a P is given.

1 With a slight abuse of notation, we denote by ωk the k-th element of the sequence ω ∈ Ω , and by ωk the
value taken by the random variable ωk over ω, i.e. ωk (ω) = ωk .

123

L. Cannelli et al.

Classical results (see, e.g., [18, Theorem 1.53]) ensure that one can extend these
probabilities to a probability measure P over (Ω,F), thus defining our working prob-
ability space A � (Ω,F , P). By appropriately choosing the probabilities of the
cylinders, we can model in a unified way many cases of practical interest; several
examples are given in Sect. 3.1.

Given A, we can finally define the discrete-time, discrete-value stochastic process
ω, where {ωk(ω)}k∈N+ is a sample path of the process. The k-th entry ωk(ω) of
ω(ω)−the k-th element of the sequence ω−is a realization of the random vector
ωk = (i k,dk) : Ω
→ N ×D. This process fully describes the evolution of Algorithm
1. Indeed, given an instance of Problem (P) and a starting point, the trajectories of the
variables xk and xk−dk

are completely determined once a sample path {(i k,dk)}k∈N+
is drawn from ω.

Note that the joint probability

pω0:k (ω0:k) � P(ω0:k = ω0:k)

is simply the probability of the corresponding cylinder: Ck(ω0:k). We will often need
to consider the conditional probabilities p((i,d) | ω0:k) � P(ωk+1 = (i,d)|ω0:k =
ω0:k). Note that we have

p((i,d) | ω0:k) = P(Ck+1(ω0:k+1))

P(Ck(ω0:k))
, (6)

where we tacitly assume p((i,d) | ω0:k) = 0, if P(Ck(ω0:k)) = 0. We remark that
these probabilities need not be known in practice to implement the algorithm. They are
instead determined based on the particular system (hardware architecture, software
implementation, asynchrony, etc.) one is interested to model. Here, we make only
someminimal assumptions on these probabilities and stochastic model, as stated next.

Assumption C (On the probabilistic model) Given Algorithm 1 and the stochastic
process ω, suppose that

(C1) There exists a δ ∈ N+, such that dk
i ≤ δ, for all i and k;

(C2) For all i ∈ N and ω ∈ Ω , there exists at least one t ∈ [0, . . . , T], with T > 0,
such that

∑

d∈D
p((i,d) | ω0:k+t−1) ≥ pmin, if pω0:k+t−1(ω0:k+t−1) > 0,

for some pmin > 0;
(C3) dk

ik = 0,
for any k ≥ 0.

These are quite reasonable assumptions, with very intuitive interpretations. C1 just
limits the age of the old information used in the updates. Condition C2 guarantees
that every T iterations each block-index i has a non negligible positive probability
to be updated. These are minimal requirements that are satisfied in practically all

123

Asynchronous parallel algorithms for nonconvex…

computational environments. The condition dk
ik = 0means thatwhen aworker updates

the i k-th block, it uses the most recent value of that block-variable. This assumption is
automatically satisfied, e.g., in amessage passing-based systemor in a sharedmemory-
based architecture if the variables are partitioned and assigned to different cores (see
Example 6 in Sect. 3.1). If instead all the cores can update all variables, dk

ik = 0 can

be simply enforced by a software lock on the i k−th block of the shared memory:
once a core c has read a block-variable xi k , no other core can change it, until c has
performed its update. Note that in practice it is very unlikely that this lock affects the
performance of the algorithm, since usually the number of cores is much smaller than
the number of block-variables. Actually, in some systems, this lock can bring in some
benefits. For instance, consider two cores sharing all variables, with one core much
faster than the other. A lock on xk

ik will prevent potentially much older information to
overwrite most recent updates of the faster core. Note also that conditions similar to
C3 are required by all block asynchronous methods in the literature but [27]: they take
the form of locking the variable to update before performing a prox operation [21].

Remark 1 The knowledge of the probability space A is by no means required from the
workers to perform the updates. One need not even specify explicitly the probability
distribution; it is sufficient to show that a probability space A satisfying Assumption C
exists for the specific system (e.g., computational architecture, asynchronous protocol,
etc.) under consideration. We show next how to do so for several schemes of practical
interest.

3.1 Examples and special cases

The proposed model encompasses a gamut of practical schemes, some of which are
discussed next. It is of note that our framework allows us to analyze in a unified way
not only randomized methods, but also deterministic algorithms.

1. Deterministic sequential cyclic BCD In a deterministic, cyclic method there is
only one core that cyclically updates all block-variables; for simplicity we assume
the natural order, from 1 to N . Since there is only one core, the reading is always
consistent and there are no delays: D = {0}. To represent the cyclic choice it is now
enough to assign probability 1 too all cylinders of the type

Ck = {ω : ω0 = (1, 0), ω1 = (2, 0), . . . , ωk = ((k mod N) + 1, 0)}

and probability zero to all others. It is easy to see that Assumption C is satisfied.
This can be seen as a probabilistic model of the deterministic algorithm in [32]. The
consequence however is that, by Theorem 1, convergence can be claimed only in a
probabilistic sense (a.s.). This is not surprising, as we are describing a deterministic
algorithm as limiting case of a probabilistic model.

2. Randomized sequential BCD Suppose now that there is only one core select-
ing at each iteration randomly an index i , with a positive probability. Therefore, at
each iteration, xk−dk = xk or, equivalently, D = {0}. This scheme can be described

123

L. Cannelli et al.

by a stochastic process, where the cylinders are assigned arbitrary probabilities but
satisfying all the conditions given in previous subsection.

3. Randomized parallel BCD Suppose that there are C cores and the block-
variables are partitioned in C groups I1, I2, . . . , IC ; each set Ic is assigned to one
core only, say c. Hence, if core c performs the update at iteration k, all variables
i ∈ Ic satisfy dk

i = 0. Denote by 0(c), 1(c), …, and (C − 1)(c), c = 1, . . . , C ,
the N -length vectors whose components are zeros in the positions of the block-
variables in the set Ic and all 0, 1, . . . , C − 1 in the other positions, respectively.
Set D = {0(c), 1(c), . . . , (C − 1)(c), c = 1 . . . , C}, and denote by ck the core per-
forming the update at iteration k.

Assign to the cylinders the following probabilities: ∀i0, i1, . . . , i2C−1, . . . ∈ N ,

P(C0((i0, 0(c0)))) = 1/N ,

P(C1((i0, 0(c0)), (i1, 1(c1)))) = 1/N 2,

. . .

P(CC−1((i0, 0(c0)), (i1, 1(c1)), . . . , (iC−1,C − 1(cC−1)))) = 1/N C ,

P(CC ((i0, 0(c0)), (i1, 1(c1)), . . . , (iC−1,C − 1(cC−1)), (iC , 0(cC)))) = 1/N C+1,

P(CC+1((i0, 0(c0)), (i1, 1(c1)), . . . , (iC , 0(cC)), (iC+1, 1(cC+1)))) = 1/N C+2,

. . .

P(C2C−1((i0, 0(c0)), (i1, 1(c1)), . . . , (i2C−1,C − 1(c2C−1)))) = 1/N 2C ,

. . .

In words, in the first C iterations (from k = 0 to k = C − 1), all updates are per-
formed using the same vector xk−dk = x0; and at each iteration any index has uniform
probability to be selected. This situation is then repeated for the next C iterations, this
time using xk−dk = xC , and so on. This model clearly corresponds to a randomized
parallel block-coordinate descent method wherein C cores update C block-variables
chosen uniformly at random. Note that Assumption C is trivially satisfied.

The example above clearly shows that defining probabilities by using the cylinders
can be quite tedious even in simple cases. Using (6) we can equivalently define the
probabilistic model by specifying the conditional probabilities p((i,d) | ω0:k), which
is particularly convenient when at every iteration k the probability that ωk takes value
(i,d) is independent ofω0:k−1.We exemplify this alternative approach in the following
examples.

