
A Unified Contraction Analysis of a Class of Distributed
Algorithms for Composite Optimization

Jinming Xu, Ying Sun, Ye Tian, and Gesualdo Scutari

Abstract—We study distributed composite optimization over net-
works: agents minimize the sum of a smooth (strongly) convex function–
the agents’ sum-utility–plus a nonsmooth (extended-valued) convex one.
We propose a general algorithmic framework for such a class of problems
and provide a unified convergence analysis leveraging the theory of
operator splitting. Our results unify several approaches proposed in the
literature of distributed optimization for special instances of our formu-
lation. Distinguishing features of our scheme are: (i) when the agents’
functions are strongly convex, the algorithm converges at a linear rate,
whose dependencies on the agents’ functions and the network topology
are decoupled, matching the typical rates of centralized optimization; (ii)
the step-size does not depend on the network parameters but only on the
optimization ones; and (iii) the algorithm can adjust the ratio between the
number of communications and computations to achieve the same rate
of the centralized proximal gradient scheme (in terms of computations).
This is the first time that a distributed algorithm applicable to composite
optimization enjoys such properties.

I. INTRODUCTION

We study distributed multi-agent optimization over networks,
modeled as undirected static graphs. Agents aim at solving

min
x∈Rd

F (x) +G(x), F (x) ,
1

m

m∑
i=1

fi(x), (P)

where fi : Rd → R is the cost-function of agent i, assumed to
be smooth, (strongly) convex and known only to the agent; and
G : Rd → R ∪ {−∞,∞} is a nonsmooth, convex (extended-value)
function, which can be used to enforce shared constraints or some
specific structure on the solution, such as sparsity.

Our focus is on the design of distributed algorithms for Problem
(P) that provably converge at a linear rate. When G = 0, several
distributed schemes have been proposed in the literature enjoying such
a property; examples include EXTRA [1], AugDGM [2], NEXT [3],
SONATA [4], [5], DIGing [6], NIDS [7], Exact Diffusion [8],
MSDA [9], and the distributed algorithms in [10], [11], and [12].
When G 6= 0 results are scarce; to our knowledge, the only two
schemes available in the literature achieving linear rate for (P) are
SONATA [5] and the distributed proximal gradient algorithm [13].
The aforementioned algorithms apparently look different; no unified
convergence analysis can be inferred; and, in most of the cases,
step-size bounds and convergence rate seem quite conservative. This
naturally suggests the following two questions:
(Q1) Can one unify the design and analysis of distributed algo-

rithms in the setting (P)?

(Q2) Can one match the linear convergence rate of the centralized
proximal-gradient algorithm applied to (P)?

Recent efforts toward a better understanding of the taxonomy of
distributed algorithms (question Q1) are the following: [11] provides
a connection between EXTRA and DIGing; [14] provides a canonical
representation of some of the distributed algorithms above–NIDS
and Exact-Diffusion are proved to be equivalent; and [15] provide
an automatic (numerical) procedure to prove linear rate of some
classes of distributed algorithms. These efforts model only first order
algorithms applicable to Problem (P) with G = 0 and employing a

School of Industrial Engineering, Purdue University, West-Lafayette,
IN, USA. Emails: <xu1269, sun578, tian110, gscutari>
@purdue.edu. This work has been supported by the USA NSF Grants
CIF 1632599 and CIF 1564044; and the ARO Grant W911NF1810238.

single round of communication and gradient computation. Because
of that, in general, they cannot achieve the rate of the centralized
gradient algorithm (addressing thus Q2). Works partially addressing
Q2 are the following: MSDA [9] uses multiple communication steps
to achieve the lower complexity bound of (P) when G = 0; and
the algorithms in [16] and [7] achieve linear rate and can adjust the
number of communications performed at each iteration to match the
rate of the centralized gradient descent. However it is not clear how
to extend (if possible) these methods and their convergence analysis
to the more general composite (i.e., G 6= 0) setting (P).

