
This article was downloaded by: [76.184.179.123] On: 27 December 2019, At: 10:09
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Knowledge You Can Act on: Optimal Policies for
Assembly Systems with Expediting and Advance Demand
Information
Alexandar Angelus, Özalp Özer

To cite this article:
Alexandar Angelus, Özalp Özer (2016) Knowledge You Can Act on: Optimal Policies for Assembly Systems with Expediting and
Advance Demand Information. Operations Research 64(6):1338-1371. https://doi.org/10.1287/opre.2016.1541

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2016, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/opre.2016.1541
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org


OPERATIONS RESEARCH
Vol. 64, No. 6, November–December 2016, pp. 1338–1371

ISSN 0030-364X (print) � ISSN 1526-5463 (online) https://doi.org/10.1287/opre.2016.1541

©2016 INFORMS

Knowledge You Can Act on: Optimal Policies for
Assembly Systems with Expediting and

Advance Demand Information

Alexandar Angelus, Özalp Özer
Jindal School of Management, The University of Texas at Dallas, Richardson, Texas 75080

{alexandar.angelus@utdallas.edu, oozer@utdallas.edu}

We consider a nonstationary, stochastic, multistage supply system with a general assembly structure, in which customers

can place orders in advance of their future demand requirements. This advance demand information is now recognized in

both theory and practice as an important strategy for managing the mismatch between supply and demand. In conjunction,

we allow expediting of components and partially completed subassemblies in the system to provide the supply chain

with the means to manage the stockout risk and significantly enhance cost savings realized through advance demand

information. To solve the resulting assembly system, we develop a new method based on identifying local properties of

optimal decisions. This new method allows us to solve assembly systems with multiple product flows. We derive the

structure of the optimal policy, which represents a double-tiered echelon basestock policy whose basestock levels depend

on the state of advance demand information. This form of the optimal policy allows us to: (i) provide actionable policies

for firms to manage large-scale assembly systems with expediting and advance demand information; (ii) prove that advance

demand information and expediting of stock both reduce the amount of inventory optimally held in the system; and

(iii) numerically solve such assembly systems, and quantify the savings realized. In contrast to the conventional wisdom,

we discover that advance demand information and expediting of stock are complementary under short demand information

horizons. They are substitutes only under longer information horizons.
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1. Introduction

When customers place orders in advance of their future

demand requirements, the result is a portfolio of customers

with different demand lead times and demand requirements.

Such a portfolio generates what is known as advance de-
mand information. The ability of companies to collect and

utilize advance demand information (ADI) has come to

be recognized, in both industry and research literature, as

an important strategy for managing the mismatch between

supply and demand. One example of such a strategy is

Dell’s “Intelligent Fulfillment,” which offers customers four

different levels of response time: precision delivery with a

specific date, premium delivery that arrives the next day,

standard five-day delivery, and value delivery with longer

deliver times (Özer and Wei 2004). Another example is

found in initiatives undertaken by automobile manufactur-

ers, such as Renault’s “Projet Nouvelle Distribution” and

BMW’s Customer-Oriented Sales Processing (COSP), that

seek to utilize advance demand information to shift produc-

tion toward build-to-order (Miemczyk and Holweg 2004).

Other large manufacturers, such as General Motors and

Boeing, have also undertaken initiatives to take advantage

of advance demand information in the face of uncertain

demand and capture the value of sharing that information

(Gayon et al. 2009).

Advance demand information allows a company to in-

crease profits by shifting its production from build-to-stock

to build-to-order, and thus deal with high variability of

demand with lower inventory requirements. At the same

time, lower inventory levels leave the supply chain vul-

nerable to potential high realizations of demand and the

resulting stockout costs. One strategy to mitigate exposure

to high demand realizations is to allow expediting of inven-

tory through the supply chain. Dell, for example, is quite

explicit in its annual 10-K that “� � �our business model gen-

erally gives us flexibility to manage backlog at any point in

time by expediting � � � customer orders” (Dell 2013, p. 11).

In addition, because the build-to-order production enabled

by ADI “increases process complexity and consequently

causes more expensive processes” (Ericsson et al. 2010,

p. 11), it becomes important to maximize cost savings made

possible by ADI. Existing research on ADI achieves cost
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reductions by adapting the regularly scheduled, periodic

replenishments to the acquired demand information in each

period. Although reasonable savings can be realized that

way, as shown in Gayon et al. (2009) and other studies,

more significant cost reductions can potentially be achieved

by giving a firm additional options, such as expediting, to

act on its knowledge of advance demand. Consequently,

expediting of inventory in the supply chain can also serve

to mitigate the cost impact of more expensive processes

by enhancing savings generated through advance demand

information. The key to realizing such savings, however, is

being able to manage the supply chain with both expedit-

ing and advance demand information, especially given that

expediting usually comes at a higher cost.

The main difficulties associated with making use of

advance demand information and shifting production to

build-to-order tend to come from a company’s assembly

processes (Weber 2006). Most companies cited in the lit-

erature for implementing ADI have significant assembly

operations. The academic literature has not yet proposed

strategies for managing assembly operations in the pres-

ence of either ADI or expediting of stock. Consequently,

in this paper we focus on supply chains with the assem-

bly structure. In particular, we consider the problem of

assembling products of a single type from multiple com-

ponents, each of which can be replenished through both

regular orders and expedited orders. Our model allows for

a general assembly structure, in which some components

may be assemblies, some may be subassemblies, some

may be (simple) parts, and some may be activities car-

ried out in parallel. Because companies’ cost structures

tend to change over the length of the product cycle or

planning horizon, in departure from the prevailing trend in

the assembly literature, we allow for nonstationary model

parameters. Formally, we consider a nonstationary, periodic

review, finite-horizon, assemble-to-stock model with ADI

and the option to expedite inventories of components and

partially completed assemblies at any stage in the system

(in addition to using regularly scheduled replenishments).

The challenge of (optimally) managing any kind of as-

sembly system is considerable, due to the severe curse of

dimensionality created by a very large state space. As a

result, assembly systems tend to be analyzed using simula-

tion methods (see, e.g., Sabuncuoglu et al. 2002). For the

assembly system considered in our paper, this challenge is

augmented by having two ordering decisions at each node

in the system. Because of this dual flow of components,

and because unit ordering costs and holding costs can vary

over time, standard approaches to solving assembly systems

by reducing them to equivalent series systems by means

of balancing echelon inventories do not yield fruit. Our

first contribution, therefore, is a new analytical approach

for solving complex assembly systems based on establish-

ing local properties of optimal decisions. We make use of

this approach to significantly reduce the state space of the

assembly problem with expediting and ADI, and the asso-

ciated curse of dimensionality. Our second contribution is

to identify the form of the optimal policy, which represents

a state-dependent, double-tiered, echelon basestock policy.

This form of the optimal policy allows the system to be

decomposed into a nested sequence of solvable convex sub-

problems. Our third contribution is to establish key mono-

tonicity properties, and, also, to prove that both advance

demand information and expediting of stock reduce the

amount of inventory optimally held throughout the supply

chain. This inventory reduction is the main driver of cost

savings realized through advance demand information and

expediting of stock.

Our analytical results also make it possible to numeri-

cally solve assembly systems with expediting and advance

demand information, and to quantify savings realized by

giving companies an additional option to act on their

knowledge of ADI by expediting stock. We find ranges

of model parameters (hence assembly system characteris-

tics) under which expediting is especially valuable to sup-

ply chains with advance demand information. Furthermore,

because both ADI and expediting of stock represent strate-

gies to deal with uncertain demand, and because they both

lower total inventory in the system, ADI and expediting

tend to be considered as substitute strategies. What we

discover, however, is that the demand information hori-

zon plays a key role: with short information horizons, ADI

and expediting are complements. The substitution effect

takes place only with longer information horizons. Thus,

economic complementarity and substitutability of advance

demand information and expediting of stock are shown not

to be absolute characteristics, but rather functions of the

supply chain structure. Our paper also provides the most

comprehensive numerical study of assembly systems to

date, allowing us to quantify the effect of structural factors

such as the length of the supply chain, demand correlation,

and the demand information horizon.

1.1. Literature Review

Our work is related to three streams of research. The first

of those pertains to serial multiechelon inventory systems.

The classic paper of Clark and Scarf (1960) shows how a

multistage inventory model can be reformulated to achieve

a decomposition of this multidimensional problem into a

sequence of single-dimensional problems. Federgruen and

Zipkin (1984) extend these results to the stationary, infi-

nite horizon case. Federgruen (1993) and Angelus (2011)

provide reviews of this literature. Of particular relevance

to our work is an important paper by Lawson and Porteus

(2000), who introduce expediting to a multiechelon series

system, show that such a system achieves the Clark-Scarf

decomposition, and prove the structure of the optimal pol-

icy is a top-down echelon basestock policy. One of our

contributions is to generalize Lawson and Porteus (2000)

in two important ways: (i) by considering a more general
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supply chain structure, in the form of an assembly system;

and (ii) by incorporating advance demand information.

The second related stream of literature studies sys-

tems with advance demand information. Gallego and Özer

(2001) establish the optimality of state-dependent (s� S) and
basestock policies for single-stage systems with ADI and

with and without fixed costs. Chen (2001) studies how, by

offering different prices and delivery schedules, a firm is

able to segment customers by different advance demand

leadtimes. Hu et al. (2003) consider a manufacturer with

ADI who can meet customer demand by in-house produc-

tion or outsourcing, and show that the optimal policy is

a double-threshold policy. Wang and Toktay (2008) con-

sider single-stage inventory models with ADI and flexible

delivery schedules. With homogeneous customers, state-

dependent (s� S) policies are optimal, whereas heteroge-

neous customers also necessitate an allocation decision.

Gayon et al. (2009) address production with limited capac-

ity and several demand classes that share advance demand

information with the supplier. The optimal production pol-

icy is a state-dependent basestock policy, whereas the opti-

mal inventory-allocation policy is a multilevel rationing

policy. Benjafaar et al. (2011a) consider finite produc-

tion capacity, stochastic production times, and imperfect

advance demand information, and show the optimality of

a basestock policy whose levels depend on the number of

outstanding orders. Bernstein and DeCroix (2014) study

different types of advance demand information, such as

commonality, mix and volume information, and determine

the relationships among them.

When the multiechelon series system of Clark and Scarf

(1960) is extended to allow for advanced demand infor-

mation, Gallego and Özer (2003) show that, for suffi-

ciently short information horizons, the optimal policy is

the echelon basestock policy; for longer information hori-

zons, basestock levels become state dependent. In the case

of periodic-review distributions systems, Özer (2003) pro-

poses an effective heuristic to manage such a system under

ADI, and shows how ADI can be a substitute for leadtimes

and inventory. Under continuous review of such a distribu-

tion system with ADI and when each installation replen-

ishes its stock using basestock policies, Marklund (2006)

provides exact and approximate cost evaluation techniques

under various stock reservation and allocation policies for

different retailers. We are not aware of any research lit-

erature on assembly systems with either advance demand

information or expediting of stock.

The third related stream studies assemble-to-stock sys-

tems under stochastic demand. Schmidt and Nahmias

(1985) show that a two-component assembly problem with

joint ordering and assembly decisions can be decomposed

into component ordering and finished good assembly de-

cisions. The optimal policy, however, has a very complex

structure, with the optimal order for one component de-

pending on the inventory of the other. Benjafaar et al.

(2011b) address a complex assembly system with multiple

items, stages, and customer classes, where demand from

each class follows a compound Poisson process. The opti-

mal production policy is shown to be an inventory state-

dependent basestock policy, whereas the optimal allocation

policy is a multilevel inventory state-dependent rationing

policy.

Assemble-to-stock systems tend to have very large state

space and decision space because of the need to keep track

of inventory at a large number of locations (i.e., nodes)

in the system, and make decisions pertaining to each one

of those in each period. Because of the resulting curse

of dimensionality, the literature in this field has mostly

been focused on developing approaches to reduce the dif-

ficulty of managing such systems. Two such approaches

are currently available in the literature. The first approach

to solving general assembly systems was introduced in the

classic work of Rosling (1989), which considers a station-

ary, infinite horizon assembly system (with regular flow

only). Rosling’s unit of analysis is an item, which rep-

resents either a subassembly in which multiple preceding

items are assembled into another item that continues to

flow downstream toward the final assembly. Rosling’s for-

mulation of the problem makes use of echelon variables,

introduced by Clark and Scarf (1960), to account for the

echelon inventory level in each period and for each item,

as well as a vector of echelon inventory positions based

on a set of orders placed from the preceding item but not

yet received. Rosling determines inventory holding costs

associated with those echelon inventory levels and eche-

lon inventory positions for each item in each period, and

sums the discounted expected value of those costs over

the infinite time horizon. He makes use of that infinite

sum to show that the optimal policy for the system satis-

fies the “long-run balance” under which all echelon inven-

tory positions for an item closer to the final assembly are

lower than corresponding echelon inventory positions for

an item farther from the final assembly. Hence, the opti-

mal policy is such that, for any two items, their eche-

lon inventory positions pertaining to those orders that are

the same number of periods away from the final assem-

bly must be identical for any number of such periods.

Consequently, all echelon states and decisions in the sys-

tem become identical for any given number of periods that

orders are away from the final assembly. As a result, if the

initial state of the system satisfies the same balanced con-

dition, the optimal policy for the assembly system can be

reduced to that of an equivalent series system, in which all

items equally far from the final assembly are aggregated

together. Chen and Zheng (1994) offer another derivation

of this result. Rosling’s approach has subsequently been

used by DeCroix and Zipkin (2005) to address an important

extension of Rosling’s stationary, infinite-horizon assembly

model. They allow for uncertain product (and component)

returns from customers and describe the item-recovery pat-

tern and restrictions on the inventory policy under which an

equivalent series system is shown to exist. DeCroix (2013)
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also makes use of Rosling’s approach in considering an as-

sembly system subject to random supply disruptions, and

shows how such system can be simplified by replacing

some subsystems with a series structure. Chen and Muhar-

remoglu (2014) consider an assembly system identical to

Rosling’s (with only the regular flow of components) but

in which the initial state may not be balanced. Using the

customer-unit decomposition approach, they establish the

optimality of echelon basestock policies whose basestock

levels are dynamically changing in time as a function of

cumulative customer demands.

To analyze assembly systems with nonstationary costs,

Angelus and Porteus (2008) develop a different approach

to solving assembly systems (with regular flow of orders

only). They also make use of an echelon formulation of

the problem, but instead of using items as units of anal-

ysis, they analyze the system by means of components,

which represent items with no predecessors. Furthermore,

they work explicitly with stages through which components

flow downstream, one stage per period, toward final assem-

bly, rather than capturing stages through a set of echelon

inventory positions. The basic unit of analysis in Angelus

and Porteus (2008) is thus a component assembly system

in which there is only a single (final) assembly at the most

downstream stage. They formulate a dynamic program for

the objective cost function for the problem and identify

a new property of the objective cost function that is pre-

served under minimization. Under this property, referred to

as “balance-inducing,” the objective cost function increases

if any stage in the system has an excess of any compo-

nent relative to the component with the smallest echelon

inventory at that stage. In other words, given an underlying

echelon state and the corresponding objective cost function,

if additional inventory is added to any component at any

stage (other than the one with the smallest echelon inven-

tory at that stage), the objective cost function increases.