4.Asynchronous BCD in shared memory systemsConsider a generic sharedmemory
system, under Assumption C3. Then, the set D is given by all the N -length vectors
whose components are non negative integers between 0 and δ. Suppose that, at every
k, all cores select an index uniformly at random, but the probabilities associated with
the delays can be different. Then, for every k ≥ 0, given ω0:k , and i ∈ N , we have

∑

d∈D
p((i,d) | ω0:k) = 1

N
.

123

Asynchronous parallel algorithms for nonconvex…

This setting is consistent with the one studied in [9,10,20,21].
Our probabilistic model however is more general than that of [9,10,20,21]. For

instance, differently from [9,10,20,21], we can easily model scenarios wherein∑
d∈D p((i,d) | ω0:k) are not uniform and/or depend on the iteration and/or on the his-

tory of the algorithm.This possibility has important ramifications, since the assumption
that the indices are selected uniformly at random is extremely strong and unrealistic.
In fact, it is satisfied only if all cores have the same computational power and have
access to all variables. This is not the case, in most of practical settings. For instance,
consider a computational architecture composed of two CPUs sharing all the vari-
ables, with one CPUmuch faster than the other. If the recent history exhibits iterations
with a small value of ‖dk‖∞, then it is more likely that the slower core will perform
the next update, and vice versa. Similar situations are expected also in other common
settings, such as shared memory systems with variable partitioning (see Example 5
below) and message passing-based architectures. This clearly shows that our model
captures realistic architectures more faithfully.

5. Asynchronous BCD in shared memory systems with variable partitioning Con-
sider the setting as in Example 4, but now partition the variables across cores, as
described in Example 3. This is the configuration most often used in numerical exper-
iments, since it has proven to be most effective in practice; it also models a message
passing architecture. In order to satisfy C3, it is enough to set, for all ω0:k and i ∈ Ic,

p((i,d) | ω0:k) = 0, if some d j �= 0, j ∈ Ic.

A variant of this setting is the without replacement updating scheme considered in
the numerical experiments of [21]: the block-variables are partitioned among the cores
and, at each “epoch”, variables in each partition are first randomly shuffled and then
updated cyclically by the core. This choice of the updates was shown to be numerically
very effective. While [21] cannot provide any theoretical analysis of such a scheme,
we can easily cover this case by just merging this example with Example 2.

Other examples Several other examples can be considered, which we omit because
of space limitation. Here we only mention that it is quite straightforward to analyze
by our model also “hybrid” systems, which combine somehow two or more examples
described above. For instance, consider a cluster computer system wherein the opti-
mization variables are partitioned across the machines; let Im be the set of variables
controlled by machine m and stored in its internal shared memory. The update of the
variables in Im is performed by the processors/cores of machine m according to some
shared memory-based asynchronous scheme (e.g., subject to inconsistent read). The
information on the variables not in Im is instead updated through communication with
the other processors (message passing)

4 AsyFLEXA: convergence results

We present now our main convergence theorem, under Assumptions A–C. The exten-
sion to the case of nonconvex constraints is addressed in Sect. 5.

123

L. Cannelli et al.

We will use ‖MF (x)‖2 as a measure of optimality, with

MF (x) � x − arg min
y∈X

{

∇ f (x)T(y − x) +
N∑

i=1

gi (yi) + 1

2
‖y − x‖22

}

. (7)

This is a validmeasure of stationarity because MF (x) is continuous and‖MF (x)‖2 = 0
if and only if x is a stationary solution of Problem (P).

To state our major convergence result, we need to introduce first the following
intermediate definitions. Recalling the definition of T as in Assumption C2, letKk

i be
the (random) set of iterations between k − δ and k + T −1 at which the block-variable
i has been updated, Kk

i � {t ∈ [k − δ; k + T − 1] | i t = i}, while K̄k
i is the subset

of Kk
i containing only the elements of Kk

i (iterations) between k − δ and k − 1. Our
convergence results leverage a Lyapunov function F̃ that suitably combines present
and past iterates, and it is defined as

F̃(xk, . . . , xk−δ) = F(xk) + δ
L f

2

(
k−1∑

l=k−δ

(l − (k − 1) + δ) ‖xl+1 − xl‖22
)

, (8)

where it is understood that xl = x0, if l < 0; therefore, F̃ is well defined for any k ≥ 0.
Note that, by this convention, F̃(x0, . . . , x0−δ) = F(x0). Furthermore, we also have
F∗ � minx∈X F(x) ≤ minxk ,...,xk−δ∈X F̃(xk, . . . , xk−δ). We are now ready to state
our major convergence result.

Theorem 1 Let Problem (P) be given, along with Algorithm 1 and the stochastic pro-
cess ω. Let {xk}k∈N+ be the sequence generated by the algorithm, given x0 ∈ X .
Suppose that Assumptions A–C hold true and that

γ <
c f̃

L f + δ2L f
2

. (9)

Define Kε to be the first iteration such that E
(‖MF (xk)‖22

) ≤ ε. Then:

(a) Every limit point of {xk}k∈N+ is a stationary solution of (P) a.s.;
(b) The sequence of objective function values {F(xk)}k∈N+ converges a.s.;

(c) Kε ≤ C1(γ, δ)(T + 1)(F(x0) − F∗)
ε

+ C2(γ, δ)γ 2

ε

Kε∑

k=0

E

⎛

⎜
⎝

N∑

i=1

Mk
i

∑

t∈Kk
i

(
F̃(xt , . . . , xt−δ) − F̃(xt+1, . . . , xt+1−δ)

)
⎞

⎟
⎠

︸ ︷︷ ︸
B

,

(10)

123

Asynchronous parallel algorithms for nonconvex…

where:

C1(γ, δ) �
2
(
1 + (1 + L E)(1 + L B + L E) + γ 2N pminα

−1(1 + (L f + 1)2)
)

γ
(

c f̃ − γ
(

L f + δ2L f
2

))
(pmin − pminα)

,

(11)

C2(γ, δ) � 2T L B(1 + L B + L E)

γ
(

c f̃ − γ
(

L f + δ2L f
2

))
(pmin − pminα)

, (12)

α is an arbitrary fixed value in (0; 1), Mk
i � maxl=k,...,k+T |K̄l

i | .

Proof See “Appendix”. ��
The theorem states that convergence to stationary points occurs a.s. (the objective

function values converge too); it also gives an estimate of the number of iterations
Kε necessary to enforce E

(‖MF (xk)‖22
) ≤ ε. Convergence is guaranteed if, in par-

ticular, the step-size is sufficiently small; the bound (9) makes this precise. Note that
if the method is synchronous, δ = 0, the bound in (9), going like the inverse of
the Lipschitz constant, becomes the renowned conditions used in many synchronous
(proximal-gradient-like) schemes. The term δ2/2 in the denominator of (9) should
then be seen as the price to pay for asynchrony: the larger the possible delay δ, the
smaller γ should be to tolerate such delays. Roughly speaking, this means that the
more chaotic the computational environment, the more conservative the step should
be, and consequently the smaller the steps of the algorithm are.

The interpretation of the bound (10) is not immediate, because of the presence of
the term B; we now elaborate on it. If there exists a (deterministic) bound C on Mk

i ,
i.e., Mk

i ≤ C for all k and i , then one can write

B ≤ CE

⎛

⎜
⎝

Kε∑

k=0

N∑

i=1

∑

t∈Kk
i

(
F̃(xt , . . . , xt−δ) − F̃(xt+1, . . . , xt+1−δ)

)
⎞

⎟
⎠

≤ C(T + δ)(F(x0) − F∗).

Therefore, (10) can be upper bounded as

Kε ≤
[
C1(γ, δ) · (T + 1) + C2(γ, δ) · γ 2 · C · (T + δ)

] F(x0) − F∗

ε
. (13)

Recalling the definition of Mk
i and that |K̄k

i | is a random variable counting the number
of times the index i has been updated in the iteration window [k − δ, k − 1], Mk

i ≤ δ

always holds; therefore, one can always take C = δ. Of course this is a very rough
approximation: it is hard to expect that in a given time window always the same
variable, ī , is updated and, even if this were the case, all other Mk

i , i �= ī , would
be 0 and not δ. Consider for example the commonly analyzed “uniform case” where

123

L. Cannelli et al.

Table 1 Average delay and maximum delay δ for AsyFLEXA, ran on a multi-core machine and on a
message passing system

Average delay δ # of cores

Multi-core machine: balanced workload 1.11 3 10

Multi-core machine: unbalanced workload 2.58 28 10

Message passing system: balanced workload 1.87 30 10 per node

Message passing system: unbalanced workload 3.01 36 10 per node

the processing of every block-variable requires the same time. In this case one can
reasonably take C = 1 in (13) independently of the number of workers.