This paper aims at addressing Q1 and Q2 in the general setting
(P). Our major contributions are the following: 1) We propose a
general primal-dual distributed algorithmic framework that subsumes
several existing ATC- and CTA-based distributed algorithms; 2) A
sharp linear convergence rate is proved (when G 6= 0) developing
an operator contraction-based analysis. By product, our convergence
results apply also to the algorithms in [1]–[3], [7], [8], [17], which
so far have been studied in isolation; 3) For ATC forms of our
schemes, the dependencies of the linear rate on the agents’ functions
and the network topology are decoupled, matching the typical rates
for the centralized optimization and the consensus averaging. This is
a major departure from existing analyses, which do not show such a
clear separation, and complements the results in [7] applicable only
to smooth instances of (P). Furthermore, convergence is established
under a proper choice of the step-size, whose upper bound does
not depend on the network parameters but only on the optimization
ones (Lipschitz constants of the gradients and strongly convexity
constants); and 4) The proposed scheme can naturally adjusts the
ratio between the number of communications and computations to
achieve the same rate of the centralized proximal gradient scheme
(in terms of computations). Chebyshev acceleration can also be
employed to significantly reduce the number of communication steps
per computation. Because of space limitation, all the proofs are
available as supporting material in the technical report [18].
Notations: N+ is the set of positive integer numbers; Sm is the
set of Rm×m symmetric matrices while Sm+ (resp. Sm++) is the set
of positive semidefinite (resp. definite) matrices in Sm. PK denotes
the set of (real) monic polynomials of order K. Unless otherwise
indicated, column vectors are denoted by lower-case letters while
upper-case letters are used for matrices (with the exception of L in
Assumption 1 to conform with conventional notation). The symbols
1m and 0m denote the m-length column vectors of all ones and
all zeros, respectively. The 0m denotes the m × m zero matrix;
Im denotes the identity matrix in Rm×m; J , 1m 1>m/m is the
projection matrix onto 1m. With a slight abuse of notation, I will
denote either the identity matrix or the identity operator on the
space under consideration. We use null(·) [resp. span(·)] to denote
the null space (resp. range space) of the matrix argument. For any
X,Y ∈ Rm×d, let 〈X,Y 〉 , trace(X>Y) while we write ‖X‖ for
‖X‖F ; the same notation is used for vectors, treated as special cases.
Given G ∈ Sn+, 〈X,Y 〉G , 〈GX,Y 〉 and ‖X‖G ,

√
〈X,X〉G. The

eigenvalues of a symmetric matrix A ∈ Rm×m are denoted by λi(A),
i = 1, . . . ,m, and arranged in increasing order. For x ∈ R, we denote
x+ = max(x, 0).

485978-1-7281-5549-4/19/$31.00 ©2019 IEEE CAMSAP 2019

II. PROBLEM STATEMENT

We study Problem (P) under the following assumption.

Assumption 1. Each local cost function fi : Rd → R is µ-strongly
convex and L-smooth; and G : Rd → R ∪ {±∞} is proper, closed
and convex. Define κ , L/µ.

Note that Assumption 1 also accounts for the case where fi is
convex and G is µ-strongly convex.
Network model: Agents are embedded in a network, modeled as an
undirected, static graph G = (V, E), where V is the set of nodes
(agents) and {i, j} ∈ E if there is an edge (communication link)
between node i and j. We make the blanket assumption that G is
connected. We introduce the following matrices associated with G,
which will be used to build the proposed distributed algorithms.

Definition 1 (Gossip matrix). A matrix W , [Wij] ∈ Rm×m is said
to be compliant to the graph G = (V, E) if Wij 6= 0 for {i, j} ∈ E ,
and Wij = 0 otherwise. The set of such matrices is denoted by WG .

Definition 2 (K-hop gossip matrix). Given K ∈ N+, a matrix W ′ ∈
Rm×m is said to be a K-hop gossip matrix associated to G = (V, E)
if W ′ = PK(W), for some W ∈ WG , where PK(·) ∈ PK .

