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ABSTRACT: One of society’s grand challenges is to reduce energy
usage in ways that are cost-effective, sustainable, and environmentally

Support Vector Elzs
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"\ Thermal Quenching

benign. Replacing incandescent and compact fluorescent light bulbs with il Tl 1
energy-efficient, solid-state white lighting is one of the easiest and most i - =
promising solutions. Eu**-substituted inorganic oxide phosphors are one 2 o

class of materials that can serve as the red component in these new light 205 | ® i
bulbs, allowing the creation of warm white light. Unfortunately, the 17 .
emission intensity in most of these materials cannot be reliably & o
maintained at elevated temperatures. There is therefore a need to o ‘ —

discover entirely novel phosphor materials that are thermally robust;
however, this is generally a prolonged and expensive process requiring
extensive synthetic effort. In this work, we develop a machine-learning regression algorithm based on 134 experimentally
measured temperature-dependent Eu®" emission data points to rapidly estimate the thermal quenching temperature (Ts),
which is defined as the temperature when the emission intensity is half of the initial value. The T, was then predicted for more
than 1000 potential oxide Eu®" phosphor hosts using this model. Five compounds with predicted thermal quenching
temperatures >423 K were subsequently selected and synthesized for validation of this approach. The phosphors, Sr,ScO;F,
Cs,MgSisO,, Ba,P,0,, LiBaByO5, and Y;Al;0,,, all exhibit good thermal stability when substituted with Eu®*, suggesting the

success of our methodology.
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1. INTRODUCTION

The principal strategy for producing white light from an LED
chip is by down-converting and broadening the nearly
monochromatic emission using rare-earth-substituted inor-
ganic phosphors, creating a so-called phosphor-converted LED
(pc-LED).'™* The prototypical pc-LED combines a blue
InGaN LED and a yellow-emitting phosphor, like cerium-
substituted yttrium aluminum garnet (YAG:Ce’"), to generate
a broad emission peak that covers nearly the entire visible
spectrum, thus appearing as white light. Although functional,
these devices have a low color rendering index (R,) and high
correlated color temperature (CCT), hindering extensive
adoption in homes and offices, where “warmer” lighting is
preferred.” Adding a second, red-emitting phosphor is
currently the best option to enhance color quality and reduce
the CCT.

The electronic transitions that typically generate emission in
the red region of the visible spectrum occur for ions such as
Eu**, Eu®', Mn*', Pr**, or Sm>" substituted in an inorganic host
compound such as an oxide, nitride, or halide.® Out of these
possible luminescent centers, Eu®* is the most common, where
the 417 configuration can be excited to the 4f°5d' state using a
blue or (near)-UV LED. The ensuing relaxation back to the
ground state is highly dependent on the host lattice and can
span from the blue to near-infrared spectral region as
controlled by the host crystal chemistry. These Eu**-based
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materials have high quantum yields, are chemically robust, and
tend to produce a thermally stable emission. The primary
limitation of Eu*" phosphors is their broad emission spectrum,
which decreases the luminous efficacy.” Therefore, researchers
are continually looking for novel, narrow, red-emitting Eu?*
phosphors.”® Research has also focused on Mn**-substituted
materials. In an octahedral crystal field, the distinct *E — *A,
transition results in vibronic emission bands in the red and
infrared region, depending on the host composition.” For
solid-state lighting, the most useful Mn**-substituted materials
are based on fluorides or oxyfluorides, producing a sharp 3d <
3d transition in the red region of the visible spectrum.
Unfortunately, these hosts tend to have limited chemical
stability, precluding their use in extreme environments, and
long luminescence lifetimes (~8 ms) that lead to photo-
saturation effects.'”"! Other red-emitting materials have also
been developed, with the most notable focus on trivalent
lanthanide ions, including Eu**, Pr*, and Sm?'. These
phosphors are generally based on oxide hosts and have a
characteristic narrow-band emission in the red region, making
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them ideal for the red component in solid-state lighting.
However, the 4f° <> 4f° parity-forbidden electronic transitions
of these luminescence centers exhibit weak absorption,
inhibiting intense photon emission. Adding sensitizer ions to
improve the excitation probability of these red-emitting
activators has been demonstrated with reasonable success in
systems like Bi**/Eu®, Tb**/Eu®', or Ce**/Tb* /B3 1213
The host compound must also allow a high substitution
concentration of Eu®" before concentration quenching takes
place, which is necessary for a high quantum yield. Never-
theless, this combination of high Eu*" concentration and the
addition of a second sensitizer ion allows these phosphors to
be considered as a viable red component in pc-LEDs.