This intuition is corroborated by our experiments, which are summarized in Table 1.
AsyFLEXA was ran on two different architectures, namely: a shared-memory system
with 10 cores, and a message passing architecture composed of two nodes, with 10
cores each. Two LASSO problems with 10,000 variables each were considered, and
the variables were equally partitioned across the workers. In the first LASSO instance,
the Hessian matrix was a dense matrix, which models situations where the workload
is equally distributed across the workers. In the second LASSO problem, the Hessian
matrix hadmany sparse rows, to create someunbalancedness in theworkers’workload.
Table 1 shows the empirical average delay (the average is taken over the components
of the delay vector and time) and the maximum delay δ, estimated in 500 epochs
(one epoch is triggered when all blocks have been updated once). As expected, δ is
much larger than the experienced average delay, confirming that (13) with C = δ is
a very conservative bound. While C can always be pessimistically upper bounded by
δ, a tighter value can be found by tailoring the analysis to the specific problem and
architecture under consideration.

We remark the importance of the use, in the complexity analysis, of the Mi
k , counting

the number of times the index i has been updated in a certain iteration window. The
use of these variables seems to be a new feature of our analysis. While getting a sharp
estimate for the upper boundC may be difficult in practice, the bound (10) gives a good
insight into the elements that really influence the algorithm, showing that what really
matters, in some expressions appearing in (10), is not δ, but the usually much smaller
number of times the blocks are actually updated. The use of these variables allows us
to get a sharper boundwith respect to the case in which one setsC = δ. From this point
of view, we believe that typical upper bounds, as those obtained in [9,10,21,22,27],
where δ is the only considered “delay”, do not give an accurate description of the actual
worst-case scenario. Finally, we note that from our numerical tests it seems that the
theoretical upper bound on the step-size as in (9) is in general rather conservative. This
is however not surprising and common to this type of analysis, as several bounds are
derived consideringworst-case scenarios. On the other hand, to the time ofwriting, this
is the only available convergence result of an asynchronous algorithm in the considered
problem setting and under a realistic probabilistic model.

Almost linear speedup To study the speedup achievable by the proposed method,
we make two simplifying assumptions, consistent with those made in the literature,

123

Asynchronous parallel algorithms for nonconvex…

Table 2 Comparison between ideal and measured speedup of AsyFLEXA running on a multi-core machine
with 1–40 cores; LASSO problem from 5000 to 40,000 variables; balanced workload; c f̃ = 50, L f = 10,
and γ = 0.1; no failures observed

of workers 1 2 4 8 10 20 30 40

Ideal speedup 1 2 4 8 10 20 30 40

Observed speedup 5 k variables 1 1.6 3.7 6.7 8.9 19.1 24.6 30.4

Observed speedup 10 k variables 1 1.8 4.1 7.9 8.5 18.7 26.3 32.3

Observed speedup 20 k variables 1 1.9 3.9 7.8 8.5 19.3 28.9 35.9

Observed speedup 40 k variables 1 1.9 3.9 7.9 9.3 18.9 29.4 37.7

namely: (a) δ is proportional to the number of workers, which is reasonable in “sym-
metric” situations; and (b) Kε is a good proxy for the number of iterations performed
by the algorithm to reach the desired accuracy. Choose the stepsize γ to be small
enough so that (9) is always satisfied in the range of values of δ under consider-
ation; then C1(γ, δ) and C2(γ, δ) can be taken to be constants. Consider now the
two summands in square brackets in (13). Without the second term, one would have
ideal linear speedup. However, since one can expect the second term to be much
smaller than the first (at least when δ is not large), an almost linear speedup can
be anticipated. In fact, by (11) and (12), the second term is smaller than the first
one, if γ is sufficiently small. It is also interesting to consider the behavior of the
speedup when the number N of variables increases. To this end, note that, given a
fixed number of workers and the problem Lipschitz constants, C2(γ, δ) is constant,
while C1(γ, δ) is an increasing function of N , going to infinite as N goes to infin-
ity. Therefore, we can conclude that (i) the larger the values of N , the smaller the
negative influence of the number of workers on the speedup; and (ii) as N increases,
almost linear speedups should be expected for larger and larger ranges of number of
workers.

To support the above statements, wemeasured the speedup achieved byAsyFLEXA
on the LASSO problem considered in the first row of Table 1. We ran AsyFLEXA
using up to 40 cores and a stepsize γ satisfying the theoretical upper bound (9).
Table 2 shows the results of these experiments. Consistently with our previous obser-
vations, AsyFLEXA experiences a practical speedup which is reasonably close to the
ideal one, but, in some cases, deteriorates somewhat when the number of workers
increases, see in particular the results for 30 and 40 workers. Even more interest-
ingly, the results in Table 2 show that the speedup achieved by AsyFLEXA becomes
closer and closer to the ideal one as the number of variables N increases, supporting
the theoretical behavior expected from (13) and the considerations made above. Note
that the sometimes slightly more erratic behavior observed for a smaller number of
workers is explained by the fact that, for this case, almost ideal speedup is expected
for all values of N and so statistical fluctuations can play a significant role. Exten-
sive numerical simulations are out of the scope of this work and will be the subject
of future research; the interested reader can find some preliminary experiments in
[3].

123

L. Cannelli et al.

5 Nonconvex constraints

In this section, we remove the assumption that all constraints are convex, and study
the following more general nonconvex constrained optimization problem:

min
x

F(x) = f (x) +
N∑

i=1

gi (xi)

xi ∈ Xi , i = 1, . . . , N ,

c1(x1) ≤ 0, . . . , cN (xN) ≤ 0,

}

� K
(P′)

where ci (xi) ≤ 0 are nonconvex private constraints, with ci : Oi → R
mi , and Oi

denoting an open set containing Xi ; let also define Ki � {xi ∈ Xi : ci (xi) ≤ 0, }.
Note that ci (xi) is a vector function, whose individual component is denoted by

ci, j , with j = 1, . . . , mi . Problem (P′) is motivated by several applications in signal
processing, machine learning, and networking; see, [31] and references therein for
some concrete examples.

To deal with nonconvex constraints, we need some regularity of the constraint
functions. Anticipating that all ci are assumed to be C1 on Xi , we will use the
Mangasarian-Fromovitz Constraint Qualification (MFCQ).

Definition 1 Apoint x̄ ∈ K satisfies theMFCQif the following implication is satisfied:

0 ∈
N∑

i=1

∑

j∈ J̄i

μi, j∇xci, j (x̄i) + NX (x̄)

μi, j ≥ 0, ∀ j ∈ J̄i , ∀i ∈ N

⎫
⎪⎬

⎪⎭
⇒ μi, j = 0, ∀ j ∈ J̄i , ∀i ∈ N , (14)

where NX (x̄) � {z ∈ X : zT(y − x̄) ≤ 0, ∀y ∈ X } is the normal cone to X at x̄, and
J̄i � { j : ci, j (x̄i) = 0} is the index set of nonconvex constraints that are active at x̄i .

We study Problem (P′) under the following assumptions.

Assumption A′ (On the problem model) Suppose that

(A1′) Each set Xi ⊆ R
ni is nonempty, closed, and convex;

(A2′) f : O → R is C1, where O is an open set containing K;
(A3′) ∇xi f is L f -Lipschitz continuous on K;
(A4′) Each gi : Oi → R is convex, and possibly nonsmooth, where Oi is an open

set containing Xi ;
(A5′) K is a compact set;
(A6′) Each ci, j : Oi → R is C1;
(A7′) All feasible points of problem (P′) satisfy the MFCQ.