Note that, if W ∈ WG , using Wij to linearly combine information
between agent i and j corresponds to performing a single commu-
nication between the two agents (i and j are immediate neighbors).
Using a K-hop matrix W ′ = PK(W) requires instead K consecu-
tive rounds of communications among immediate neighbors for the
aforementioned weighting process to be implemented in a distributed
way (note that the zero-pattern of W ′ is in general not compliant
with G). K-hop weight matrices are crucial to employ acceleration
of the communication step, which will be a key ingredient to exploit
the tradeoff between communications and computations (cf. Sec. V).
A saddle-point reformulation: Our path to design distributed solu-
tion methods for (P) is to solve a saddle-point reformulation of (P) via
general proximal splitting algorithms that are implementable over G.
Following a standard path in the literature, we introduce local copies
xi ∈ Rd (the i-th one is owned by agent i) of x and functions

f(X) ,
m∑
i=1

fi(xi) and g(X) ,
m∑
i=1

G(xi), (1)

with X , [x1, . . . , xm]> ∈ Rm×d; (P) can be then rewritten as

min
X∈Rm×d

f(X) + g(X), s.t.
√
CX = 0, (2)

where C satisfies the following assumption:

Assumption 2. C ∈ Sm+ and null(C) = span(1).

Under this condition, the constraint
√
CX = 0 enforces a

consensus among xi’s and thus (2) is equivalent to (P).
In the setting above, (2) is equivalent to its KKT conditions: there

exists X? ∈ SKKT, where SKKT is defined as

SKKT ,
{
X ∈ Rm×d

∣∣ ∃Y ∈ Rm×d such that
√
CX = 0, ∇f(X) +

√
CY ∈ −∂g(X)

}
, (3)

where ∇f(X) , [∇f1(x1),∇f2(x2), ...,∇fm(xm)]> and ∂g(X)
denotes the subdifferential of g at X . We have the following.

Lemma 1. Consider Problem (P) under Assumptions 1 and 2; x? ∈
Rd is an optimal solution of (P) if and only if 1mx

?> ∈ SKKT.

Building on Lemma 1, in the next section, we propose a general
distributed algorithm for (P) based on a suitably defined operator
splitting solving the KKT system (3).

Algorithm A | B | C
EXTRA [1] 1

2 (I +W) | I | 1
2 (I −W)

NIDS [7]/Exact Diffusion [8] 1
2 (I +W) | 1

2 (I +W) | 1
2 (I −W)

NEXT [3]/AugDGM [2] W 2 | W 2 | (I −W)2

DIGing [6]/ [17] W 2 | I | (I −W)2

[11] bW 2 + (1− b)W | I | bW 2 − (1 + b)W + I

[12] WK |
∑K−1

i=1 W i | W −WK

[13] (G 6= 0) W | I | α(I −W)

TABLE I. CONNECTIONS WITH EXISTING DISTRIBUTED ALGORITHMS.
ALL THE SCHEMES BUT OURS AND [13] APPLY ONLY TO (P) WITH G = 0.

III. A GENERAL PRIMAL-DUAL PROXIMAL ALGORITHM

The proposed general primal-dual proximal algorithm reads

Xk = proxγg
(
Zk
)
, (4a)

Zk+1 = AXk − γB∇f(Xk)− Y k, (4b)

Y k+1 = Y k + CZk+1, (4c)

with Z0 ∈ Rm×d and Y 0 ∈ span(C). In (4a), proxγg (X) ,
arg minY g(Y) + 1

2γ
‖X − Y ‖2 is the standard proximal operator,

which accounts for the nonsmooth term. Eq. (4a) represents the update
of the primal variables, where A,B ∈ Rm×m are suitably chosen
weight matrices, and γ > 0 is the step-size. Finally, (4c) represents
the update of the dual variables. Note that there is no loss of generality
in initializing Y 0 ∈ span(C), as any Y in (3) is so (unless all the
fi share a common minimizer).

Define the set SFix ,
{
X ∈ Rm×d

∣∣CX = 0 and 1>(I −
A)X + γ 1>B∇f(X) ∈ −γ 1>∂g(X)

}
. It is not difficult to

check that any fixed point (X?, Z?, Y ?) of Algorithm (4) satisfies
X? ∈ SFix. The following are necessary and sufficient conditions on
A and B for X? ∈ SFix to be the solution of (2).