Angelus and Porteus make use of this property to show

that, if the system starts out in a balanced state, the opti-

mal policy for the system is balanced in every subsequent

period, so that there is an equal amount of every component

at every stage. This result, in turn, implies that a nonsta-

tionary assembly system with (only) the regular flow of

product can be reduced to an equivalent series system.

When it comes to nonstationary assembly systems with

multiple flows of product, such as having both regular and

expedited flow of product as allowed in our paper, nei-

ther of the two existing approaches in the literature yields

fruit. First, the classic approach of Rosling (1989) is lim-

ited by its assumption of stationary costs. Indeed, Rosling

(1989, p. 574) states that the “series interpretation gener-

ally cannot be expected to carry over when holding costs

or production costs are non-stationary.” With regard to the

approach of Angelus and Porteus (2008) on the other hand,

achieving the preservation of the balance-inducing property

identified in their paper when expediting is added to the

system necessitates imposing overly restrictive assumptions

on cost parameters in the model. In particular, it can be

shown that the preservation of the balance-inducing prop-

erty for an assembly system with expediting requires that

the unit expediting cost for every component at each stage

be so low that it becomes optimal to never place a regular

order in the system. Second, both existing approaches make

use of the echelon formulation which is imbued with a cer-

tain limitation when it comes to systems with multiple flow

of product. In particular, under echelon formulation, eche-

lon inventory positions in both Rosling (1989) and Angelus

and Porteus (2008) would be obtained by including both

the expedited and the regular flow orders. Therefore, with

expediting, the balanced echelon states found to be optimal

in those papers can be reached by unbalanced combina-

tions of regular and expedited orders. As a result, even

though inventory states may be balanced in each period,

such unbalanced optimal decisions would make it impos-

sible to reduce the system to an equivalent series one. In

other words, the echelon formulation of assembly systems

aggregates expedited and regular flow of product in a way

that renders it impossible to balance both of them at the

same time, under the optimal policy. Thus, instead of using

echelon variables, we formulate the assembly model by

means of installation stocks and replenishment decisions

related to those. Furthermore, instead of directly establish-

ing system-wide properties of the problem (long run bal-

ance in Rosling 1989, balance-inducing in Angelus and

Porteus 2008), we tackle the problem stage by stage and

establish local (i.e., stage-specific) properties of the opti-

mal policy. As shown in Section 3, these two aspects of

our approach make it possible to disaggregate those two

product flows (and, for that matter any number of flows),

as well as stages in the system, so that each type of order at

each stage can be shown to be balanced under the optimal

policy. In that manner, our approach makes it possible to

solve more general assembly systems.

In summary, our paper contributes to the assembly lit-

erature by (i) incorporating both advance information and

expediting of stock (neither of which was considered either

alone or together in the context of assembly systems);

(ii) allowing for nonstationary model parameters and finite

time horizons; (iii) characterizing the optimal policy that

makes it possible to manage the resulting assembly sys-

tem; and (iv) proposing a new approach to solve complex

assembly systems with multiple flows of product.

2. Model Description

2.1. Component Assembly System

We begin our analysis with a simplified assembly model

(see Figure 1), where components are assembled only once,

at the most downstream stage. We refer to this system as the
component (assembly) system because it is the components

that flow downstream until they are assembled into the final

product. Later we show that the component system plays a

key role in solving more complex assembly systems.
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Figure 1. Component assembly system.

i = n

i = n – 1

i = 2

i = 1

j = Ln j = Ln – 1 j = 3 j = 2j = 4 j = 1

Customer demand
… … …

…

…

Following the literature on assemble-to-stock systems

(e.g., Rosling 1989, DeCroix and Zipkin 2005), we assume,

without loss of generality, that assembling a product requires

exactly one unit of each of n components. Each compo-

nent i, i ∈ �1�2� � � � n�, has a standard leadtime of Li periods

between the placing of a regular order for the component and

its becoming a part of a final product. Our model allows for a

component to stay at a single physical location for more than

one period, as work-in-progress, which can be used to repre-

sent multiperiod leadtimes between adjacent physical stages

(in which case a single physical location would be repre-

sented by multiple completion stages). At the same time, if

expedited, a unit of any component can move through adja-

cent stages in the systemwithin a single period, as elaborated

below. Without loss of generality, we order component types

so that L1 � L2 � · · · � Ln. Note that some components

can have the same leadtime as others, and that all possible

leadtimes need not be represented: In Figure 1, for example,

there is no component with a leadtime of one period. Fur-

thermore, we do not combine different components with the

same leadtime into a single aggregate component because it

is not necessarily optimal to manage them identically. Thus,

our starting model is a periodic review, nonstationary, finite-

horizon, component assembly system.

2.2. Advance Demand Information

Following Gallego and Özer (2001, 2003), the demand seen

during period t is of the form Dt = �Dt� t� � � � �Dt� t+N �,
where Dt�s is the demand observed in period t for delivery
in period s. Dt�s is assumed to have a continuous proba-

bility distribution for each t and s. Period s is such that

s ∈ �t� � � � � t+N�, where N is the longest available delivery

time offered to the customer, referred to as the (demand)
information horizon. This formulation captures demands

that are realized now, but need to be fulfilled s periods

later. Such advance demand information helps the company

better manage the supply-demand mismatch by providing

exact information on a portion of demand that will need to

be satisfied in the future. Thus, at the beginning of period t,
the observed demand to be fulfilled in future period s is

Ot� s =
∑t−1

q=s−N Dq� s .

At the beginning of each period t, the available de-

mand information is the N dimensional vector Õt �= �Ot� t�
Ot� t+1� � � � �Ot� t+N−1�, and the actual demand to be satisfied

in period t is Ot� t =
∑t−1

q=t−N Dq� t . By the end of period t,
the pending demand (i.e., to be satisfied in period t) is

Ot+1� t =Ot� t +Dt� t .

We allow components Dt� t+i and Dt� t+j of the process Dt

to be correlated with each other, and the process Dt to

be correlated across time. In particular, we allow the pro-

cess Dt to depend on Õt , which is known at the beginning

of period t and before Dt is realized. This provides the

model with the capability to capture the dynamic evolu-

tion of demand distributions based on previously realized

demands.

2.3. Dynamics

For each component i, at each stage, two decisions are

made regarding the flow of inventory: (1) how many units

to expedite downstream; and (2) how many units to move

to the next stage of completion. For convenience, we

will refer to the latter as regular order. Starting at the

upstream stage Li and proceeding downstream, expedited

orders arrive at the next stage downstream immediately

(i.e., before any other decision is made). Regular orders

reach the next stage downstream at the end of the period

(but before customer demand has been realized). The fol-

lowing parameters describe the system:

xijt = on-hand inventory of component i in stage j if j > 1

(net inventory of component i if j = 1), at the

beginning of period t, prior to making any decisions;

XE
ijt = the number of units of component i expedited into

stage j from stage j + 1 in period t;

XR
ijt = the number of units of component i regular

ordered into stage j from stage j + 1 in period t.

The collection xt of all on-hand inventories xijt , will

be referred to as the on-hand (inventory) state; the col-

lection of all expedited orders XE
ijt , denoted by XE

t , will
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be referred to as the expedited order schedule; the collec-

tion of all regular orders XR
ijt , denoted by XR

t will be re-

ferred to as the regular order schedule. The sequence of

events in each period t is as follows: (1) on-hand inventory

state xt is observed; (2) expedited order schedule XE
t is

selected, starting with the most upstream stage and moving

down; (3) expedited amounts are received; (4) regular order

schedule XR
t is selected; (5) regular orders are received;

(6) vector Dt of customer demands is observed, outstand-

ing demand Ot� t+1 is satisfied to the extent possible, and

unmet demand is backlogged; and, (7) costs are incurred.

Since each expedited order arrives at the destination

stage before any other decision is made, then the expedited

order into stage j + 1 arrives before the decision on the

expedited order into stage j has to be made; thus, XE
ijt �

xi� j+1� t+XE
i� j+1� t , for each i and every j < Li. Since regular

orders are placed after all expedited quantities have arrived,

then XR
ijt � xi� j+1� t + XE

i� j+1� t − XE
ijt , for each component i

and stage j < Li. Note that the delivery of expedited units

from any stage to any downstream stage occurs within a

single period, and before regular orders are placed. Given

xt , the set of feasible decisions ��xt� becomes

��xt� = 	XE
t �X

R
t �0 �XE

ijt�xi�j+1� t+XE
i�j+1� t
X

R
ijt�xi�j+1� t

+XE
i�j+1� t−XE

ijt for 1� i�n�1� j <Li��

The state transition equations are given by

xij� t+1 =

⎧⎪⎪⎨
⎪⎪⎩
xi1t +XE

i1t +XR
i1t −Ot+1� t if j = 1�

xijt +XE
ijt −XE

i� j−1� t +XR
ijt −XR

i� j−1� t

if j = 2� � � � �Li�

(1)

The constraints of the feasible set ��xt� imply that

xijt � 0 for every i and j � 2 in each period t.

2.4. Costs

A backlogging cost pt is charged for each unit of demand

not satisfied by the end of any period; a unit inventory

holding cost Hijt is incurred on the amount of component i
located at stage j at the end of a period. Holding a unit of

assembled product incurs a holding cost HA
t . Each unit of

component i expedited into stage j incurs a unit expediting
cost kEijt , whereas each unit of component i regular ordered
into stage j incurs the unit ordering cost of kRijt in period t.
All unit costs are positive. Let � be the discount factor.

If the unit cost of a regular order were to exceed the unit

cost of expediting for a component at a particular stage,

it would always be optimal to expedite every single unit

of that component through that stage; such a stage would

thus effectively not exist in the system, as the associated

single-period leadtime would disappear for all units arriv-

ing into that stage (relevant costs could be allocated to the

next stage upstream). We assume that all such stages have

already been folded into the system, so that the remaining

ones are those for which the expedited order cost exceeds

the regular order cost. The following assumption thus pre-

serves the structure of the system.

Assumption 1. kEijt > kRijt for every component i, stage j ,
and period t.

We also assume that unit inventory holding costs are

increasing going downstream, because increasing unit

inventory holding costs “� � � reflect higher physical and

financial holding cost typically associated with items that

have progressed farther through the system” (DeCroix and

Zipkin 2005).

Assumption 2. Hijt � Hi� j+1� t , for every component i,
stage j and period t.

To avoid inventory replenishment decisions being made

for speculative purposes (that is, solely for the purpose of

exploiting the time variability of regular order costs rather

than satisfying customer demand), we impose the following

restriction on how quickly those unit costs can change in

time.

Assumption 3. kRijt + Hijt − Hi� j+1� t > �kRij� t+1 for every
component i, stage j and period t.

Next period’s unit regular order cost for any compo-

nent cannot exceed this period’s regular order cost by more

than the difference in unit holding costs. (Under Assump-

tion 2, Assumption 3 is satisfied for any stationary costs).

If the unit regular order cost of some component were to

increase excessively from one time period to another, then

it would be optimal to stockpile that component at a down-

stream stage despite higher inventory holding costs, solely

for the purpose of saving on future regular order costs.

Assumption 3 rules out such stockpiling through regular

orders. Furthermore, because of Assumption 1, Assump-

tion 3 also acts to rule out such stockpiling through expe-

dited orders. Note that Assumption 3 is automatically satis-

fied in Rosling (1989), both because the only costs assumed

in his paper are inventory holding costs, and because all

model parameters are stationary. Thus, in addition to gener-

alizing Rosling (1989) to allow for expediting of stock and

advance demand information, we also extend his results

to include nonstationary model parameters. Hence, these

results also bring the assembly literature one step closer to

practical implementation.

Because assembly requires one unit of each component,

the quantity of assembled products at the end of period t,
prior to demand realization, is min�x11t+XE

11t+XR
11t� x21t+

XE
21t+XR

21t� � � � � xn1t+XE
n1t+XR

n1t�. Let hij �=Hijt−Hi� j+1� t ,

with Hi�Li+1� t �= 0. One-period costs in period t therefore

become


t

(
Õt�min

i
�xi1t+XE

i1t+XR
i1t�

)
+

n∑
i=1

Li∑
j=1

[
kEijtX

E
ijt+kRijtX

R
ijt

+Hijt�xijt−XE
i�j−1� t−XR

i�j−1� t+XE
ijt+XR

ijt�
]

=
t

(
Õt�min

i
�xi1t+XE

i1t+XR
i1t�

)
+

n∑
i=1

Li∑
j=1

��kEijt+hijt�X
E
ijt+�kRijt+hijt�X

R
ijt+Hijtxijt�� (2)
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where 
t�Õt� x� �= EDt� t � Õt
�pt�Ot+1� t − x�+ + HA

t �x −
Ot+1� t�

+�, which is convex. The expectation is taken over

Dt� t , given Õt to account for correlation across periods. Let

Gt�Õt� xt�X
E
t �X

R
t � denote the minimum expected present

value of the costs over periods t through T , as of the begin-
ning of period t, given that the state xt is observed and

schedules XE
t and XR

t are selected. The optimality equa-

tions become

Gt�Õt� xt�X
E
t �X

R
t �= 
t

(
Õt�min

i
�xi1t +XE

i1t +XR
i1t�

)

+
n∑

i=1

Li∑
j=1

��kEijt +hijt�X
E
ijt + �kRijt +hijt�X

R
ijt +Hijtxijt�

+�E�Ft+1�Õt+1� xt+1��� (3)

where the expectation is with respect to the entire vector

of demands 	Dt� t� � � � �Dt� t+N �, given Õt . Furthermore,

Ft�Õt� xt�= min
XE
t �X

R
t ∈��xt�

Gt�Õt� xt�X
E
t �X

R
t �� (4)

where the time horizon is T periods. The terminal value

function FT+1�ÕT+1� xT+1� is assumed to be zero.

The optimality equations given for Ft�Õt� xt� bear a

severe curse of dimensionality: the state space has
∑n

i=1Li

inventory dimensions plus N advance demand dimensions.

Furthermore, optimal order quantities XE
ijt and XR

ijt for each

component i and stage j depend on all the variables in the

state space. This formidable dimensionality of the decision

space and the state space renders the problem practically

impossible to solve numerically, even for systems with very

few components and very few nodes in the system.

What makes this problem difficult are two flows of com-

ponents in the system, the regular flow and the expedited

flow, and the nonstationary cost parameters in the model.

Because of these factors, neither the classic methods of

Rosling (1989) for collapsing the state space (also em-

ployed in DeCroix and Zipkin 2005, DeCroix 2013) nor the

balance-inducing approach of Angelus and Porteus (2008)

are conducive to solving the problem. This is due to the

echelon formulation used in both of those papers, under

which expedited and regular orders are aggregated to form

echelon inventory positions.

3. Optimality Results for Assembly Systems

3.1. Component Assembly System

Our first set of results addresses some fundamental prop-

erties of the optimal policy for the component assembly

system described by Equations (3) and (4). All proofs are

deferred to the appendix.

Lemma 1. It is never optimal to expedite any component i
into stage 1.

Because both expedited orders and regular orders into

stage 1 arrive before the demand is realized in each period,

then, given the smaller unit regular order cost, it will always

be cheaper to move product by regular order than by expe-

dited order into stage 1. Thus, expedited orders will never

be used to replenish inventory at stage 1, and any expedit-

ing of components will only take place at most down to

stage 2.

