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Abstract. This paper studies an inventory management problem faced by an upstream
supplier that is in a collaborative agreement, such as vendor-managed inventory (VMI),
with a retailer. A VMI partnership provides the supplier an opportunity to manage in-
ventory for the supply chain in exchange for point-of-sales (POS)- and inventory-level
information from the retailer. However, retailers typically possess superior local market
information and as has been the case in recent years, are able to capture and analyze
customer purchasing behavior beyond the traditional POS data. Such analyses provide the
retailer access to market signals that are otherwise hard to capture using POS information.
We show and quantify the implication of the financial obligations of each party in VMI that
renders communication of such important market signals as noncredible. To help insti-
tute a sound VMI collaboration, we propose learn and screen—a dynamic inventory
mechanism—for the supplier to effectively manage inventory and information in the
supply chain. The proposed mechanism combines the ability of the supplier to learn about
market conditions from POS data (over multiple selling periods) and dynamically de-
termine when to screen the retailer and acquire his private demand information. Inventory
decisions in the proposed mechanism serve a strategic purpose in addition to their classic
role of satisfying customer demand. We show that our proposed dynamic mechanism
significantly improves the supplier’s expected profit and increases the efficiency of the
overall supply chain operations under a VMI agreement. In addition, we determine the
market conditions in which a strategic approach to VMI results in significant profit im-
provements for both firms, particularly when the retailer has high market power (i.e., when
the supplier highly depends on the retailer) and when the supplier has relatively less
knowledge about the end customer/market compared with the retailer.
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1. Introduction

capability) among firms implementing VMI. For such

Practitioners and scholars have long shown that
centralized inventory management together with in-
formation sharing, such as in vendor-managed in-
ventory (VMI), allows supply chains to be efficient
and responsive to customer needs (see, for example,
Aviv 2007 and Simchi-Levi et al. 2008 for an extensive
review of this literature). However, recent empirical
and anecdotal evidence also suggests that VMI-type
agreements have proven difficult to maintain over
multiple planning horizons, resulting in companies
terminating such agreements (e.g., Kouvelis et al.
2006, Brinkhoff et al. 2015). One frequently cited
reason for such failed relationships has been the
decline of trust (in terms of both credibility and

dynamic settings, this paper first determines key rea-
sons for why VMI relationships fail and then provides a
mechanism to reinforce and better manage an ongoing
VMI agreement that evolves over time.
Aforementioned breakdown among collaborating
firms often manifests itself in the following fash-
ion. Consider a supplier (vendor) and a retailer who
operate in a VMI agreement. Under this agreement,
the supplier (she) takes the sole responsibility, in-
cluding financial and operational control, of inven-
tory in the supply chain." The retailer (he) takes the
responsibility of store-level execution to satisfy end
customer demand as much as possible. The retailer
uses information technology, such as electronic data
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interchange (EDI), to share customer sales informa-
tion through point-of-sales (POS) data and inventory
levels with the supplier at the end of each selling
period. The POS data help the supplier adapt to
dynamic market conditions and improve her inven-
tory replenishment process over time. However, the
retailer also obtains new demand information re-
garding customers’ taste and demand because of his
proximity and close relationship (e.g., through loy-
alty cards) with his customers. Such information is
not immediately available in POS data. Nevertheless,
the supplier could improve her forecasts and hence,
her inventory decisions by learning about the re-
tailer’s private demand information using POS data.
However, relying on the learning process poses an
important challenge for the supplier; such a learning
process may take too long to be effective, and also,
POS data often do not contain information, such as
unobserved lost sales. The leftover inventory is the
supplier’s (and not the retailer’s) liability. Hence, the
retailer is always better off depicting a positive out-
look of the market and reporting higher levels of
demand (as well as lost sales if they were observable)
to induce the supplier to ship sufficient inventory
during all selling periods. Knowing this incentive, the
supplier may disregard such information even when the
retailer accurately reports his information. The resulting
relationship, therefore, often boils down to only ex-
changing POS data and the supplier learning about the
market through POS data. However, such learning takes
time, during which unobserved lost sales result in the
supplier carrying even less inventory, leading to
additional lost sales for the retailer. Such lack of co-
ordination diminishes the retailer’s patience for hav-
ing to relinquish control of his inventory, leading to
a “lose-lose” outcome for both firms and resulting in
termination of VMI agreernents.2

Retailers have been forming collaborative re-
lationships with their suppliers in an effort to make
their operations lean while maintaining high cus-
tomer service. For example, Walmart and Procter &
Gamble, Tesco and Nestle, and Northern Foods and
Sainsbury’s are involved in VMI practices (see Lee
et al. 1997, Watson 2005, The Grocer 2009). Central-
izing inventory control by moving it up the supply
chain closer to the source mitigates the well-known
bullwhip effect (Lee et al. 1997). The flow of POS data
upstream also improves demand forecasts, leading to
fewer stockouts at the retail store. Technology companies,
such as Dell and Apple, have managed to avoid sell-
ing through resellers by vertically integrating with
the downstream. They, however, also practice VMI with
their upstream suppliers (e.g., Katariya et al. 2014).

The classical VMI agreements, however, do not
provide the supplier and the retailer with a means to
credibly share demand information beyond the POS

data.’ Note that, after a VMI agreement is signed, the
retailer can still obtain private demand information,
becausehehasaccess to local market conditions (such
as competitor’s store openings/closures), in-store
promotions, and his customers” information (e.g., ob-
tained through loyalty/reward membership pro-
grams). All such information could be beneficial for
the supplier in making effective replenishment de-
cisions. However, the retailer may not be able to
credibly share this information (because of afore-
mentioned incentive conflict). The following excerpt
provides a case in point.
Sainsbury’s discovered that a cereal brand called Grape-
Nuts was worth stocking—despite weak sales—because
the shoppers who bought it were extremely loyal to
Sainsbury’s and often big spenders. (Ferguson 2013)

Sainsbury’s in this case may not want to share low-
demand information with the supplier of Grape-Nuts
if both firms are in a VMI-type relationship.

In such situations, the supplier may decide to dy-
namically learn about customer demand through the
POS data and disregard retailer’s private demand
information. In the meantime, the supplier continues
to maintain higher/lower than necessary inventory
levels. Consequences of improperly stocked shelves
could be dire. Recently, Rosenblum (2014) reported
that Walmart, a pioneer in VMI, lost around $3 billion
owing to out-of-stock items. Spartan Stores ended its
VMI program a year after its inception, citing the
supplier’s inability to take into account promotional
events at the retail store (Mathews 1995). In fact, after
taking off in early 1990s, VMI practices faced tough op-
position in industry resulting from frictions between the
supply chain members participating in it. However, the
recent boom in information technology (IT) infrastruc-
ture developments and widespread use of data ana-
lytics in business will likely lead to an increase in
the desire to have VMI-type collaborations. For such
partnerships to have sustained success and for VMI to
deliver on its promise, reexamining and aligning in-
centives of firms under such agreements are imperative.

The above observations motivate us to study the
following questions. How should the supplier dy-
namically and optimally manage centralized in-
ventory over multiple selling periods when lost sales
are unobserved and the retailer has private demand
information? Can the supplier use her inventory
decisions to gain long-term leverage with theretailer?
What mechanism can the supplier use in an ongoing
VMI agreement to credibly elicit demand informa-
tion from the retailer while effectively managing in-
ventory over a planning horizon? To address these
questions, we propose a learn-and-screen approach
that effectively combines dynamic inventory man-
agement with mechanism design.
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In the learn-and-screen approach, the supplier and
the retailer sign a VMI agreement and agree on a
wholesale price. The wholesale price could be the
outcome of a bargaining process that may reflect each
firm’s market power and the retailer’s informational
advantage. The supplier then owns and replenishes
inventory at the retailer’s site, and the retailer pays
the supplier when a product is sold (i.e., the supplier
manages inventory periodically under unobserved
lost sales). During the rest of the agreement horizon,
the supplier can continue to improve her belief about
the market demand (including her belief about the
retailer’s private demand information) by learning
through POS data. Alternatively, at an optimal time
during the VMI relationship, the supplier can offer a
menu of screening contracts to the retailer. The menu
of contracts offers the retailer base stock levels to
choose from for the supply chain in exchange for a
lump sum (or equivalently, per period) payment (to or
from the supplier). If the retailer agrees and picks a
base stock level, the supplier continues to manage the
inventory under unobserved lost sales following this
chosen base stock level. If the retailer rejects and does
not select any base stock level, the prevailing supply
chain ensues. In other words, the supplier continues
to make replenishment decisions and reverts to the
status quo VMI agreement with a base stock policy
and level that capture the supplier’s updated in-
formation learned up to that point.

We remark that our proposed approach also en-
dogenously accounts for both firms” market power
(other than the wholesale price). On one hand, the
supplier can mitigate the retailer’s informational
advantage by learning from POS data before offering
the screening contracts. The supplier can optimally
determine the time to offer the menu of (screening)
contracts as a function of her belief about the market
condition and the on-hand inventory level. On the
other hand, the retailer’s outside option (i.e., the status
quo VMI agreement) also improves as the supplier
obtains information through POS data. The retailer’s
outside option (i.e., when any such screening contract
is rejected) is no longer just exogenous (e.g., a con-
stant) to the system, but instead, it depends on the
retailer’s ongoing agreement with the supplier and
how this relationship evolves. Hence, the learning
process and optimal screening mechanism are cou-
pled (i.e., affect each other) and evolve over time as
the supplier improves her belief using the POS data.

The rest of the paper formalizes this process and
shows that our proposed mechanism outperforms the
status quo VMI agreements as well as a simple static
screening mechanism. We also characterize how the
optimal screening mechanism evolves over time and
how learning effects the structure of this mechanism/
contract. We quantify how unobserved lost sales

impact the learning process as well as the screening
contracts. In addition, we compare the performance
of the learn-and-screen approach with the learn (only)
and screen (immediately) approaches. We find that
both the supplier and the retailer are better off from
using the learn-and-screen approach (creating a win-
win outcome). This approach also lowers the on-hand
inventory levels maintained by the supplier compared
with the learn (only) approach. Yet, the supplier makes
more profit with the lowerinventory levels by adopting
the learn-and-screen approach. In this sense, learning
and screening have a synergistic effect on each other.

2. Literature Review

Many operations management scholars have ex-
plored and documented the benefits that accrue from
the practice of information sharing in supply chains
(e.g., Cachon and Fisher 2000, Lee et al. 2000, Aviv
2001, Gallego and Ozer 2001, Ren et al. 2010, Ha et al.
2011, Dong et al. 2014, Shang et al. 2016). The value of
information sharing, in particular, of demand fore-
casts within the supply chain has been shown to play
an important role in determining success of collab-
orative partnerships, such as VMI and collaborative
planning, forecasting, and replenishment to name
a few (e.g., Aviv 2002, 2007; Chen and Lee 2009;
Brinkhoff et al. 2015). Aviv (2007) shows that supply
chain characteristics, such as the retailer’s ability to
observe superior market signals and the supplier’s
agility in production, contribute to a win-win situa-
tion in a collaborative forecasting partnership. We
note that these partnershipsimprove visibility of POS
information upstream (which is verifiable) and/or
centralizing replenishment processes. Improved visi-
bility of demand in turn helps the supplier resolve
some of demand variability over the planning horizon,
albeit rather slowly. The question of whether valuable
information that is private and unverifiable, such as
the retailer’s subjective assessment of demand, can be
credibly shared is a natural extension to this line of
investigation.

Researchers have also provided several contrac-
tual remedies to alleviate the credibility issue that
may arise when self-interested firms report demand
forecasts. Cachon and Lariviere (2001) consider ca-
pacity decisions under demand information asym-
metry. They provide some properties of an incentive
mechanism to enable credible information sharing
and show the existence of separating equilibria in a
signaling game. Ozer and Wei (2006) model the
forecast sharing game using both a screening model
and a signaling model in a unified context which
enables them to design and compare several contracts
and choose the most effective contract for different
market conditions. To do so, they first show that,
used alone, wholesale price contract is a reason for
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distorted forecast. They then design several contracts
such as the capacity reservation contracts (with quantity
discounts) and advance purchase contracts that enable
credible information sharing. Several scholars have since
extended this line of research and consider various im-
portant and relevant supply chain settings in strategic
single-period interactions with many practical impli-
cations (e.g., Burnetas et al. 2007, Li and Zhang 2008,
Babich et al. 2012, Gumiis 2014, Li et al. 2014,
Nazerzadeh and Perakis 2016 and Shamir and Shin
2016 and references therein). We extend this stream of
literature by considering a multiperiod inventory model
in which the supplier improves her demand forecasts
over time by incorporating historical POS data.

More recently, scholars started to consider solu-
tions for the aforementioned incentive problem in
dynamic supply chain settings. Most papers in this
line of work primarily consider what is often referred
to as dynamic contracts. Dynamic refers to the pos-
sibility of the contract terms being history dependent,
in which the underlying state variables evolve in a
stochastic fashion. Thus, the contract terms specify
outcomes for any possible evolution of the state
variables. The principal could offer and commit to
long-term contracts at the beginning of the planning
horizon (Lutze and Ozer 2008, Zhang and Zenios
2008, Lobel and Xiao 2017). Alternately, when the
principal lacks the commitment power, short-term
contracts can be redesigned in each period based
on the updated information (Zhang et al. 2010). In this
stream of literature, the proposed contract is often
exogenous to the overall problem. In other words, the
principal’s or the agent’s actions both before and after
the menu of contracts is offered do not affect the
structure of the menu. The menu of contracts also
does not depend on the information revelation before
the time that the menu of contracts is offered. In
addition, most papers in this literature assume that, if
the agent was to reject the contract, the remaining
problem for each firm is exogenous to the mechanism
design. Such a modeling assumption means that, if
the agent rejects the offer, then the principal and the
agent part ways (i.e., do not engage further) and that
their follow-up actions (including the rejection of the
contract) have no consequence to the menu of con-
tracts offered at the beginning. As a result, the design of
the menu of contracts does not endogenously depend
on what each party does during the planning horizon.
Nevertheless, this literature contributes to our under-
standing of these problems in dynamic settings. It also
provide actionable policies (contract mechanisms) that
firms can follow to effectively manage supply chains in
corresponding dynamic settings.