Assumption 3. The weight matrices A,B ∈ Rm×m satisfy:
1>A 1 = m, and 1>B = 1>.

Lemma 2 ([18]). Under Assumption 2, SKKT = SFix if and only if
A,B satisfy Assumption 3.

A. Connections with existing distributed algorithms

Algorithm (4) contains a gamut of distributed (and centralized)
schemes, corresponding to different choices of the weight matrices
A,B, and C; any A,B,C ∈ WG leads to distributed implemen-
tations. The use of general matrices A and B (rather the more
classical choices A = B or B = I) permits to model for the first
time in a unified algorithmic framework both ATC- and CTA-based
updates; this includes several existing distributed algorithms proposed
for special cases of (P), as briefly discussed next; see [18] for more
examples. Rewrite Algorithm (4) in the following equivalent form:

Zk+2 = (I−C)Zk+1+A(Xk+1−Xk)−γB(∇f(Xk+1)−∇f(Xk)).
(5)When G = 0, the above update reduces to

Xk+2 = (I −C +A)Xk+1−AXk − γB(∇f(Xk+1)−∇f(Xk)).
(6)

It is not difficult to check that the schemes in [1]–[3], [6]–[8], [11]–
[13], [17] are all special cases of (5) or (6) and thus of Algorithm
(4)–Table I shows the proper parameter setting to establish the
equivalence, where W ∈ WG is the weight matrix used in the target
distributed algorithms, see [18] for more details.

IV. CONVERGENCE ANALYSIS

We establish linear rate of Algorithm (4) under the following
assumption (along with Assumption 3).

486

Assumption 4. The weight matrices A ∈ Rm×m, B ∈ Sm and C ∈
Sm+ satisfy: i) A = BD for some −I ≺ D � I; ii) 0 ≺ I − C; iii)
B and C commute; and iv) B2 ≺ (L+µ)2

(Lλmax(D)−µλmin(D))2
(I − C).

Assumption 4 together with Assumption 3 are quite mild and
satisfied by a variety of algorithms; for instance, this is the case for
all the schemes in Table I (see [18] for more details). In particular,
the commuting property is trivially satisfied when B,C ∈ PK(W),
for some given W ∈ WG (as in Table I). Also, one can show that
condition iv) is necessary to achieve linear rate.

Theorem 3. Consider Problem (P) under Assumption 1, whose
optimal solution is x?. Let {(Xk, Zk, Y k)}k≥0 be the sequence
generated by Algorithm (4) under Assumptions 2 and 3 and step-size

1

µ

(
λmax(D)− λmax

(
B2(I − C)−1)−1/2

)
+
< γ

<
1

L

(
λmin(D) + λmax

(
B2(I − C)−1)−1/2

)
.

Then
∥∥Xk − 1x?>

∥∥2
= O(λk), with

λ , max
(
q2λmax(B2(I − C)−1), 1− λ2(C)

)
< 1, (7)

and
q ,max (|λmin(D)− γL| , |λmax(D)− γµ|) . (8)

The optimal step-size is γ? , λmax(D)+λmin(D)
L+µ

leading to the
smallest q? , Lλmax(D)−µλmin(D)

L+µ
, and thus the optimal rate.

Corollary 4. Under the same setting as Theorem 3, let B2 � I −C
and A = B, so that D = I, γ? = 2

L+µ
. Then, the rate reduces to

λ = max

{(
κ− 1

κ+ 1

)2

, 1− λ2(C)

}
. (9)