One standing challenge is improving the thermal stability of
the emission intensity of Eu’*-substituted phosphors. Phos-
phors suffer a decrease in light output with increasing
temperature due to thermal quenching.'* These adverse effects
are the result of elevated LED device operating temperature
due to more compact packaging and the use of high-power
LED chips. Yet, the knowledge of crystal chemistry that
governs a phosphor’s thermal quenching behavior remains
unclear. Fortunately, merging data science and materials
science has become a promising tool to guide the discovery
of new materials with desired properties. For example,
researchers have created models to predict the electronic
properties of materials such as band gap, dielectric constant,
electron affinity, and formation energy.'”~'® Moreover, it is
possible to predict materials’ intrinsic mechanical properties
including elastic moduli, heat capacity, and Debye temperature
and extrinsic, bulk properties such as microstructure, fatigue
strength in steels, and cracks in road surface.'” ™%

Here, we apply supervised machine learning based on
support vector regression (SVR) to predict the thermal
response of Eu’'-substituted phosphors. Our training set
employs 134 experimentally reported thermal quenching
temperatures (Tsy), which is the temperature that the
photoluminescence emission intensity degrades to 50% of
the room temperature value. These data were obtained by
mining peer-reviewed literature. The initial feature set
employed for machine learning is limited to compositional
features, two space group features, and the rare-earth
substitution concentration because most quenching temper-
atures obtained from the literature are not accompanied by
sufficient crystallographic data. The final feature set was then
reduced to only 51 features after applying feature elimination.
The advantage of using a training set derived from
experimentally measured T, values and a composition-based
feature set is that the resulting machine-learning algorithm can
rapidly and accurately predict the Ts, for any given
composition. Using this training set, we constructed a
regression model that was finally applied to predict the Ts,
of more than 1000 oxides. Sr,ScO;F, Cs,MgSisOy,, Ba,P,0,,
LiBaByO,5, and Y;Al;0,, were suggested to have high Ti,
values from these predictions and were thus prepared using
high-temperature solid-state synthesis with 5% Eu** sub-
stitution. The ensuing optical properties including temper-
ature-dependent luminence were studied. All compounds
selected had their experimentally measured T, confirmed to
be well above LED device operating temperatures and also
close to our model prediction, suggesting their potential
application in pc-LEDs and display devices as well as the
accuracy of our regression model. Moreover, these results show

the power of data science in material discovery even in the
situation where training data is sparse.

2. MATERIALS AND METHODS

The regression model was trained on experimental data extracted
from the literature using the support vector regression (SVR) method
implemented with a linear kernel and evaluated with leave-one-out
(LOO) cross-validation.”** The initial feature set used to construct
the model is provided in Table S1. A recursive feature elimination
(RFE) scheme was then employed for feature reduction. Hyper-
parameter settings were adjusted with a grid search method, which
exhaustively evaluates all parameter combinations. The searching
space was defined as cost values ranging in [0.3, 1, 3, 10, 30, 100] and
epsilon values in [0.001, 0.01, 0.1, 1] where cost is the penalty
parameter of the error term and epsilon specifies the tube within
which no penalty is associated in the training loss function with points
predicted within a distance epsilon from the actual value. The
SCIKIT-LEARN 2Pjthon implementations of these learning algo-
rithms were used.