A few papers, however, represent a significant de-
parture from the aforementioned group of papers
and bring the literature one step closer to the more

general dynamic supply chain settings. Specifically,
the proposed solutions to the mechanism design
problems depend on the principal’s and/or agent’s
actions both before and/or after the mechanism is
executed aswell as any information revelation during
the planning horizon. Oh and Ozer (2013) propose a
general framework to model multiple evolutions of
forecasts generated by multiple firms. Using this
framework, they introduce the Martingale Model of
Asymmetric Forecast Evolutions and propose a dy-
namic mechanism for a supplier to elicit a retailer’s
information credibly before making an irreversible
capacity decision. The offered dynamic mechanism is
endogenous to the system in that it depends on the
evolution of asymmetric forecasts and the agent’s
actions after the menu of contract is offered as well as
the ongoing relationship, even when the agent rejects
the proposed contract. Feng et al. (2015) model a
dynamic bargaining game between a buyer (with
private demand information) and a seller that ensues
before a one-time demand realization. The negotia-
tion continues until an agreement on quantity and
payment for the trade of a product is reached. In the
process, the contract offers are updated by each party
based on outcomes of the previous negotiation stages.
Our paper also falls in this group in that we design
and solve a dynamic mechanism problem in which
the proposed mechanism /contract depends on (1) the
retailer’s (i.e., agent’s) private demand information,
(2) the supplier’s inventory replenishment decisions
(ie., principal’s actions) both before and after a
mechanism is offered, and (3) the retailer’s profit,
which isa function of supplier’s inventory policy even
when the retailer rejects the mechanism. In addition,
the optimal mechanism (i.e., the menu of contracts)
also evolves depending on what the supplier learns
through the retailer’s POS data over time.

The dynamic nature of demand information
asymmetry in our setting arises from the fact that the
supplier updates her demand forecasts using the
periodic POS data. The statistical evolution of de-
mand forecasts has been modeled in literature using
various approaches, such as time series (e.g., Aviv
2001, 2002, 2007), Martingale models of forecast
evolution (e.g., Oh and Ozer 2013), and Bayesian
inference (e.g.,Scarf 1959, 1960; Azoury 1985; Lovejoy
1990). We adopt the Bayesian approach. Because of
demand censoring, forecast evolution in our problem
resembles that of the unobserved lost sales Bayesian
inventory problem (Lariviere and Porteus 1999, Chen
and Plambeck 2008, Chen 2010, Bisi et al. 2011).
A noteworthy aspect of our Bayesian forecast evo-
lution model is that inventory decisions made by the
supplier determine the extent of censoring of de-
mand data in each sales period. Thus, the evolution
of forecasts is endogenized through the supplier’s
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inventory decisions. Our paper adds a new dimension
to the classical Bayesian inventory problem. In particular,
we show how this classical inventory problem impacts
the contract/mechanism design problem and vice versa.
We also show how to manage inventory under lost sales
together with the strategic issue of credible demand
information sharing in a decentralized supply chain.

3. The Model
Consider a supplier and a retailer who participatein a
VMI agreement. The supplier is responsible for pe-
riodically producing and maintaining on-hand in-
ventory over a planning horizon. At the beginning of
a selling period 5, the supplier decides how many
units to produce and deliver at unit cost ¢ to the re-
tailer before consumer demand is realized. The re-
tailer then satisfies demand to the extent possible
from on-hand inventory. Unmet demand is lost, and
neither the supplier nor the retailer observe lost sales.
For every unit sold to customers, the retailer earns r
and pays a wholesale price w to the supplier. The
supplier, who is liable for the leftover inventory,
incurs a unit holding cost h on the leftover inventory
carried over to the next period. Appendix A provides
a glossary of notation for an easy reference.
Demand in each period is independent and iden-
tically distributed with a cumulative distribution
function (cdf) G(z) and corresponding probability
density function g(z) for z > 0. Both the supplier and
the retailer are uncertain about demand before its
realization in each selling period. When the VMI
agreement is negotiated and signed, both firms may
possess the same demand information. In this case, the
supplier faces the classical lost sales inventory control
problem for whichbase stock policy is optimal (Karlin
and Scarf 1958). Hence, maintaining VMI agreement
over a long horizon would seem simple and possible,
because the supplier only needs to maintain a sta-
tionary base stock level (that both firms can agree on
at the time when the VMI agreement is signed) to
replenish the retailer’s inventory (in a stationary en-
vironment). However, over time, market conditions
often change: for example, because of store promo-
tions, new store opening/closure, or even changes in
consumer tastes. Often, the retailer is in a better po-
sition to obtain additional demand information given
his proximity to customers. Withoutloss of generality,
we denote the period in which the retailer receives
the additional information as the start of the plan-
ning horizon (i.e., n = 1). The retailer’s demand in-
formation could contain useful market signals, which
provide the retailer with an improved estimate of
the average market size. Essentially, using this infor-
mation, the retailer is able to accurately estimate a
parameter &£ of the demand distribution. Larger
& represents larger average demand (ie., &1 <&

implies that G(z|&;) > G(z|&,) for all z > 0). Therefore,
the retailer’s demand information is composed of com-
plete knowledge of the underlying demand distribu-
tion. The supplier, however, consolidates her prior
demand information at the beginning of the planning
horizon in the form of abelief 11 € o, representing the
pdf over ©:= [, &), the set of values that & takes. The
set sd:={n: @ — R*| [ n(£)d& = 1} denotes the col-
lection of all pdfs defined on the set ®. The supplier can
use, for example, sales information from previous
selling periods and market research to develop the
initial prior belief.

We define a probability space (Q,%, P) hosting the
random variable &, the demand process D,, and the
sales observation process Z, for n > 1. At the begin-
ning of a selling period n, the supplier raises the on-
hand inventory level from x,, to y,.* Demand for that
period D, is then realized. The supplier only observes
the POS information: that is, Z, := min{y,, D, }. At the
beginning of period n+ 1, using historical sales in-
formation and the sales observation in period #, the
supplier updates her belief about £ using the Bayes’
rule as follows:

T (Elm)
Gynl&)ma(®)
£ Cyalmma(m)dn
e, (&)
8(zn|E)Tn(E)
J§ 8alnma(mdn

where 1, is the indicator function, m; is the supplier’s
initial belief, z, is a realization of the random variable
Z,, and G(-) =1-G(-). The first term ¢, ,(&ly,) in
Equation (1) is the supplietr’s posterior belief when the
demand realization in period n is greater than the on-
hand inventory level (i.e., demand information is
censored). The second term (&) is the supplier’s
posterior belief when the supplier observes the exact
demand realization. We differentiate the notation of
n5,, from 7, to emphasize the dependence of the
posterior distribution on the on-hand inventory level
Yn, when the demand realization is censored.

The supplier’s total expected profit under this VMI
agreement is

Z aﬂ_lEé,D(é) [wmin{ym Dﬂ} _C(yﬂ —Xn) _h(yﬂ - Dﬂ)+]
n=1

Tln+1 (‘E) = 1{2,,=!,r,,} ’

+1g, <y nzl1, (0

Xy + (W —C)Yn

= Zla"_lEa,D(a)

—+h) [ Qu(2)dz|, wh 2

(w+ )fqu(z) z]were (2)

Qu(2):= f gu(t) du and g,(2):= f (O m(E)E (3)
0 2]
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denote the posterior predictive distribution and the
density of demand in period n, respectively. The
expectation in the supplier’s profit function is with
respect to random demand and the unknown market
signal &, which is the retailer’s private information.
Establishing a VMI-type partnership requires firms to
set up costly IT infrastructure (e.g., to share POS data)
and also reorganize workforce (e.g., to monitor in-
ventory and manage the relationship). Thus, the
decision to enter into a VMI agreement is typically a
long-term one. Hence, we adopt an infinite horizon
formulation to model this relationship.”

The retailer’s total expected profit, given his de-
mand information &, is

Z a”'l]ED{a) [(r — w)min{y,, Dﬂ}]
n=1

=(r—w) Z a"'l]ED{g) [yn - fyn G(z[¢) dz],
n=1 0

which is increasing in on-hand inventory level y,.
Therefore, the retailer has incentive to report opti-
mistic demand to induce the supplier to allocate high
on-hand inventory in each period.

3.1. The Learn-and-Screen Approach
We propose a learn-and-screen approach to help the
supplier with the joint management of inventory,
demand estimation, and incentive conflicts, all of
which collectively arise in a VMI framework. The
sequence of events in the learn-and-screen approach
is as follows. At the beginning of each period n>1,
the supplier decides between learning about the re-
tailer’s private demand information from the POS
data or offering a menu of screening contracts to the
retailer. If the supplier opts for the former, she raises
the on-hand inventory level up to y, and updates (via
Bayes’ rule) her belief over £ using the sales z, ob-
served in that period. The problem proceeds to the
next period. Otherwise, the supplier offers a menu of
contracts, {S(&|xy, 7n), P(E|Xn, Tn) }rco- We note that
these contracts are a function of the on-hand in-
ventory level x, and the updated posterior belief m,,.
The retailer decides whether to accept a contract from
this menu. If he accepts and chooses the contract
S(&),P(¢), the supplier procures inventory for the
remaining planning horizon following the base stock
level S(¢). That is, she produces enough to bring the
on-hand inventory level up to S(&) in each period. The
retailer pays P(£) to the supplier at the beginning of
every period. Equivalently, the retailer pays a one-
time lump sum after accepting one of the contracts.
The retailer then satisfies the realized demand to the
extent possible and makes a profit of (r — w) for every

unit sold; the supplier updates inventory, and this
repeats next period. If the retailer rejects and does not
choose any contract from this menu, the prevailing
supply chain relationship ensues. The supplier con-
tinues to make replenishment decisions and does not
offer another menu of contracts. Both firms make
profit from the sales realized in each period. Essen-
tially, rejection of the menu of contracts reverts the
supply chain partnership back to the status quo VMI
agreement with the base stock policy and level that
captures the supplier’s updated information learned
up to that point.

We highlight three important benefits of the pro-
posed learn-and-screen approach. (i) The ongoing
VMI agreement between the firms is unaffected re-
gardless of whether the retailer accepts one of the base
stock levels in the menu. The ownership of inventory
continues to remain with the supplier. We will show
that the menu of contracts act as an instrument to
facilitate credible communication of private demand
information. In the event that the retailer rejects the
menu of contracts, the ongoing VMI agreement en-
sues. (ii) The form of the contract is optimal (i.e., best
among all possible forms), because the supplier faces
the classical periodic review inventory control prob-
lem with lost sales after demand information is
(and can be) credibly shared. For such an inventory
problem, Karlin and Scarf (1958) have shown the
optimality of base stock policy, thus justifying the
contract terms. (iii) Monitoring the contract terms,
after they are accepted, requires minimal effort. The
supplier collects a one-time payment from the re-
tailer, and the retailer periodically monitors the in-
ventory level maintained by the supplier. Current
VMI frameworks, such as PeopleSoft Enterprise In-
ventory and Fulfillment Management by Oracle, already
implements this feature. For example, an automated
messageis delivered totheretailer assoon as inventory
on his shelf is replenished (see Oracle 2009, p. 1040).
Therefore, implementing the learn-and-screen ap-
proach does not alter the financial transactions between
the supplier and the retailer after the period in which
the contracts are offered (even if the retailer rejects
them). As in the ongoing VMI agreement, in all of the
subsequent periods, the retailer pays a unit wholesale
price w for each sold in that period.

3.1.1. The Contract Design Problem. Suppose that the
supplier offers the menu of contracts, {S(-), P(-)}, in
period n > 1. Suppose also that a retailer with private
demand information & (i.e., type & retailer for short)
chooses the contract S(&), P(§) from this menu; the
supplier then delivers inventory following the base
stock level S(&). The supplier offers base stock levels
that are at least as much as the on-hand inventory
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level x,.° Thus, yj = S(),j>n, and the inventory
evolves as follows:

xs1 = [S(E) -DjI*, j=n.
Given type ¢ retailer’s choice of the contract from the
menu, the expected profits of the supplier, theretailer,
and the total supply chain over the remaining horizon
are given by, respectively,

I (x, $(8), P(E))

= Epg| 3@ (wmin{S(@), D} - (5@ - x)

- h(S(€) - Dy)* + P(Z))

X, = xl,
IT(S(€), P(E), &)

, and

= Eogo| 35 " ( — ) min{5(), D3} - P(2)

I (x, S(Z), &)

= Epe| D)@~ (rmin{S(®), Di} - o(SE) - x:)

| i=n
Xn = xl.

Constant a € [0,1) is the discount factor. Each menu,
{S(-), P()}, determines a Bayesian game in which the
retailer chooses, in equilibrium, a contract that maximizes
his total expected profit over the remaining planning
horizon’:

- h(S(¢) - Dy)*)

IT(S(&), P(E), &) = max IT'(S(n), P(n), &), VEeO.

(IC)

To ensure the retailer’s participation, the supplier guar-
antees at least as much profit to the retailer as he would
make (in expectation) by rejecting the offered menu of
contracts. The value of the retailer’s outside option is
given by

IT'(S(8), P(£), €)
T (xy,€)
> (r—w) i @ " E e [min{y?, D)} = x],

VEe®, (PC)

where y°:=(y%,y9,,,...) denotes the order up tolevels
used by the supplier under the status quo VMI
agreement if the retailer was to reject the menu of
contracts. The value of the outside option for the
retailer depends on the inventory level in the period
that the contracts are offered, the order up to levels

maintained by the supplier over the remaining ho-
rizon, and his type (via the type-dependent demand
distribution).

The supplier’s incentive problem can be summa-
rized as follows:

[T (x, ) := max E:[IF(x,,S(£), P(E)|x, = x, 7, = 11);
S().P()

subject to S(-) > x, (IC), and (PC).
4)
We remark that the above problem is drastically
different from the classical static mechanism design
problems, the solutions of which generally follow the

work of Mirrlees (1971). We highlight these differ-
ences when we analyze the problem in Section 4.