Assumptions A1′–A4′ are a duplication of A1–A4, repeated here for ease of reference;
A5′ is stronger than A5, and made here for the sake of simplicity (one could relax
it with A5); and A6′ is a standard differentiability assumption on the non convex
constraints ci, j .

123

Asynchronous parallel algorithms for nonconvex…

AsyFLEXA-NCC We are now ready to introduce our asynchronous algorithmic
framework for (P′), termed AsyFLEXA-NCC (where NCC stands for Non Convex
Constraints). The method is still given by Algorithm 1, with the only difference that
now also the nonconvex constraints are replaced by suitably chosen convex approxi-
mations; the probabilistic model concerning the choice of the the pair index-delays is
the same as the one we used in the case of convex constraints, see Sect. 3.

More specifically, AsyFLEXA-NCC is given by Algorithm 1 wherein the subprob-
lem (3) in Step 2 is replaced by

x̂i k (xk−dk
) � argmin

xik ∈Kik (xk
ik)

{
F̃ik (xi ; xk−dk

) � f̃i k (xi ; xk−dk
) + gik (xi)

}
, (15)

where f̃i k is defined as in (3); Ki k (xk
ik) is a convex approximation of Ki k at xk−dk

,
defined as

Ki k (xk
ik) � {xi ∈ Xi k : c̃i k , j (xi ; xk

ik) ≤ 0, j = 1, . . . , mik };

and c̃i k , j : Xi k × Ki k → R is a suitably chosen surrogate of cik , j . Note that Kik

depends on xk
ik and not on x

k−dk
ik

ik , because of Assumption C3 (dk
ik = 0).

The surrogate functions c̃i k , j can be chosen according to the following assumptions
(∇ c̃i, j below denotes the partial gradient of c̃i, j with respect to the first argument).

Assumption D (On the surrogate functions c̃i, j ’s)

(D1) Each c̃i, j (•; y) C1 on an open set containingXi , and convex onXi for all y ∈ Ki ;
(D2) c̃i, j (y; y) = ci (y), for all y ∈ Ki ;
(D3) ci, j (z) ≤ c̃i, j (z; y) for all z ∈ Xi and y ∈ Ki ;
(D4) c̃i, j (•; •) is continuous on Xi × Ki ;
(D5) ∇yi ci, j (y) = ∇ c̃i, j (y; y), for all y ∈ Ki ;
(D6) ∇ c̃i, j (•; •) is continuous on Xi × Ki ;
(D7) Each c̃i, j (•; •) is Lipschitz continuous on Xi × Ki .

Roughly speaking, AssumptionD requires c̃i, j to be an upper convex approximation of
ci, j having the same gradient of ci, j at the base point y. Finding such approximations
is less difficult than it might seem at a first sight. Two examples are given below, while
we refer the reader to [12,31] for a richer list.

• Suppose ci, j has a L∇ci, j -Lipschitz continuous gradient on the (compact) set Ki .
By the Descent Lemma [2, Proposition A32], the following convex approximation
satisfies Assumption D:

c̃i, j (x; y) � ci, j (y) + ∇xci, j (y)T (x − y) + L∇ci, j

2
‖x − y‖22 ≥ ci, j (x).

• Suppose that ci, j has a DC structure, that is, ci, j (x) = c+
i, j (x) − c−

i, j (x), c+
i, j and

c−
i, j are two convex and continuously differentiable functions. By linearizing the

123

L. Cannelli et al.

concave part −c−
i, j and keeping the convex part c+

i, j unchanged, we obtain the
following convex upper approximation of ci, j that satisfies Assumption D:

c̃i, j (x; y) � c+
i, j (x) − c−

i, j (y) − ∇xc−
i, j (y)

T (x − y) ≥ ci, j (x).

Note that the former example is quite general and in principle can be applied to
practically all constraints, even if it could be numerically undesirable if L∇ci, j is
too large; the latter example covers, in a possibly more suitable way, the case of
concave constraints.

AsyFLEXA-NCC: convergence In order to gauge convergence, we redefine the sta-
tionarity measure MF , to account for the presence of nonconvex constraints. We use
‖Mc

F (x)‖2, with

Mc
F (x) = x − arg min

y∈K1(x1)×···×KN (xN)

{

∇ f (x)T(y − x) + g(y) + 1

2
‖y − x‖22

}

.

It is a valid merit function: ‖Mc
F (x)‖2 is continuous and is zero only at stationary

solutions of (P′) [30].

Theorem 2 Let Problem (P′) be given, along with AsyFLEXA-NCC and the stochastic
process ω. Let {xk}k∈N+ be the sequence generated by the algorithm, given x0 ∈ K.
Suppose that Assumptions A’, B–D hold and that γ is chosen as in (9). Define Kε to
be the first iteration such that E

(‖Mc
F (xk)‖22

) ≤ ε. Then: (i) xk ∈ K1(xk
1) × · · · ×

KN (xN) ⊆ K for all k ≥ 0 (iterate feasibility); and (ii) all results in Theorem 1 hold
with MF replaced by Mc

F .

Proof See “Appendix 7.3”. ��
We are aware of only one other BCD-asynchronous method [9,10] able to deal with
nonconvex constraints. This method requires the ability to find global minima of
nonconvex subproblems while our scheme does not suffer from this drawbacks, as
it only calls for the solution of strongly convex subproblems. On the other hand, it
needs a feasible starting point and the ability to build approximations c̃i, j satisfying
Assumption D. While our requirements are easier to be met in practice (and our
analysis is based on a grounded probabilistic model), we think that the two approaches
complement each other and may cover different applications.

6 Conclusions

We proposed a novel model for the parallel block-descent asynchronous minimization
of the sum of a nonconvex smooth function and a convex nonsmooth one, subject
to nonconvex constraints. Our model captures the essential features of modern multi-
core architectures by providing amore realistic probabilistic description of asynchrony
that that offered by the state of the art. Building on our new probabilistic model, we
proved sublinear convergence rate of our algorithm and a near linear speedup when

123

Asynchronous parallel algorithms for nonconvex…

the number of workers is not too large. While we performed some simple numerical
tests to validate some of our theoretical findings, extensive simulations are beyond the
scope of this paper, and will be the subject of a subsequent work. Some preliminary
numerical results can be found in [5].

7 Appendix

7.1 Preliminaries

Hereafter, we simplify the notation using x̃k � xk−dk
.

1. On conditional probabilities In our developments, we will consider the condi-
tional expectation of random variables Z on Ω of the type E(Z|Fk). The following
simple fact holds.

Proposition 1 Let Z be a random variable defined on Ω , and let Fk be defined in (5).
Then

E

(
Z|Fk

)
=

∑

(i,d)∈N×D
p ((i,d) |ω0:k)Z

(
(i,d),ω0:k) . (16)

Proof Recall that Fk is the σ -algebra generated by Ck , which is a finite partition of
Ω . Therefore, one can write [11, Example 5.1.3]

E

(
Z|Fk

)
= E

(
Z; Ck(ω0:k)

)

P
(
Ck(ω0:k)

) .

The thesis follows readily from (6) and the fact that Z depends only on ω0:k+1 and
takes a finite number of values. ��

2. Properties of the best response x̂(·) We introduce next some basic properties of
the best-response maps defined in (3) and (15).

Proposition 2 [13] Given the best-response map x̂(·) � (x̂i (·))N
i=1, with x̂i (·) defined

in (3). Under Assumptions A-B, the following hold.

(a) [Optimality]: for any i ∈ N and y ∈ X ,

(x̂i (y) − yi)
T ∇yi f (y) + gi (x̂i (y)) − gi (yi) ≤ −c f̃ ‖x̂i (y) − yi‖22; (17)

(b) [Lipschitz continuity]: for any i ∈ N and y, z ∈ X ,

‖x̂i (y) − x̂i (z)‖2 ≤ L x̂‖y − z‖2, (18)

with L x̂ = L B/c f̃ ;
(c) [Fixed-point characterization]: the set of fixed-points of x̂(·) coincides with
the set of stationary solutions of Problem (P). Therefore x̂(·) has at least one fixed
point.