Selected phosphors were prepared via solid-state reactions in
alumina crucibles starting from SrCO; (Alfa Aesar, 99%), Sc,0,
(Materion Advanced Chemicals, 99.9%), SrF, (Alfa Aesar, 99%),
BaCO; (Johnson Matthey, 98%), Li,CO; (Alfa Aesar, 99.998%),
H;BO; (Sigma-Aldrich, 99.999%), NH,H,PO, (Acros Organics,
99.9%), MgO (Sigma-Aldrich, 99.995%), Y,0 (Alfa Aesar, 99.9%),
ALO; (Sigma-Aldrich, 99.99%), Cs,CO; (Alfa Aesar, 99%), SiO,
(Sigma-Aldrich, 99.5%), and Eu,0; (Materion Advanced Chemicals,
99.9%). The starting materials for each compound were loaded in the
requisite stoichiometric ratios and then thoroughly ground using an
agate mortar and pestle. Sr,ScO;F:Eu®* was reacted at 1050 °C for 8
h, ground, and heated again using the same reaction profile. To make
Cs,MgSisO,,:Eu®, we combined starting reagents and ground in an
acetone medium. Pellets of the sample were pressed and laid on a bed
of sacrificial powder to avoid reaction with crucible. The reaction was
then carried out at 1000 °C for 12 h. For Ba,P,0;:Eu** and
LiBaB,O,s:Eu®, starting powders were first decomposed under 500
°C for 6 h and 600 °C for 2 h, respectively and then reground before
reacting at 1100 °C for 4 h and 800 °C for 22 h, respectively. All
reactions mentioned above were carried out in air with furnace
heating and cooling rates of 3 °C/min. Y;Al;O},:5%Eu* was made
with a microwave-assisted solid-state reaction. The starting powder
was mixed with 1 wt % NH,Cl and S wt % BaF, as flux. The mixture
was reacted at ~1200 W for 10 min and then ~960 W for 8 min.

The samples were checked for phase purity using powder X-ray
diffraction on a PANalytical Empyrean powder diffractometer
equipped with Cu Ka radiation (4 = 1.54183 A). Additionally, the
lattice parameters were refined based on the Le Bail method using the
GSAS package with a shifted Chebyshev function employed to model
the background.””*

The samples were then mixed into an optically transparent silicone
resin (GE Silicones, RTV61S) and deposited on a quartz substrate
(Chemglass). Steady-state photoluminescent spectra were collected at
room temperature on a Photon Technology International fluores-
cence spectrophotometer with a 75 W xenon arc lamp for excitation.
The temperature-dependent emission spectra were collected from 300
to 600 K in 20 K increments using a A, = 395 nm with the
temperature controlled using a Janis liquid nitrogen cryostat (VPE-
100). The (internal) photoluminescence quantum yield (PLQY) was
measured three times for each compound prepared with 5% Eu**
using the method of de Mello et al. inside a Spetralon-coated
integating sphere (150 mm diameter, Labsphere) and exciting at 395
nm.

3. RESULTS AND DISCUSSION

3.1. Data Extraction and Feature Development. The
development of the machine-learning model to predict the
thermal quenching temperature first involves extracting 269
experimentally reported host compositions and the associated
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Figure 1. (a) Coefficient of determination (r*) as a function of the number of features. The red dot is showing the best 7. (b) Weight assigned to
each feature. (c) Plot of parameter optimization for cost and epsilon. The optimized cost and epsilon are highlighted by the red box.

Ty, values from the literature. Prior to model construction,
data sanitization was conducted to ensure consistency within
the machine-learning training set. Two primary criteria were
considered for data retention. First, the T, must be reached
within the measurement window; extrapolated data were not
included. The second criterion is that the initial emission
measurements must start at room temperature, i.e., the first
data point is at ~300 K. The final training set was reduced
accordingly to 134 compounds composed of 130 oxides
(including oxyhalides), 3 nitrides, and 1 fluoride. Despite the
reduction in size, the training set still contained a range of T,
values from thermally unstable phosphors such as
Cay91Eug6Ba,N, (Tso = 330 K)30 and Lu, gEuy ;MoOgq (T,
=353 K)”' to thermally robust phosphors like Lay,Eug0;BO;
(Tgo = 750 K)** and Y, 9oEug(,05 (Tso = 810 K).” The full
training labels are provided in Table S2. Given the large
imbalance in the data toward oxide-based phosphors, the
ensuing model construction was focused on Eu’*-substituted
oxide phosphors.