Note that the lower bound condition on the step-size in Theorem
3 nulls when B2(I − C)−1 � I (since λmax(D) = 1). Theorem
3 and Corollary 4 provide a unified set of convergence conditions
for CTA- and ATC-based distributed algorithms. We refer to [18] for
a detailed discussion of several special instances. Here, we mainly
comment Algorithm (4) in the setting of Corollary 4. This special
instance enjoys two desirable properties, namely: (i) rate-separation:
The rate (9) is determined by the worst rate between the one due
to the communication [1 − λ2(C)] and that of the optimization
[((κ − 1)/(κ + 1))2]. This separable structure is the key enabler
for our distributed scheme to achieve the convergence rate of the
centralized proximal gradient algorithm applied to Problem (P)–see
Sec. V; and (ii) network-independent step-size: The step-size in
Corollary 4 does not depend on the network parameters but only on
the optimization and its value coincides with the optimal step-size of
the centralized proximal-gradient algorithm. This is a major advantage
over current distributed schemes applicable to (P) (with G 6= 0) and
complements the results in [7], whose algorithm however cannot deal
with the non-smooth term G and use a non-optimal step-size.

V. COMMUNICATION AND COMPUTATION TRADE-OFF

In this section we build on the rate separation property in
Corollary 4 to show how to choose the matrices A, B and C to
achieve the same rate of the centralized proximal gradient algorithm,
possibly using multiple (finite) rounds of communications.

Note that ρopt , (κ − 1)/(κ + 1) is the rate of the centralized
proximal-gradient algorithm applied to Problem (P), under Assump-
tion 1. This means that if the network is “well connected”, specifically
1− λ2(C) ≤ ρ2

opt, the proposed algorithm with the choice of A, B
and C under consideration already converges at the desired linear

rate ρopt. On the other hand, when 1− λ2(C) > ρ2
opt, one can still

achieve the centralized rate ρopt by enabling multiple (finite) rounds
of communications per proximal gradient evaluations. We discuss
next two strategies to reach this goal, namely: 1) performing multiple
rounds of plain consensus using each time the same weight matrix;
and 2) employing acceleration via Chebyshev polynomials.
1) Multiple rounds of consensus: Given a weight matrix W ∈ WG
(i.e., compatible with G), we consider two possible choices of A,B,C
satisfying Corollary 4 and leading to distributed algorithms. Case 1:
Suppose W ∈ Sm++. We set A = B = I − C = W , which implies
B2 � I − C (cf. Corollary 4). The resulting algorithm implemented
using (5) or (6) will require one communication exchange per gradient
evaluation. Note that this setting subsumes most existing primal-dual
methods such as NIDS [7]/Exact Diffusion [8]. If W in the setting
above is replaced by WK , with K > 1, this corresponds to run K
rounds of consensus per computation, each round using W . Denote
ρcom , λmax(W−J); we have 1−λ2(C) = λmax(WK−J) = ρKcom.
The value of K is chosen to minimize the resulting rate λ [cf. (9)],
i.e., such that ρKcom ≤ ρ2

opt, which leads to K = dlogρcom(ρ2
opt)e.

Case 2: Consider now the case W ∈ Sm and det(W) 6= 0.
We can set A2 = B2 = I − C = W 2, so that Corollary 4
still applies. With this choice, every update in (5) or (6) will call
for two communication exchanges per gradient evaluation. To reach
the centralized rate ρ2

opt, the optimal K can be still found as
1− λ2(C) = (λmax(A2K − J)) = (λmax(A− J))2K ≤ ρ2

opt.
2) Chebyshev acceleration: To further reduce the number of com-
munication steps, we can leverage Chebyshev acceleration [19].
Specifically, in the setting of Case 2 above, we set A = PK(W)
and PK(1) = 1 (the latter is to ensure the double stochasticity of
A), with PK ∈ PK . This leads to 1 − λ2(C) = λmax(A2 − J).
The idea of Chebyshev acceleration is to find the “optimal” poly-
nomial PK such that λmax(A2 − J) is minimized, i.e., ρC ,
minPK∈PK ,PK(1)=1 maxt∈[−ρcom,ρcom] |PK(t)|. The optimal solution
of this problem is PK(x) = TK(x

ρcom
)/TK(1

ρcom
) [19, Theorem 6.2],

with α′ = −ρcom, β′ = ρcom, γ
′ = 1 (which are certain parameters

therein), where TK is the K-order Chebyshev polynomials that can be
computed in a distributed manner via the following iterates [19], [20]:
Tk+1 = 2ξTk(ξ) − Tk−1(ξ), k ≥ 1, with T0(ξ) = 1, T1(ξ) = ξ.
Also, invoking [19, Corollary 6.3], we have ρC = 2cK

1+c2K
where

c =
√
ϑ−1√
ϑ+1

, ϑ = 1+ρcom
1−ρcom . As a result, the minimum value of K that

leads to ρC ≤ ρ2
opt can be calculated as K = dlog

1/ρ2opt+
√

1/ρ4opt−1
c e.