123

L. Cannelli et al.

Proposition 3 [30] Given the best-response map x̂(·) � (x̂i (·))N
i=1, with x̂i (·) defined

in (15). Under Assumptions A′-B-D, the following hold.

(a) [Optimality]: For any i ∈ N and y ∈ K,

(x̂i (y) − yi)
T ∇yi f (y) + gi (x̂i (y)) − gi (yi) ≤ −c f̃ ‖x̂i (y) − yi‖22; (19)

(b) [Lipschitz continuity]: For any i ∈ N and y, z ∈ K,

‖x̂i (y) − x̂i (z)‖2 ≤ L̃ x̂‖y − z‖1/22 , (20)

with L̃ x̂ > 0.

3. Young’s Inequality [38] For any α,μ1, μ2 > 0, there holds

μ1μ2 ≤ 1

2
(αμ2

1 + α−1μ2
2). (21)

4. Representation of x̃k Since at each iteration only one block of variables is
updated, x̃k can be written as

x̃k
i = xk

i +
∑

l∈K̄k
i

(xl
i − xl+1

i), (22)

where K̄k
i is defined in Sect. 4.

7.2 Proof of Theorem 1

In this section, the best-response map x̂(·) is the one defined in (3).
For any given realization ω ∈ Ω and k ≥ 0, the following holds:

F(xk+1) = f (xk+1) + g(xk+1)

(a)= f (xk+1) +
∑

i �=i k

gi (xk
i) + gik (xk+1

i k)

(b)≤ f (xk) + γ∇xik f (x̃k)T(x̂i k (x̃k) − xk
ik) +

∑

i �=i k

gi (xk
i) + gik (xk+1

i k)

+ (∇xik f (xk) − ∇xik f (x̃k))T(γ (x̂i k (x̃k) − xk
ik)) + γ 2L f

2
‖x̂i k (x̃k) − xk

ik ‖22
(c)≤ f (xk) + γ∇xik f (x̃k)T(x̂i k (x̃k) − x̃k

ik)

+ (∇xik f (xk) − ∇xik f (x̃k))T(γ (x̂i k (x̃k) − x̃k
ik)) + γ 2L f

2
‖x̂i k (x̃k) − x̃k

ik ‖22
+
∑

i �=i k

gi (xk
i) + γ gik (x̂i k (x̃k)) + gik (xk

ik) − γ gik (x̃k
ik)

123

Asynchronous parallel algorithms for nonconvex…

(d)≤ F(xk) − γ

(

c f̃ − γ L f

2

)

‖x̂i k (x̃k) − x̃k
ik ‖22

+ L f ‖xk − x̃k‖2‖γ (x̂i k (x̃k) − x̃k
ik)‖2

(e)≤ F(xk) − γ
(

c f̃ − γ L f

)
‖x̂i k (x̃k) − x̃k

ik ‖22 + L f

2
‖xk − x̃k‖22

(f)= F(xk) − γ
(

c f̃ − γ L f

)
‖x̂i k (x̃k) − xk

ik ‖22 + L f

2
‖xk − x̃k‖22, (23)

where (a) follows from the updating rule of the algorithm; in (b) we used the Descent
Lemma on f ; (c) comes from the convexity of gi and C3; in (d) we used Proposition 2
and A3; (e) is due to the Young’s inequality; and (f) is due to C3.

We bound ‖xk − x̃k‖22 as follows:

‖xk − x̃k‖22
(a)≤

(
k−1∑

l=k−δ

‖xl+1 − xl‖2
)2

(b)≤ δ

k−1∑

l=k−δ

‖xl+1 − xl‖22

= δ

(
k−1∑

l=k−δ

(l − (k − 1) + δ) ‖xl+1 − xl‖22 −
k∑

l=k+1−δ

(l − k + δ) ‖xl+1 − xl‖22
)

+ δ2γ 2 ‖x̂i k (x̃k) − xk
ik ‖22, (24)

where (a) comes from (22); and (b) is due to the Jensen’s inequality.
Using (24) in (23), the Lyapunov function (8), and rearranging the terms, the fol-

lowing holds: for all k ≥ 0,

F̃(xk+1 . . . , xk+1−δ)

≤ F̃(xk, . . . , xk−δ) − γ

(

c f̃ − γ

(

L f + δ2L f

2

))

‖x̂i k (x̃k) − xk
ik ‖22; (25)

and

F̃(xk+T . . . , xk+T −δ) ≤ F̃(xk+T −1, . . . , xk+T −1−δ)

− γ

(

c f̃ − γ

(

L f + δ2L f

2

))

‖x̂i k+T −1(x̃k+T −1) − xk+T −1
i k+T −1 ‖22

≤ F̃(xk, . . . , xk−δ) − γ

(

c f̃ − γ

(

L f + δ2L f

2

)) k+T −1∑

t=k

‖x̂i t (x̃t) − xt
i t ‖22.

(26)

Taking conditional expectation both sides we have that the following holds a.s.:

123

L. Cannelli et al.

E

(
F̃(xk+T . . . , xk+T −δ)|Fk−1

)
≤ F̃(xk, . . . , xk−δ)

− γ

(

c f̃ − γ

(

L f + δ2L f

2

)) k+T −1∑

t=k

E

(
‖x̂i t (x̃t) − xt

i t ‖22|F t−1
)

. (27)

Using (9), (27), A5, and the Martingale’s theorem [29], we deduce that (i)
{F̃(xk, . . . , xk−δ)}k∈N+ , and thus {F(xk, . . . , xk−δ)}k∈N+ converge a.s., (ii) {xk}k∈N+
is bounded on X a.s., and (iii)

lim
k→+∞

k+T −1∑

t=k

E

(
‖x̂i t (x̃t) − xt

i t ‖2|F t−1
)

= 0, a.s. (28)

From (28), it follows that there exists a set Ω̄ ⊆ Ω , with P(Ω̄) = 1, such that for any
ω ∈ Ω̄ ,

k+T −1∑

t=k

E

(
‖x̂i t (x̃t) − xt

i t ‖22|F t−1
)

(a)=
k+T −1∑

t=k

∑

(i,d)∈N×D
p
(
(i,d)|ω0:t−1

)
‖x̂i (x̃t) − xt

i ‖2

(b)≥ pmin

N∑

i=1

‖x̂i (x̃k+tk (i)) − xk+tk (i)
i ‖2, (29)

where in (a) we used (16); and in (b) we used C2 and defined tk(i) � min{t ∈
[0; T]|p(i |ω0:t+k−1) ≥ pmin}. We also have:

‖x̂(xk) − xk‖2 ≤
N∑

i=1

‖x̂i (xk) − xk
i ‖2

(a)≤
N∑

i=1

(
‖x̂i (x̃k+tk (i)) − xk+tk (i)

i ‖2 + (1 + L x̂) ‖x̃k+tk (i) − xk‖2
)

(b)≤
N∑

i=1

(

‖x̂i (x̃k+tk (i)) − xk+tk (i)
i ‖2 + (1 + L x̂)

(

‖xk+tk (i) − xk‖2

+
k+tk (i)−1∑

l=k+tk (i)−δ

‖xl+1 − xl‖2
))

(c)≤
N∑

i=1

(

‖x̂i (x̃k+tk (i)) − xk+tk (i)
i ‖2 + 2γ (1 + L x̂)

k+T −1∑

l=k−δ

‖x̂i l (x̃l) − xl
i l ‖2

)

, (30)

123

Asynchronous parallel algorithms for nonconvex…

where in (a) we used Proposition 2; (b) comes from (22); and (c) from the updating
rule of the algorithm. We deduce from (28), (29), and (30), that

lim
k→+∞ ‖x̂(xk) − xk‖2 = 0. (31)

Since the sequence {xk}k∈N+ is bounded, it has at least one limit point x̄ that belongs
to X . By the continuity of x̂(·) (see Proposition 2) and (31), it must be x̂(x̄) = x̄, and
thus by Proposition 2 x̄ is a stationary solution of Problem (P). Since (31) holds for
any ω ∈ Ω̄ , the previous results hold a.s..