3.1.2. The Bayesian Inventory Control and Optimal
Stopping Problem. Let V(x, ) denote the supplier’s
maximum profit using the learn-and-screen approach
starting with the initial on-hand inventory x and
belief over & given by m. For all (x, ) € R* x s, the
value function is given by

=1

>ar! (cx,1 + W — o)y,

n=1

) f: “ Qﬂ(z)dz)
nen l 5)

m=T

V(x,7):= sup E
(y)ed

+ &I (X, )

where y:=(y1,¥2,...,¥r=1), T€{1,2,...} U{+o0} is a
stopping time of the filtration generated by the sales
process, and Al denotes the set of all admissible
policies.® Admissible policies essentially mean that
the supplier’s decisions in period n can only be based
on the information gathered from the sales observa-
tions up to period n — 1. In each period, the supplier
optimally decides whether to continuelearning about
demand through POS information or stop and offer a
menu of contracts to the retailer so as to credibly
obtain the retailer’s private demand information. It
follows from the principle of optimality that the value
function associated with the learn-and-screen ap-
proach solves the following (functional) dynamic
programming (DP) equation:

V(x,m) = max{f'l“(x, n), [T (x, )}, where (6)
" (x, 7)) :=cx + n;gxx L(y,m)
=cx + n;gxx {(w —-oy—(w+ h).[: Q(z)dz
+a(1 - QW) V (0, 7(ly)
+a .[: qz2)V(y -z, n"]dz].
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Thefirst term in Equation (6) represents the supplier’s
maximum profit if she decides tolearn and update her
belief about the retailer’s private demand informa-
tion, &, using the POS sales data. The second term is
the supplier’s maximum profit if she decides to offer
the menu of contracts and screen the retailer’s private
demand information. The first three terms of L(y TT)
represent the myopic profit from raising the on-hand
inventory level to y in the current period, and the
last two terms correspond to future profit stream. The
DP in Equation (6) can be simplified (see Appendix B
for details) following the transformation V(x, m):=
V(x, ) — cx and IT¥(x, ) :=IT¥(x, ) — cx. The result-
ing DP equation is

Vix,m) = max{l’l"”(x, ), [ (x, )}, where (7)

Ir —
I (x, m):= max L(y, m)

= n;g( {(w —oy—(w+h- ac).[uy Q(z)dz
+a(1-QW)V(0, 7(ly))

+afyq(z)V(y—z,n“]dz].
0
(8)

The existence of the value function V(x, ) and an op-
timal control (y*, 7*) € M is established in Section EC.2
of the e-companion. Furthermore, we also propose a
successive approximation scheme to compute the
value function and the optimal policy.

3.2. Relation to the Classical Bayesian
Inventory Problem

Consider the following scenario in which the supplier
decides to never offer the screening contracts to the
retailer: that is, T = +oo (the learn-only approach). In
this case, the supplier faces a Bayesian inventory
management problem with unobserved lost sales.
Even this simpler inventory management problem is
difficult to solve for two reasons. First, the objective
function, I:(y, 1), is not concave in y. In particular, fu-
ture beliefs are affected by inventory decisions through
n°(-ly) in Equation (1). For an example, we refer the
reader to theorem 2(i) in Bisi et al. (2011). Hence, a
simple policy, such as a state-dependent base stock
policy, doesnot need to be optimal. Second, to update
the belief over £ at the end of period 7, one needs to
keep track of m; (the supplier’s belief in period n = 1)
and the entire history of sales z,.. .,z,-1. Hence, the
state space of the DP grows with time, and one quickly
runs into the curse of dimensionality.

To overcome these analytical and computational chal-
lenges, researchers have focused on the newsvendor
class of distributions (see Lariviere and Porteus 1999,
Bisi et al. 2011). These demand distributions possess

several desirable statistical properties when the on-hand
inventory level censors demand observations (as is the
case in the classical newsvendor problem and hence, the
name newsvendor class of distributions).

Definition 1. A cdf F(z|£), z > 0, belongs to the news-
vendor family (denoted henceforth as N) if it can be
expressed as 1 —e” ? , where ¢ is the parameter and #(z)
is a nonnegative increasing function.

Given n sales realizations z, ..., z,, of which m are
uncensored demand observations, the two-dimensional
sufficient statistic for the newsvendor likelihood and the
unknown parameter & are (m; XL, H(z;)). That is, all
information contained in the sample zi,...,z, re-
garding the unknown parameter £ can be summa-
rized by these two numbers. Thus, the state space of
the DP can be reduced to three variables. Braden and
Freimer (1991) were the first to identify the news-
vendor family of distributions. Furthermore, they pres-
ent distributions, including Weibull, that belong to the
newsvendor family. We remark that the learn-and-
screen approach adds a new dimension to the classi-
cal Bayesian inventory problem by incorporating
demand information asymmetry indecentralized supply
chains.

In summary, the Bayesian learning approach may
be tractable when the demand distribution is from the
newsvendor family. In this case, the supplier can
optimally determine a state-dependent order up to
policy, which can vary from one period to the other.
Implementing the learning approach over a short
horizon (a few selling periods) is practical under a
VMI setting. However, learning over a long horizon
can be challenging and may also prove controversial,
because the retailer can face low inventory levels in
some periods after observing high inventory levels.
To circumvent this potential issue, the supplier can
stop the learning process after a short period and use
her demand information to manage the inventory. In
that case, the supplier essentially faces the classical
lost sales inventory management problem, for which
the base stock policy is optimal (Karlin and Scarf
1958). The optimal base stock level based only on her
updated belief (at the beginning of period n) about
demand is given by
-c

§°(mn) = Q' () 2 1, ©)

w+h—ac
where Q,(z)is defined in Equation (3). Henceforth, we
will use S°(r) and S, interchangeably, where 7t de-
notes the supplier’s belief in the period when the
menu of contracts is rejected.

4. Analysis
We solve for the supplier’s optimal strategy using back-
ward induction. In Section 4.1, we provide tractable
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sufficient conditions for the incentive and participa-
tion constraints to hold. These conditions allow us to
characterize the optimal menu of contracts in closed
form. In Section 4.2, we study the impact of Bayesian
(demand) learning on the evolution of the optimal
contracts. In Section 4.3, we investigate the structure
of the supplier’s optimal timing of the menu of con-
tracts in an ongoing VMI agreement.

4.1. Optimal Menu of Contracts

The supplier needs to consider three important issues
in designing a menu of contracts when she imple-
ments the learn-and-screen approach. First, the sup-
plier has to offer information rent in addition to what
the retailer obtains from the status quo VMI agree-
ment (so as to encourage the retailer to accept a new
contract and hence, the revised VMI agreement). The
retailer’s profit from the status quo VMI agreement
depends on not only his private demand information
but also, the supplier’s inventory policy during the
remaining planning horizon, which is a base stock
policy with a fixed base stock level S?. Note that the
supplier’s belief 7 in the period when the contracts
are rejected is affected by the supplier’s inventory
decisions before that period. Furthermore, these in-
ventory decisions are impacted by the supplier’s op-
tion to screen the retailer in a future period. In this sense,
the belief m and hence, S) are endogenous to the
contracts offered by the supplier. In other words, the
retailer’s “outside” option (after rejecting the menu
of contracts) is no longer exogenous (as in classical
adverse selection problems) but instead, endogenous
to the contractdesign problem. Second, using the POS
data, the supplier can improve her belief about the
retailer’s private demand information before offering
a menu of contracts. Visibility of POS data upstream
in a VMI agreement facilitates this dynamic learning.
This learning aspect also adds a new dimension to
the adverse selection problems seen in operations
management/economics literature. Third, the sup-
plier’s inventory decisions before offering a menu of
contracts affect the learning process. The on-hand
inventory censors the demand realization in an un-
observed lost sales environment (which is typical in
most retail stores). Therefore, a larger on-hand inven-
tory reduces the amount of lost sales, enabling POS
data to better capture the true demand distribution and
resulting in a better demand learning process for the
supplier at the expense of higher holding costs.

To design the menu of contracts, we first charac-
terize the retailer’s outside option (i.e., his reservation
profit) if the menu of contracts is rejected. Following
the retailer’s rejection of the menu of contracts, the
supplier continues to manage inventory with un-
observed lost sales using a base stock policy with base
stock level S, defined in Equation (9), for the rest of

the planning horizon. After the retailer is given an
option to credibly reveal his private information, the
supplier no longer puts forth effort and resources to
continue to update belief about the retailer’s private
information. The retailer knows this fact. In other
words, if the retailer rejects the menu of contracts, the
supplier simply follows the status quo VMI agree-
ment with the optimal base stock level S7, from then
on. Base stock policy and this base stock level are
optimal for the supplier, because the supplier faces
the classical lost sales inventory management prob-
lem for the remaining planning horizon (Karlin and
Scarf 1958). Hence, type & retailer’s reservation profit
for the remaining planning horizon satisfies the fol-
lowing functional equation

T, (4,5, &)
= (r= ) [ Glak)dz + T, 0,5, E1T01)
0

+afyl'l;njn
0

where y = max{x, S} and S = 52.° Next, we establish
upper and lower bounds for the retailer’s reserva-
tion profit.

—Z, St ‘E)g.(zlfg)dzt (10)

Theorem 1. For any £ € ©,
ILin (S5 &) < TTn (%, S5

=(r—w)(x—

/&) <T(x, 57, )
S+ I (S5, €),

r—iw Glz|lE)dz
where nr (S };) M

We remark that the upper bouncl is essentially equal
to the retailer’s reservation profit if the on-hand in-
ventory is lower than the base stock level offered when
the menu of contracts is rejected. In other words, for
those cases, the upper bound gives us the retailer’s true
reservation profit. To design the menu of contracts, we
use this upper bound (i.e., use a conservative estimate)
for the retailer’s outside option. We replace the par-
ticipation constraint (PC) constraint in the optimization
problem of Equation (4) with this upper bound. The
solution to this optimization problem with a tighter
constraint also satisfies the incentive compatibility (IC)
constraint in the original problem. Hence, it is a fea-
sible solution for the original optimization problem. In
Section 5, we also solve the optimization problem by
replaci cing the retailer’s reservation profit with the lower
bound.'’ These two solutions define an upper and
lower bound on the supplier’s optimal profit (obtained
as a solution to the original problem in Equation (4) in
which the retailer’s reservation profit is I ; (x, 5%, &)).
Hence, these two solutions provide the optimality gap
and show how well the menu of contracts (designed by
using the upper bound on the retailer’s reservation
profit) performs.
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Lemma 1. An incentive-compatible menu of contracts
{S(-), P(-)} satisfies the revised (PC) if S(§) = 52, V& and
IT'(S(8), P(&), &) = Tiyn(x, S% &)

Recall that, if the retailer rejects the menu of con-
tracts, the supplier continues to implement the base
stock policy used in the status quo VMI agreement but
uses her updated belief and sets the base stock level to
57. Lemma 1 shows that, to encourage the retailer to
accept the revised VMI, the supplier needs to offer a
base stock level that is at least as much as what the
retailer would get in the status quo VML

The (IC) constraint provides first-order conditions
on the feasible menu of contracts. Using Lemma 1,
(IC) can be restated as follows.

Lemma 2. A menu of contracts {S(-), P(-)} satisfies the (IC)
constraint if and only if the menu also satisfies the following.

(i) The expected profit of the retailer for the remaining
periods is given by

IT(£):=IT(S(£), P(£), &)

=TT, (x, 8%, &

(r—w) [ S0 §
Ta ./; ./; EG(ZM)dqu,

Information Rent

V& and n.
(11)

(ii) The base stock level S(&) is z’ncreasz’ng.”

The conditions in Lemmas 1 and 2 can be used to
reformulate the supplier’s dynamic contract design
problem and obtain her resulting optimal profit.

Lemma 3. The following optimization problem determines
the optimal menu of contracts:

T (x, n)
=cx Tl (x,52,&)
1
=, max [ rOHEE,Emd 02
{ Lo, | Jo
Sigmax(ss%)

where H(S,E&|m):=(r—c)S — (r + h — ac) fs G(z|&)dz

e, o
3

— __mé) > . . .
and A(E): m, n>1 is the failure rate function

£

corresponding to the pdf, m.

Solving the above problem determines the optimal
menu of contractstobe offered to the retailer. In Lemmas
2 and 3, we use the classical approach (Mirrlees 1971)
to express (IC) as a differential equation that gov-
erns the marginal information rent offered to the

retailer. However, the similarity with the classi-
cal mechanism design solution approach ends
here. First, note that the supplier’s (principal’s)
belief m is dynamically updated using the Bayes’
rule (see Equation (1)). Thus, the information struc-
ture in our problem deviates from the classical prin-
cipal agent problem in which the principal’s belief
remains static. Second, the supplier’s dynamic vir-
tual surplus, H(S, &|n) (defined in Equation (13)), de-
pends on the prior information 71y, historical POS data
Z1,2,. .., and inventory decisions y;,1,,... through
the updated failure rate function A(-). The func-
tion A(£) measures the supplier’s belief that the pa-
rameter of demand distribution is £ given that the
parameter is at least £. Larger & translates to hav-
ing greater average demand. Hence, A captures the
dynamic learning aspect of the learn-and-screen
approach.

Third, consider the maximization problem in Equa-
tion (12) without the monotonicity c:cmstr;sn‘ntd%lééz > 0.

The standard solution approach involves showing
that the optimal base stock menu for this relaxed
problem is increasing in the retailer’s type, thus
establishing its optimality for the constrained opti-
mization problem. However, unlike in the classical
mechanism design problems, the function H(S, &|n),
which results from a multiperiod lost sales inventory
problem (after accounting for the retailer’s informa-
tion rent), is not concave in S for every type £ and a
given prior m. Thus, we look for weaker structural
properties, such as unimodality of H(-,&|m), that
would ensure that first-order conditions are not
only necessary but, also sufficient for existence and
uniqueness of the optimal solution. To this end, the
next theorem characterizes a family of demand
distributions for which H(S, &) is unimodal in S and
determine its maximizer using the first-order condi-
tions. Lemma C.2 in Appendix C provides conditions
to verify unimodality.

Theorem 2. Suppose that the demand distribution, G(z|£),
is from the exponential family (see section 3.4 in Berger
and Casella 2002) (ie., g(z|&) = k(z)I(E)e~*H), z > 0,
and functions k(-),1(-),t(-) and s(-) are differentiable, where
k(-), t(-) are defined over R* and I(-),s(-) are defined over ®).
If I(-),s(-) are decreasing and t(-) is increasing, then the
following statements hold.

1. The family of demand distributions {G(z|£)}sco i
stochastically increasing.

2. H(, &|n) is unimodal for all & € ©.

3. S*(&x, ) == max{x, S, 5(&|n)} is the maximizer of
H(S, &|m) over S(&) > max{x, S2}, where S(&) solves the
following first-order condition:

(r—w) 9

r=9)- @) 9%

(r+h—acG(SIE) + 57 G(S|E) = 0. (14)
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Normal, gamma, and Weibull are some distribu-
tions that satisfy the sufficient conditions (all with
unknown scale parameter) in Theorem 2. Unimodality
of H(-, &|m) ensures a simple characterization of the
menu of base stock levels. Such a characterization
emphasizes the practical value of offering the menu of
contracts to the retailer in a VMI relationship. After
the retailer accepts a contract, the inventory policy
for the remaining horizon is a simple base stock
policy. Wenote that the characterization in Theorem 2
also include the newsvendor family of distributions,'
which have been widely used in unobserved lost
sales Bayesian inventory literature (recall Section 3.2).
In Theorem 3, we provide sufficient conditions
that guarantee monotonicity of the base stock levels
S" and characterize the optimal menu of contracts
for the incentive problem in Equation (4) with a more
stringent reservation profit given by the upper
bound TT,, min (X, 8%, &).