Note that to be used in the setting above, the acceleration must return
A nonsingular.

In Fig. 1 we plot the minimum number K of communication steps
needed to achieve the rate of the centralized gradient as a function of
ρcom and ρ2

opt. Since only one computation is performed per iteration,
this adjusts the ratio between the number of communications and
computations. We compare our algorithm in the setting of Case 2
above, using A = WK or Chebyshev acceleration A = PK(W), with
the distributed scheme in [16]. The figure shows that (i) Chebyshev
acceleration helps to reduce the number of communications to sustain
a given rate; and (ii) when ρopt is close to 1 (κ is “large”), both
instances of the proposed scheme need much less communication
steps to attain the centralized rate than that in [16]. More specifically,
to match the rate ρopt, one needs to run at least K number of
communications such that:

ρKcom =

{
ρ2
opt, [this work];√
1+ρopt−

√
1−ρopt

2
, [16].

487

Connectivity of the Graph (ρcom)
0 0.2 0.4 0.6 0.8 1

C
on

tr
ac
ti
on

F
a
ct
o
r
(ρ

2 o
p
t
)

0

0.2

0.4

0.6

0.8

1

#communications
#computations = 1

2

3

3~5

5~10

10~20

20~100

≥100

(a) [16], A =WK

Connectivity of the Graph (ρcom)
0 0.2 0.4 0.6 0.8 1

C
on

tr
ac
ti
on

F
a
ct
o
r
(ρ

2 o
p
t
)

0

0.2

0.4

0.6

0.8

1

#communications
#computations = 1

2

3

3~5

5~10

10~20

20~100

≥100

(b) Proposed scheme, A =WK

Connectivity of the Graph (ρcom)
0 0.2 0.4 0.6 0.8 1

C
on

tr
ac
ti
on

F
a
ct
o
r
(ρ

2 o
p
t
)

0

0.2

0.4

0.6

0.8

1

#communications
#computations = 1

2

3

3~5

5~10

10~20

20~100

≥100

(c) Proposed scheme, A = PK(W)

Fig. 1. Ratio between the number of communications and computations to achieve the centralized linear rate, as a function of the spectral gap ρcom and the
gradient contraction factor ρopt. The proposed scheme employing multiple consensus rounds (subplot (b)) and Chebyshev acceleration (subplot (c)) is compared
with [16] (subplot (a)).

When ρopt → 0, we have (
√

1 + ρopt −
√

1− ρopt)/2 ≈ ρopt/2.
Thus, ρ2

opt ≤ ρopt/2, since ρopt � 1/2; hence, the scheme
in [16] needs less number of communications than the proposed
algorithm in the aforementioned setting. On the other hand, when
ρopt → 1, we have (

√
1 + ρopt −

√
1− ρopt)/2 ≈ ρopt/

√
2.

In this case, ρopt/
√

2 ≤ 1/
√

2 ≤ ρ2
opt; hence, our scheme

require less communications than that in [16]. Moreover, since
(
√

1 + ρopt −
√

1− ρopt)/2 ≤ 1/
√

2 < 1, when ρcom → 1, the
scheme in [16] will need significantly more communication to match
the centralized optimal rate.

VI. CONCLUSION

We proposed a unified distributed algorithmic framework for
composite optimization problems over networks; the algorithm in-
cludes many existing schemes as special cases. Linear rate was
proved, leveraging a contraction operator-based anaysis. Under a
proper choice of the design parameters, the rate dependency on the
network and cost functions can be decoupled, which allowed us to
determine the minimum number of communication steps needed to
match the rate of centralized (proximal)-gradient methods.