Let us now define:

ŷi (xk) = argmin
yi ∈Xi

{

∇xi f (xk)T(yi − xk
i) + gi (yi) + 1

2
‖yi − xk

i ‖22
}

, (32)

and note that MF (x) = [xk
1 − ŷ1(xk), . . . , xk

N − ŷN (xk)]T. It is easy to check that ŷ(·)
is L ŷ-Lipschitz continuous on X , with L ŷ � L f + 1. Fix a realization ω ∈ Ω . The
optimality of ŷi k (xk) along with the convexity of gik , leads

(
∇xik f (xk) + ŷi k (xk) − xk

ik

)T (
x̂i k (x̃k) − ŷi k (xk)

)
(33)

+ gik (x̂i k (x̃k)) − gik (ŷi k (xk)) ≥ 0. (34)

Similarly, one can write for x̂i k (x̃k):

∇ f̃i k (x̂i k (x̃k); x̃k)T
(
ŷi k (xk) − x̂i k (x̃k)

)
+ gik (ŷi k (xk)) − gik (x̂i k (x̃k))) ≥ 0. (35)

Summing (34) and (35), adding and subtracting x̂i k (x̃k), and
using the gradient consistency B2, yield

(
∇ f̃i k (xk

ik ; xk) − ∇ f̃i k (x̂i k (x̃k); x̃k) + x̂i k (x̃k) − xk
ik

)T

(
x̂i k (x̃k) − ŷi k (xk)

)
≥ ‖x̂i k (x̃k) − ŷi k (xk)‖22. (36)

Summing and subtracting∇ f̃i k (x̂i k (x̃k); xk) and using the triangular inequality, the
LHS of (36) can be upper bounded as

‖∇ f̃i k (x̂i k (x̃k); xk) − ∇ f̃i k (x̂i k (x̃k); x̃k)‖2
+ ‖∇ f̃i k (xk

ik ; xk) − ∇ f̃i k (x̂i k (x̃k); xk)‖2 + ‖x̂i k (x̃k) − xk
ik ‖2

≥ ‖x̂i k (x̃k) − ŷi k (xk)‖2. (37)

We can further upper-bound the left hand side invoking B3 and B4, and write:

‖x̂i k (x̃k) − ŷi k (xk)‖2 ≤ (1 + L E) ‖x̂i k (x̃k) − xk
ik ‖2 + L B ‖xk − x̃k‖2 . (38)

123

L. Cannelli et al.

Finally, squaring both sides, we get

‖x̂i k (x̃k) − ŷi k (xk)‖22 ≤ (1 + L E)2 ‖x̂i k (x̃k) − xk
ik ‖22 + L2

B ‖xk − x̃k‖22
+ 2L B(1 + L E) ‖x̂i k (x̃k) − xk

ik ‖2 ‖xk − x̃k‖2. (39)

We bound next the term ‖xk
ik − ŷi k (xk)‖22. We write

‖xk
ik − ŷi k (xk)‖22 = ‖xk

ik − x̂i k (x̃k) + x̂i k (x̃k) − ŷi k (xk)‖22
≤ 2

(
‖x̂i k (x̃k) − xk

ik ‖22 + ‖x̂i k (x̃k) − ŷi k (xk)‖22
)

(a)≤
(
2 + 2(1 + L E)2

)
‖x̂i k (x̃k) − xk

ik ‖22 + 2L2
B ‖xk − x̃k‖22

+ 4L B(1 + L E) ‖x̂i k (x̃k) − xk
ik ‖2 ‖xk − x̃k‖2

(b)≤ 2 (1 + (1 + L E)(1 + L B + L E)) ‖x̂i k (x̃k) − xk
ik ‖22

+ 2L B(1 + L B + L E) ‖xk − x̃k‖22, (40)

where (a) comes from (39); and (b) follows from the Young’s inequality. Note that

‖xk − x̃k‖22 =
N∑

i=1

‖xk
i − x̃k

i ‖22
(a)≤

N∑

i=1

⎛

⎜
⎝
∑

l∈K̄k
i

‖xl+1 − xl‖2

⎞

⎟
⎠

2

(b)≤
N∑

i=1

M̄k
i

∑

l∈K̄k
i

‖xl+1 − xl‖22 = γ 2
N∑

i=1

M̄k
i

∑

l∈K̄k
i

‖x̂i l (x̃l) − xl
i l ‖22,

(41)

where (a) comes from (22); and in (b) we used the Jensen’s inequality and defined
M̄k

i � |K̄k
i |. Combining (40) and (41), we get:

‖xk
ik − ŷi k (xk)‖22 ≤ 2 (1 + (1 + L E)(1 + L B + L E)) ‖x̂i k (x̃k) − xk

ik ‖22

+ 2γ 2L B(1 + L B + L E)

N∑

i=1

M̄k
i

∑

l∈K̄k
i

‖x̂i l (x̃l) − xl
i l ‖22.

(42)

We take now the conditional expectation of the term on the LHS of (42), and obtain
k+T∑

t=k

E

(
‖xt

i t − ŷi t (xt)‖22|F t−1
)

(ω)
(a)=

k+T∑

t=k

N∑

i=1

p(i |ω0:t−1) ‖xt
i − ŷi (xt)‖22

(b)≥
N∑

i=1

pmin ‖xk+tk (i)
i − ŷi (xk+tk (i))‖22

123

Asynchronous parallel algorithms for nonconvex…

(c)≥ pmin

N∑

i=1

(
‖xk

i − ŷi (xk)‖2 − ‖xk+tk (i)
i − ŷi (xk+tk (i)) − xk

i + ŷi (xk)‖2
)2

≥ pmin

N∑

i=1

(
‖xk

i − ŷi (xk)‖22

− 2‖xk
i − ŷi (xk)‖2 ‖xk+tk (i)

i − ŷi (xk+tk (i)) − xk
i + ŷi (xk)‖2

)
, (43)

where in (a) we used (16); (b) follows from C2; and in (c) we used the reverse triangle
inequality. By (43) and (42), we obtain:

pmin

N∑

i=1

‖xk
i − ŷi (xk)‖22 = pmin ‖MF (xk)‖22

≤
k+T∑

t=k

(

2 (1 + (1 + L E)(1 + L B + L E)) E
(
‖x̂i t (x̃t) − xt

i t ‖22|F t−1
)

(ω)

+ 2γ 2L B(1 + L B + L E)

N∑

i=1

M̄t
i

∑

l∈K̄t
i

‖x̂i l (x̃l) − xl
i l ‖22

)

+ 2pmin

N∑

i=1

‖xk
i − ŷi (xk)‖2 ‖xk+tk (i)

i − ŷi (xk+tk (i)) − xk
i + ŷi (xk)‖2

(a)≤ 2 (1 + (1 + L E)(1 + L B + L E))

k+T∑

t=k

E

(
‖x̂i t (x̃t) − xt

i t ‖22|F t−1
)

(ω)

+ 2T γ 2L B(1 + L B + L E)

N∑

i=1

Mk
i

∑

l∈Kk
i

‖x̂i l (x̃l) − xl
i l ‖22 + pminα ‖MF (xk)‖22

+ pminα
−1

N∑

i=1

‖xk+tk (i)
i − ŷi (xk+tk (i)) − xk

i + ŷi (xk)‖22

(b)≤ 2 (1 + (1 + L E)(1 + L B + L E))

k+T∑

t=k

E

(
‖x̂i t (x̃t) − xt

i t ‖22|F t−1
)

(ω)

+ 2T γ 2L B(1 + L B + L E)

N∑

i=1

Mk
i

∑

l∈Kk
i

‖x̂i l (x̃l) − xl
i l ‖22 + pminα ‖MF (xk)‖22

+ 2pminα
−1

N∑

i=1

(
‖xk+tk (i)

i − xk
i ‖22 + ‖ŷi (xk+tk (i)) − ŷi (xk)‖22

)

(c)≤ 2 (1 + (1 + L E)(1 + L B + L E))

k+T∑

t=k

E

(
‖x̂i t (x̃t) − xt

i t ‖22|F t−1
)

(ω)