Theorem 3. Suppose that € 5 has increasing faz’lure rate
(IFR) property, {G(|&)}sC N, and F=-<1 —e 2. Then,

the menu of base stock levels S*(&) is increasing. Therefore,
{§*(-),P*()} is an optimal menu of contracts, where

P'(&):=(r— w)(f G(z|c§)dz+ff —G(z|q)dqu)

~(1-0)Ty (%,52,9).

(15)

The evolution of A,(-) via Bayesian updating deter-
mines the dynamic aspect of the optimal contracts.
Note that A,,41(&) > A,(&) means that, compared with
the previous period n, the supplier is more confident
in period n+1 that the underlying market signal is
& given that it is at least £. Given this updated be-
lief, it can be verified from Equation (14) that, in
period n + 1, the supplier offers a higher base stock
level than what she offered in period n. The evolution
of failure rate function depends on the supplier’s
historical inventory decisions and POS information.
This dependence of contract structure on demand
information, which also depends on how the sup-
plier manages inventory, ties together the supplier’s
learning and screening problems. In Section 4.2, we
further investigate the impact of inventory decisions
under learmn-and-screen approach on the supply chain
operations.

The first condition in Theorem 3 (that m has IFR
property) is a standard assumption in static, exoge-
nous information mechanism design problems (see
Tirole 2002, p. 156). The mechanism that we consider
has a dynamlc ancl endogenous information structure
with learning.'® The subtle issue here is the preser-
vation of IFR property under Bayesian learning. The
inverse gamma distribution is a conjugate prior for

the newsvendor likelihood, and this motivates the
second condition. The inverse gamma distribution
has IFR property for most of its parameter space, and
its conjugacy ensures that the IFR property is pre-
served. The last sufficient condition on the cost pa-
rameters is satisfied, for example, in industries with
low to medium profit margins.'* This assumption
might seem restrictive at first. However, lower mar-
gins are typically a characteristic of the fast-moving
consumer goods in the retail industry (see Taylor and
Mauer 2013). We also remark that these conditions
are sufficient but are not necessary.

Note from Equation (15) that the payment P*(-) is
increasing with the corresponding base stock level.
Thus, there is a one-to-one correspondence between
the payment and the corresponding base stock level.
Hence, the supplier can construct the optimal pay-
ment schedule P*(S*) equivalent to the menu of con-
tracts {S'(-), P'(-)}. The supplier can then offer this
payment schedule to the retailer. Type & retailer
chooses order up to level 5*(£) and pays P*(S). In other
words, the retailer does not need to explicitly com-
municate his private information using the payment
schedule. Instead, the retailer simply communicates
the inventory level that he finds suitable given his
market demand and makes the corresponding pay-
ment (or receives a payment if P(&) is negative). In
VMI relationships, retailers are generally expected
to communicate changing market conditions to their
suppliers and in doing so, help suppliers make informed
inventory decisions. Such engagements are consid-
ered to be a good practice for VMI relationships.'
However, such communications remain informal and
hence, are prone to manipulation or misinterpretation
(i.e., they may be perceived as manipulation). The
proposed learn-and-screen mechanism ensures that
the retailer stands monetarily accountable for pro-
viding his input.

4.2. Impact of Bayesian Learning on the Proposed
Menu of Contracts
Here, we investigate how the supplier’s observation
of sales in a period (i.e., learning from POS data) af-
fects the structure of the incentives (i.e., the menu of
base stock levels and corresponding payments) of-
fered to theretailer in the following period. Note from
Part 3 of Theorem 2 that the proposed menu of base
stock levels in any period n is the maximum of the on-
hand inventory x,, the base stock level 5°(rt,,) that the
supplier follows if the retailer were to reject the menu
of contracts (a factor related to (PC)), and the maxi-
mizer 5(&|m,) of H(-, &|mt,) (the function that determines
information rent arising from incentive compatibility).
Given an on-hand inventory level, the remaining two
factors evolve over time as a result of the learning pro-
cess summarized in the supplier’s belief m, about the
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retailer’s private demand information. Learning from
sales observations (i.e., POS data) can have a con-
trasting effect on these two factors (i.e., the retailer’s
alternative option when he rejects the contracts and
the incentive compatibility).'® Note also that the pro-

osed menu of base stock level S* is increasing with
S. Similarly, the corresponding payment P is also
monotone with respect to S*. Hence, toisolate the effect
of learning on primarily the incentive structure (and
to simplify our discussions), we focus on how learn-
ing affects the menu of contracts {5(&|n,), P(&|m,)},
where P(-) is defined as in Equation (15) but with §*
replaced by 5.

4.2.1. Evolution of the Menu of Base Stock Levels. We
proceed by investigating the impact of sales observations
on the supplier’s belief process and in turn, how the
updated belief effects the base stock levels 5(-). The
following theorem shows that, by Bayesian updating,
the supplier’s posterior belief is stochastically or-
dered in the sense of failure (hazard) rate with respect
to the prior belief.'” The direction of ordering depends
on whether the demand realization in a period is censored.

Theorem 4. The following statements hold for any n > 1.
1. If the sales obsermtion in period n is censored (i.e.,
Zn =yﬂ)1 then A’ﬂ(é) > ’111+1 (‘Elyﬂ) and g(‘glnﬂ) 2 g(‘glnﬂ+1 )
2. Ifthe sales observation in period n is uncensored (i.e.,
Zn <Yu), then
(i) for types & 2 Hzn), An(€) < A (£) and S(Elm) <
S(‘Elnﬂ+1) 1
(ii) for types &< t(zy), such that g(z,|&) <g(z|), we
have An(€)> Ans1(&) and S(&|mn) > S(Elmtns1).

Theorem 4 highlights and quantifies how the two
factors, namely the occurrence of a stockout event
and the magnitude of the sales, determine the evolu-
tion of the incentive structure offered to the retailer.
A censored demand observation (i.e., POS data with
the knowledge that on-hand inventory at the re-
tailer dropped to zero during the sales period)
alwayslowers the base stock level 5(-) offered to the
retailer. Thus, censored information negatively im-
pacts the retailer by reducing the incentive (i.e., the
base stock level) offered to him (who always prefers a
high base stock level). This result identifies a new
drawback of censored demand information (in ad-
dition to the well-known drawback on customers’
perception of the retail store). In contrast, an un-
censored demand observation (i.e., POS data with no
stockout) translates into a reduced incentive only for
a retailer with low demand information. How much
the offered base stock level changes as a result of
learning depends on the magnitude of the observed
POS data (through the learning process specified in
Equation (1)). Next, we explore the intuition behind
these results.

A censored demand observation suggests to the
supplier that the average market size must be larger
than what was expected in the previous period. An
interesting consequence of this ordering is that the
menu of base stock levels offered in the following
period is smaller. Intuitively, one would expect the
supplier to offer higher base stock levels in the fol-
lowing period due to the learning dynamic, that is,
account for her updated belief in higher demand.
However, careful analysis and thought reveal that the
result is in fact the opposite. The optimal base stock
levels are driven by both the learning dynamic and
the incentive that needs to be offered to the retailer
to facilitate credible communication. The increased
confidence in a larger market size (following a cen-
sored demand observation) implies that the retailer
makes greater expected profit than the previous pe-
riod. As a result, the supplier lowers the menu of base
stock levels (and hence, the incentive) offered to the
retailer, while still facilitating credible communica-
tion (Part 1 of Theorem 4).

Anuncensored demand observation suggests to the
supplier that the average market size may be smaller
or larger than what was expected in the previous
period. The direction of this ordering depends on the
magnitude of the sales observation. Given that the
average market size is at least £, a small demand
observation increases the supplier’s confidence that
the average market size is £ in the following period
(refer to the definition of A, in Lemma 3). This in-
tuition explains the failure rate ordering in Part 2(i)
of Theorem 4. One may expect, as a result, the menu
of base stock levels to become smaller. However, this
is not the case. The supplier offers higher base stock
levels in the following period (greater incentive) to
ensure that the retailers with more optimistic demand
information (ie., retailer types &> t(z,)) are able to
credibly share their demand information. Increasing
the menu of base stock levels 5(-) in the following
period provides sufficient incentive to deter the re-
tailer with larger market size (¢ > #(z,)) from choosing
a base stock level meant for a smaller market. The
situation, however, getsinteresting as the magnitude
of the demand observation increases. As the mag-
nitude increases, the supplier becomes more confi-
dent that the underlying average market size is large.
In the event of a large uncensored demand obser-
vation, the supplier mimics her actions following
a censored demand observation, i.e., resorts to low-
ering the menu of base stock levels (Part 2(ii) of
Theorem 4).

4.2.2. Symmetric Demand Information. Next, we study
the symmetric information setting to understand how
learning impacts the efficiency of screening contracts
in the learn-and-screen approach. In the symmetric
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setting, the supplier and the retailer have identical
information about demand. That is, market signal £ is
common knowledge, whereas demand realization in
a period is still unknown to both players at the be-
ginning of the period. In this case, the supplier faces
the classical lost sales inventory control problem
(Karlin and Scarf 1958). The optimal base stock level
for this problem is G™'(=%=-|¢), which depends on
the underlying market conditions &. In this case, the
wholesale price contract, commonly used in VMI
agreements, prohibits the supplier from coordinat-
ing the supply chain. In Theorem 5, we characterize
linear base stock level contracts that coordinate
this decentralized supply chain and examine its
properties.

Theorem 5. Under symmetric demand information, the
linear base stock level contract with base stock level S(&) :=
G (5= E) and marginal price pft .= =lbidia
ordinates the channel. That is, this contract maximizes the
total supply chain profit.

In this case, the supplier does not need tolearn from
POS data, because she has the same demand in-
formation as the retailer. The theorem shows that the
supplier can design a simple supply chain coordi-
nating contract, which offers the base stock level $” to
the retailer in exchange for a payment of pS from
the retailer in each period. The supplier implements
this contract by announcing the marginal price (con-
stant) p” rather than offering a menu of contracts. In
response, the retailer would choose the base stock
level S/ to maximize his profit.

The symmetric information setting may also ma-
terialize as a special case in the learn-and-screen
approach if the supplier’s belief 7, converges to the
Dirac delta function 6 with the probability mass
concentrated at £. That is, the supplier beheves w1th
probability one that the average market size is £.' For
this case, Equation (14) is still valid, and it provides
exactly one solution 5(£|5;), which is equal to the
supply chain coordinating base stock level S/#(&). This
equivalence can be verified by noting that A() =
Thus, over time, if the supplier’s belief about market
conditions converges to a singular distribution (Dirac
delta), the base stock level in the learn-and-screen
approach equals the coordinating base stock level.
Note, however, that the convergence of the belief
process and hence, the base stock levels in the learn-
and-screen approach are a function of the sales ob-
servation process (see Theorem 4). In the following
section, we further explore the impact of learning on
the payment function in the learn-and-screen ap-
proach. We use the linear price contract p®S as a
benchmark.

4.2.3. The Evolution of P(£). Here, we show how
Bayesian learning about the retailer’s private demand
information affects payment P(£) in the learn-and-
screen approach. Note that monotonicity of P(-) and
S() implies that the menu of contracts can be imple-
mented as a payment schedule P(S).

Theorem 6. The following statements hold for any n > 1.
1. The marginal price paid by the retailer is always
greater than the first best price: that is, d—§—2pﬂ’—

{rwiiell-a)) . 0 for all & € ©.%°

2. If the demand realization in period n is censored, then
dbyy - dP
dSrH-l 2 E:.-

3. If the demand realization in period n is uncensored,

then S—:}S’:-flﬁ = for all &> t(z,).

Part 1 shows that the retailer pays a higher marginal
price than in the symmetric demand information
setting to convince the supplier about the credibility
of his demand information. This monetary commit-
ment on the part of the retailer assures credibility of
the information that he shares. Parts 2 and 3 illustrate
the impact of learning from sales observation on the
marginal price. Censored demand observation neg-
atively impacts the retailer (and the supply chain). It
results in the retailer choosing a lower base stock level
(Part 1 of Theorem 4) and paying more for the con-
tract in the following period. However, an uncen-
sored small demand observation benefits the retailer
and the supply chain. In particular, the retailer pays
a lower marginal price and reserves a more suitable
base stock level given his market conditions. Lower
marginal price provides sufficient incentives to deter
the retailer with larger market from choosing a low
base stock level. These observations corroborate the
discussion of Theorem 4. Figure 1 illustrates the dy-
namics of P(S) driven by observed POS data. We
remark that the payment function illustrated in
Figure 1 is concave, which implies a quantity dis-
count scheme (although we do not formally prove
this result to hold for the proposed contract). The
concavity of a screening contract was first for-
mally shown in part 5 of theorem 1 in Ozer and Wei
(2006). However, this concavity does not necessarily
hold in a dynamic setting. For example, Oh and Ozer
(2013) show that the optimal contract is neither concave
nor convex in a dynamic environment that they study.

4.3. Timing of Contracts in VMI

Suppose that the supplier starts a period with on-hand
inventory level x and belief ni. The supplier has to
decide between offering the optimal menu of con-
tracts or continuing to learn via Bayesian updating. By
delaying to offer the menu of contracts, the supplier
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Figure 1. Dynamics of Optimal Contracts
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14 == Py11(8), following small uncensored demand
—§= F.11(5), following large uncensored demand
12 == £,,,(5), following censored demand
- - glope of the line is p/*

Notes. In this figure, cost and demand parameters are as follows: r =
12,w=6,c=3,h=2,a=08, and © =[2,12]. Demand follows
exponential(£) distribution, and its prior is inverse gamma (IG)
distribution with shape and scale parameters (9,30), respectively.
In the small uncensored case, z, = 1, corresponding to updated IG
distribution with parameters (10,31). In the large uncensored case
and censored cases, z, = 10, corresponding to updated parameters
(10,40) and (9,40), respectively. Section EC.1.2 of the e-companion
provides the details on belief updating.

gives herself a chance to improve her knowledge about
market conditions, contingent on her prior inventory
decisions. If, after many selling periods, the supplier is
able to accurately estimate market conditions (i.e., there
is no longer information asymmetry), she can extract
all of the information rent by screening the retailer (see
Theorem 5 for the coordinating contract). Thus, delaying
has potential benefits in terms of greater rent extraction.
However, until the contracts are offered, the supplier
makes inventory decisions based on her limited knowl-
edge of demand, potentially resulting in lost sales over
several periods.