Next, for each j = 1� � � � �Ln, let ��j� be the set of com-

ponents with a leadtime greater than or equal to j , referred
to as the relevant components at stage j . The following def-

initions are stated in terms of the on-hand state xt , but also
apply to XE

t and XR
t . We say that xt is balanced at stage j

in period t if xijt = xkjt for all i� k ∈ ��j�. An inventory

state balanced at stage j has exactly the same number of

units of each relevant component at stage j . Thus, there
are no unmatched components at stage j . We say that xt is
balanced through stage j if xt is balanced at each stage l,
l ∈ 	1� � � � � j�. If xt is balanced through the very last stage

Ln, we simply say that xt is balanced.

Assumption 4. For each j = 1� � � � �Ln, xij1 = xkj1 for all
i� k ∈��j�.

Thus, the system starts out balanced in the very first

period. The initial on-hand inventory state in period 1 has,

for each stage j , the same number of relevant components

scheduled to complete assembly in j periods. This assump-

tion is satisfied, for example, if we start out with no com-

ponents of any kind.

Lemma 2. The optimal regular order schedule XR
t is bal-

anced at stage 1 in every period t = 1� � � � � T . The on-hand
inventory state xt is balanced at stage 1 in every period
t = 1� � � � � T + 1.

Because of the complexity of the assembly model con-

sidered in this paper, and the nonstationary nature of model

parameters, it is not feasible to balance the whole system

at once as is done in Rosling (1989), DeCroix and Zipkin

(2005), or Angelus and Porteus (2008). Instead, it becomes

necessary to balance the system stage by stage, and this

necessitates application of a methodology different from

those found in the existing literature. Lemma 2 represents

the first step in this approach.

Lemma 3. If the on-hand inventory state xt is balanced
through stage j in period t, for any j � Ln, then the opti-
mal expedited order schedule XE

t is also balanced through
stage j in period t.

A balanced inventory state xt thus results in a balanced

optimal expedited order schedule XE
t .

Theorem 1. Optimal order schedules �XE
t �X

R
t � are bal-

anced in every period t = 1� � � � � T . The on-hand inventory
state xt is balanced in every period t = 1� � � � � T + 1.

To provide a better understanding of our approach, and

motivate its application to other assembly problems, we

sketch what is involved in proving our last two results.

Briefly, if we can show that the optimal policy �XE
t �X

R
t � is
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balanced in each period, so that XE
ijt =XE

i′jt and XR
ijt =XR

i′jt
for any components i and i′ relevant at any stage j , then,
given that xt is balanced in period 1 by Assumption 4,

this would imply that all decisions and states are balanced

under the optimal policy for all subsequent periods. This

would allow the collapse of dimension i, and thus establish

the existence of an equivalent series system.

The proof proceeds by a double induction on t and j ,
where x1 being balanced by assumption provides the base

case for the induction. If XE
t is not balanced in some

period t, then there exists a component i whose expedited

order XE
ijt at stage j is in excess of some other component’s

expedited order (say, that of component i′) at that same

stage j . In that case, move the excess of that expedited

order to the regular order for component i at stage j in

period t. More specifically, if XE
ijt −XE

i′jt = �> 0, we mod-

ify component i’s orders to X̄E
ijt =XE

ijt−� and X̄R
ijt =XR

ijt+�.
Since kEijt > kRijt by Assumption 1, this modification leads to

a lower total cost. If, on the other hand, XR
t is not balanced

in some period t, so that there exist components i and i′

such that XR
ijt −XR

i′jt = �> 0 at some stage j , we move the

excess of that regular order in period t to component i’s
regular order in period t+1. Thus, in this case, we modify

the regular orders for component i to X̄R
ijt = XR

ijt − � and

X̄R
ij� t+1 =XR

ij� t+1 +�. Assumption 3 that kRijt +hijt >�kRij� t+1

then implies that this modification leads to lower total cost.

This shows that the optimal policy at stage j in period t
should be balanced, and therefore xt+1 is balanced, which

completes the induction step. (An important part of the

proof is showing that modified orders remain feasible.) In

this manner, for each component flow, we move progres-

sively upstream one stage at a time, and then one period at

a time, until optimal decisions are shown to be balanced at

each stage and in every time period.

As a consequence of Theorem 1, it is no longer necessary

to manage each component separately; instead, those com-

ponents that are at the same stage can be managed together

as a kit, where the kit for stage j has one each of every

component in ��j�. We can therefore represent the on-hand

inventory for each relevant component at every stage j by

a single variable yjt; thus, xijt = yjt for every i ∈��j�. Let
yt �= �y1t� � � � � yLn� t

�. Because the optimal order schedule is

balanced, the optimal decisions XE
ijt (and XR

ijt) are the same

for every i ∈��j�, and they can each, therefore, be repre-

sented by a single variable Y E
jt (and Y R

jt ) at each stage j . Let
Y E
t �= �Y E

1t � � � � � Y
E
Ln� t

� and Y R
t �= �Y R

1t � � � � � Y
R
Ln� t

�. The state

space of inventory dimensions thus collapses from
∑n

i=1Li

dimensions to only L=� Ln.

It is worth noting that the key feature of our proof of the

collapse of the state space involves balancing components

one flow at a time, first the expedited flow and then the

regular flow. What enables each flow to be disaggregated

in this way is our formulation of the problem based on

installation-stocks. That is, instead of considering echelon

inventory levels (of items, as in Rosling 1989, or compo-

nents as in Angelus and Porteus 2008), we work directly

with on-hand inventory levels and the replenishment deci-

sions pertaining to those. Since the landmark paper of Clark

and Scarf (1960), research in multiechelon inventory theory

has primarily focused on managing echelon inventory lev-

els, rather than installation stocks. The disadvantage of the

multiechelon formulation in the context of an assembly sys-

tem with multiple flows of product is that those flows can-

not be disaggregated, since each echelon inventory decision

variable will inevitably represent a sum of both regular and

expedited orders at all stages downstream of a particular

stage. Our approach, by means of which we can disaggre-

gate flows and stages in the system, thus demonstrates that

there is still merit in working with installation stocks even

in a multistage setting. To the best of our knowledge, this

is the first time that an assembly system has been solved

by working with the installation stocks, rather than echelon

inventory levels. We believe this approach can help solve

other complex assembly systems that may not be amenable

to previous solution approaches.

3.2. Generalization to Systems with Subassemblies

Our second set of results concerns assembly systems

where subassemblies are allowed at any stage prior to

the final assembly. One example is shown in Figure 2.

We refer to each node k = 1�2� � � � �N in the system as

“(sub)assembly,” regardless of whether the node involves

processing a single or multiple components.

For each k, let lk be the incremental leadtime required

to complete assembly k, where Assembly 1 is the fin-

ished product. Let s�k� be the unique immediate successor
assembly to assembly k. Let L1 �= l1 = 0� and, for each

k > 1, let Lk �= lk + Ls�k� be the leadtime for assembly k.
Let P�k� be the set of immediate predecessor assemblies of

assembly k� The set of components of such a system is the

set of assemblies that have no predecessor assemblies. Let

��k� denote the set of components required in the com-

position of assembly k� In Figure 2, for example, s�6� =
2 and L9 = 8 (= l9 + l7 + l3 + L1), while P�1� = 	2�3�,
P�2� = 	5�6�, P�3� = 	4�7�, P�4� = 	8�, P�7� = 	9�10�,
P�5� = P�6� = P�8� = P�9� = P�10� = �, and ��1� =
	5�6�8�9�10�, ��2� = 	5�6�, ��3� = 	8�9�10�, ��4� =
	8�, ��7�= 	9�10�, and ��k�= 	k�, for k= 5�6�8�9�10.
We refer to such a system as the general assembly system.
Assume, for convenience, that the only extra costs in-

curred in this system, in addition to the costs already intro-

duced, are the assembly costs: Let cAkt be the discounted

present value of the costs related to assembling/purchasing/

transforming assembly k� evaluated at the beginning of

period t. This cost may be the purchasing cost for compo-

nents (e.g., 5, 6, 8, 9, and 10), as they have no predecessor

assemblies.

We now introduce the constraint-relaxation approach

from Atkins (1990) and the cost allocation ideas of Atkins

(1994) and Chen and Zheng (1994). The Atkins papers

develop an approach to relaxing some of the constraints in

the problem to provide lower bounds on the cost for certain
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Figure 2. A system with subassemblies.
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multistage inventory models with deterministic demand.

Such a relaxed version of the problem will have lower costs

because of fewer constraints in the system, and thus provide

a reasonable lower bound on the cost for the original prob-

lem. With the right choice of constraints to relax, a problem

can be broken down into simpler subproblems. By choos-

ing an optimal cost allocation, it is possible to derive tight

lower bounds on the cost function for the original prob-

lem. Chen and Zheng (1994) extend this method to systems

with stochastic demands, and prove the original results of

Clark and Scarf (1960) and Rosling (1989) in a more direct

manner. They relax the constraints, and find the optimal

policy for the simpler, relaxed problem thus obtained. This

optimal policy for the relaxed system is then shown to be

feasible in the original system. Since this policy is optimal

for the less constrained system, and found to be feasible in

the original, more constrained system, then the policy must

also be optimal for the original system.

To apply the constraint-relaxation and cost-allocation

methods to our problem, we first relax the constraint(s)

that there must be exactly the right number of each com-

ponent ready when any (sub)assembly takes place (other

than the final assembly at stage 1). We refer to those

constraints as the component-matching constraints. Relax-
ing those constraints provides a system in which the

performance is at least as good as in the original one.

Furthermore, this relaxed system has exactly the same

constraints as the component assembly system analyzed

in Section 3.1, so that a general system with subassem-

blies (with relaxed component-matching constraints) can be

treated as an equivalent component assembly system. Thus,

for example, with relaxed component-matching constraints,

the system with subassemblies shown in Figure 2 becomes

structurally equivalent to a five-component assembly sys-

tem (components 5, 6, 8, 9, and 10 in the original system)

with component leadtimes of 4, 5, 6, 7, and 8 periods.

Next, we design a cost allocation scheme so that, if the

solution is balanced, then the total expected cost is the

same in the equivalent component system and the original

system with subassemblies. If there exists an allocation of

assembly costs to its components that satisfies the required

conditions, then, by Theorem 1, there exists an optimal pol-

icy for the equivalent component system that is balanced.

Since it is balanced, this policy is feasible in the original

constrained system, because every balanced policy satis-

fies component-matching constraints. Because this policy is

optimal for the equivalent component system, and feasible

for the original constrained system, then it must be optimal

for it.

Let �ikt denote the portion of the assembly cost for

assembly k that is allocated to component i� for each i ∈
��k� in period t (e.g., allocate the assembly costs of assem-

bly 1 equally to each required component, so that �51t =
�61t = �81t = �91t = �10�1t = 1/5). In general, we require

full allocations, namely, that
∑

i∈��k� �ikt = 1 for each k
and t. For example, we require that �84t = 1 because assem-

bly 4 requires only component 8. Thus, each component

i is allocated �iktc
A
kt , for each k for which i ∈ ��k�. If

assembly k is initiated at the beginning of period t, it will
require one unit of component i for each i ∈��k�� and the

amount �iktc
A
kt will be allocated to each such component i

for stage Lk in period t.
The allocated assembly costs for the system in Figure 2

are summarized in Table 1. Component 6 is shown as bear-

ing the full cost of assembly 6—it is the only component

needed for that particular assembly. The cost of assembly 7,

by contrast, is shared among components 9 and 10. The

following theorem describes how to allocate subassembly

costs to ensure the existence of a balanced optimal policy.

Theorem 2. Let ��j� �= 	k � Lk = j� be the set of assem-
blies with leadtime Lk equal to j . Let �ijt �=

∑
k∈��j� �iktc

A
kt

for each i and j . If for each component i at stage j in each
period t there exists an allocation of assembly costs such
that �ijt � ��ij� t+1, then the optimal policy is balanced in
every period.

Table 1. Allocation of assembly costs to components

and stages.

i Li k= 1 2 3 4 5 6 7 8 9 10

5 4 �51c
A
1 �52c

A
2 cA5

6 5 �61c
A
1 �62c

A
2 cA6

8 6 �81c
A
1 �83c

A
3 cA4 cA8

9 7 �91c
A
1 �93c

A
3 �97c

A
7 cA9

10 8 �10�1c
A
1 �10�3c

A
3 �10�7c

A
7 cA
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If a policy is balanced, then, when an allocation of costs

satisfies the condition in Theorem 2, the actual costs in-

curred in the general system with subassemblies are the

same as those captured by the equivalent component model.

Since we allow each of the components to be independently

managed in a component assembly system, then the opti-

mal solution of the equivalent component system is at least

as good as the best one in the original (i.e., general assem-

bly) system. Under Assumptions 1–4, the optimal policy

for the equivalent component system is balanced; therefore,

that policy is feasible in the original system with subassem-

blies, because, being balanced, it satisfies the component-

matching constraints. Thus, this balanced policy must be

optimal for the original system.

The condition required by Theorem 2 states that the allo-

cation of assembly costs across components cannot change

too quickly in time. Otherwise, if, for example, in one

period assembly costs are allocated evenly across compo-

nents and in the next period they are all allocated to some

component i, it may be optimal to withhold that particular

component from assembly for one or more periods, thus

unbalancing the system. The requirement that �ijt � ��ij� t+1

eliminates such pathological changes of cost allocations

across time. This condition is only mildly restrictive: it

holds, for example, for the case of stationary assembly

costs or when the assembly costs are allocated equally to

each required component in each period. Thus, under the

specified set of permissible cost allocations, the optimal

policy for a nonstationary assembly system with subassem-

blies is balanced, and the system can thus be reduced to an

equivalent series system.

4. The Characterization of the Optimal Policy

By Theorems 1 and 2, those components in the assembly

system that are at the same stage can be managed together

as a kit, where the kit for stage j has one each of every

component in ��j�. We can thus represent the on-hand

inventory for each relevant component at stage j by a single

variable yjt .

Since the optimal expedite order and regular order sched-

ules are balanced, then the optimal expedite order deci-

sion for component i at stage j , XE
ijt , is the same for every

i ∈��j�, and can therefore be denoted by a single vari-

able, Y E
jt . Similarly, because the optimal regular order deci-

sion for component i at stage j , XR
ijt , is also the same for

every i ∈��j�, it can be denoted by a single variable, Y R
jt .

Let the new cost parameters kEjt , k
R
jt , Hjt , and hjt for each

stage j be defined as follows:

kEjt �=
∑

i∈��j�
kEijt
 kRjt �=

∑
i∈��j�

kRijt


Hjt �=
∑

i∈��j�
Hijt
 and hjt �=

∑
i∈��j�

hijt�

We can formulate the new optimality equations for the

assembly model with ADI and expediting as follows:

�t�Õt�yt�= min
Y E
t �Y R

t ∈��yt �
�t�Õt�yt�Y

E
t �Y

R
t � (5)

�t�Õt�yt�Y
E
t �Y

R
t �=
t�Õt�y1t+Y E

1t +Y R
1t �

+
L∑

j=1

��kEjt +hjt�Y
E
jt +�kRjt +hjt�Y

R
jt +Hjtyjt�

+�E��t+1�Õt+1�yt+1���

The feasible decision set ��yt� for a given on-hand

inventory state yt becomes

��yt� =
{
Y E
t � Y

R
t � Y E

jt � yj+1� t + Y E
j+1� t� Y

R
jt � yj+1� t

+ Y E
j+1� t − Y E

jt �1� j < L
}
�

The following corollary completes the reduction of an

assembly system with advance demand information and

expediting to an equivalent series system.