APPENDIX

We provide here a sketch of the proof of Theorem 3; see [18] for
more details. Assumptions 2 and 3 are tacitly assumed hereafter.

Step 1: Auxiliary sequence and operator splitting: Lemma 5
below interpretes (4) as the fixed-point iterate of a suitably defined
composition of contractive and nonexpansive operators.

Lemma 5 ([18]). Given the sequence {(Zk, Xk, Y k)}k generated
by Algorithm (4), define Uk , [(Zk)>, (Y k)>]>. There holds

Uk =

[
B 0

0 B
√
C

] [
Z̃k√
CỸ k

]
︸ ︷︷ ︸

Ũk

,

with {Ũk}k defined by the following dynamics

Ũk+1 =

[
(D − γ∇f) ◦ proxγg ◦B −

√
C√

C(D − γ∇f) ◦ proxγg ◦B I − C

]
︸ ︷︷ ︸

T

Ũk, k ≥ 1,

and the initialization Z̃1 = Ỹ 1 = (D − γ∇f)(X0). Furthermore,
the operator T can be decomposed as

T =

[
I −

√
C√

C I − C

]
︸ ︷︷ ︸

,TC

[
D − γ∇f 0

0 I

]
︸ ︷︷ ︸

,Tf

[
proxγg 0

0 I

]
︸ ︷︷ ︸

,Tg

[
B 0
0 I

]
︸ ︷︷ ︸

,TB

,

where TC and TB are the operators associated with communications
while Tf and Tg are the gradient and proximal operators, respec-
tively. Finally, every fixed point Ũ? , [Z̃?,

√
CỸ ?] of T is such that

BZ̃? = 1x?> ∈ SFix.
Building on Lemma 5, the proof of Theorem 3 reduces to showing

‖Z̃k− Z̃?‖ = O(λk). To do so, Step 2 below studies the contraction
(nonexpansive) properties of single operators composing T while Step
3 chains these properties showing that T is λ-contractive with respect
to a suitable norm.

Step 2: On the properties of TC , Tf , Tg and TB . We summarize
next the main properties of the aforementioned operators; proofs of
the results below can be found in [18]. We will use the following
notation: given X ∈ R2m×d, we denote by (X)u and (X)` its upper
and lower m× d matrix-block.

Lemma 6. The operator Tc satisfies

‖TC X − TC Y ‖2ΛC
= ‖X − Y ‖2VC

, ∀X,Y ∈ R2m×d,

where ΛC , diag(I − C, I) and VC , diag(I, I − C).

Lemma 7. With q defined in in Th. 3, Tf satisfies: ∀X,Y ∈ R2m×d,

‖(Tf X)u − (Tf Y)u‖2 ≤ q2 ‖(X)u − (Y)u‖2 and (Tf X)` = (X)`.

Lemma 8. Tg satisfies: ∀X,Y ∈ R2m×d,

‖(TgX)u − (Tg Y)u‖2 ≤ ‖(X)u − (Y)u‖2 and (TgX)` = (X)`.

Lemma 9. The operator TB satisfies:

‖(TB X)u‖2 = ‖(X)u‖2B2 , (TgX)` = (X)`, ∀X ∈ R2m×d.

Step 3: Chaining Lemmata 6-9. Define the matrices Qf ,
diag(q2I, I) and ΛB = diag(B2, I); the contraction property
of T are implied by the following chain: ∀X,Y ∈ R2m×d with
X`, Y` ∈ span(

√
C),

‖T X − T Y ‖2ΛC

Lm. 6
= ‖Tf ◦ Tg ◦ TB (X − Y)‖2VC

Lm. 7

≤ ‖Tg ◦ TB (X − Y)‖2VCQf

Lm. 8

≤ ‖TB (X − Y)‖2VCQf

Lm. 9
= ‖X − Y ‖2VCQfΛB

(∗)
≤ λ ‖X − Y ‖2ΛC

,

where VCQfΛB = diag(q2B2, I − C), λ is defined in (7); and
(*) is due to the following two facts: i) q2‖(Z)u‖2B2 = q2‖(I −
C)

1
2 (Z)u‖2B2(I−C)−1 ≤ q2λmax(B

2(I−C)−1)‖(I−C)
1
2 (Z)u‖2 =

q2λmax(B
2(I − C)−1) ‖(Z)u‖2I−C , for all (Z)u ∈ Rm×d; and ii)

X`, Y` ∈ span(
√
C).