The aforementioned tradeoff drives the supplier’s
inventory decisions and the timing of screening con-
tracts. The following theorem provides a partial char-
acterization of the optimal time to offer the menu of
contracts.

Theorem 7. The following statements hold for any
(x,m) e R* x &
1. IT¥(x, m) is decreasing in x.

2 If x > max{G™! (e ), 5°(m), $(Em)),

then it is optimal for the supplier to continue learning
using sales data.

On-hand inventory level serves as an indicator for the
supplier to determine whether it is better to postpone
offering contracts. With a high on-hand inventory
level, the supplier incurs holding cost for excess in-
ventory regardless of screening the retailer. The
supplier could, therefore, benefit from learning while
inventory level is high and eventually, offer the menu
of contracts when she is better informed about market
conditions. Next, we illustrate and quantify the value
of the learn-and-screen approach.

5. Value of Learn-and-Screen Approach
Here, we quantify the value of three approaches that
the supplier could use to manage inventory and in-
formation in an ongoing VMI framework. (i) In the
learn approach (V'), the supplier statistically im-
proves her demand forecasts using POS data until the
end of the planning horizon. Note that V' can be
computed using the recursion in Equation (6) by
setting [T = —oo. (ii) In the screen approach (V*), the
supplier offers the optimal menu of contracts to the
retailer at the beginning of the planning horizon. V*"
can be computed by setting [T" = —co in Equation (6).
However, in this approach, the supplier undermines
her ability to learn more about demand over time. (iii)
In the learn-and-screen approach (V), the supplier
dynamically evaluates on-hand inventory level and
her belief about market conditions to determine the
timing of the contracts. The learn-and-screen ap-
proach also helps us quantify how much value
screening adds to the learning approach (ie., the
value of screening (%‘,,L’ X 100)) and how much value
dynamically learning adds to the screening approach
=1 100)). In addition,
we report the centralized supply chain profit (V) as
a benchmark. In the centralized setting, there is a
single decision maker for the supply chain. This de-
cision maker faces the classical lost sales inventory
problem with complete demand information. The
value function of centralized supply chain is com-
puted using f’f (x,&):=cx + Ve (x, &), which is defined
in Equation (C.6). We report (with a slight abuse of
notation) V(x, ) = E¢[V*(x, &)].

To evaluate performance of these three inventory
management approaches, we consider a two-point
prior and exponential demand distribution under
a range of market conditions. The average demand
is either high (&) or low (£). The supplier’s initial prior
p denotes her belief that average demand is high in
the ongoing season. The two-point prior simplifies
the state space of the dynamic program in Equation
(7) to two variables—inventory level (x) and proba-
bility of high type demand (p). We direct the
reader to Section EC.1.1 of the e<companion for more
details.

We compute Vand V' using a stricter version of the
participation constraint, IT"(£) > ﬁ:m.n (x,52,&), which
implies (PC). The value function obtained using IT, ,,,
denoted by VLB, is alower bound to the value function
with the (PC). We also report an upper bound V¥ to
the value function using the lower bound IT/; (52, &)
for the retailer’s reservation profit. The optimality
gap, which is defined as the percentage difference
between the upper and the lower bounds, Y=/

VLB
100, gives us a measure of the performance of our

(i.e., the value of learning (
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proposed solution (with TT,,
problem.

Prevailing market conditions are quantified using
two measures: double marginalization (DM) and
degree of information asymmetry (DIA) in the supply
chain. Double marginalization is the fraction of the
total profit margin captured by the retailer (i.e.,
Higher double marginalization (with r,c ﬁxedm) im-
plies that the retailer has sufficient market power to
capture a larger share of the total margin r — ¢ in an
ongoing VMI agreement. The degree of information
asymmetry, p:= _l‘%r%%ﬂ (which canbe computed by
the supplier), measures the variance in demand seen
by the supplier relative to the expected variance in
demand seen by the retailer given her current prior.

min) to the supplier’s

Because Var(D) = Var:(E[D|&]) + E,[Var(D|&)],
__Var(D) _ +Vara(1E[DIcE]) _ 1, Varg(é)
E¢[Var(D|&)] E¢[Var(D|5)] E:[£2]
_ o, Bel€]-Efle] ) EE[E)
- Ee[£2]  ° El&]

where the third equality follows from D|& ~ exp(&).
From above, it follows that p € [1,2]. Note that p =1
denotes the symmetric information setting and that
p =2 corresponds to the highest degree of informa-
tion asymmetry in the supply chain. The degree of
information asymmetry evolves endogenously in the
VMI agreement, whereas double marginalization is
exogenously determined ahead of the season.

We fix parameters r =12,c =3,h =2, =08, =2
and vary other parameters as follows: w = {10,6},
denoting low (L) and high (H) double marginaliza-
tion, and & = {6,12}, representing small and large
demand variability. We consider two priors, each rep-
resenting L/H clegree of information asymmetry in
the supply chain.” The initial on-hand inventory level
x is assigned integer values from zero to seven, and
the supplier’s profit, averaged across different x, is
reported in Table 1.

We first consider the high double-marginalization
condition as in innovative product supply chains in

Table 1. Value of Learn-and-Screen Approach

which the retailer (such as Apple) exercises greater
market power. Insucha supply chain, adopting either
the learning approach or the screening approach is
inefficient compared with the learn-and-screen ap-
proach. In the learning approach, the supplier makes
a smaller margin on each unit of the product sold
(relative to the retailer) and hence, is likely to main-
tain lower on-hand inventory levels than the coor-
dinating level. Lower inventory levels further reduce
the scope to observe and learn from uncensored de-
mand data. In the screening approach, the supplier
has to offer steep information rent and reservation
profit (because of the retailer’s market power) to learn
the private demand information—especially when
the degree of information asymmetry is high. In such
market conditions, the supplier benefits from low-
ering the degree of information asymmetry by learning
through POS data before offering the screening con-
tracts to the retailer.

Next, we consider the low double-marginalization
condition observed, for example, in functional prod-
uct supply chains as in the fast-moving consumer
good retail industry (such as the Sainsbury’s example
mentioned in Section 1). In such markets, the supplier
exercises greater market power, and the retailer is
typically squeezed for profit (e.g., Fisher 1997, Taylor
and Mauer 2013). Despite low reservation profit of the
retailer, the supplier may benefit from postponing of-
fering the contracts to lower the information rent offered
totheretailer. When the demand information asymmetry
is high, the supplier gains up to 12.21% by delaying the
offer of the contracts. Compared with the learning ap-
proach, the supplier gains up to 22.65% by strategically
screening the retailer. The value of leam-and-screen ap-
proach is lowest when the prevailing market conditions
are characterized by low double marginalization and
low degree of information asymmetry.

Comparing VL8 and V¢ in Table 1, we note that the
supplier makes up to 68.7% of centralized supply
chain profit using the learn-and-screen approach
(while ensuring that the retailer makes at least his
reservation profit). Also, for the same parameter in-
stances, we compare VUB and V'8 and find that the

I DM DIA V¥ r L yus V= Value of screening (%)  Value of leamning (%) Optimality gap (%)
6 L L 9965 10192 10212 10212 157.19 2.50 0.17 Se4
6 L H 5518 5490 6047 6059 9455 9.97 12.21 0.20
6 H L 3431 5244 6146 6187 157.19 84.32 29.35 0.67
6 H H 1956 2048 3369 3544 9455 77.99 172.02 5.13
12 L L 20066 20188 202.62 20263 305.59 0.98 0.37 Te-3
12 L H 7009 8331 8538 8587 124.14 22.65 2.91 057
12 H L 3734 12412 12412 12412 30559 99.65 0.00 0.00
12 H H 195 4696 5585 5923 124.14 149.50 53.14 631
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average optimality gap is 1.61%. This finding sug-
gests that the supplier does not lose much by using
IT . (x,S%, &) instead of IT7_, (x, S, &) as the retailer’s
reservation profit. The optimality gap is largest when
both the degree of double marginalization and the
degree of information asymmetry are high.

5.1. Impact of Screening Contracts on
Inventory Decisions

Next, we numerically investigate the effect of screening
the retailer on the supplier’s inventory decisions before
offering the menu of contracts. As a benchmark, we
consider the supplier’s inventory decisions without
the option to screen the retailer (i.e., the learning
approach). Figure 2 illustrates the base stock levels in
the learn approach versus the learn-and-screen ap-
proach. We first note that the optimal inventory
policy is a state-dependent base stock policy for both
approaches. The supplier’s updated belief p about &
determines the base stock levels. The base stock levels
in the learn-and-screen approach are lower than when
the supplier does not have the option to offer screen-
ing contracts to the retailer. In essence, having the
option to strategically screen the retailer for private
demand information lowers the value of maintain-
ing higher inventory levels to learn about demand
through Bayesian updates. Yet, despite the lower
inventory levels compared with the learning approach,
the supplier and the retailer make more profit using
the learn-and-screen approach. We remark that these
observations are robust to varying other parameter
(r,¢,h, &) values.

5.2. Timing of Contracts

The four panels in Figure 3 illustrate the optimal
contract offering region under different market con-
ditions. The supplier offers the optimal menu of
contracts if her on-hand inventory level x (x axis) and
her belief about demand p (y axis) fall within the
shaded region. A larger region indicates that thereisa
greater likelihood that contracts are offered.

For a given belief (resp., on-hand inventory) level, the
optimal stopping time has a state-dependent threshold
(resp., control band) structure in the supplier’s on-hand
inventory level (resp., belief level). At the beginning
of each period, for a given belief level, if the supplier’s
on-hand inventory is lower than a threshold, then the
supplier should optimally offer the menu of con-
tracts. Likewise, for a given on-hand inventory level,
if the supplier’s belief is within a control band, then
the supplier should optimally offer the menu of
contracts. Generally, we observe that the supplier is
more likely to offer the menu of contracts when she
is more confident that the underlying demand is
high in view of the greater sales associated with the
larger demand.

Comparing the upper panels with the lower panels
in Figure 3 highlights the impact of demand vari-
ability on the timing of contracts. As the demand
variability increases, the contract offering region en-
larges. This suggests that learning about underly-
ing demand through Bayesian updates can be
slower, and the supplier is better off screening the
retailer. Comparing the left panels with the right
panels in Figure 3 illustrates the impact of double

Figure 2. Impact of the Learn-and-Screen Approach on Inventory Decisions
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Figure 3. Optimal Timing of Screening Contracts in VMI
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marginalization (or the retailer’s market power) on
the timing of the contracts. With higher double
marginalization (retailer has greater market power),
the contract offering region shrinks. All else equal, the
retailer is guaranteed higher profit (compared with
the low double-marginalization condition) if he ac-
cepts one of the contracts. Thereby, the supplier
compensates for the increase in the retailer’s market
powerby waiting longer before offering the contracts.

5.3. Dynamics of Information Rent

The two-point prior considered in this section also
enables us to illustrate in a transparent way the im-
pact of the supplier’'s updated belief on the in-
formation rent offered to the retailer. Specifically, we
illustrate how much the supplier gains by improving
her belief before offering contracts. We refer the
reader to Section EC.1.1 of the e-companion for the

Figure 4. Retailer’s Expected Profit, Expected Information
Rent, and Reservation Profit as a Function of the Supplier’s
Belief When w = 6;& =12 with x=10
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analytical derivations supporting our discussion in
this section. Thesupplier offers two contracts (S*, P') and
(S,P") if she decides to screen. The retailer’s expected
profit (see Equation (11) and Section EC.1.1 of the
e-companion) in the two-point prior case simplifies to

— S —
BAT©)] = T2 [~(Gek) - GeiD)ez

Information Rent

+ T, (%, S5, ),

il

where $' =max{x,5%,S} and ¢ —¢

(A-p)h+c(1-a))
plr—w)+{1-plr+h—ac)"

By delaying offering the contracts, the supplier
potentially improves her knowledge about market con-
ditions: that is, p tends toward zero or one (p tends to
one). Figure 4 shows that the expected informa-
tion rent, which is the difference between E£[IT'(£)] —
ﬁmin(x, Sf,, &), firstincreases and then decreases with p.
Thus, by improving her belief, the supplier reduces
the information rent offered to the retailer.

plr-w) -
plr=w)+(1=p)(r+h—ac) —

6. Conclusion

From the supply chain point of view, there are two
compelling reasons to adopt VML First, there is a
single centralized inventory manager for the supply
chain who is closer to the upstream. Second, the inven-
tory manager has access to the periodic point-of-sale
information. Both of these reasons significantly com-
bat the well-documented bullwhip effect in supply
chains. However, there remain unresolved issues, such
as credibly sharing demand information beyond POS
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Figure 5. Comparison of Inventory Management Approaches in VMI
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i Consumer Goods — Big-box retailers
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Notes. In the figure, Leamn, Screen, and L&S denote the value of implementing learn, screen, and learn-and-screen approaches, respectively. In
the learn approach, the supplier relies on the POS data to leam about the demand and make inventory decisions. In the screen approach, the
supplier offers the proposed contracts in the first possible period of the planning horizon. L&S ~ Screen means that the learn-and screen approach
is approximately equivalent to screening the retailer early on. The supplier’s asymmetric dependence in the examples listed is determined as the
ratio of the retailer’s average (industry-wide) gross margin to the supplier’s average (industry-wide) gross margin of publicly traded firms.

data, between the supply chain members in an on-
going and dynamic VMI agreement. As a result, im-
portant demand information thatis observed locally at
the retail store could beignored by the VMI manager at
the supplier’s site when making inventory decisions.
This lack of credible communication between VMI
members has led to tensions and eventually, falling
out of VMI agreements. We propose and characterize
a dynamic learn-and-screen approach, which addresses
this key issue and provides a channel for credible com-
munication in an ongoing VMI agreement. We note that,
to implement the learn-and-screen approach, the VMI
manager requires minimal additional monitoring effort
to oversee the approach.

In the proposed learn-and-screen approach, the
supplier learns about market conditions via POS data
and then, offers a menu of screening contracts to the
retailer. The retailer communicates his private de-
mand information by choosing the base stock level
from the menu of contracts that is most appropriate
given his private information about the market con-
ditions. In exchange for maintaining inventory at the
mutually agreed on level, a one-time fee (or equiva-
lently, a per period payment) is exchanged between
the two firms. The proposed mechanism takes into
account the retailer’'s market power, which evolves
endogenously to the mechanism. Thus, offering the
menu of contracts ensures that both the supplier and the
retailer are better off from the status quo VMI agreement.