Corollary 1. Fix t and yt . If xijt = yjt for all j and i ∈
��j�, then Ft�Õt� xt�=�t�Õt� yt� for every Õt .

Note that the only subscript in the optimality equations

given above, other than the time label, is the stage of the

system in sequential order, so that the assembly model with

expediting and ADI has now been reduced to an equivalent

series system with L= Ln stages.

4.1. Formulation in Terms of Echelons

We now reformulate the series system given in Equation (5)

using the following echelon variables:

zjt �= y1t + · · · + yjt—Echelon j (on-hand) inventory, at

the beginning of period t;
ZE
jt �= zjt + Y E

jt —Echelon j inventory position after

expedited orders have arrived;

ZR
jt �=ZE

jt +Y R
jt —Echelon j inventory position after both

expedited and regular orders have arrived.

Updated echelon inventories are zj� t+1 = ZR
jt − Ot+1� t .

Let zt �= �z1t� � � � � zLt� be the echelon (inventory) state,
ZE
t �= �ZE

1t� � � � �Z
E
Lt� be the post-expedite echelon schedule,

and ZR
t �= �ZR

1t� � � � �Z
R
Lt� be the post-regular order echelon

schedule. Thus, ZE
t and ZR

t are the decision variables of the

model for each t.
The single period cost function becomes 
t�Õt�Z

R
1t� +∑L

j=1��k
E
jt − kRjt �Z

E
jt + �kRjt + hjt�Z

R
jt − kEjt zjt�� Our assembly

system can thus be reduced to an equivalent series one with

these optimality equations:

ft�Õt� zt�

=−
L∑

j=1

kEj zjt + min
ZE
t �Z

R
t ∈	�zt �

{

t�Õt�Z

R
1t�+

L∑
j=1

�cEjtZ
E
jt + cRjt Z

R
jt �

+�E�ft+1�Õt+1�Z
R
t −Ot+1� t��

}
� (6)
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where, for notational convenience, cEjt �= kEjt −kRjt , and cRjt �=
kRjt +hjt . The feasible set 	�zt� becomes

	�zt�= 	ZE
t �Z

R
t � zjt �ZE

jt �ZR
jt �ZE

j+1� t�1� j � L�� (7)

The echelon inventory position after expediting is, at each

stage, bounded from below by the echelon inventory at that

stage, and, from above, by the echelon inventory position

after expediting at the next stage upstream. Those two ech-

elon positions then determine the feasible interval for the

echelon position after regular ordering. Our third set of

results concerns the solution to the dynamic program given

in (6).

4.2. Preservation of Additive Convexity

In what follows, if f is an arbitrary smooth and convex

function on 
 with a finite unconstrained minimizer S, then
we define functions f + and f − as

f +�x� �=
{
f �S� if x� S;

f �x� otherwise;
and

f −�y� �=
{
f �y�− f �S� if y � S;

0 otherwise.

(8)

Clearly, f + is increasing, and f − is decreasing for every

such function f . Furthermore, if f is increasing, then

f −�y�= 0, and f +�x�= f �x�; if f is decreasing, f +�x�=
0, and f −�y�= f �y�. The following lemma presents a new

result in convex optimization pertaining to the preservation

of additive convexity of multidimensional objective func-

tions minimized over the feasible set with linear, ordered

boundaries.

Lemma 4. Let u �= �u1� u2� � � � � uM� be a given vector in

M such that uj � uj+1 for every j . Let �1��2� � � � ��M�

→
 be smooth convex functions. Then, for any m<M ,

min
uj��j��j+1

j=1�2�����M

M∑
j=1

�j��j�

=
m∑
j=1

�j�uj�+ min
uj��j��j+1

j=m+1�����M

{
�m+1��m+1�+

M∑
j=m+2

�j��j�

}
� (9)

where the minimization is over the vector � �= ��1� � � � � �M�,
and functions �j are defined recursively by �j �=�j+�−

j−1,
with �0 �= 0. Furthermore, �j is smooth and convex for
every j .

The following intermediate results introduce a set of new

functions needed for subsequent analysis and establish their

smoothness and convexity properties.

Lemma 5. Assume that ft+1�Õt+1� ·�, as defined in Equa-
tion (6), is smooth and additively convex for each Õt+1, so
that there exist smooth convex functions 	f1� t+1� � � � � fL� t+1�

such that ft+1�Õt+1� zt+1� = ∑L
j=1 fj� t+1�Õt+1� zj� t+1� for

each Õt+1.

(i) Let functions 	g1� t� � � � � gN� t� be defined, for each
Õt , as

gjt�Õt�Z�

�=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩


t�Z�+ cR1tZ+�E�f1� t+1�Õt+1�Z−Ot+1� t��

if j = 1


cRjtZ+�E�fj� t+1�Õt+1�Z−Ot+1� t��

if j > 1�

(10)

Then, gjt�Õt� ·� is smooth and convex for every Õt .
(ii) Given g1� t� � � � � gN� t as above, let g+jt �Õt� ·� and

g−jt �Õt� ·� be as defined in Lemma 13. For each Õt , let

Ujt�Õt�Z� �=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cE1tZ+ g+1� t�Õt�Z�

if j = 1


cEjtZ+ g+jt �Õt�Z�+ g−j−1� t�Õt�Z�

if 1< j � L�

(11)

Then, Ujt�Õt� ·� is smooth, convex, and

ft�Õt� zt�= min
zjt�ZE

jt �ZE
j+1� t

1�j�L

{ L∑
j=1

Ujt�Õt�Z
E
jt �

}
�

Theorem 3. For every zt and Õt in each period t, let
Ujt�Õt�zjt� be as defined in Lemma 5. Let functions
V1t�Õt�·������VLt�Õt�·� be defined recursively as Vjt�Õt�zjt�

�=Ujt�Õt�zjt�+V −
j−1�t�Õt�zjt�, with V0t�Õt�zjt� �=0. Then,

the function Vjt�Õt�·� is smooth and convex, and ft�Õt�zt�=∑L
j=1V

+
jt �Õt�zjt�−kEj zjt .

The multivariable objective cost function for a multieche-

lon inventory system with ADI and expediting can therefore

be reduced to a sum of single-variable smooth convex func-

tions. This result acts to significantly reduce the curse of

dimensionality inherent in the original problem, to the point

where each component function depends only on a single

(echelon) inventory dimension (in addition to any advance

demand information state variables). Theorem 3 completes

our objective of decomposing a complex assembly system

with advance information and expediting of stock into a

nested sequence of solvable convex subproblems. Each sub-

problem now contains only N +1 dimensions, and becomes

numerically tractable because the demand information hori-

zon N is typically not very large in practice, and because

the optimization of each component function is only over

the single (echelon) variable zjt .

4.3. Structure of the Optimal Policy

In what follows, we use the symbols “∨” and “∧,” in the

conventional sense, to represent the maximum and the min-

imum, respectively, of two or more numbers or variables.
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Theorem 4. For any given Õt , let gjt�Õt� ·� and Vjt�Õt� ·�
be as Lemma 5 and Theorem 3, respectively. Let

SR
jt �Õt� �=max

(
argmin

Z

gjt�Õt�Z�
)

and

SE
jt �Õt� �=max

(
argmin

Z

Vjt�Õt�Z�
)

for each j .
(i) Then, the optimal echelon j position after expediting,

ẐE
jt �Õt� zt� is given by

ẐE
jt �Õt� zt�=

L∧
i=j

�zit ∨ SE
it �Õt��� (12)

(ii) Given ẐE
t �Õt� zt�, the optimal echelon j position

after regular ordering, ẐR
jt �Õt� zt�, is given by

ẐR
jt �Õt�zt��=

{
�ẐE

jt �Õt�∨SR
jt �Õt��∧ẐE

j+1� t�Õt� if j <L


ẐE
Lt�Õt�∨SR

Lt�Õt� if j=L�
(13)

Thus, the optimal policy for a multiechelon system with

ADI and expediting is a double-tiered, echelon basestock

policy whose basestock levels depend on the state of ADI.

4.4. Implementation of the Optimal Policy

Imagine an organization with two departments charged with

managing replenishment: “the expediting” department and

“the regular order” department, each with a manager at

every stage. The implementation of the optimal policy is

top-down, starting with the expediting manager at eche-

lon L who observes his echelon inventory zLt , and com-

pares it to his basestock level SE
Lt�Õt�. If S

E
Lt�Õt�− zLt is

positive, he expedites that difference to stage L− 1. Oth-

erwise, he stays put. Finally, he informs his regular order

counterpart, as well as both managers at stage L − 1, of

his decision ẐE
L� t . Having been informed about ẐE

L−1� t , the

expediting manager at stage L−1 observes his own echelon

inventory level zL−1� t , selects the point within the interval

�zL−1� t� Ẑ
E
Lt� closest to SE

L−1� t�Õt�, and orders the (positive)

difference between that point and zL−1� t . Next, he commu-

nicates his decision ẐE
L−1� t to the two replenishment man-

agers at stage L − 2. The implementation of the optimal

expediting schedule thus starts at the top, and continues

downstream.

Once information on optimal echelon j and j + 1 posi-

tions after expediting reaches the regular order manager at

stage j , he holds those decisions as fixed and ignores all

other decisions in the system. He chooses a point in the

interval �ẐE
jt � Ẑ

E
j+1� t� closest to his corresponding basestock

level SR
jt �Õt�, and places a regular order for the (positive)

difference between that point and ẐE
jt .

We now demonstrate this process using a set of actual

basestock levels for a five-echelon system shown in Table 2.

For simplicity, we assume no advance demand informa-

tion. Suppose that regular basestock levels were achieved in

Table 2. Implementation of the optimal policy.

Echelon (j) SE
j SR

j ẐR
j� t−1 zjt ẐE

jt Ŷ E
jt ẐR

jt Ŷ R
jt

1 — 8 8 −1 −1 0 7 8
2 8 12 12 3 7 4 7 0
3 7 15 15 6 7 1 11 4
4 10 20 20 11 11 0 18 7
5 18 24 24 15 18 3 24 6

period t − 1 so that ẐR
j� t−1 in Table 2 is identical to SR

j for

each j . Let the realized demand at stage 1 in period t − 1

be 9. The resulting state zjt at the beginning of period t is in
column 5. Thus, going in the direction of the optimal policy

implementation, which is top-down, ẐE
5t = max�z5t� S

E
5 � =

18; and ẐE
4 =min�max�z4t� S

E
4 �� Ẑ

E
5 �= 11; and so on. The

optimal number of units Ŷ E
jt expedited into each stage is

shown in column 7: stage 5 receives 3 expedited units;

stage 4 does not expedite units; stage 3 receives 1 expedited

unit, and stage 2 receives 4 expedited units.

Because SR
j > ẐE

j+1� t for every j < L in Table 2, basestock

levels SR
j cannot be achieved anywhere in the system except

at the uppermost stage, where the regular order decision

is not constrained. Thus, ẐE
j+1� t represents the highest level

that ẐR
jt , the optimal echelon j inventory position after reg-

ular ordering, can feasibly achieve. Thus, column 8 shows

that all but the uppermost echelon inventory positions after

regular ordering are exactly equal to echelon inventory posi-

tions after expediting at the next stage upstream. The num-

ber Ŷ R
jt of actual units optimally ordered through regular

flow into each stage is shown in column 9.

5. Properties of the Optimal Policy

This section establishes the monotonicity properties of the

optimal policy with regard to the parameters that character-

ize advance demand information and expediting of stock.

Those properties have both theoretical and practical value.

The value to theory is from understanding the behavior

of optimal decisions, which facilitates both the implemen-

tation of the optimal policy and its calculation. Practical

value comes from helping companies understand how key

parameters of those two strategies drive cost savings in

assembly systems, so that they can make better decisions

when it comes to investing in those capabilities.

Lemma 6. Optimal order schedules �ẐE
t � Ẑ

R
t � are such that

ẐE
j+1� t − zj+1� t � ẐR

jt − zjt for each t and j .

Since ẐE
j+1� t − zj+1� t = Y E

j+1� t and ẐR
jt − zjt = Y E

jt + Y R
jt ,

Lemma 6 has an important implication: a unit expedited

into any stage in the system never stays there—it is always

moved at least one more stage downstream within the same

period, either by expedited or regular flow. In other words,

expediting is used only when it is optimal to move a unit

downstream more than one stage within a single period.

This is because, if a unit were to be moved downstream

only a single stage within a period, then it would be cheaper
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to do so by regular order rather than an expedited one,

because regular order is less costly.

Lemma 7. For any given Õt , S
R
jt �Õt�� SE

jt �Õt� for each j
in every period t.

Lemma 7 establishes explicit ordering between basestock

levels for regular orders and basestock levels for expedited

orders at each stage. It ensures that regular orders will occur

at each stage in the system, for if SR
jt �Õt� were less than

SE
jt �Õt� at some stage j , only expedited orders would be

placed at that stage.

5.1. Impact of Advance Demand Information

We now address the monotonicity properties of the optimal

policy relative to advance demand information. In particu-

lar, we explore what happens in period t when an amount �
of advance demand that needs to be fulfilled j periods

ahead (in period t + j) is reassigned to be fulfilled j + 1

periods ahead (in period t + j + 1). This analysis helps

companies decide whether to focus on collecting advance

demand information for shorter horizon orders or longer

horizon orders, and understand their relative impact on cost

savings.

For that purpose, for each j = 1� � � � �N , we define an

N -dimensional unit vector ej whose jth entry is 1 (the rest

of the elements are zeros). Thus, Õt+�ej adds � units to the
demand to be fulfilled in period t+j; in other words, Ot� t+j

becomes Ot� t+j + �. Our interest is in uncovering the rela-

tionship between ẐE
jt �Õt� zt� and ẐE

jt �Õt − �ej + �ej+1� zt�,

as well as between ẐR
jt �Õt� zt� and ẐR

jt �Õt−�ej +�ej+1� zt�,
for every j < N and � > 0. We use Dyf �x� y� to refer to

the first derivative of f with respect to y.

Lemma 8. Let f , g� 
N ×
→
 be two functions of �x� y�
that are smooth, convex and coercive in y. Assume that
Dyf �x� y� � Dyg�x� y� for all �x� y�. Let sf �x� and sg�x�
be the largest minimizers of f and g, respectively, over y,
for any given value of x. Then, the following hold.
(i) sf �x�� sg�x� for every x;
(ii) Dyf

+�x� y� � Dyg
+�x� y� and Dyf

−�x� y� �

Dyg
−�x� y� for all �x� y�.

We use the notation Õ2
t � Õ1

t for two advance demand

information vectors Õ2
t and Õ1

t such that each element

of Õ2
t is greater than or equal to the corresponding element

of Õ1
t .

Theorem 5. The following hold in every period t.
(i) For any Õ2

t � Õ1
t , S

E
jt �Õ

2
t �� SE

jt �Õ
1
t �, and SR

jt �Õ
2
t ��

SR
jt �Õ

1
t � for every j;

(ii) For any Õt and � > 0, SE
jt �Õt + �ek� � SE

jt �Õt +
�ek+1� and SR

jt �Õt + �ek� � SR
jt �Õt + �ek+1� for every j =

1� � � � �N and k= 1� � � � �N − 1;
(iii) For any Õt and � > 0, SE

jt �Õt + �ek�− SE
jt �Õt�� �

and SR
jt �Õt + �ek�− SR

jt �Õt�� � for any j� k.