123

L. Cannelli et al.

+ 2T γ 2L B(1 + L B + L E)

N∑

i=1

Mk
i

∑

l∈Kk
i

‖x̂i l (x̃l) − xl
i l ‖22 + pminα ‖MF (xk)‖22

+ 2γ 2 pminα
−1(1 + L2

ŷ)

N∑

i=1

k+tk (i)−1∑

l=k

‖x̂i l (x̃l) − xl
i l ‖22

≤ 2 (1 + (1 + L E)(1 + L B + L E))

k+T∑

t=k

E

(
‖x̂i t (x̃t) − xt

i t ‖22|F t−1
)

(ω)

+ 2T γ 2L B(1 + L B + L E)

N∑

i=1

Mk
i

∑

l∈Kk
i

‖x̂i l (x̃l) − xl
i l ‖22 + pminα ‖MF (xk)‖22

+ 2γ 2 pminα
−1(1 + L2

ŷ)N
k+T −1∑

l=k

‖x̂i l (x̃l) − xl
i l ‖22, (44)

where in (a) we used the Young’s inequality and the definition of Mk
i (cf. Sect. 4); in

(b) we used the triangle and Jensen’s inequalities; and (c) comes from the updating
rule of the algorithm. Rearranging the terms and taking expectation of both sides, we
get:

E

(
‖MF (xk)‖22

)

≤
2
(
1 + (1 + L E)(1 + L B + L E) + γ 2N pminα

−1(1 + L2
ŷ)
)

pmin − α pmin

k+T∑

t=k

E

(
‖x̂i t (x̃t) − xt

i t ‖22
)

+ 2T γ 2L B(1 + L B + L E)

pmin − α pmin
E

⎛

⎜
⎝

N∑

i=1

Mk
i

∑

t∈Kk
i

‖x̂i t (x̃t) − xt
i t ‖22

⎞

⎟
⎠ . (45)

Invoking (9) and (25), we can write

‖x̂i k (x̃k) − xk
ik ‖22

≤ 1

γ
(

c f̃ − γ
(

L f + δ2L f
2

))
(

F̃(xk, . . . , xk−δ) − F̃(xk+1 . . . , xk+1−δ)
)

. (46)

Using this bound in (45), we get

123

Asynchronous parallel algorithms for nonconvex…

E

(
‖MF (xk)‖22

)
≤ C1

k+T∑

t=k

E

(
F̃(xt , . . . , xt−δ) − F̃(xt+1, . . . , xt+1−δ)

)

+ γ 2C2 E

⎛

⎜
⎝

N∑

i=1

Mk
i

∑

t∈Kk
i

(
F̃(xt , . . . , xt−δ) − F̃(xt+1, . . . , xt+1−δ)

)
⎞

⎟
⎠ . (47)

Finally,

Kεε ≤
Kε∑

k=0

E

(
‖MF (xk)‖22

)

≤ C1

Kε∑

k=0

E

(
F̃(xk, . . . , xk−δ) − F̃(xk+T +1, . . . , xk+T +1−δ)

)

+ γ 2C2 E

⎛

⎜
⎝

N∑

i=1

Mk
i

∑

t∈Kk
i

(
F̃(xt , . . . , xt−δ) − F̃(xt+1, . . . , xt+1−δ)

)
⎞

⎟
⎠

≤ C1(T + 1)(F(x0) − F∗)

+ C2γ
2

Kε∑

k=0

E

⎛

⎜
⎝

N∑

i=1

Mk
i

∑

t∈Kk
i

(
F̃(xt , . . . , xt−δ) − F̃(xt+1, . . . , xt+1−δ)

)
⎞

⎟
⎠ .

(48)

This completes the proof.

7.3 Proof of Theorem 2

In this section, the best-response map x̂(·) is the one defined in (15).
Statement (ii) of the theorem follow readily from the feasibility of x0 ∈ K and the

fact that xk+1
i k = xk

ik +γ (x̂i k (x̃k)−xk
ik) is a convex combinations of points inKi k (xk

ik).
To prove statement (ii), let us fix a realization ω ∈ Ω . Following the steps from

(23) to (27), one can prove that the following holds a.s.:

E

(
F̃(xk+T . . . , xk+T −δ)|Fk−1

)
≤ F̃(xk, . . . , xk−δ)

− γ

(

c f̃ − γ

(

L f + δ2L f

2

)) k+T −1∑

t=k

E

(
‖x̂i t (x̃t) − xt

i t ‖22|F t−1
)

. (49)

Using (9), (49) and A5’, we deduce that (i)
{

F(xk, . . . , xk−δ)
}

k∈N+ converges a.s.,
and (ii)

123

L. Cannelli et al.

lim
k→+∞

k+T −1∑

t=k

E

(
‖x̂i t (x̃t) − xt

i t ‖2|F t−1
)

= 0 a.s. (50)

It follows from (50) and C2 that

lim
k→+∞

N∑

i=1

‖x̂i (x̃k+tk (i)) − xk+tk (i)
i ‖2 = 0 a.s. (51)

Therefore, there exists a set Ω̄ ⊆ Ω , with P(Ω̄) = 1, such that, for any ω ∈ Ω̄ ,

‖x̂(xk) − xk‖2 ≤
N∑

i=1

‖x̂i (xk) − xk
i ‖2

(a)≤
N∑

i=1

(

‖x̂i (x̃k+tk (i)) − xk+tk (i)
i ‖2

+ ‖x̃k+tk (i) − xk‖1/22

(

‖x̃k+tk (i) − xk‖1/22 + L̃ x̂

))

(b)≤
N∑

i=1

(

‖x̂i (x̃k+tk (i)) − xk+tk (i)
i ‖2 +

(

‖xk+tk (i) − xk‖1/22

+
k+tk (i)−1∑

l=k+tk (i)−δ

‖xl+1 − xl‖1/22

)

(

‖xk+tk (i) − xk‖1/22 +
k+tk (i)−1∑

l=k+tk (i)−δ

‖xl+1 − xl‖1/22 + L̃ x̂

))

(c)≤
N∑

i=1

(

‖x̂i (x̃k+tk (i)) − xk+tk (i)
i ‖2

+ 2
√

γ

k+T −1∑

l=k−δ

‖x̂i l (x̃l) − xl
i l ‖1/22

(

2
√

γ

k+T −1∑

l=k−δ

‖x̂i l (x̃l) − xl
i l ‖1/22 + L̃ x̂

))

,

(52)

where in (a) we used Proposition 3; (b) comes from (22); and in (c) we used the
updating rule of the algorithm. Using (50), (51) and (52), we conclude that

lim
k→+∞ ‖x̂(xk) − xk‖2 = 0. (53)

A straightforward generalization of [30, Theorem 14] together with (53) proves that
every limit point of {xk}k∈N+ is a stationary solution of Problem (P′). Since (53) holds
for any given realization ω ∈ Ω̄ , the above results hold a.s..

Iteration complexity can be proved following the steps (32)–(48) and using the
convexification of the nonconvex constraint sets where needed; details are omitted.

123

Asynchronous parallel algorithms for nonconvex…

References

1. Baudet, G.M.: Asynchronous iterative methods for multiprocessors. JACM 25(2), 226–244 (1978)
2. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods, vol. 23.