Our choice of features was dictated by gathering a large
number of features and performing dimensionality reduction to
down-select a few features. Compounds considered by the
machine-learning algorithm were first described by a set of 35
distinct compositional variables along with five mathematical
expressions including the weighted average, the difference, the
maximum value, the minimum value, and the standard
deviation, where the weights are the stoichiometric number
of the chemical constituents in a given composition. These
compositional variables are related to the relative position of
atoms on the periodic table, the electronic structure, and their
physical properties.”* For example, atomic number, atomic
weight, Mendeleev’s number, and covalent radius are included
to account for the relative size, weight effects, and chemical
similarity across different atoms. Electron affinity provides
relevant energy scales for electronic excitations, whereas
electronegativity is used to model relative chemical trends in
the valence and conduction band edges across a range of
chemistries. Atomic polarization is relevant to the determi-
nation of the centroid shift. Additionally, specific heat and heat
of vaporization account for the impact on the energy change as
temperature varies. Because polymorphs are contained within
the training set and the reported Eu®" substitution concen-

tration values from literature vary from 0.5 to 100%, additional
features beyond compositional variables were also extracted
from the literature, including host crystal system, host space
group, and Eu®* substitution concentration. The combination
of these variables resulted in an initial total of 178 features for
the model. The full list of features is provided in Table S1.
Considering the number of features is greater than the
number of training labels, which often deteriorates the
predictive power of the model as a result of overfitting,
recursive feature elimination (RFE) was conducted to decrease
the overall number of features employed by the model. First,
the 178 features were rescaled to have zero mean and unit
variance. The estimator was then trained on the transformed
178 features, and the importance of each feature was obtained
through a coefficient attribute, specifically, the weights assigned
to the features by a linear kernel embedded in support vector
regression (SVR). The least five important features were then
pruned from the set of features. This procedure was recursively
repeated on each pruned set until the assigned number of
features was eventually reached. Tuning the number of features
selected from RFE can find the optimal number of features,
which gives the best accuracy in terms of coefficient of
determination (r*). Figure la shows the model performance as
a function of the number of features, evaluated by 7%, indicating
the model accuracy. This analysis scheme was obtained from
leave-one-out cross-validation, and the model performance was
examined using a range of 25—17S features in increments of 25
features. Two local maxima appear at 50 features and 100
features, with an #* of 0.69 and 0.65, respectively. The model
with S0 features outperforms 100 features; therefore, the
model examination was further done using 51 and 52 features,
respectively. As shown in Figure la, with 51 features, the
model performance reaches the best value of r* = 0.71. Further
increasing the number of features to 52 results in r* decreasing.
Interestingly, all three noncompositional features were pruned
from the initial feature set, which is beneficial in prediction as
the Ty can be readily predicted for any given composition. It is
also interesting to note that Eu** concentration was removed
from the feature set suggestion that it has minimal influence on
the T, values. The final reduced feature set is composed of 51
compositional features selected from RFE. The numbers of
features selected from each mathematical expression are
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equally distributed, except for the maximum scenario where
only five features remained after feature selection. The weight,
which is also called the coefficient, assigned to each feature is
provide in Figure 1b. Twenty-four features have positive
weights, whereas 27 features have negative weights. The
absolute weight varies from 11.47 for the standard deviation of
Pauling electronegativity to 70.19 for the standard deviation of
the Martynov—Batsanov electronegativity. Finally, the 51
selected features were scaled back to their original
representations before the learning.

3.2. Model Construction. Our approach to learning from
the experimental thermal quenching data was to establish how
Ty, varies with the input features by using regression methods
and then predicting the T, of unexplored oxide phosphors. A
support vector regression (SVR) algorithm using a linear
kernel was used to construct the model due to its efficiency
when dealing with small training sets. Our model was cross-
validated with the leave-one-out (LOO) method. Before
learning, the training data were standardized to have a mean
of 0 and variance of 1, and the validation data were unseen.
The same scaling was then applied to the validation data.
Because SVR is highly sensitive to hyper-parameter settings,
the cost (C), which is the penalty parameter of the error term,
and epsilon (¢), which is a free parameter that serves as a
threshold where all predictions have to be within a + € range
of the true predictions, were tuned using an exhaustive grid
search. Figure lc shows the model performance with different
C and € combinations in terms of 2. When € = 0.01, #* varies
from 0.33 to 0.71 as changing C with an optimal C = 30. On
the other hand, different values of € do not influence the model
performance as significantly as C. When C = 30 and € = 0.01,
the model has the maximal r* of 0.71. Further decreasing ¢ did
not enhance the model accuracy further.