Therefore, optimal basestock levels for both regular

order and expediting decisions are increasing in observed

advance demand. Furthermore, the observed advance de-

mand that is closer to the current period has more impact

on optimal basestock levels than the observed demand fur-

ther in the future. In other words, an additional unit of

advance order to be delivered � periods later increases the

optimal basestock levels for the current period more than

an additional unit of advance order to be delivered � ′ > �
periods later. Furthermore, as shown in part (iii) of The-

orem 5, an increase of � units in the observed advance

demand increases the basestock levels for either expedited

or regular flow order by less than �.

Theorem 6. The following hold for every period echelon
state zt in each period t.
(i) For any Õ2

t � Õ1
t and every j = 1� � � � �N :

(a) ẐR
jt �Õ

2
t � zt�� ẐR

jt �Õ
1
t � zt�;

(b) ẐE
jt �Õ

2
t � zt�� ẐE

jt �Õ
1
t � zt�; and

(c) ft�Õ
2
t � zt�� ft�Õ

1
t � zt�;

(ii) For any Õt , �> 0, every j = 1� � � � �N and k� q:
(a) ẐR

jt �Õt� zt�� ẐR
jt �Õt − �ek + �eq� zt�;

(b) ẐE
jt �Õt� zt� � ẐE

jt �Õt − �ek + �eq� zt�; and
(c) ft�Õt� zt�� ft�Õt − �ek + �eq� zt�.

Theorem 6 has two important implications. First, it

shows that having advance demand information in the sys-

tem decreases the amount of inventory held in the supply

chain. This result reveals the main mechanism responsi-

ble for cost savings generated with ADI: having advance

demand information requires less inventory at each stage,

and that reduces inventory holding costs. Second, in the

sense of allocating advance demand across the information

horizon, the objective cost function is decreasing in the

length N of that horizon, because a longer demand infor-

mation horizon allows allocations further into the future,

which, by Theorem 6, has the effect of reducing costs. This

conclusion provides a measure of justification for compa-

nies to invest in information and sales technologies that

enable longer advance demand horizons.

5.2. Impact of Expediting

For notational convenience, and without loss of generality,

going forward we assume that unit expediting costs are sta-

tionary, so that kEjt = kEj at each stage j and for all periods t.

Lemma 9. Let fjt�Õt� zjt� �= V +
jt �Õt� zjt�− kEj zjt for each j .

Then, for each Õt in every period t, gjt�Õt� ·�, Ujt�Õt� ·�,
Vjt�Õt� ·�, and fjt�Õt� ·� are independent of kEm for every
j >m.

Thus, components of the objective cost function vary only

with downstream unit expediting costs. We now investigate,

at each stage j , the behavior of basestock levels and opti-

mal decisions as functions of the unit expediting cost kEm
at a given stage m � j , while keeping all other unit costs

constant. We use the notation SE
jt �Õt � kEm�, SR

jt �Õt � kEm�,
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ẐE
jt �Õ� zt � kEm�, ẐR

jt �Õ� zt � kEm�, and fjt�Õt� z � kEm� to indicate

that basestock levels, optimal decisions, and cost functions

at every stage j vary with the unit expediting cost at stagem.

We denote only the dependence on a single kEm because we

vary only a single kEm at a time.

Lemma 10. Fix j , and suppose that �E
j and kEj are two

different unit expediting costs at stage j such that �E
j > kEj .

Then, the following hold for every Õt in every period t.
(i) kEj −�E

j �Dzfjt�Õt� z � �E
j �−Dzfjt�Õt� z � kEj �� 0;

(ii) kEj −�E
j �Dzgjt�Õt� z � �E

j �−Dzgjt�Õt� z � kEj �� 0;
(iii) 0�DzVjt�Õt� z � �E

j �−DzVjt�Õt� z � kEj �� �E
j − kEj ;

(iv) SR
jt �Õt � �E

j � � SR
jt �Õt � kEj � and SE

jt �Õt � �E
j � �

SE
jt �Õt � kEj �.
As we increase the unit expediting cost at a particular

stage, basestock levels for regular orders at that stage in-

crease, and those for expedited orders decrease.

Lemma 11. Fix j > 1, and suppose that �E
j−1 and kEj−1 are

two different unit expediting costs at stage j − 1 such that
�E
j−1 > kEj−1. Then, the following hold for every Õt in every

period t.
(i) Dzfjt�Õt� z � �E

j−1�−Dzfjt�Õt� z � kEj−1�� 0;
(ii) Dzgjt�Õt� z � �E

j−1�−Dzgjt�Õt� z � kEj−1�� 0;
(iii) DzVjt�Õt� z � �E

j−1�−DzVjt�Õt� z � kEj−1�� 0;
(iv) SR

jt �Õt � �E
j−1� � SR

jt �Õt � kEj−1� and SE
jt �Õt � �E

j−1� �

SE
jt �Õt � kEj−1�.

Lemma 12. Fix j , and suppose that �E
m and kEm are two

different unit expediting costs at a given stage m, m < j ,
such that �E

m > kEm. Then, the following hold for every Õt

in every period t.
(i) Dzfjt�Õt� z � �E

m�−Dzfjt�Õt� z � kEm�� 0;
(ii) SR

jt �Õt � �E
m� � SR

jt �Õt � kEm� and SE
jt �Õt � �E

m� �

SE
jt �Õt � kEm�.
These monotonicity results concerning expediting of

stock in the system allow us to establish the following key

relationship between expediting and the optimal amount of

inventory held in the system.

Theorem 7. Suppose that �E
m and kEm are two different unit

expediting costs at any given stage m such that �E
m > kEm.

Then, ẐR
jt �Õt� zt � �E

m�� ẐR
jt �Õ

1
t � zt � kEm� for every stage j .

The amount of inventory optimally held in the system

increases as expediting costs increase. Because, for suffi-

ciently high unit expediting costs, the option to expedite is

no longer exercised and the system reduces to one with reg-

ular flow only, Theorem 7 implies that having the option to

expedite stock in the supply chain acts to reduce the amount

of inventory held in the system (relative to the correspond-

ing system with regular flow only). With expediting, com-

panies can therefore expect to hold less inventory through-

out the supply chain, and this is the main source of savings

realized by the option to expedite inventory. Although this

conclusion may not be surprising, what is less intuitive is

the combination of monotonicity properties needed to make

it happen, such as the fact, not found in the research lit-

erature, that increasing unit expediting costs at a particular

stage increases expedited orders at every upstream stage.

6. Quantifying the Value of

ADI and Expediting

In this section, we carry out numerical studies to investi-

gate the benefit of having both ADI and stock expediting

in a supply chain, and the nature of their mutual interac-

tion. We quantify cost savings from having (i) only ADI;

(ii) only expediting; (iii) both ADI and expediting. In what

follows, all cost savings numbers are reported in percentage

terms, relative to the classical multiechelon model without

either ADI or expediting. We also explore the sensitivity of

those cost savings to: (i) the unit backlogging cost; (ii) unit

expediting costs; (iii) demand variability and correlation;

(iv) allocations of total demand to ADI; (v) total leadtime

of the assembly system; and (vi) the length of the demand

information horizon.

We use Poisson random variables to model the demand

vector �Dt� t�Dt� t+1� � � � �Dt� t+N �, following Özer (2003) and
Levi and Shi (2013). In many practical situations, demand

behaves like a Poisson process, especially when it comes

from many small, nearly independent sources such as indi-

vidual customers (Zipkin 2000, p. 179). In our basic model,

demand vectors 	Dt� t�Dt� t+1� � � � �Dt� t+N � are not correlated
across time.

We begin by analyzing the four-component assembly

system displayed in Figure 3, referred to as the basic
assembly model. This system has one subassembly at

node 4, a system leadtime of 3 periods (i.e., L = 3), and

a single period of advance demand (N = 1). Nodes 2, 3,

5, and 6 are components. To facilitate interpretation of

numerical outputs, we use stationary model parameters and

demands. Table 3 shows unit costs for each component at

each stage. Subassembly costs at node 4 are assumed to

have already been allocated to components 5 and 6 in the

manner prescribed by Theorem 2.

Figure 3. The basic assembly model.
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Table 3. Unit costs in the basic assembly system.

Comp. Hi�1 Hi�2 Hi�3 kRi�1 kRi�2 kRi�3 kEi�1 kEi�2 kEi�3

2 0�3 0�1 0 0�5 0�2 0 0�9 0�4 0
3 0�4 0�2 0 0�7 0�4 0 1�2 0�7 0
5 0�5 0�3 0�1 1�2 1�0 0�8 2�0 1�8 1�6
6 0�6 0�4 0�3 1�6 1�4 1�2 2�7 2�2 1�8

Mean demands used are 	�5�0�� �4�1�� �3�2�� �2�3��
�1�4�� �0�5��, where ��0��1�= �5�0� represents a system

with no ADI, and, in the absence of expediting, such a

system is the reference point for the percentage savings

presented below; with ��0��1�= �0�5�, all of the demand

is realized one period in advance. By Theorems 1 and 2,

the basic assembly system in Figure 3 can be reduced to an

equivalent series system whose unit costs are obtained by

aggregating unit assembly costs over relevant components

as follows: kEj �= ∑
i∈��j� kEij , k

R
j �= ∑

i∈��j� kRij , and hj �=∑
i∈��j� hij . Thus, for the equivalent series system, echelon

inventory holding costs are h1 = 0�8, h2 = 0�6, and h3 =
0�4; ordering costs are kR1 = 4�0, kR2 = 3�0, and kR3 = 2�0;
and expediting costs are kE1 = 6�8, kE2 = 5�1, and kE3 = 3�4.
Also, HA = 1�5.

6.1. Cost Savings as a Function of the

Unit Backlogging Cost

Table 4 presents cost savings from using ADI only, whereas
Table 5 displays cost savings from using both ADI and

expediting, as a function of the unit backlogging cost. The

cost savings shown in both tables are increasing as a greater

Table 4. Cost savings—ADI only.

Unit backlogging cost �p� (%)
Mean demand
��0��1� 10 20 30 40 50

�5�0� 0�0 0�0 0�0 0�0 0�0
�4�1� 0�9 1�2 1�4 1�4 1�2
�3�2� 2�1 2�7 2�6 2�8 2�8
�2�3� 3�4 4�1 4�4 4�4 4�2
�1�4� 4�8 6�2 6�2 6�6 6�5
�0�5� 8�6 10�8 11�5 11�9 11�8

Note. As a function of the backlogging cost.

Table 5. Cost savings—ADI with expediting.

Unit backlogging cost �p� (%)
Mean demand
��0��1� 10 20 30 40 50

�5�0� 5�7 11�3 15�8 19�9 23�5
�4�1� 7�0 12�6 17�5 21�4 25�0
�3�2� 8�5 14�6 19�3 23�4 26�8
�2�3� 10�2 16�7 21�3 25�6 29�2
�1�4� 12�5 19�4 24�4 28�5 31�9
�0�5� 17�6 26�3 31�9 36�3 39�9

Note. As a function of the backlogging cost.

proportion of total demand is known in advance (i.e., as �1

is increasing and �0 = �max − �1 decreasing). Our results

in Table 4 are in line with numerical studies conducted on

systems with ADI only in Özer (2003). Although the mono-

tonicity of cost savings as a function of the greater pro-

portion of total demand known in advance is predicted by

Theorem 6(ii), the value of quantifying those cost savings

lies in their actual values. For example, at the unit backlog-

ging cost of 10, cost savings from expediting almost double

when half of the total average demand becomes known one

period in advance.

As far as we know, the value of the option to expedite

stock in a multistage system has not been quantified before,

even though Lawson and Porteus (2000) highlight the need

for it. Our results show that this value can be substantial.

Even when unit expediting costs are 70% higher than reg-

ular order costs, savings from expediting alone range from

5�7%–23�5% of total costs (the top row of Table 5).

To quantify the value of adding expediting to a system

with ADI, Table 6 presents cost savings from the model

with both ADI and expediting relative to the model with

ADI only. As shown in Table 6, this marginal value of
�adding� expediting to a system with ADI is significant and

increasing in the backlogging cost and the amount of ADI.

Thus, the greater the portion of demand that a company

receives in the form of ADI, the more beneficial it is to

also develop expediting capability in the supply chain.

When it comes to the cost savings displayed in Tables 4

and 5, one would expect to see a strong substitution effect

between ADI and expediting of stock, since they both serve

to reduce the mismatch between the supply and demand,

and they both reduce total inventory held in the system.

What we observe in Tables 4 and 5, however, is some-

thing different. For example, when the backlogging cost

is 20, the option to expedite stock, without ADI, generates

11�3% in cost savings. Having only ADI, without expe-

diting, results in the cost reduction of 4�1% when mean

demands are (2�3). Having both ADI and expediting at

those same demand means results in 16�7% cost savings—

more than the sum of cost savings from ADI alone and

from expediting alone. In other words, what we observe is

complementarity.

Table 6. The marginal value of expediting.

Unit backlogging cost �p� (%)
Mean demand
��0��1� 10 20 30 40 50

�5�0� 5�7 11�3 15�8 19�9 23�5
�4�1� 6�1 11�6 16�4 20�3 24�1
�3�2� 6�5 12�3 17�1 21�2 24�7
�2�3� 7�1 13�1 17�6 22�1 26�0
�1�4� 8�0 14�1 19�4 23�5 27�2
�0�5� 9�9 17�3 23�0 27�8 31�9

Note. As a function of the backlogging cost.
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Table 7. The synergy differential.

Unit backlogging cost �p� (%)
Mean demand

��0��1� 10 20 30 40 50

�5�0� 0�00 0�00 0�00 0�00 0�00
�4�1� 0�35 0�20 0�38 0�10 0�35
�3�2� 0�69 0�67 0�88 0�72 0�54
�2�3� 1�16 1�35 1�08 1�30 1�45
�1�4� 1�95 1�93 2�45 2�12 1�91
�0�5� 3�35 4�22 4�59 4�59 4�65

Note. As a function of the backlogging cost.

To assess the strength of this complementarity effect, we

take the difference between percentage cost savings with

both ADI and expediting (i.e., the entries in Table 5) on the

one hand, and the sum of the cost savings from ADI alone

(i.e., the entries in Table 4) and cost savings from expe-

diting alone (i.e., the top row of Table 5) on the other, for

each choice of model parameters. We refer to this differ-

ence as the synergy differential. Equivalently, if we define

Fclassic to be the optimal cost with neither ADI nor expe-

diting, FADI to be the optimal cost with ADI only, FEXP to

be the optimal cost with expediting only, and FADI+EXP to

be the optimal cost with both ADI and expediting, then the

synergy differential becomes

�Fclassic−FADI+EXP�−�Fclassic−FADI�−�Fclassic−FEXP�

Fclassic
� (14)

Table 7 presents this synergy differential. Positive val-

ues indicate complementarity between ADI and expedit-

ing (negative values would imply that they are substitutes).

Contrary to the conventional wisdom, ADI and expediting

are found to be complements with regard to cost savings in

the system.

Understanding this complementarity requires a closer ex-

amination of the dynamics between ADI and expediting.

With ADI, a portion of future demand becomes known in

advance, so that it becomes optimal to keep less inventory

in the system. Keeping less inventory, however, leaves the

supply chain more vulnerable to high realizations of de-

mand and resulting stock-outs. Expediting of stock protects

the supply chain against such stock-outs and the associ-

ated backlogging costs by making it possible to expedite

inventory downstream, and making it available for cus-

tomer demand sooner than with only regular flow of stock.