Prentice-Hall Englewood Cliffs, NJ (1989)
3. Cannelli, L., Facchinei, F.,Kungurtsev,V., Scutari,G.:Asynchronous parallel algorithms for nonconvex

big-data optimization—part i: Model and convergence. arXiv preprint arXiv:1607.04818 (2016)
4. Cannelli, L., Facchinei, F.,Kungurtsev,V., Scutari,G.:Asynchronous parallel algorithms for nonconvex

big-data optimization. Part ii: Complexity and numerical results. arXiv preprint arXiv:1701.04900
(2017)

5. Cannelli, L., Facchinei, F., Kungurtsev, V., Scutari, G.: Asynchronous parallel nonconvex large-scale
optimization. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 4706–4710 (2017)

6. Cannelli, L., Scutari, G., Facchinei, F., Kungurtsev, V.: Parallel asynchronous lock-free algorithms
for nonconvex big-data optimization. In: 2016 50th Asilomar Conference on Signals, Systems and
Computers, pp. 1009–1013 (2016)

7. Chazan, D., Miranker, W.: Chaotic relaxation. Linear Algebra Appl. 2(2), 199–222 (1969)
8. Daneshmand, A., Facchinei, F., Kungurtsev, V., Scutari, G.: Hybrid random/deterministic parallel

algorithms for convex and nonconvex big data optimization. IEEE Trans. Signal Process. 63(15),
3914–3929 (2015)

9. Davis, D.: The asynchronous palm algorithm for nonsmooth nonconvex problems. arXiv preprint
arXiv:1604.00526 (2016)

10. Davis, D., Edmunds, B., Udell, M.: The sound of APALM clapping: Faster nonsmooth nonconvex
optimization with stochastic asynchronous palm. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon,
I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29. Curran Associates, Inc.,
pp. 226–234 (2016)

11. Durrett, R.: Probability: Theory and Examples. Cambridge University Press, Cambridge (2010)
12. Facchinei, F., Lampariello, L., Scutari, G.: Feasible methods for nonconvex nonsmooth problems with

applications in green communications. Math. Program. 164(1), 1–36 (2016)
13. Facchinei, F., Scutari, G., Sagratella, S.: Parallel selective algorithms for nonconvex big data optimiza-

tion. IEEE Trans. Signal Process. 63(7), 1874–1889 (2015)
14. Frommer,A., Szyld,D.B.:On asynchronous iterations. J. Comput. Appl.Math. 123(1), 201–216 (2000)
15. Hong, M.: A distributed, asynchronous and incremental algorithm for nonconvex optimization: an

ADMM approach. IEEE Trans. Control Netw. Syst. 5(3), 935–945 (2018)
16. Huo, Z., Huang, H.: Asynchronous stochastic gradient descent with variance reduction for non-convex

optimization. arXiv preprint arXiv:1604.03584 (2016)
17. Iutzeler, F., Bianchi, P., Ciblat, P., Hachem,W.: Asynchronous distributed optimization using a random-

ized alternating direction method of multipliers. In: 52nd IEEE Conference on Decision and Control,
pp. 3671–3676 (2013)

18. Klenke, A.: Probability Theory: A Comprehensive Course. Springer, Berlin (2013)
19. Leblond, R., Pedregosa, F., Lacoste-Julien, S.: ASAGA: asynchronous parallel SAGA. In: Proceedings

of the 20th International Conference on Artificial Intelligence and Statistics, pp. 46–54 (2017)
20. Lian, X., Huang, Y., Li, Y., Liu, J.: Asynchronous parallel stochastic gradient for nonconvex optimiza-

tion. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural
Information Processing Systems 28. Curran Associates, Inc., pp. 2719–2727 (2015)

21. Liu, J., Wright, S.J.: Asynchronous stochastic coordinate descent: parallelism and convergence prop-
erties. SIAM J. Optim. 25(1), 351–376 (2015)

22. Liu, J., Wright, S.J., Ré, C., Bittorf, V., Sridhar, S.: An asynchronous parallel stochastic coordinate
descent algorithm. J. Mach. Learn. Res. 16(1), 285–322 (2015)

23. Mania, H., Pan, X., Papailiopoulos, D., Recht, B., Ramchandran, K., Jordan, M.I.: Perturbed iterate
analysis for asynchronous stochastic optimization. SIAM J. Optim. 27(4), 2202–2229 (2017)

24. Nedić, A., Bertsekas, D.P., Borkar, V.S.: Distributed asynchronous incremental subgradient methods.
Stud. Comput. Math. 8(C), 381–407 (2001)

25. Niu, F., Recht, B., Re, C., Wright, S.J.: Hogwild: a lock-free approach to parallelizing stochastic
gradient descent. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F., Weinberger, K.Q. (eds.)
Advances in Neural Information Processing Systems 24. Curran Associates, Inc., pp. 693–701 (2011)

123

http://arxiv.org/abs/1607.04818
http://arxiv.org/abs/1701.04900
http://arxiv.org/abs/1604.00526
http://arxiv.org/abs/1604.03584

L. Cannelli et al.

26. Pedregosa, F., Leblond, R., Lacoste-Julien, S.: Breaking the nonsmooth barrier: a scalable parallel
method for composite optimization. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems 30. Curran
Associates, Inc., pp. 56–65 (2017)

27. Peng, Z., Xu, Y., Yan, M., Yin, W.: Arock: an algorithmic framework for asynchronous parallel coor-
dinate updates. SIAM J. Sci. Comput. 38(5), A2851–A2879 (2016)

28. Peng, Z., Xu, Y., Yan, M., Yin, W.: On the convergence of asynchronous parallel iteration with
unbounded delays. J. Oper. Res. Soc. China 7(1), 5–42 (2019)

29. Robbins, H., Siegmund, D.: A convergence theorem for non negative almost supermartingales and
some applications. In: Herbert Robbins Selected Papers, pp. 111–135 (1985)

30. Scutari, G., Facchinei, F., Lampariello, L.: Parallel and distributed methods for constrained nonconvex
optimization-part i: theory. IEEE Trans. Signal Process. 65(8), 1929–1944 (2017)

31. Scutari, G., Facchinei, F., Lampariello, L., Sardellitti, S., Song, P.: Parallel and distributed methods
for constrained nonconvex optimization-part ii: applications in communications and machine learning.
IEEE Trans. Signal Process. 65(8), 1945–1960 (2017)

32. Scutari, G., Facchinei, F., Song, P., Palomar, D.P., Pang, J.-S.: Decomposition by partial linearization:
parallel optimization of multi-agent systems. IEEE Trans. Signal Process. 62(3), 641–656 (2014)

33. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.)
58(1), 267–288 (1996)

34. Tseng, P.: On the rate of convergence of a partially asynchronous gradient projection algorithm. SIAM
J. Optim. 1(4), 603–619 (1991)

35. Tsitsiklis, John, Bertsekas, Dimitri, Athans, Michael: Distributed asynchronous deterministic and
stochastic gradient optimization algorithms. IEEE Trans. Autom. Control 31(9), 803–812 (1986)

36. Wei, E., Ozdaglar, A.: On the o (1 = k) convergence of asynchronous distributed alternating direction
method of multipliers. In: Global Conference on Signal and Information Processing (GlobalSIP), pp.
551–554 (2013)

37. Wright, S.J.: Coordinate descent algorithms. Math. Program. 151(1), 3–34 (2015)
38. Young, W.H.: On classes of summable functions and their Fourier series. Proc. R. Soc. Lond. Ser. A

Math. Phys. Sci. 87(594), 225–229 (1912)
39. Yun, H., Yu, H.-F., Hsieh, C.-J., Vishwanathan, S.V.N., Dhillon, I.: Nomad: non-locking, stochastic

multi-machine algorithm for asynchronous and decentralized matrix completion. Proc. VLDB Endow-
ment 7(11), 975–986 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Loris Cannelli1 · Francisco Facchinei2 · Vyacheslav Kungurtsev3 ·
Gesualdo Scutari1

Loris Cannelli
lcannell@purdue.edu

Vyacheslav Kungurtsev
vyacheslav.kungurtsev@fel.cvut.cz

Gesualdo Scutari
gscutari@purdue.edu

1 School of Industrial Engineering, Purdue University, West Lafayette, USA

2 Department of Computer, Control, and Management Engineering Antonio Ruberti, University of
Rome La Sapienza, Rome, Italy

3 Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University
in Prague, Prague, Czech Republic

123

http://orcid.org/0000-0002-7714-1210

	Asynchronous parallel algorithms for nonconvex optimization
	Abstract
	1 Introduction
	2 Asynchronous algorithmic framework
	3 AsyFLEXA: probabilistic model
	3.1 Examples and special cases

	4 AsyFLEXA: convergence results
	5 Nonconvex constraints
	6 Conclusions
	7 Appendix
	7.1 Preliminaries
	7.2 Proof of Theorem 1
	7.3 Proof of Theorem 2

	References