The validation results for the optimized model are plotted in
Figure 2. The coefficient of determination had an r* = 0.71
with a mean absolute error (MAE) of 31 K, demonstrating
reasonable prediction power of our machine-learning model
even for this small training set. The histograms at the top and
right show that the training and validation sets contain a good
spread of data across the entire Ts, range with standard
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Figure 2. Predicted Ty, from the cross-validation of 134 training data
versus experimental Ts,. The ideal line is shown as the solid gray line.
The histograms at the top and right show that the training and
validation sets contain a good spread of data across the entire Ty,
range of interest.

deviations of 87 and 69 K, respectively. There is a slight
underestimation for the high Ty, phosphors, which is most
likely due to a limited number of compounds reported with
these high experimental T, values as well as difficulties
measuring optical properties at such extreme temperatures.

3.3. Experimental Validation through Novel Material
Synthesis. Once the model was constructed, it was used to
estimate the T5, for 1337 oxide compounds compiled in
Pearson’s Crystal Data (PCD).* Oxides containing transition
metals from groups 7—11 and group 18 as well as Cd, Hg, T1,
Pb, and hydrogen-containing compounds were removed from
our prediction set because they are rarely reported to be
suitable inorganic phosphor hosts. The final prediction set is
provided in Table S3.

A selection of five different phosphor hosts were then
chosen for experimental investigation to not only verify our
model’s accuracy but also to potentially discover new thermally
stable Eu®* phosphors. The selection of the target materials
was intended to be diverse in terms of both composition and
structure. Moreover, all of the compounds chosen had a
predicted T, above 423 K, which is the peak operating
temperature of current lighting devices.”® Finally, only the
compounds that could be synthesized under ambient pressure
and are stable at room temperature were considered.
Eventually, Sr,ScO;F, Cs,MgSisOy,, Ba,P,0,, LiBaByO,;,
and Y;Al;O,,, were found to be of interest for experimental
analysis.37—41 Their predicted T, values were 479, 553, 575,
643, and 681 K, respectively. All five compounds, illustrated in
Figure 3, were synthesized via high-temperature solid-state

(@) 48

()

YALO, _MgSi.0

3 512 515

Figure 3. Phosphor hosts considered in the experimental verifications
are (a) Sc,ScO;F, (b) LiBaB,O;s, (c) Ba,P,0,, (d) Y;ALO,,, and (e)
Cs,MgSisOys. Sc, B, P, Al and Si(Mg) occupy the center of the
polyhedra. Sr, Li, Ba, and Cs are colored in different shades of gray. F
is in green, Y is in pink, and O is in orange.

reaction with 5% Eu’* substituted in the systems. The phase
purity was confirmed with Le Bail refinements based on
laboratory (Cu Ka) powder X-ray diffraction patterns, shown
in Figure 4. Refinement results and unit cell parameters are
provided in Table S4.

The photoluminescent excitation spectrum of each phos-
phor was measured and is plotted Figure Sa. The compounds
can all be excited between ~350 to ~450 nm as monitored
under the corresponding monitoring wavelength provided in
Figure Sb. All five samples exhibit similar excitation spectra
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Figure 4. Le Bail refinements of (a) Sc,ScO5F, (b) Cs,MgSisO;s, (c)
Ba,P,0, (d) LiBaByOs, and (e) Y;Al;O, using X-ray powder
diffraction data. The measured data are shown in black, the fit by the
red line, and the difference between the data and the fit by the blue
line.
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Figure 5. (a) Excitation and (b) emission spectra of all prepared Eu**-
substituted phosphors. The emission data for all compounds are
collected using 1., = 395 nm.

with three main peaks below 400 nm and one small peak
centered beyond 400 nm. The sequence of sharp excitation
lines was ascribed to the 4f <> 4f transition of Eu** ions. The
strongest absorption line is located at approximately 395 nm,
which indicates the potential application in pc-LEDs. Upon
395 nm excitation, the emission spectra were collected and are
plotted in Figure Sb. Y;AL,O,:Eu®* shows two main peaks at
591 and 710 nm, respectively. The spectrum of LiBa-
ByO,s:Eu’* is dominated by a strong red emission with a
center at ~610 nm, whereas Ba,P,0.:Eu’* exhibits a series of
sharp, intense peaks ranging from 589 to 700 nm.
Cs,MgSisO;, possesses only one peak around 614 nm, which
could be attributed to several peaks overlapping with one
another. Finally, Sr,ScO;F:5%Eu’" shows one intense peak at
610 nm with a shoulder peak at around 625 nm. The
corresponding photoluminescence quantum yield (PLQY) of
each sample upon 395 nm excitation is provided in Table SS.