The vulnerability created by ADI is thus “hedged” by the

option to expedite stock, and this hedging acts to create the

synergistic effect between ADI and expediting observed in

Table 7. Furthermore, the more total demand is realized

through advance demand, the less likely it is for the sys-

tem to stock out, so that, as �1 increases, the less costly it

becomes for expediting to provide a hedge to ADI, and the

complementarity effect grows stronger. One may therefore

expect that a longer demand information horizon would

have an even more negatively correlated impact on the com-

plementarity of ADI and expediting.

6.2. Cost Savings as a Function of

Unit Expediting Costs

We now investigate cost savings for the basic assembly

model in Figure 3 as a function of unit expediting costs.

The unit backlogging cost is 30. Let �j �= kEj /k
R
j be the

ratio of the unit expediting cost to the unit regular order

cost for each stage j . Instead of varying each of the three kEj
parameters individually, we now vary them at the same time

by choosing identical ratios for each j . We set � = �1 =
�2 = �3, and we refer to � as the expedite-to-regular cost
ratio, or E-to-R Cost Ratio. We evaluate cost savings as �
takes on the values 	1�3�1�5�1�7�1�9�2�1�. (In Tables 4–7,

�= 1�7.) Table 6 remains unchanged because changing �
does not impact cost savings from ADI alone. Thus, what is

of interest are cost savings with both ADI and expediting,

as well as the synergy differential, as a function of �. The
results are in Tables 8 and 9.

Cost savings from having both ADI and expediting are

decreasing in unit expediting costs. Although this mono-

tonicity result follows analytically from the single-period

cost function, the benefit of having numerical results in

Table 8 is in knowing the exact rate at which the optimal

cost is increasing in �. The synergy differential remains

positive for all model parameters explored in Table 9.

For each value of unit expediting costs, the synergy dif-

ferential is also monotonically increasing in the amount

of ADI.

Table 8. Cost savings—ADI with expediting.

E-to-R cost ratio ��� (%)
Mean demand

��0��1� 1.3 1.5 1.7 1.9 2.1

�5�0� 20�5 17�4 15�8 14�7 13�9

�4�1� 22�2 19�1 17�5 16�4 15�5

�3�2� 24�2 21�1 19�3 18�0 17�1

�2�3� 26�1 23�0 21�3 20�3 19�5

�1�4� 29�2 26�2 24�4 23�2 22�3

�0�5� 36�6 33�6 31�9 30�8 29�9

Note. As a function of expediting costs.

Table 9. The synergy differential.

E-to-R cost ratio ��� (%)
Mean demand

��0��1� 1.3 1.5 1.7 1.9 2.1

�5�0� 0�00 0�00 0�00 0�00 0�00

�4�1� 0�28 0�41 0�38 0�29 0�26

�3�2� 1�01 1�05 0�88 0�69 0�57

�2�3� 1�17 1�20 1�08 1�18 1�26

�1�4� 2�51 2�60 2�45 2�31 2�23

�0�5� 4�55 4�69 4�59 4�50 4�48

Note. As a function of expediting costs.
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6.3. Impact of Variability and Correlation

Next, we investigate the impact of demand variability and

demand correlation (across time periods) on realized sav-

ings and the synergy differential. Regarding demand vari-

ability, the coefficient variation for a Poisson Process with

mean � is given by 1/
√
�. Consequently, to examine the

impact of variability in the context of our basic assembly

system, we vary the coefficient of variation of the Pois-

son distribution for both the current period’s demand and

the one period of advance demand. In particular, we start

with ��0��1�= �2�2� and raise both distribution means in

increments of one until we reach ��0��1�= �7�7�. Thus,
we vary the coefficient of variation from 0.707 to 0.378.

Relevant results are in Tables 10 and 11.

As observed in Table 10, the impact of variability on cost

savings with both ADI and expediting depends on the unit

backlogging cost: for small unit backlogging costs, higher

variability leads to higher percentage cost savings, whereas

with larger unit backlogging costs the opposite happens.

With regard to the synergy differential (Table 11), demand

variability does not seem to have a monotonic impact.

To evaluate the impact of demand correlation across time

periods on realized savings and the synergy differential, we

model the joint distribution of Dt� t , the demand observed

in period t for delivery in period t, and Dt−1� t , the demand

observed in period t − 1 for delivery in period t, with

bivariate Poisson distribution. Bivariate Poisson Distribu-

tion has been used, for example, to study multi-item inven-

tory systems (Song 1998), and assemble-to-order systems

with multiple product types (Lu et al. 2003)

Table 10. Cost savings—ADI with expediting.

Unit backlogging cost �p� (%)
Mean demand
��0��1� 10 20 30 40 50

�7�7� 8�9 16�8 23�0 28�2 32�6
�6�6� 8�9 16�7 22�7 27�9 32�2
�5�5� 9�0 16�5 22�4 27�3 31�7
�4�4� 9�0 16�3 21�9 26�5 30�6
�3�3� 9�2 15�8 21�0 25�4 29�1
�2�2� 9�5 15�1 19�1 23�1 26�4

Note. Impact of variability.

Table 11. The synergy differential.

Unit backlogging cost �p� (%)
Mean demand
��0��1� 10 20 30 40 50

�7�7� 0�48 0�61 0�63 0�67 0�61
�6�6� 0�53 0�71 0�71 0�71 0�67
�5�5� 0�60 0�77 0�72 0�78 0�78
�4�4� 0�76 0�83 0�84 0�79 0�90
�3�3� 0�79 0�90 1�11 0�94 0�87
�2�2� 0�86 1�26 0�69 1�14 0�95

Note. Impact of variability.

The joint probability mass function ��y1� y0� of the

bivariate Poisson distribution of random variables Y0 and

Y1 is defined by three (positive) parameters, �1, �2, and �3

as follows:

P��y0� y1 � �1��2��3�

= e−��1+�2+�3�
�
y1
1

y0!
�
y1
2

y1!
min�y0� y1�∑

i=0

(
y0
i

)(
y1
i

)
i!
(

�3

�1�2

)i

�

It can be shown that Y0 and Y1 are then marginally dis-

tributed as Poisson with means �0 = �1 + �3 and �1 =
�2 +�3, respectively (see, e.g., Kocherlakota and Kocher-

lakota 1992). The covariance of Y0 and Y1 is �3, so that the

correlation coefficient becomes �3/�
√
�1 +�3

√
�2 +�3�.

Using joint and marginal probability distributions, we

derive the conditional distribution of Y0 given Y1 to be the

following.

�Y0
�y0 � y1�=

min�y0� y1�∑
i=0

(
y1
i

)
r i�1− r�y1−i e

−�1�
y0−i
1

�y0 − i�! � (15)

where r �= �3/��3 + �2�. Letting Y0 �= Dt� t , Y1 �= Dt−1� t ,

and �1 = �2 = 2, we are now in the position to capture the

correlation between advance demand information realized

in the previous period for delivery this period and the dis-

tribution of demand realized this period for delivery this

period. We evaluate cost savings and the synergy differen-

tial as �3 varies from 0 to 5 in increments of 1. (This corre-

sponds to varying the covariance from 0 to 5, and the cor-

relation coefficient from 0.05 to 0.2.) Thus, �0 =�1 varies

from 2 to 7. Results are in Tables 12 and 13, where for con-

venience, we label the first column with ��1+�3��2+�3�.
Table 12 displays cost savings from having both ADI and

expediting as a function of the covariance �3 and the unit

backlogging cost. Percentage cost savings are uniformly

increasing in �3 across all values of the unit backlogging

cost. Furthermore, by comparing those value with corre-

sponding values without correlation in Table 10, which

displays cost saving for the system with identical mean

demands but no correlation, having positive correlation

across time can be seen to uniformly increase relative cost

savings generated by expediting and ADI in the system.

One interpretation for this effect is that, with positive cor-

relation, advance demand information provides “a signal”

Table 12. Cost savings—ADI with expediting.

Unit backlogging cost �p� (%)
Mean demand
��1 +�3��2 +�3� 10 20 30 40 50

�7�7� 10�0 18�4 24�7 30�0 34�5
�6�6� 9�9 18�1 24�3 29�5 33�9
�5�5� 9�8 17�7 23�7 28�7 33�0
�4�4� 9�5 17�0 22�7 27�6 31�6
�3�3� 9�5 16�0 21�3 25�7 29�5
�2�2� 9�5 15�1 19�1 23�1 26�4

Note. Impact of correlation.
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Table 13. The synergy differential.

Unit backlogging cost �p� (%)
Mean demand
��1 +�3��2 +�3� 10 20 30 40 50

�7�7� 1�81 2�26 2�37 2�43 2�35
�6�6� 1�81 2�30 2�44 2�43 2�41
�5�5� 1�82 2�32 2�41 2�41 2�40
�4�4� 1�77 2�16 2�29 2�39 2�32
�3�3� 1�32 1�92 2�06 2�01 2�10
�2�2� 0�86 1�26 0�69 1�14 0�95

Note. Impact of correlation.

Figure 4. A four-period assembly model.
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about next period’s demand realization and thus serves to

reduce the uncertainty of future demand (and related costs).

Furthermore, as seen by comparing Table 13 with Table 11,

incorporating positive demand correlation also acts to sign-

ficantly increase the synergy differential, up to fourfold

for small values of the unit backlogging cost. Therefore,

companies that find positive covariance between advance

demand information and current demand realization are

especially well positioned to reap the benefits of having

both expediting and ADI capabilities in their supply chains.

6.4. Higher Echelon Systems

Next, we quantify cost savings from ADI and expediting

in higher echelon assembly systems. We consider the four-

and five-period assembly systems shown in Figures 4 and 5,

respectively. In the spirit of changing only one parame-

ter at a time, we maintain one period of advance demand.

To make fair cost comparisons across assembly systems

with different total leadtimes, the sum of each category’s

costs (i.e., holding costs, regular order costs, and expediting

Table 14. Unit costs for the four-period assembly model.

Comp. Hi�1 Hi�2 Hi�3 Hi�4 kRi�1 kRi�2 kRi�3 kRi�4 kEi�1 kEi�2 kEi�3 kEi�4

2 0.2 0.1 0 0 0.3 0.1 0 0 0.6 0.3 0 0
3 0.2 0.1 0 0 0.5 0.2 0 0 1.0 0.5 0 0
5 0.3 0.2 0.1 0 0.6 0.4 0.2 0 1.2 0.7 0.3 0
6 0.3 0.2 0.1 0 1.0 0.6 0.3 0 1.5 0.8 0.5 0.0
7 0.5 0.4 0.3 0.2 1.6 1.2 1.0 1.0 2.5 2.0 1.8 1.7

Figure 5. A five-period assembly model.
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Table 15. Cost savings—ADI only.

Unit backlogging cost �p� (%)
Mean demand
��0��1� 10 20 30 40 50

�5�0� 0�0 0�0 0�0 0�0 0�0
�4�1� 0�8 0�9 1�1 0�9 0�9
�3�2� 1�7 2�0 2�1 2�1 2�0
�2�3� 2�8 3�2 3�4 3�1 3�1
�1�4� 4�1 4�8 4�9 4�8 4�7
�0�5� 7�1 8�5 8�8 8�6 8�3

Note. Four-period assembly model.

costs) across the total leadtime for the system is kept con-

stant. The holding cost for the assembled product is also

the same: HA = 1�5. The assembly system in Figure 4 has

a total leadtime of four periods (L= 4), and, like our basic

assembly system, it has one subassembly at node 4. This

subassembly now also requires a component 7, which has

a two-period leadtime. For this system, nodes 2, 3, 5, 6, 7

are components. All stage-dependent unit costs are shown

in Table 14.

Tables 15 and 16 present cost savings for the four-period

assembly system with ADI only, and with both ADI and

expediting. Although cost savings with ADI alone are still

increasing in the percentage of demand allocated to ADI,

they are less than those for the basic assembly system. The

longer the supply chain, the more inventory there is in the

system, so that reductions in inventory from ADI are about

the same in total terms, but lesser relative to the basic three-

period assembly system.

With both ADI and expediting, cost savings increase

with the total leadtime (Table 16). The longer the supply

chain, the more options there are for expediting—inventory

can be expedited into stage 2 from an increasing number of
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Table 16. Cost savings—ADI with expediting.

Unit backlogging cost �p� (%)
Mean demand
��0��1� 10 20 30 40 50

�5�0� 11�2 20�5 27�6 33�5 38�4
�4�1� 12�3 21�7 29�0 34�7 39�7
�3�2� 13�5 23�1 30�6 36�2 41�0
�2�3� 15�1 25�1 32�2 38�0 42�8
�1�4� 17�4 27�5 34�8 40�3 44�8
�0�5� 22�2 33�4 41�0 46�6 51�1

Note. Four-period assembly model.

origination stages, and this additional optionality directly

results in correspondingly larger cost savings for both the

system with expediting alone and with the system with both

ADI and expediting. As a consequence, the synergy differ-

ential remains (roughly) unchanged.

Figure 5 displays a five-period assembly model with

two subassemblies, at nodes 4 and 9, while nodes 2, 3,

7, 8, 10, and 11 are components. Cost parameters for this

assembly model are in Table 17. Cost savings for the five-

period assembly model with only ADI (Table 18) con-

tinue to decrease with the length of the supply chain: each

entry in Table 18 is smaller than the corresponding entry

in Table 15.

The benefit of having only ADI is decreasing in the sup-

ply chain length, whereas cost savings with both ADI and

expediting still increase in the length of the supply chain,

reaching more than 60% (Table 19). Thus, there exists a

structural difference between systems with ADI only and

those with both ADI and expediting—the savings from hav-

ing ADI only are decreasing in the length of the supply

chain, whereas those from having both ADI and expediting

are increasing. As a result, in practice, with ADI, longer

supply chains have more to benefit from adding the option

to expedite inventory than shorter ones do.

The synergy differential for the five-period assembly

model is shown in Table 21. As observed, the comple-

mentarity effect persists unabated even as we increase the

length of the supply chain.

6.5. Longer Demand Information Horizons

We now explore the impact of longer demand information

horizons on cost savings. We use the four-period assembly

system whose structure is shown in Figure 5 and costs in

Table 17. Unit costs for the five-period assembly model.

Comp. Hi�1 Hi�2 Hi�3 Hi�4 Hi�5 kRi�1 kRi�2 kRi�3 kRi�4 kRi�5 kEi�1 kEi�2 kEi�3 kEi�4 kEi�4

2 0.6 0.3 0 0 0 0.2 0.1 0 0 0 0.4 0.1 0 0 0
3 0.7 0.4 0 0 0 0.3 0.1 0 0 0 0.5 0.3 0 0 0
7 0.8 0.5 0.3 0.1 0 0.4 0.2 0.1 0.1 0 0.6 0.4 0.2 0.1 0
8 1.0 0.6 0.4 0.1 0 0.5 0.3 0.2 0.1 0 0.7 0.5 0.3 0.2 0
10 1.3 0.7 0.5 0.2 0.1 0.5 0.4 0.3 0.2 0.1 0.8 0.6 0.5 0.3 0.1
11 1.6 0.8 0.6 0.3 0.2 0.6 0.5 0.4 0.3 0.1 1.0 0.7 0.6 0.5 0.2

Table 18. Cost savings—ADI only.