Our analysis provides structural insights about the
impact of learning from POS data on the design of the
contracts. In particular, two aspects of the learning
process—occurrence of a stockout event and the mag-
nitude of the sales data—determine the evolution of
the supplier’s belief process and hence, the incentives
offered to the retailer to share his demand information
credibly. Thus, the learn-and-screen mechanism allows us
to explore the dynamic interplay between inventory de-
cisions and evolution of incentives—highlighting the
strategic aspect of inventory management.

The value of implementing the learn-and-screen in-
ventory management approach in an ongoing VMI is
summarized in Figure 5. The upstream inventory
manager should consider the supplier’s asymmetric
dependence and the degree of demand information
asymmetry to assess the value of various inventory
management approaches within a VMI agreement.
The supplier’s asymmetric dependence is defined as
the difference between the supplier’s dependence on the
retailer and the retailer’s dependence on the supplier
inthe mutual partnership (Brinkhoff et al. 2015). High
asymmetric dependence implies that the supplier is
highly dependent on the retailer, resulting in the retailer
capturing a larger share of the total profit margin.

For supply chains with low asymmetric dependence,
the supplier benefits from updating the ongoing VMI
operations by immediately eliciting the retailer’s private
demand information (via the proposed contracts). Ex-
amples of such a scenario include VMI agreements be-
tween big box retailers and consumer goods manufacturers
or between pharmaceutical companies and drug stores for
commonly prescribed drugs. In these supply chains,
when a new product or a drug is being introduced into
the market or when the retailer plans to run store pro-
motions, the supplier can credibly elicit the retailer's ex-
pectation of the upcoming demand in exchange for a
paymentand in turn, make appropriate inventory decisions.

For supply chains with high asymmetric depen-
dence (e.g., airline manufacturers and commercial
airlines) the supplier is better off updating her on-
going VMI operations by eliciting the retailer’s pri-
vate demand information via the (dynamic) learn-
and-screen approach. The timing of contracts in the
learn-and-screen approach depends on the degree of
information asymmetry in the supply chain. When
the degree of information asymmetry is low, offer-
ing the contracts immediately alleviates the effect
of double marginalization. The low degree of infor-
mation asymmetry implies that the supplier offers
lower information rent to update the VMI agreement. As
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the degree of information asymmetry grows, the supplier
benefits significantly by leaming from POS data and
dynamically deciding the timing of the contracts.
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The first two authors’ names for this article are listed in
alphabetical order.

Cost parameters Description Demand parameters Description
r Unit retail price £ The retailer’s private demand information
w Unit wholesale price 0:=[&Z] Possible values that £ takes
c Unit cost of production (") The supplier’s belief (pdf) at beginning of each period
nz=1
o The set of all pdfs on ©
h Unit holding cost per period 2(:1£), G(+|€) pdf and cdf of demand, respectively
@ Discount factor Gal(-), Qu(-) Predictive demand density and distribution at the
beginning of each period n > 1, respectively
Profit functions Description
I1%(S, P) The supplier’s expected profit if the retailer chooses contract {S, P}
from the menu
II7(S, P, &) Type & retailer’s expected profit if he chooses contract {S, P} from the
menu
I1*(S) Expected total supply chain profit if the retailer chooses base stock
level S from the menu
I (x,y, &) Type & retailer’s expected profit if he rejects the menu of contracts
I, (x, 5, &) Type £ retailer’s expected profit if he rejects the menu of contracts and
the supplier follows the base stock policy with the base stock level §
IT (x5, Upper bound on type £ retailer’s reservation profit IT", (x, S, &)
I, (S, &) Lower bound on type £ retailer’s reservation profit I, (x, S, £)
V(x,m) The supplier’s maximum expected profit obtained from using the
learn-and-screen approach starting the planning horizon with x,
Vi (x,m) The supplier’s maximum expected profit obtained from using the
learn approach with initial conditions x, 7t
Ve (x, m) The supplier's maximum expected profit obtained from offering the
menu of screening contracts at the beginning of the planning
horizon
Decision variables Description
T Stopping time with respect to the filtration of the observed sales
¥y = (1,y2,...,y:-1)  Order up to levels used by the supplier in the status quo VMI agreement before
offering the contracts
¥ = (s s) Order up to levels used by the supplier in the status quo VMI agreement if the
menu of contracts is rejected
A Denotes the set of all admissible (y, 7)
{8(), P ()} Optimal menu of contracts offered
5°(m) Base stock level used by the supplier if the menu of contracts is rejected
S Optimal base stock levels under symmetric demand information using the linear
coordinating contract
PP Coordinating price under symmetric information
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Appendix B. Simplification of the DP

Using the definitions of transformations V and I1¥, we
can simplify L(y,m) as follows: L(y,m):=(w—c)y—(w+h)-
[ Q) dz+aQ(2)V(0, 7 (ly) + & J§ 9(2)Vy —z, ) dz = (w — c)-
y—(w+h) [ Qz)dz+a-Q2)V(0,7° (fy) +a [ =)V (y—z,7°) +
ey —2)ldz = (w - o)y — (w + h) [§ Q) + aQE)V(0, n°(ly)) +
aﬁq(z)V[y - z,m)dz + acﬂq(z)(y —z)dz = (w - c)y — (w+
h=-a0 [{Q@dz + aQ@V(0, n°(ly) + a [ 9@V(y - z,
n‘)dz = L(y, m).

Appendix C. Proofs

Proof of Theorem 1. First, we establish the lower bound:
I (x,S,&) = (r—w)E[Z 2, &~ min{yf, Dy(&) }x1 =x] = (r—w)-
E[Z, "' min{max{x;, 5}, Di(&)}|x1 = x] = (r —w)E[ZZ, "' -

min{S,D;(&)}Hx; = x] = fﬂ We establish the upper
bound by first providing a sucoessive approximation scheme
that monotonically (increasingly) converges to IT.; (x,S, &).
Next, we show that IT_ ., is an upper bound to each function
in the approximation scheme and to the limiting function—
establishing the necessary result. Let B:={w:R* — R7|
sup [w(x)| <co}. For every & €© and base stock level §,
I . (x,S,&) € B, which follows from the above lower bound
and the upper bound given by I, (x, 5, &) = (r —w) £, a* -
Ep (g[min{y}, D; ()} 21 = x] < (r —w) T, " "Epe)[Di (§)] =
LB E[D(E)] < 0.

Next, we define an operator T;  acting on functional space %.
For a fixed £ € ® and S, (T} w)(x) =(r—-w)- fyG(z|£}dz T+
aw(0)G(ylE) + & f§ wly - z)g(z|£)dz where y = max{x, §}.

Lemma C.1. The operator T ; acting on metric space 9B satisfies
the following properties for any £ € © and S € R*.

(1) Forwe®, Tg ;w € B.

(2) For wy, wo € B with wy < w,, we have T wy < TG cw.

(3) T ¢ is a contraction mapping on (B, || - |l), where ||w]|. :=
SUP, g [0

Proof of Lemma C.1. Parts 1 and 2 can be directly verified
from definition of T§,. Let wy, w, € B; then, for any &, 5,
T} cw1 = T5 cwa = aG ) @1(0) - w2(0)) + e f§(wr (y — 2) —wa-
(y-2))8(z18)dz< aGHIE)llwr —wall +a f§ ko1 —w2ll ,g(zlE)dz <

aGYlE)llwr —w2 |l +aGyIE)llwr — w2l <allw —wr ||, Because
a<l, T;; is a contraction mapping. O

Note that (%, || - ||.) is a complete metric (Banach) space. It
follows from the Banach Fixed Point Theorem that there
exists aunique fixed pointw} . € Bsatisfying wf; = TG (wf .
In fact, wg; =T1T;.(x, S, &). Furthermore, the successive
approximation scheme
w1, |0 ifk=0
Si& '_{Tg’{w'g’{, ifk>1;
monotonically (increasingly) converges to wy

In this scheme, note that w} < w2 Frorn Part 2 of
Lemma C.1, it follows that wf ngg _I_Imm( S,&). We
prove that IT,,  is an upper using induction arguments.
For a fixed S,& and k=2, we have wj;(x)=(r—w)-

KT dz= (r-w)| [Tz + [ Tlele)dz] <
(r=w)| fy Clele)dz + [x = S1*| <L, (xS, &).

Suppose that wk <TT, (-, S,&). We prove that the in-
equality holds for k+1: w’é} (x) = (T§ ¢ s,,g)(x) =(r—w)-

J§ Gzl&)dz + awk (0)GHIE) + a [f wk (y — 2)g(zIE)dz (note
that y = max{x, §}) < (r —w) [ G(zl&)dz + %=L [*T(z]&)dz-
k) +a f{(r-w){y -z )" + 1k [ Glalé)dz[g(zlé)dz =
(r-w) j’f@(zw)dzﬂ%’l [ C(ze)dz-G(yie) +alr—w) [ (y—2-
§)*g(zl€)dz+ T2 [Tzl )dzG(yl€) = (- w){ fy Tlzle)dz + -
S -S- gl )+ STtz (r-w)| [{Ce)dz+
a(y=S)Gly—S1€) | (y=S)Gy-S16) - f{~° Glel€)dz]} +4=2-
Jo Gale)dz=(r-w){ [ Clzle)dz+ [{GelE)dz+a f{Glzlé)dz) +
=8 [P C(ele)dz= (r—w)| T dz +a [ Glelé)dz} + 422
Js G(z|£}dz=(r—w){(max{x,S}—S)—j;yc(zw)dua Jce)-
dzf + 42 [FT(el)dz = TT, . (x,5, &) - (r - w) (¥ Glelé)dz -
a [ Ge)dz) = Th,u(x, S, &) — M(x), where M(x) :=

0, ifx<S§;

{_[’G(zlé}dz aj-z—s GzE)dz, if x>, Note that M(x)>0 for
all x>S, because L£M(x)=G(x|E)—aG(x—S5|&)=>G(x|E)—
G(x—85|&)> 0. Thus, wk ;(x) <TT, ;. (x,S, &), Vk. It follows then,
for every x,5,¢, that the limit point w} ,(x) <IT . (x,5¢),
which concludes the proof. O

Proof of Lemma 1. Tt follows from the definition of IT;, in
Theorem 1 that 2 TT (x, %, &) = - ¢=2 [5 2.G(z[¢) dz. Next,
we show that, ].f the conditions stated in the lemma are
satisfied, then the profit obtained by accepting a contract
grows faster than the upper bound on the outside option. For
any contract S,P, the type & retailer’s profit is given by

r — 1 — j A — — 1 —_— -
IT'(S, P, €) = g— {El(r ~w)min{S, D}] - P} = ; _a{(r w)
[S - _[;JS G(z&)d z] —P}. The (IC) constraint and the envelope
theorem together imply that

—1'['(5(6) P(&),8) = —U'(S(rr) P(rr) E)Iq-,g

(r—w)

G( ). (€
If S(&) > §°(n), then, FIT(S(8), P(§), &) > 5 TTn(x, 5%, &)- In
addition, if IT'(S(£), PU &) =TT,;.(x,5%,&), then IT"(S(E),

P(&),8) =TT, (x, 52, &) =TT, (x,52, &), Y&, where the first
inequality follows, because IT" grows faster than IT,,;,, and
the second inequality follows from Theorem 1. O

Proof of Lemma 2. We first prove that (IC) implies Lemma 2,
(i) and (ii). It follows from Equation (C.1) and the partici-
pation constraint (which is binding for the lowest type) that

() = I(E) - 52 [ 7 3 Gleln) dzdn = T (x, 53, 8) -
£ [£ 5 £ Glzln) dzdn. To prove (ii), note that 15524 =
~(2)¢(S]€) <0 and that £IEELE = (0G0 50, Then,

S’(')‘)“ 0. Otherwise, for 61 > 62, 0= ﬂg@lls=5@l) >
JIT'(S, JIT" (S, . .
ATEPE) | gy > TEELE) | o The first equality follows
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from (IC) and the two inequalities because of the signs of the
second derivatives. The last inequality contradicts (IC), be-
cause 5(&2) is the maximizer for type &a.

To prove (i) and (ii), imply (IC): 1_['(5(6) P),&) =

#1020, T O [T (s(E) @),
0+ £ L), @), 0 dx + TS, PE), = TTS(D),
PE),E)-TT(SE),PEH+ [} art'(S(:s) P@),)dx+TI(S(E),
P@), ) = n'(S(e) P(e) §-L29 502 ek izt =
r(s@),P@,8) -T2 (| ﬁ, 8 Gl - 50
dz]dx—f:ff”' "’ic(zlx)dzdx)m'(se) PEBH-L “’) f;[f0
-Gz [ Gler)dz] dx +TT(S(E), P(e) B

P@),E) =TT(S),P(,) - G2 ff 10 2 Geldzar. The

last equality implies (IC). When E>E, 5(x)>S(E) for all x
in (£, &). Hence, the value of the second integral is positive;
thus, it is not optimal for the retailer of type & to choose
S(£),P(&). By a similar argument, one can rule out the case

E<& o

G(z|x)

Proof of Lemma 3. If the type ¢ retailer accepts the contract
5(&),P(&), then y; = S(&), for all j > 1. The total surplus gen-
erated in the supply chain is (we denote S(&) = 5) X, o/ -
[rmin{S, Dj} —c(S = %)~ (S —D)*] =ex + 2 &/ [(r=¢)S -
(r+h)[S=DjI*1+cEz,d[S-Dj* =cx+ T2 a1 [(r—c)S—(r +
h—ac)[S—D;]*]. The total expected profit of the supply
chain is

I (x, S(&), &)
= v+ 30 Epg[(r - S(8) - (r-+ h— ad)[S() - D]

j=1
S(E)
~ vt [o-0s©) - ¢+ h-ao) [T GGl
2

When the retailer’s type is &, the supplier’s profit for any
incentive-compatible menu {S(-), P(-)} is the difference in
profits, IT"(x, S(&), &) — IT'(£). Using Equations (11) and
(C.2), the supplier’s expected profit from screening the
retailer is given by Eg[IT(x, S(£), &) = TT"(§)] = cx — T, (x,

2,8 += ]E,g[(r -0)S(&) —(r+h—- ac)fo OGE)dx + (r— w)
,[g _IEJ W < G(Z|’I)d1dff] The following Slmphﬁcahomsneeded

for the last term: ff(-/; dr;jo' ;;G(Zh)dz) n(g}dg =

T
[Erman [fan fos('*’ic(zm)dz| - JF [En(pn 9 4G()-

dzd& = ffdff /o™ G (zin)dzdn - f J; nmdn [ _G(z|'5)
dﬂg:ffffn(q)dq_[b © .2 5:G(zl8)dzdé. D

Lemma C.2. Let f : [a, b] — R be a twice differentiable function
over (a, b). If the following two conditions hold: (i) 3% € (a, b) such
that f.. <0 for all x <X, f, >0 for all x> %, and f..(X) = 0 and
(ii) fe(a+)> 0 and f.(b—) <O, the following statements are true:
(1) fx has a unique root x* in (a, b) such that x* <.
(2) The function f is unimodal with peak at x = x*.