The thermal stability of these phosphors is the central focus
of this research because the junction temperature of typical
LEDs can be as high as 423 K.* Therefore, temperature-
dependent emission spectra were collected from 300 to 600 K
in 20 K steps for all five phosphors upon excitation at 395 nm.
The emission peak that was monitored was the most intense
peak generally centered around 600 nm. Contour plots based
on the raw emission data as a function of temperature are
provided in Figure S1. The quenching temperature, T, which
is regarded as the temperature at which the emission intensity
is 50% of its original value, was then obtained by normalizing
the intensity of the peak at ~600 nm, shown in Figure 6. The
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Figure 6. Normalized peak intensity is plotted against temperature.
The dashed gray line indicates the 50% normalized peak intensity

(Ts0)-

emission intensity slowly decreased with increasing temper-
ature for Y;Al;O,:Eu’* and LiBaByO,4:Eu’*, indicating a Tk,
of 760 and 650 K, respectively, obtained by extrapolating the
data. The excellent thermal stability of both is similar to their
respective predictions, although Y;Al;0,,:5%Eu’" shows some
discrepancy to its prediction (680 K). Cs,MgSisOy,:5%Eu’*
thermally quenched faster than the two phosphors mentioned
above, at 540 K. Interestingly, the intensity stays unchanged
between the 500 and 600 K measuring window. This
phenomenon was not only observed in this silicate phosphor
but also in GdAIO;:4%Eu’" and KY, o Euqo3P,05. " Further
increasing the temperature causes the intensity to decrease
again, as expected. The phosphate and oxyfluoride phosphor,
Ba,P,0,:5%Eu*" and Sr,ScO;F:5%Eu®", are the least thermally
stable phosphors among the five selected candidates. Although
their thermal responses are not as outstanding as the rest, their
respective T, values (475 K for Ba,P,0, and 450 K for
Sr,ScO5F) are still well above the 423 K threshold. For easy
comparison, the predicted and experimental results are listed in
Table 1. Considering a majority of the predictions were close
to our experimental value, it proves that our machine-learning
model has reliable predictive capability, which will allow this
approach to at least act as a top-level screening in the search
for new thermally robust Eu**-based phosphors.

4. CONCLUSIONS

A predictive model based on the thermal quenching temper-
ature was developed by constructing machine-learning
algorithms using training data extracted from the literature.
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Table 1. Comparison of Predicted (pred.) T, and the
Experimental (exp.) T, with the Percent Difference (%
diff.) is Provided

composition space group pred. Ts, (K) exp. Tso (K) % diff.
Sr,ScO;F:Eu®* 14/mmm 479 450 6
Cs,MgSisO,:Eu® la3d 583 540 2
Ba,P,0,:Eu’* P62m 575 475 21
BaLiB,Os:Eu’* R3¢ 643 650 -1
Y,ALO,,:Eu la3d 681 760 -10

This data-driven approach allowed the rapid prediction of the
thermal quenching temperature for Eu’*-substituted oxide
phosphors prior to experimental efforts. Selected compounds
from the prediction, Sr,ScO;F, Cs,MgSisO;,, Ba,P,0,,
LiBaByO;s, and Y;ALO,,, were synthesized with 5% Eu®*
substitution followed by optical characterization. The
excitation spectra show that these phosphors can be effectively
excited by near-UV light, which adequately matches the
emission wavelength of commercial near-UV LED chips. All
five phosphors possess an experimentally measured T, well
above LED device operating temperature, as desired,
suggesting their potential application in pc-LEDs and display
devices. Moreover, the observed experimental T, also agrees
well with our model prediction, indicating the accuracy of our
model. These results highlight the power of using data science
to advance materials discovery even for situations where only
small training data sets are available.
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