488

REFERENCES

[1] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order
algorithm for decentralized consensus optimization,” SIAM Journal on
Optimization, vol. 25, no. 2, pp. 944–966, 2015.

[2] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Augmented distributed gradient
methods for multi-agent optimization under uncoordinated constant
stepsizes,” in Proceedings of 54th IEEE Conference on Decision and
Control (CDC), 2015, pp. 2055–2060.

[3] P. Di Lorenzo and G. Scutari, “Next: In-network nonconvex optimiza-
tion,” IEEE Transactions on Signal and Information Processing over
Networks, vol. 2, no. 2, pp. 120–136, 2016.

[4] G. Scutari and Y. Sun, “Distributed nonconvex constrained optimization
over time-varying digraphs,” Mathematical Programming, vol. 176, no.
1–2, pp. 497–544, July 2019.

[5] Y. Sun, A. Daneshmand, and G. Scutari, “Convergence rate of
distributed optimization algorithms based on gradient tracking,”
arXiv:1905.02637, 2019.

[6] A. Nedich, A. Olshevsky, and W. Shi, “Achieving geometric conver-
gence for distributed optimization over time-varying graphs,” SIAM J.
on Optimization, vol. 27, no. 4, pp. 2597–2633, 2017.

[7] Z. Li, W. Shi, and M. Yan, “A decentralized proximal-gradient method
with network independent step-sizes and separated convergence rates,”
arXiv preprint arXiv:1704.07807, 2017.

[8] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion for
distributed optimization and learning?part i: Algorithm development,”
IEEE Transactions on Signal Processing, vol. 67, no. 3, pp. 708–723,
2018.

[9] K. Seaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massouli, “Optimal
algorithms for smooth and strongly convex distributed optimization
in networks,” Proc. of the 34th International Conference on Machine
Learning, vol. 70, pp. 3027–3036, 2017.

[10] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” IEEE Transactions on Control of Network Systems,
vol. 5, no. 3, pp. 1245–1260, Sept 2018.

[11] D. Jakovetić, “A unification and generalization of exact distributed
first-order methods,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 5, no. 1, pp. 31–46, 2018.

[12] F. Mansoori and E. Wei, “A general framework of exact primal-
dual first order algorithms for distributed optimization,” arXiv preprint
arXiv:1903.12601, 2019.

[13] S. A. Alghunaim, K. Yuan, and A. H. Sayed, “A linearly convergent
proximal gradient algorithm for decentralized optimization,” arXiv
preprint arXiv:1905.07996, 2019.

[14] A. Sundararajan, B. V. Scoy, and L. Lessard, “A canonical form for first-
order distributed optimization algorithms,” arXiv:1809.08709, 2018.

[15] A. Sundararajan, B. Hu, and L. Lessard, “Robust convergence analysis
of distributed optimization algorithms,” in Proc. of the 55th An-
nual Allerton Conference on Communication, Control, and Computing
(Allerton).

[16] B. Van Scoy and L. Lessard, “Distributed optimization of nonconvex
functions over time-varying graphs,” arXiv preprint arXiv:1905.11982,
2019.

[17] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” IEEE Transactions on Control of Network Systems,
vol. 5, no. 3, pp. 1245–1260, 2017.

[18] J. Xu, Y. Sun, Y. Tian, and G. Scutari, “A unified algorithmic
framework for distributed composite optimization,” Purdue Technical
Report, July 2019. [Online]. Available: arxiv preprint

[19] A. Wien, Iterative solution of large linear systems. Lecture Notes, TU
Wien, 2011.

[20] K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié, “Optimal
algorithms for smooth and strongly convex distributed optimization
in networks,” in Proceedings of the 34th International Conference on
Machine Learning, 2017, pp. 3027–3036.

489