Proof of Lemma C.2.

(1) Because f.(a) >0, f(b) <0, and f, is continuous, there
exists at least one root of f; in (a, b). Suppose that 1,1, are
two roots, such that m1 <72 without loss of generality. Then,
fx(m) = fx(n2) = 0. By the Mean Value Theorem, there exists
u € (m, n2) such that f.(u) = 0. There are three possibilities:
(i)u>%, (ii) u <%, or (iii) u = &. The first two possibilities result
in a contradiction, because f,, has a unique root. Hence, u = %.
This implies that n1 <& <7n2. The function fix >0 for x>3x.
Thus, f.(y) > f«(12) = 0 for all y > 1),. Taking limitas y — b, we
get fe(b—) >0, which contradicts assumption (i) in the
lemma. Thus, there exists a unique root for f, denoted by x*.
Suppose that x*>3% Using assumption (i), we get
fe(y)>fe(x”) = 0 for all y > x°. Taking limit ony — b, we get a
contradiction. Hence, x* <X.

(2) Because f.(a+)>0 by assumption (ii), it follows from
part (i) of the proof that f, > 0 for all x <x7, f, <0 for x> x*, and
fe(x*) = 0. This clearly implies that the function f is a uni-
modal function with its maximum attained at x* <% 0O

Proof of Theorem 2.

(1) Differentiating G(z|£) wrt £ yields 2432 =2, [ ¢(y|&)dy =

7 2:2(y1€)dy. The result hence is determined by the behavior of
#4(y|€) as a function of y. %g(y|€) changes sign at least once,
because any two density functions cross each other (and the
total area under any pdf is one). If the sign change happens
exactly once and is from negative to positive, then first-order
stochastic dominance follows (see Lemma C.3 below). For
a pdf from the exponential family, $g(y|&)=k(y)e " ¥<®).
[1(&)-1(&)H(Y)s' ()] Because I',s'<0 and #'>0 (by assump-
tion), it follows that [I'(&)—1(&)H(y)s' (£)] is initially negative,
becomes 0 at #(y* (6))::13‘1{—}9%>O, and remains positive there-
after. Note that, because ¢ is increasing and #(0)=0, we have
y*(£)>0. Lemma C.3 guarantees that [ #¢(y|£)dy <0 for all
£€0O and zeR*, which in turn, implies first-order stochastic
dominance of the family of demand distributions considered
in Theorem 2.

Lemma C.3. Let f(-) be a continuous function on R* such that
f(x) <0, for all x <%, f(%) = 0, and f(x) >0, for all x> . Define
b(z):= _[:f(y)dy. IfZ]Jm b(z) =0, then b(z) <0 forall ze R*.

Proof of Lemma C.3. Suppose not (i.e, 3Z € R*) such that
b(Z)> 0. Then, Z> X; otherwise, b(Z) <0, because f(-) is neg-
ative until #. This implies that b(Z) < b(Z) + _[;m flx)dx =
Jo f(x)dx =b(c0) = 0. The first inequality follows, because
f(x) is strictly positive for x>Z>%, and the last equality
follows by the assumption in the lemma. Thus, we have ar-
rived at a contradiction. Therefore, b(z) <O forallze R*. 0O

Note that the assumptions in the above lemma are satisfied
by 5 g(x|¢), because [[” Frg(x|€)dx = 0.
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2. The first derivative £H(S,&) = (r—c)—(r+h—ac)-
G(SIE) + 58 w9G(S|£) Note that lim, .., 25 = lim, ., & -

Ji 8y dy = lim, oo [F&eWIE)dy = [[° % &(ylE) dy = 0. The
last equality follows, because [“g(zl&)dz=1,VE€O=

E‘Q—_I;ng(zﬁ)dz— 0= f‘”g—g(z|£)dz=0 VE€®. Thus, £H(0,
E)=r- c>0and £H(co,&) =—c(1 —a) —h<0. Because H(-,&) is
continuous, there exists at least one critical point where it
equals zero. The second derivative %IH (S,&)=—(r+h—ac)-

{g(SlrS) 7‘“—3%5@} where @:=-L=%_<1. We evaluate the term
inside the brackets on the right hand side for a density
ic?g(SIE)} _
AE) 9¢
k(S)e S ONI(&)~ 1B5(I'(E) —UEHS)S'(£))], where I',s" de-
note derivatives. Then, arAfﬁéi‘»[) e {S)> a4

@s'(&)
s <= S> 5(&), where

L [-AE) | @)
(zas*(é) * f(as(a)'

The first inequality follows, because s’ <0 and I’ <0 by
assumption. Because K(-) is increasing, t' exists and is
monotone. Note that S(£) >0 for all £ € ®. All of the con-
ditions in Lemma C.2 are satisfied, and Part 2 follows.

3. Tt follows from unimodality of H(-,&) that 22684 ¢
characterizes the unique maximizer of H(- &) and
max{x, $°(rt),5(&)} is the maximizer of the constrained
problem. O

from the exponential family as {g(SlrS)—

5&) =t (€3)

Proof of Theorem 3. Because 5(&) satisfies %H(?(E), &) =0,
for all £ € ©®, we have

dS(E ),
asa.g

H(S(E) &)=

—=-H(5(8),8) = 0.

(o))

We first establish 5(&) < 5(&) (defined in Equation (C.3)).
Because s(&) =1(§) =t and k(z) =1 in the case of news-
vendor family of distributions, the definition of S(&) sim-

plifies to 5(&) =71 (‘52—’;@+ 6). Thus,

d&as

@:&-c)-mh-m)(l- %U)
_ToW, @) (1 A
A(a (6+ m)

—c(1-a) - A(E)w e G52 <.

It then follows from unimodality of H(-, &) that 5(£) < 5(&).
From Equation (C.3), it also follows that aﬁ—H%-g@ <0forall
&. Finally,

PH(5(8), &) aG(8l¢)
W:—(th—a c) 9z
d j; n(mdn| aG(5|)
* (”'“’)E[ ©) ] 9L
+(r—w)%a GSle).

If G(-[£) is from the newsvendor family, —(TLQ = #(8)-
4028 - 1(3)).

Note that 2&—#(5(&))>0 &= 5(8)<t1(28) == G(5(8)E) <
G(t71(28)[€) for all £€@. From Equation (14), it follows that
G(3(2)1) <572, because 2268 <0, Thus, if G((28))¢)=

1-e2>- 9 then 2&- t(S(E)):»O Therefore, the condition
on cost parameters along with the first-order stochastic
dominance of G(S|&) implies that E—H(S(E) &) is positive.
This along with (C.4) implies that S(&) is increasing. It fol-
lows that §*(&)=max{x,5%(n),5(£)} is increasing as well. For
any feasible menu of base stock levels S(&) offered to the
retailer, the corresponding payments can be determined
from (11):

S(E) _ £ pSin)
P(£)=(r—w)( [ ez f{ / %G(zh;)dzdrf)

~ (1= (%, 57, £).
(C5)

a

Proof of Theorem 4. If, in period 1, the supplier decides to
wait an additional period before offering the menu of con-
tracts, she raises the inventory level in period n to y,. Two
scenarios are possible in period n.

(1) If the sales observations in period n are censored (i.e.,
Yn = Zn), We have

E@/nl'g) nn(’g) — nn('g)
[Tl - mamydn  [FEE () dn

<O @
JE mamdn

The first equality follows from the definition of A,+1(-). The
inequality follows from first-order stochastic dominance of
demand distributions, G(y, |r;) > G(yal8), for all ne[é, &l
This implies the following 2158 < HuS.5) for al] S € R
and & €. Hy(,, &) is unimodal by Theorem 2.2% Thus,
aH,-+1§Su(£J,£J éaH,.(gE(«EL«EE 0. This implies that §"+1( &< gn( &).

(2) If the sales observation in period n is uncensored
(i-e., z, <y,), we have

_g(znl'g)'nn(g) = — nn(’g) )
JE 8(zaln) -malm) dn [ SEB- mu(n)dn

Therefore, the ratio of densities

f]ln+l (6) =

f]ln+l(£) =

z,, 5 determines the rela-
tion between A,,,1(&) and A,(&). For the newsvendor family

of demand distributions, 2Gz&) = g—';%“_?lz(t(z,,) — &). Because

¥()>0,

9g(z4|&) [ <0, if E>Hzn);
IE >0, if &< Hzy)

(i) For types & = (z,), it follows that g(z,|n) <g(z,|&) for
all n>&. Hence,

nE) @

f]ln+l(£)= T ==
R m(n)dn [ ma(n)dn

= An(&).
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Therefore, 9%1-5@&129%(55&1, and unimodality of H,,1(-,£) and
H,(-,&) implies that 5,,1(£)=5,(&) for all types £>H(z,).

(ii) For types & <t(z,) such that g(z,|&) < g(z,|&), note
that g(z,[n) > g(z,4[&) for all 1> &, because g(z,|n) is increasing
up to #(z,) and decreasing thereafter. Therefore, A,,1(&) =

_ T (£) < Ty (£) = . imi
_[jﬁ%ﬂ%m(q}dq f o An(&). By arguments similar to

those used in earlier part, we 5,:(&)<5,(8). o

Proof of Theorem 5. In the symmetric setting, £ €@ is
common knowledge. Under a linear price contract, the re-
tailer pays pS for base stock level S. Subsequently, he pays a
fixed wholesale price of w per unit to satisfy demand to the
extent possible. The retailer's profit if he chooses base
stock level § is iz ((r—w—p)S— ("= w) [y’ G(zlé)dz). The
retailer chooses the inventory level that maximizes his
profit £ ;= (r—w-p-(r—w)G(S|§)) =0. To coordinate
the channel, the inventory leve] must be determined using
the critical fractile, $(&) = G™ (5= ). To ensure that the
retailer chooses the coordinating inventory level S%(&),
the supplier sets G(S|€) = G(S7(£)|) = == The resulting
coordinating marginal price is p = p:= {000 The
total profit in the coordinated supply chain can be calcu-
lated using the following recursion:

(&)
Ve(x, &) =(r—c)—(r+h- ac)/: G(z|&)dz
+a(1-G@,)E)Ve(0,¢)

HE)
ra [T gEOVG© -z 0 €O

where (&) := max{S?(&),x}. o

Proof of Theorem 6.

(1) Differentiating payment function P(£) wrt & in
Equation (C.5) gives d—f%l =(r—w)(S'(&) = G(S()IE)S'(&) -
JE 2 4z + [F9 2.G(2]€)dz) = (r-w)S' (£)(1- G(S()IE)) =

dP(
0. It follows from above that ﬂ;":@:(r —w)(1-G(S|§)).
= (r—w)(1-G(5(8)[8)) = (r—w)(1-G(SP(£)|&)) = (r—
=4<). The inequality follows, because the supplier

Then,
w)(1--
never mamtams inventory level higher than the first best
level $(&) for any demand type &

(2) The marginal price that the retailer of type & pays is
& = (r—w)(1 - G(54(9)IE)) < (r —w)(1 = G(Sn 1 (£)I9)) =%§-;ff,
using Part 1 of Theorem 4. )

(3) For all &>1t(z,), Sns1(&) 2 S54(f) from Part 2(i) o

Theorem 4. Therefore, T dby = (r —w)(1 - G(5.(8)|8) = (r —w)
(1-GEmi(8)lE) = ;—";:ﬂ o

Proof of Theorem 7.
(1) Differentiating IT"(x,m) with respect to x gives
£ (x, 1) = 5 [, (&) £ H(S" (&), £)AE. For any

d -
& € ©,—H(max{x, S}, 5(€)}, &ln)
(=0, if x <max{s3,5()};
<0, if x> max{S2,5(£)},

because H(-,&|m) is a unimodal function and 5(&) is the
unique maximizerof H(-, £|m) and characterized by the first-
order condition.

(2) To establish the result, we first construct a lower bound
for L(y, m). Then, the lower bound is used to find an upper
bound on the difference TT¥'(x, ) — max,z, L(y, 7). Last, we
find the range of values of x for which the difference is always
less than zero, thus establishing the result. Note that L(y, ) =
(w=c)y—(w+h-ac) [ Qz)dz+aQ(y)V (0,7 (y)) +a [ 9(z)-
V(y—-z,m°)dz, where Q(z) = [, m(£)G(z[¢)d¢ is the predictive
demand distribution. To find a lower bound on V(z,m),
consider a policy in which the supplier never produces and
never offers contracts to the retailer (i.e., T=+oc0). Then,
V(z,n) = E[wmin{z, D1 } — h(z— D1 )* + a(wmin{xp, D>} — h(x, —
D;)*)+...]=-hz. Hence, L(y,m)=(w—-c)y—(w+h-ac)-
¥ Q@)dz — ha [} q2)(y —2)dz = (w— )y — (w + h(1 + &) —ac)-
J§ Q(z)dz =: L(y, n). Note that L(y, 7) is concave iny and that
it is maximized at y(m):= Q! (m) <5(@F). For x>
max{$°(rr), 5(%)} = max{5°(m),5(£)}, it follows that IT¥'(x, 77) —
max,s, L(y, m) < -ﬁmm(x, 208 + 2 Jo W(EH(x, Elﬂ)dE -
max,s. Ly, 7) < 11z fly m(€H(x, Em)dE - L(x, 1) < 115 [, (8)-

{(r —onx - (r+h - ac) [FGEEdz + G2 [ G(z|.5)dz}d.5 -
L) <[, n(E){(r—c)x (r+h-ac) [f G(z|.5)dz}d.5 (w-
o)x—(w+h(1+a)— ac)_[;) Q(z)dz < ﬁfe nE(r-c-(1-a)-
(w—c))x—(r+h—ac—(1-a)w+h(l+a)— ac))j;f G(z|&)dz}
dg < etesg) f n(g){x -0 [x G(zlé)dz}dé < (re-(l-akw-)
fx-0f; G(z@dz}, where  §:= Haclailia o

'—‘1%‘%%‘;7‘1‘;1 The function inside the integral on the last line
is concave in x, and it is negative when x>U for all £. U is
implicitly defined as the nonzero solution to U = 6 _[;J G(z[E)dE.
Thus, the last integral is nonpositive for all x>K, where
K:= max{U,$(n), 5@)}. ©

Endnotes

! For example, Walmart only owns products briefly as they pass
through the checkout scanner (see p. 156 in Simchi-Levi et al. 2008).
2In the classical case, Hammond (2006) describes the stern opposition
to VMI practice from Barilla’s distributors. The article points out the
difficulty that Barilla had in incorporating promotional data, which
are separate from the usual EDI information, into their forecast-
ing process. Giorgio Maggiali, then Director of Logistics at Barilla,
noted, “We're grappling with how to treat these promotions in our



24

Kadiyala, Ozer, and Bensoussan: The Learn and Screen Mechanism
Management Science, Articles in Advance, pp. 1-25, ® 2019 INFORMS

operations planning processes, including forecasting, manufactur-
ing, and logistics.” Ineffectively managing inventory lead to dis-
appointment of some distributors (e.g., the “disgruntled DO”
mentioned on p. 3 of Hammond 2006) over VMI implementation
and eventually, falling out of the relationship.