Unit backlogging cost �p� (%)
Mean demand
��0��1� 10 20 30 40 50

�5�0� 0�0 0�0 0�0 0�0 0�0
�4�1� 0�7 0�7 0�9 0�7 0�7
�3�2� 1�4 1�6 1�7 1�6 1�5
�2�3� 2�4 2�7 2�7 2�4 2�3
�1�4� 3�6 3�9 3�8 3�7 3�5
�0�5� 6�2 7�0 6�9 6�6 6�2

Note. Five-period assembly model.

Table 19. Cost savings—ADI with expediting.

Unit backlogging cost �p� (%)
Mean demand
��0��1� 10 20 30 40 50

�5�0� 16�1 28�7 37�6 44�6 50�0
�4�1� 17�1 29�8 38�8 45�6 51�0
�3�2� 18�3 31�0 40�2 46�8 52�0
�2�3� 19�7 32�7 41�5 48�3 53�5
�1�4� 21�8 34�8 43�7 50�1 55�1
�0�5� 26�3 40�0 48�9 55�2 60�1

Note. Five-period assembly model.

Table 20. The synergy differential.

Unit backlogging cost �p� (%)
Mean demand
��0��1� 10 20 30 40 50

�5�0� 0�00 0�00 0�00 0�00 0�00
�4�1� 0�30 0�35 0�36 0�28 0�41
�3�2� 0�64 0�55 0�91 0�61 0�60
�2�3� 1�12 1�38 1�26 1�43 1�35
�1�4� 2�07 2�23 2�38 1�98 1�75
�0�5� 3�91 4�46 4�59 4�44 4�42

Note. Four-period assembly model.

Table 14, and present results for the case of two periods of

advance demand (N = 2).

Tables 22 and 23 display cost savings with ADI only and

with both ADI and expediting for the four-period assembly

system with two periods of advance demand information.

By Theorem 6, since costs in the system are decreas-

ing with N , the demand information horizon, those cost

savings can be expected to exceed those in Tables 15

and 16 (when the system has only one period of advance
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Table 21. The synergy differential.

Unit backlogging cost �p� (%)
Mean demand
��0��1� 10 20 30 40 50

�5�0� 0�00 0�00 0�00 0�00 0�00
�4�1� 0�33 0�36 0�31 0�28 0�39
�3�2� 0�74 0�65 0�87 0�56 0�63
�2�3� 1�18 1�36 1�26 1�28 1�24
�1�4� 2�12 2�23 2�24 1�81 1�65
�0�5� 3�92 4�36 4�30 4�04 3�91

Note. Five-period assembly model.

Table 22. Cost savings—ADI only.

Unit backlogging cost �p� (%)
Mean demand
��0��1��2� 10 20 30 40 50

�5�0�0� 0�0 0�0 0�0 0�0 0�0
�2�2�1� 5�5 7�1 8�2 8�8 9�4
�2�1�2� 8�0 10�8 12�9 14�1 15�5
�1�1�3� 11�9 16�1 18�9 21�1 23�0
�0�1�4� 17�5 23�5 27�2 29�9 32�0
�0�0�5� 20�6 27�4 31�8 34�9 37�5

Note. Four-period assembly model, with N = 2.

Table 23. Cost savings—ADI with expediting.

Unit backlogging cost �p� (%)
Mean demand
��0��1��2� 10 20 30 40 50

�5�0�0� 11�2 20�5 27�6 33�5 38�4
�2�2�1� 16�1 25�9 33�0 38�7 43�5
�2�1�2� 17�1 26�8 33�7 39�4 44�1
�1�1�3� 20�3 30�0 37�0 42�3 46�7
�0�1�4� 26�1 36�7 43�9 49�2 53�5
�0�0�5� 26�9 37�5 44�5 49�8 54�1

Note. Four-period assembly model, with N = 2.

demand information), and that is exactly what we observe

in Tables 22 and 23. The size of the increase in the savings

from ADI alone is particularly noteworthy, as the demand

information horizon is increased from one to two periods.

Table 24 displays the synergy differential for this as-

sembly model with two periods of advance demand

Table 24. The synergy differential.

Unit backlogging cost �p� (%)
Mean demand
��0��1��2� 10 20 30 40 50

�5�0�0� 0�0 0�0 0�0 0�0 0�0
�2�2�1� −0�5 −1�7 −2�8 −3�6 −4�3
�2�1�2� −2�1 −4�6 −6�7 −8�3 −9�8
�1�1�3� −2�7 −6�6 −9�5 −12�4 −14�7
�0�1�4� −2�8 −7�2 −10�9 −14�2 −16�8
�0�0�5� −4�9 −10�4 −14�8 −18�7 −21�7

Note. Four-period assembly model, with N = 2.

information, respectively. When it comes to the interaction

between ADI and expediting of stock, the length of the de-

mand information horizon plays a key role in determining

if the two are complements or substitutes. With a single

period of demand information horizon, ADI and expediting

are complements; as the information horizon increases, so

does the substitution effect between them. Economic com-

plementarity and substitutability of advance demand infor-

mation and expediting of stock are thus shown not to be

absolute characteristics, but rather functions of the supply

chain structure.

This observation concerning economic complementarity

between advance demand information and expediting of

stock being a function of the demand information horizon

is further confirmed by our study of the identical four-

period assembly model with three periods of advance

demand information (not shown). In that study, savings

from ADI alone and with both ADI and expediting con-

tinue to increase, whereas the synergy differential becomes

more negative. In particular, in a system with three periods

of advance information, most of the savings from having

both ADI and expediting are captured by having ADI alone,

as the system comes close to running in the make-to-order

mode.

7. Capacity Constraints on Expediting

We now demonstrate how the approach developed in this

paper for solving assembly systems with ADI and expe-

diting can be applied to analyze additional structural fea-

tures of those systems. In particular, we now allow limits

on expedited orders, in the form of capacity constraints on

the amount of each component expedited into each stage,

throughout the assembly process. Referring to our compo-

nent assembly system in Figure 1, let Kij be the capacity

constraint on orders for component i expedited into stage j ,
so that the new set of feasible decisions �̃�xt� becomes

�̃�xt�= 	XE
t �X

R
t � 0 �XE

ijt �min�xi� j+1� t +XE
i� j+1� t�Kij�


XR
ijt � xi� j+1� t +XE

i� j+1� t −XE
ijt

for 1� i� n� 1� j < Li��

We will refer to the component assembly system under

those capacity constraints on expedited orders as the capac-
itated component �assembly� system.

Theorem 8. For the capacitated component assembly sys-
tem, the following hold.
(i) Optimal order schedules (XE

t �X
R
t ) are balanced in

each period t = 1� � � � � T ;
(ii) The on-hand inventory state xt is balanced in each

period t = 1� � � � � T + 1;
(iii) Let K∗

j �=mini∈��j� Kij for j = 1� � � � �Ln. For any j
and every i ∈��j�, XE

ijt �K∗
j in each period t.
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Thus, in a capacitated component assembly system, it is

no longer necessary to manage each component separately;

instead, those components that are at the same stage can

again be managed together as a kit. We can therefore repre-

sent the on-hand inventory for each relevant component at

every stage j by a single variable yjt (i.e., xijt = yjt for every
i ∈��j�) and optimal decisions XE

ijt and XR
ijt for all i ∈��j�

by single variables Y E
jt and Y R

jt for each j , respectively. Fur-
thermore, at each stage j , we can also replace capacity

constraints Kij for all i ∈��j� with a single capacity con-

straint K∗
j . In that manner, a capacitated component system

can be reduced to an equivalent series system with ADI and

expediting and capacity constraint K∗
j on all orders expe-

dited into every stage j . Next, we extend this result to a

general assembly system, such as the one shown in Fig-

ure 2, in which subassemblies are allowed throughout the

system, and in which every expedited order (for any com-

ponent i into any stage j) may be subject to the capacity

constraint Kij . We will refer to such a system as the general
capacitated �assembly� system.

Theorem 9. If, in a general capacitated system there exists
an allocation of assembly costs such that �ijt � ��ij� t+1 for
every component i, stage j , and period t, then the optimal
policy is balanced in every period. Given j , all capacity
constraints Kij for i ∈��j� can be replaced with the single
constraint K∗

j .

A general capacitated assembly system with ADI and

expediting can thus be reduced to an equivalent series sys-

tem with ADI and capacity constraints K∗
j on orders expe-

dited into each stage j . The optimality equations for the

resulting series system are

f̃t�Õt� zt�

=−
L∑

j=1

kEj zjt + min
ZE
t �Z

R
t ∈	̃�zt �

{

t�Z

R
1t�+

L∑
j=1

�cEjtZ
E
jt + cRjt Z

R
jt �

+�E�f̃t+1�Õt+1�Z
R
t −Ot+1� t��

}
� (16)

where

	̃�zt� = 	ZE
t �Z

R
t � zjt �ZE

jt �min�zjt +K∗
j �Z

E
j+1� t��

ZE
jt �ZR

jt �ZE
j+1� t
1� j � L�� (17)

Note that, in the above expression, the upper boundary

of the feasible region for each ZE
jt , the echelon j inven-

tory position after expediting, depends on both zjt and

ZE
j+1� t , which, in effect, implies that this boundary depends

on all echelon inventory levels at stage j and all stages

upstream of it. As a result, the system cannot be expected

to achieve the decomposition of the objective cost function

into a sum of single-variable convex functions. We remark

that even for a series system with only capacitated regu-

lar orders the general form of the optimal inventory policy

is not known. The solution of the dynamic program given

in Equations (16) and (17) therefore remains outside the

scope of this work. Although the series-equivalent results

of Theorems 8 and 9 therefore have limited practical value,

especially for longer assembly systems, their main contri-

butions is to highlight the importance of making progress

on multiechelon systems with capacity-constrained expedit-

ing, which have so far not been addressed in the literature.

There exists a special case of the general problem given

in (16) and (17) amenable to analysis: when only the last

stage in the series system has a capacity constraint (K)

on expedited orders, we are able to solve the problem and

establish the form of the optimal policy, as shown in the

following theorem.

Theorem 10. For every zt and Õt in each period t, let
gjt�Õt�zjt� and Ujt�Õt�zjt� be as defined in Lemma 5 (with
fj�t+1�Õt+1�·� replaced by f̃j�t+1�Õt+1�·��. Let functions
V1t�Õt�·������VLt�Õt�·� be defined recursively as Vjt�Õt�zjt�

�=Ujt�Õt�zjt�+V −
j−1�t�Õt�zjt�, with V0t�Õt�zjt� �=0. Then the

following hold.
(i) The function Vjt�Õt�·� is smooth and convex, and

ft�Õt�zt�=
∑L

j=1V
+
jt �Õt�zjt�+V −

Lt�Õt�zLt+K�;
(ii) Let SE

jt �Õt� �=max
(
argminZVjt�Õt�Z�

)
for every j=

1�����L. Then, ẐE
jt �Õt�zt� is given by

ẐE
jt �Õt�zt�=

L∧
i=j

�zit∨SE
it �Õt��∧�zLt+K�� (18)

(iii) Let SR
jt �Õt� �=max

(
argminZgjt�Õt�Z�

)
for every j=

1�����L. Then, given the optimal echelon positions after
expediting, ẐE

jt �Õt�zt�, Ẑ
R
jt �Õt�zt� is given by

ẐR
jt �Õt�zt� �=

{
�ẐE

jt �Õt�∨SR
jt �Õt��∧ẐE

j+1t�Õt� if j <L


ẐE
Lt�Õt�∨SR

Lt�Õt� if j=L�
(19)

8. Concluding Remarks

Companies with assembly operations are increasingly using

ADI systems in an effort to shift production to make-to-

order, and thus reduce variability of demand. Allowing

expediting of stock in such systems provides an opportunity

to significantly enhance the resulting cost savings. Assem-

bly systems with ADI and expediting, however, are very

difficult to solve because of the curse of dimensionality of

a large state space. We approach this problem by intro-

ducing a new way to analyze assembly systems, which is

based on disaggregating product flows and identifying local

properties of optimal decisions satisfied at each stage in

the system. This new approach enables us to characterize

the structure of the optimal policy that makes it possible

to optimally manage such systems in an analytically and

numerically tractable manner.

The key feature of the optimal policy is that it is no

longer necessary to manage each component (or subassem-

bly) separately; instead, those components that are at the
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same stage can be managed together as a “kit,” where

the kit for a particular stage has one each of every rele-

vant component. The concept of a “kit-in-time” in which a

supplier provides all parts or components (of a subassem-

bly system) just-in-time to the manufacturer is not new to

industry. What is novel, from the perspective of practical

implementation, about the balanced policy found to be opti-

mal for the assembly system considered in this paper, is the

idea that balancing each kit has to extend across multiple

suppliers of subassemblies. Thus, for example, in Figure 2,

it is not enough that the supplier of subassembly 7 provide

a kit with balanced amounts of components 9 and 10; in

addition, those components also have to be balanced across

the supplier of component 8 and the supplier of compo-

nent 6. In other words, it is not just one supplier that has

to provide a balanced kit for subassembly at a particu-

lar stage, but rather his component orders also have to be

matched among all other suppliers relevant at all stages that

precede and include that subassembly. What enables that

implementation to be carried out in practice are cutting-

edge enterprise resource planning (ERP) systems that are

wide enough to offer transparency across the entire sup-

ply chain, and deep enough to provide information about

component-level decisions.

In our study, advance demand information and expedit-

ing of stock are found to be complements with regard to the

realized savings when demand information horizon is short,

and substitutes under longer information horizons. There-

fore, companies looking to shift their production/assembly

operations from make-to-stock to make-to-order by gather-

ing advance demand information could find it profitable to

also implement expediting, much like Dell has done, espe-

cially when they are able to collect advance demand for

only the near future, and when advance demand informa-

tion is positively correlated with future demands.

In practice, advanced demand information (ADI) typi-

cally reduces to having information about the timing and

quantity of future customer orders. This information can

be obtained by satisfying customers who are willing to pay

higher prices for shorter leadtimes, by offering price dis-

counts to those customers willing to accept longer lead-

times, and by employing information technologies, such

as electronic data interchange and Internet-based soft-

ware. Advance demand information can also be assessed

through clickstream data, as shown empirically in Huang

and Van Mieghem (2014). Collaborative planning and fore-

casting and replenishment (CPFR) enables supply-chain

partners to receive better information on demand, and can

thus also serve as effective means of collecting advance

demand information (Hu et al. 2003). Another strategy to

ascertain future demand is through recent advances in sup-

ply chain integration, which are making advance demand

information commonly available in a wide range of indus-

tries (see, e.g., Gallego and Özer 2001, Wang and Toktay

2008, Huang and Van Mieghem 2014).

Expediting of stock, by comparison, is already a well es-

tablished service provided by a number of logistics, freight-

forwarding, shipping, and 3PL companies. The necessary

task for the supply chain function of an organization, when

it comes to maximizing the value of that logistics service,

is to integrate expediting of stock with the company’s ADI

capabilities and related technologies.

In conclusion, with advance demand information, com-

panies obtain valuable knowledge about customers needs;

with the option to expedite stock, they can better act on

this information.
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Appendix.

Proof of Lemma 1. Suppose that it were optimal to expedite

some component i into stage 1 in some period t. Let XE
it and XR

it

be the optimal order schedules for component i in period t. Thus,
XE

i1t > 0.