3 Henceforth, we consider a VMI setting in which inventory is
managed in a consignment fashion.

“We restrict attention to inventory policies such that y, can be de-
termined based on the information available to the supplier at the
start of penodn That is, for any u € R*, the event {y, >u} eI,
where {‘.’E ¥} denotes the natural filtration associated with the sales
observation process.

®We remark that our main results continue to hold with the finite
horizon formulation. Therefore, these results are relevant in managing
short- or long-term supply chain relationships. Hence, the proposed
approach and results can be used for supply chains distributing in-
novative products (e.g., consumer electronics) or functional products
(e.g., grocery products). Using infinite horizon formulation simplifies
notation and mitigates the end-of-horizon effects.
®Offering a contract term with a base stock level S lower than the
retailer's current on-hand inventory level x, is often impractical
(although technically possible) in a VMI setting. Note that reducing
the base stock level indicates reduction of inventory; hence, the re-
tailer faces low inventory. Recall also that more inventory always
benefits the retailer, whereas it only costs the supplier. As a result,
reducing base stock level to a point lower than the current on-hand
inventory can prove controversial. This constraint also provides
analytical tractability, but as we shall note later, it may not be binding
in the optimal solution.
" The revelation principle (Myerson 1981) ensures that, without loss of
generality, the supplier canrestrict herself to those menus of contracts
in which the retailer truthfully communicates his private assessment
of demand in Bayesian equilibrium. Thus, we narrow our search for
the optimal menu to those menus of contracts for which & = £ is the
best response function for the retailer of type &.

® Tobe precise, M:={(y,7) : v € R*,y; > x; with {y;>u} €4, Vu e
R1<i<t-1,and {T = n} €%> 4 forall n > 1}.

? With a slight abuse of notation, welet I (x, S, £) denote the case in
which the supplier uses a base stock policy with a fixed base stock
level S in each period after the menu of contracts is rejected. In this
case, the vector ¥y’ = (i}, yh.1,...) defined in (PC) simplifies as
1, = max{x,, §}.

19 All of our analytical results also hold when we replace the retailer’s
reservation profit with the lower bound.

"'We use increasing/decreasing in the weak sense throughout the
paper.

28etting s(£) = 1(£) = £ and h(z) = K(2), we obtain the newsvendor
family.

The supplier’s action (y, —x,) influences the information signal
(ie., periodicsales z,) that she observes, and together, they govern the
evolution of her belief process over time.

"*The condition is met if the total profit margin in the supply chain,
L=, is less than 87%.

5See http://www.vendormanagedinventory.com /pitfalls.php.
'SFor example, for a two-point prior distribution, censored demand
observation (suggesting larger market demand) increases the base
stock level 5°(t, ) but lowers S(:|m,) in the following period (as shown
inPart 1 of Theorem 4). Theevolution of 5°(m,,) is purely driven by the
leaming dynamic, whereas 3(-|m,) also accounts for evolution of the
information rent.

""Let G, H be two continuously differentiable distribution functions,
and let u1, u» denote their failure rate functions, respectively. Then,
G =g H if and only if yy(x) = pa(x) for all x = 0.

'®Recall that #() is defined in Theorem 2. As an example, #(z) = z if
G(x]£) has an exponential distribution.

'¥The Bayesian update in (1) does not alter the belief after this point.
20We use Sy, P, to denote 5(&|m,), P(E| ), respectively.

#'Note that the wholesale price w is generally negotiated by the two
firms in the VMI agreement and hence, may better indicate relative
market power of each firm.

#We set the prior p = 0.2 to capture the high degree of information
asymmetry (H). This value of presults in large p forboth £ = 6and 12.
We set the prior p = 0.8 and 0.9 to capture the low degree of in-
formation asymmetry for £ = 6 and 12, respectively.

“We use Hq(-, £) to denote H(:, &|my).

References

Aviv Y (2001) The effect of collaborative forecasting on supply chain
performance. Management Sci. 47(10):1326-1343.

Aviv Y (2002) Gaining benefits from joint forecasting and re-
plenishment processes: The case of auto-correlated demand.
Manufacturing Service Oper. Management 4(1):55-74.

Aviv Y (2007) On the benefits of collaborative forecasting partner-
ships between retailers and manufacturers. Management Sci.
53(5):777-794.

Azoury KS (1985) Bayes solution to dynamic inventory models under
unknown demand distribution. Management Sci. 31(9):1150-1160.

Babich V, Li H, Ritchken P, Wang Y (2012) Contracting with
asymmetric demand information in supply chains. Eur. ]. Oper.
Res. 217(2):333-341.

Berger RL, Casella G (2002) Statistical Inference, 2nd ed. (Duxbury
Press, Pacific Grove, CA).

Bisi A, Dada M, Tokdar S (2011) A censored-data multiperiod in-
ventory problem with newsvendor demand distributions.
Manufacturing Service Oper. Management 13(4):525-533.

Braden DJ, Freimer M (1991) Informational dynamics of censored
observations. Management Sci. 37(11):1390-1404.

Brinkhoff A, Ozer O, Sargut G (2015) All you need is trust? An ex-
amination of inter-organizational supply chain projects. Pro-
duction Oper. Management 24(2):181-200.

Burnetas A, Gilbert SM, Smith CE (2007) Quantity discounts in single-
period supply contracts with asymmetric demand information.
IIE Trans. 39(5):465-479.

Cachon GP, Fisher M (2000) Supply chain inventory management
and the value of shared information. Management Sci. 46(8):
1032-1048.

Cachon GP, Lariviere MA (2001) Contracting to assure supply: How
to share demand forecasts in a supply chain. Management Sci.
47(5):629-646.

Chen L (2010) Bounds and heuristics for optimal Bayesian inventory
control with unobserved lost sales. Oper. Res. 58(2):396-413.

Chen L, Lee HL (2009) Information sharing and order variability
control under a generalized demand model. Management Sci.
55(5):781-797.

Chen L, Plambeck EL (2008) Dynamic inventory management with
learning about the demand distribution and substitution prob-
ability. Manufacturing Service Oper. Management 10(2):236-256.

Dong Y, Dresner M, Yao Y (2014) Beyond information sharing: An
empirical analysis of vendor-managed inventory. Production
Oper. Management 23(5):817-828.

Feng Q, Lai G, Lu LX (2015) Dynamic bargaining in a supply chain
with asymmetric demand information. Management Sci. 61(2):
301-315.

Ferguson D (2013) How supermarkets get your data—and what they
do with it. The Guardian (June 8), http: //www theguardian.com/
money /2013 /jun/08/supermarkets-get-your-data.


http://www.vendormanagedinventory.com/pitfalls.php
http://www.theguardian.com/money/2013/jun/08/supermarkets-get-your-data
http://www.theguardian.com/money/2013/jun/08/supermarkets-get-your-data

Kadiyala, Ozer, and Bensoussan: The Learn and Screen Mechanism
Management Science, Articles in Advance, pp. 1-25, © 2019 INFORMS

25

Fisher ML (1997) What is the right supply chain for your product?
Harwrd Bus. Rev. 75(March / April):105-116.

Gallego G, Ozer O (2001) Optimal use of demand information in
supply chain management. Song ], Yano D, eds. Supply Chain
Structures (Kluwer Academic Publishers, Dordrecht, Neth-
erlands), 119-160.

Giimiis M (2014) With or without forecast sharing: Competition and
credibility under information asymmetry. Production Oper. Man-
agement 23(10):1732-1747.

Ha AY, Tong S, Zhang H (2011) Sharing demand information in
competing supply chains with production diseconomies. Man-
agement Sci. 57(3):566-581.

Hammond JH (2006) Barilla SpA (D). Harvard Business School Case
9-695-066, Harvard University, Cambridge, MA.

Karlin S, Scarf H (1958) Inventory models of the Arrow-Harris-
Marschak type with time lag. Arrow K, Karlin S, Scarf H, eds.
Studies in the Mathematical Theory of Inventory and Production
(Stanford University Press, Stanford, CA), 155-178.

Katariya AP, Cetinkaya S, Tekin E (2014) Cyclic consumption
and replenishment decisions for vendor-managed inventory of
multisourced parts in Dell’s supply chain. Interfaces 44(3):300-316.

Kouvelis P, Chambers C, Wang H (2006) Supply chain management
research and production and operations management: Review,
trends, and opportunities. Production Oper. Management 15(3):
449-469.

Lariviere MA, Porteus EL (1999) Stalking information: Bayesian in-
ventory management with unobserved lost sales. Management
Sci. 45(3):346-363.

Lee HL, Padmanabhan V, Whang S (1997) Information distortion in
a supply chain: The Bullwhip effect. Management Sci. 43(4):
546-558.

Lee HL, So KC, Tang CS (2000) The value of information sharing in a
two-level supply chain. Management Sci. 46(5):626-643.

Li L, Zhang H (2008) Confidentiality and information sharing in
supply chain coordination. Management Sci. 54(8):1467-1481.

Li T, Tong S, Zhang H (2014) Transparency of information acquisition in a
supply chain. Manufacturing Service Oper. Management 16(3):412-424.

Lobel I, Xiao W (2017) Technical note—Optimal long-term supply
contracts with asymmetric demand information. Oper. Res. 65(5):
1275-1284.

Lovejoy WS (1990) Myopic policies for some inventory models with
uncertain demand distributions. Management Sci. 36(6):724~738.

Lutze H, Ozer O (2008) Promised lead-time contracts under asym-
metric information. Oper. Res. 56(4):898-915.

Mathews R (1995) Spartan Pulls the Plug on VMI (Progressive Grocer,
Deerfield, IL).

Mirrlees JA (1971) An exploration in the theory of optimum income
taxation. Rev. Econom. Stud. 38(2):175-208.

Myerson RB (1981) Optimal auction design. Math. Oper. Res. 6(1):
58-73.

Nazerzadeh H, Perakis G (2016) Technical note—Nonlinear pricing com-
petition with private capacity information. Oper. Res. 64(2):329-340.

Oh S, Ozer O (2013) Mechanism design for capacity planning under
dynamic evolutions of asymmetric demand forecasts. Manage-
ment Sci. 59(4):987-1007.

Oracle (2009) Peoplesoft enterprise inventory 9.1 peoplebook.
Technical report, Oracle Corporation, Pleasanton, CA.

Ozer O, Wei W (2006) Strategic commitments for an optimal capacity
decision under asymmetric forecast information. Management
Sci. 52(8):1238-1257.

Ren ZJ, Cohen MA, Ho TH, Terwiesch C (2010) Information sharing
in a long-term supply chain relationship: The role of customer
review strategy. Oper. Res. 58(1):81-93.

Rosenblum P (2014) Walmart’s out of stock problem: Only half the story?
Forbes (April 15), http: // www.forbes.com/sites/ paularosenblum /
2014/04/15/walmarts-out-of-stock-problem-only-half-the-story /.

Scarf H (1959) Bayes solutions of the statistical inventory problem.
Ann. Math. Statist. 30(2):490-508.

Scarf HE (1960) Some remarks on Bayes solutions to the inventory
problem. Naval Res. Logist. Quart. 7(4):591-596.

Shamir N, Shin H (2016) Public forecast information sharing in a
market with competing supply chains. Management Sci. 62(10):
2994-3022.

Shang W, Ha AY, Tong S (2016) Information sharing in a supply
chain with a common retailer. Management Sci. 62(1):245-263.

Simchi-Levi D, Kaminsky P, Simchi-Levi E (2008) Designing &
Managing the Supply Chain, 3rd ed. (McGraw-Hill /Trwin, New
York).

Taylor R, Mauer G (2013) Margin unlocked: Integrated margin
management to deliver breakthrough performance inconsumer
products. Report, Emst & Young, London, UK.

The Grocer (2009) Northern in talks over Sainsbury’s VMI
deal. Accessed March 10, 2019, http://www.thegrocer.co.uk/
companies /northem-in-talks-over-sainsburys-vmi-deal /199333
article.

Tirole ] (2002) The Theory of Industrial Organization (MIT Press,
Cambridge, MA).

Watson E (2005) Nestlé switches to vendor managed inventory with
Tesco. Accessed March 10, 2019, http: // www foodmanufacture.co
1k /Supply-Chain /Nestle-switches-to-vendor-managed-inventory
-with-Tesco.

Zhang H, Zenios S (2008) A dynamic principal-agent model with
hidden information: Sequential optimality through truthful state
revelation. Oper. Res. 56(3):681-696.

Zhang H, Nagarajan M, Soéi¢ G (2010) Dynamic supplier contracts under
asymmetric inventory information. Oper. Res. 58(5):1380-1397.


http://www.forbes.com/sites/paularosenblum/2014/04/15/walmarts-out-of-stock-problem-only-half-the-story/
http://www.forbes.com/sites/paularosenblum/2014/04/15/walmarts-out-of-stock-problem-only-half-the-story/
http://www.thegrocer.co.uk/companies/northern-in-talks-over-sainsburys-vmi-deal/199333.article
http://www.thegrocer.co.uk/companies/northern-in-talks-over-sainsburys-vmi-deal/199333.article
http://www.thegrocer.co.uk/companies/northern-in-talks-over-sainsburys-vmi-deal/199333.article
http://www.foodmanufacture.co.uk/Supply-Chain/Nestle-switches-to-vendor-managed-inventory-with-Tesco
http://www.foodmanufacture.co.uk/Supply-Chain/Nestle-switches-to-vendor-managed-inventory-with-Tesco
http://www.foodmanufacture.co.uk/Supply-Chain/Nestle-switches-to-vendor-managed-inventory-with-Tesco

	A Mechanism Design Approach to Vendor Managed Inventory
	Introduction
	Literature Review
	The Model
	Analysis
	Value of Learn-and-Screen Approach
	Conclusion