Consider another policy for component i in period t given by

a set of order schedules �X̄E
it � X̄

R
it � such that X̄E

i1t = 0 and X̄R
i1t =

XE
i1t +XR

i1t . For every j > 1, let X̄E
ijt = XE

ijt , and X̄R
ijt = XR

ijt . (Opti-

mal schedules for component i remain unchanged in all future

periods.) Because the resulting state in period t + 1 is identical

under both sets of schedules, the difference in the cost between

two sets of order schedules becomes

Gt�Õt� xt�X
E
t �X

R
t �−Gt�Õt� xt�X

E
t �X

R
t �

= �kEi1t +hi1t�X
E
i1t + �kRi1t +hi1t�X

R
i1t − �kRi1t +hi1t��X

R
i1t +XE

i1t�

= �kEi1t − kRi1t�X
E
i1t > 0�

since kEi1t > kRi1t by Assumption 1. Thus, it can never be optimal

to expedite any component i into stage 1.

Proof of Lemma 2. By Assumption 4, xt is balanced in period 1.

Assume inductively that xt is balanced at stage 1 for some t <
T + 1. Thus, xi1t = xk1t for all i� k ∈ ��1�. Let XE

t and XR
t be

optimal schedules in period t, and �t �= 	�XE
t �X

R
t �� �X

E
t+1�X

R
t+1��

� � � � �XE
T �X

R
T �� be an optimal policy for periods t through T . By

Lemma 1, XE
i1t = 0 for every component i for each t. Let q =

q�1�XR
t � be a component in ��1� such that XR

q1t =mini∈��1� XR
i1t .

Thus, component q is the component with the smallest regular

order into stage 1 in period t. If XR
i1t = XR

q1t for every i, then
regular orders into stage 1 for all components are balanced, and

by state transition equation given in (1), it follows that xt+1 is

balanced at stage 1.

Assume there exists a component i ∈ ��1� such that XR
i1t >

XR
q1t . Consider a policy �̄t completely identical to �t except for

the following: X̄R
i1t = XR

i1t − � and X̄R
i1� t+1 = XR

i1� t+1 + � for some

0 < � � XR
i1t − XR

q1t . Let xt+1 and x̄t+1 be on-hand states gen-

erated by starting with xt , and applying schedules XR
t and X̄R

t ,

respectively in period t, for some given Ot+1� t . Similarly, let xt+2
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and x̄t+2 be on-hand states generated by starting with xt+1 and

x̄t+1, respectively, and applying schedules X
R
t+1 and X̄

R
t+1, in period

t+ 1. We have

x̄i1� t+1 = xi1� t + X̄R
i1t −Ot+1� t = xi1� t +XR

i1t − �−Ot+1� t

= xi1� t+1 − �� (20)

x̄i2� t+1 = xi2� t + X̄E
i2t + X̄R

i2t − X̄R
i1t

= xi2� t +XE
i2t +XR

i2t − �XR
i1t − ��= xi2� t+1 + �� (21)

Next, we show that X̄R
i1t and X̄R

i1� t+1 are feasible in periods t and

t+ 1.

X̄R
i1t < XR

i1t �definition of X̄R
i1t �

� xi2t +XE
i2t ��XE

t �X
R
t � is feasible and optimal�

= xi2t + X̄E
i2t � �definition of �̄t�

Thus, X̄R
i1t is feasible in period t. Furthermore,

X̄R
i1� t+1 = XR

i1� t+1+� �definition of X̄R
i1� t+1�

� xi2� t+1+XE
i2� t+1+� ��XE

t �X
R
t � is feasible and optimal�

= xi2� t+1+�+X̄E
i2� t+1 �definition of �̄t�

= x̄i2� t+1+X̄E
i2� t+1 �by �21��

Therefore, X̄R
i1� t+1 is feasible in period t+ 1. Finally, we get

x̄i1� t+2 = x̄i1� t+1+X̄R
i1� t+1−Ot+2� t+1 �by �1��

= x̄i1� t+1+XR
i1� t+1+�−Ot+2� t+1 �definition of X̄R

i1� t+1�

= xi1� t+1−�+XR
i1� t+1+�−Ot+2� t+1 �by �20��

= xi1� t+2� �by �1��

x̄i2� t+2 = x̄i2� t+1+X̄E
i2� t+1+X̄R

i2� t+1−X̄R
i1� t+1 �by �1��

= x̄i2� t+1+XE
i2� t+1+XR

i2� t+1−�XR
i1� t+1+��

�definition of �̄t�

= xi2� t+1+�+XE
i2� t+1+XR

i2t−XR
i1t−� �by �21��

= xi2� t+2� �by �1��

In period t + 2, the two policies result in the same on-hand

states. The two policies are identical starting in period t+ 2, and

they start out in identical states in period t+2; thus, they produce

identical states for the rest of the time horizon. We now evaluate

the difference in cost between the two policies.

Since xt is balanced at stage 1 by assumption, then, be-

cause X̄R
i1t � XR

q1t , we have 
t�Õt�mini� �xi1t + XR
i1t�� = 
t�Õt�

mini�xi1t+ X̄R
i1t��= 
t�Õt� �xq1t+XR

q1t��, by definition of q. Then,

by means of (3),

Gt�Õt� xt���−Gt�Õt� xt� �̄�

= ��kRi1t +hi1t�+�EDt
� Õt�Gt+1�Õt+1� xt+1��t+1��

−�EDt
� Õt�Gt+1�Õt+1� x̄t+1� �̄t+1���

Next, by (20) and definition of X̄R
i1� t+1, we get x̄i1� t+1 +

X̄R
i1� t+1 = xi1� t+1 − � + XR

i1� t+1 + � = xi1� t+1 + XR
i1� t+1. Thus, for

any given Õt+1, 
t+1�Õt+1�mini �xi1� t+1 +XR
i1� t+1�� = 
t+1�Õt+1�

mini �xi1� t+1 + X̄R
i1� t+1��. As a result, by using the definition of

X̄R
i1� t+1 and expressions (20) and (21), we get

Gt+1�Õt+1� xt+1���t+1�−Gt+1�Õt+1� x̄t+1� �̄t+1�

= ��kRi1� t+1 +hi1� t+1�+ ��Hi1� t+1 −Hi2� t+1�

+�EDt+1 � Õt+1
�Gt+2�Õt+2� xt+2��t+2��

−�EDt+1 � Õt+1
�Gt+2�Õt+2� x̄t+2� �̄t+2��� (22)

As already shown, xt+2 = x̄t+2. Therefore, since �t+2 = �̄t+2,

then the bottom line of (22) becomes identically zero, and the

RHS of (22) reduces to −�kRi1� t+1. Substituting this result, we get

Gt�Õt� xt���−Gt�Õt� xt� �̄�= ��kRi1t +hi1t −�kRi1� t+1� > 0�

by Assumption 3. Thus, it cannot be optimal in period t for any
component i to place a regular order at stage 1 in excess of the

regular order placed by any other component at stage 1. In other

words, if xt is balanced at stage 1 in any period t, then it is

optimal for XR
t to also be balanced at stage 1 in period t.

Since xt is balanced at stage 1 by inductive assumption, and

because it is optimal for XR
t to be balanced at stage 1, then by (1)

and Lemma 1, xt+1 is balanced at stage 1. This completes the proof.

Proof of Lemma 3. We begin with j = 2. Thus, assuming that

xt is balanced through stage 2, we show that XE
t is also balanced

through stage 2. By Lemma 1, it is optimal not to expedite any

component i into stage 1. Thus, XE
i1t = 0 for all i and t, and XE

t is

balanced at stage 1. We only need to show that XE
t it is balanced

at stage 2. Let q = q�2�XE
t � be a component in ��2� such that

XE
q2t = mini∈��2� XE

i2t . Thus, component q is the component with

the smallest expedited order into stage 2 in period t. If XE
i2t =XE

q1t

for every i, then XE
t is balanced at stage 2.

Assume that there exists a component i ∈��2� such that XE
i2t >

XE
q2t . Consider another set of order schedules X̄

E
t and X̄R

t identical

to XE
t and XR

t at all stages and for all components except for the

following: X̄E
i2t =XE

i2t − �, and X̄R
i2t =XR

i2t + �, for some 0< ��
XE

i2t − XE
q2t . First, we show that X̄E

t and X̄R
t are feasible for xt .

Since X̄E
i2t < XE

i2t � xi3t +XE
i3t = xi3t + X̄E

i3t , by definition of X̄E
t ,

then X̄E
i2t is feasible. And,

X̄R
i1t = XR

i1t �definition of X̄R
t �

= XR
q1t �XR

t is balanced at stage 1�

� xq2t +XE
q2t −XE

q1t �XR
t is feasible for xt�

= xq2t +XE
q2t �by Lemma 1�

= xi2t +XE
q2t �xt is balanced at stage 2�

� xi2t +XE
i2t − � �definition of ��

= xi2t + X̄E
i2t � �definition of X̄E

i2t �

X̄R
i2t = XR

i2t + � �definition of X̄R
t �

� xi3t +XE
i3t −XE

i2t + � �XR
t is feasible for xt�

= xi3t + X̄E
i3t − X̄E

i2t �definition of X̄E
t �

Since X̄E
t and X̄R

t satisfy the required lower and upper bounds,

they are feasible for xt .
Next, let xt+1 and x̄t+1 be on-hand states generated by starting

with xt , and applying schedules (XE
t �X

R
t ) and (X̄E

t � X̄
R
t ), respec-

tively in period t, for some given value of Ot+1� t . Since X̄R
i1t =

XR
i1t for every i ∈��1�, it follows that xi1� t+1 = x̄i1� t+1 for every
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i ∈��1�. Since the decisions at all stages above stage 2 are iden-

tical for (XE
t �X

R
t ) and (X̄E

t � X̄
R
t ) then x̄ij� t+1 = xij� t+1 for every

j � 4, and every i ∈��j�. Furthermore,

x̄i2� t+1 = xi2t + X̄E
i2t − X̄E

i1t + X̄R
i2t − X̄R

i1� t �by �1��

= xi2t + X̄E
i2t + X̄R

i2t − X̄R
i1� t �by Lemma 1�

= xi2t + �XE
i2t − ��+ �XR

i2t + ��−XR
i1t

�definition of X̄E
t and X̄R

t �

= xi2� t+1� �by �1��

x̄i3� t+1 = xi3t + X̄E
i3t − X̄E

i2t + X̄R
i3t − X̄R

i2� t �by �1��

= xi3t +XE
i3t − �XE

i2t − ��+XR
i3t − �XR

i2� t + ��

�definition of X̄E
t and X̄R

t �

= xi3� t+1� �by �1��

Therefore, x̄t+1 = xt+1. As a result the cost difference between

the two sets of order schedules becomes

Gt�Õt� xt�X
E
t �X

R
t �−Gt�Õt� xt� X̄

E
t � X̄

R
t �= ��kEi2t − kRi2t� > 0�

by Assumption 1. Thus, it cannot be optimal in period t for any
component i to place an expedited order at stage 2 in excess of

the expedited order placed by any other component at stage 2.

Consequently, the optimal expedited order schedule for XE
t must

be balanced through stage 2.

Assume inductively that the lemma holds for some j − 1, so

that, if xt is balanced through stage j − 1, the optimal expe-

dited order schedule XE
t is also balanced through j−1. Let xt be

balanced through stage j . Since that implies that xt is balanced

through stage j−1, it follows from the inductive assumption that

XE
t is also balanced through stage j − 1. Thus we only need to

show that XE
t is balanced at stage j .

Let s = s�j�XE
t � be a component in ��j� such that XE

sjt =
mini∈��j� XE

ijt . Thus, component s is the component with the small-

est expedited order into stage j in period t. If XE
ijt = XE

sjt for

every i, then XE
t is balanced at stage j . Assume there exists a

component i ∈��j� such that XE
ijt >XE

sjt .

Let schedules X̄E
t and X̄R

t identical to XE
t and XR

t except for

the following: X̄E
ijt = XE

ijt − �, and X̄R
ijt = XR

ijt + �, for some 0 <

�� XE
ijt −XE

sjt . To show that X̄E
t and X̄R

t are feasible for xt , we
follow steps identical to those given earlier in the proof, when

showing feasibility for stage 2-modified policies. To avoid repeti-

tion, we omit the details except to show that X̄R
i� j−1� t and X̄E

i� j−1� t

are feasible. First we have

X̄R
i�j−1� t = XR

i�j−1� t �definition of X̄R
t �

= XR
s�j−1� t �XR

t is balanced at stage j−1�

� xsjt+XE
sjt−XE

s�j−1� t �XR
t is feasible for xt�

= xijt+XE
sjt−XE

s�j−1� t �xt is balanced at stage j�

� xijt+XE
ijt−�−XE

s�j−1� t �definition of ��

= xijt+XE
ijt−�−XE

i�j−1� t �XE
t is balanced at stage j−1�

= xijt+X̄E
ijt−X̄E

i�j−1� t � �definition of X̄E
t �

Furthermore,

X̄E
i�j−1� t = XE

i�j−1� t �definition of X̄E
t �

= XR
s�j−1� t �XE

t is balanced at stage j−1�

� xsjt+XE
sjt �XE

t is feasible for xt�

= xijt+XE
sjt �xt is balanced at stage j�

� xijt+XE
ijt−� �definition of ��

= xijt+X̄E
ijt � �definition of X̄E

t �

Since X̄E
t and X̄R

t satisfy the required lower and upper bounds,

they are feasible for xt . Let xt+1 and x̄t+1 be on-hand states

generated by starting with xt , and applying schedules (XE
t �X

R
t )

and (X̄E
t � X̄

R
t ), respectively. We follow the same steps used ear-

lier in the proof (with stage 2-modified policies) to show that

x̄t+1 = xt+1. (Note that this implies that X̄E
t+1 =XE

t+1 is feasible at

every stage j in period t+ 1).

The cost difference becomes Gt�Õt� xt�X
E
t �X

R
t �−Gt�Õt� xt�

X̄E
t � X̄

R
t �= ��kEijt −kRijt�, which is positive by Assumption 1. Thus,

it cannot be optimal in period t for any component i to place an

expedited order at stage j in excess of the expedited order placed

by any other component at stage j . Consequently, the optimal

expedited order schedule XE
t must be balanced at stage j . There-

fore, if xt is balanced through any stage j , then so is XE
t , which

completes the proof.

Proof of Theorem 1. We use induction within induction to

prove that the optimal schedule XE
t and XR

t and the echelon

state xt are balanced through stage j , for every j � Ln and in every

period t. Since xt is balanced at stage 1 for all t by Lemma 2, we

start with stage 2. By Assumption 4, xt is balanced in period 1.

Assume inductively that xt is balanced in every period t, t � t′.
Because xt is balanced for all t � t′ then, by Lemma 3, the

optimal expedited order schedule XE
t is also balanced for all t � t′.

Since, by Lemma 2, the optimal regular order schedule XR
t is

balanced at stage 1 for all periods, we only need to show that XR
t

is balanced at stage 2 for all t � t′. For that purpose, pick any

period t � t′, and let p= p�2�XR
t � be a component in ��2� such

that XR
p2t = mini∈��2� XR

i2t . Thus, component p is the component

with the smallest regular order into stage 2 in period t. Suppose
XR

t is not balanced at stage 2. Thus, there exists a component i
such that XR

i2t > XR
p2t .

Let �t �= 	�XE
t �X

R
t �� �X

E
t+1�X

R
t+1�� � � � � �X

E
T �X

R
T �� be an opti-

mal policy for periods t through T . Consider another policy �̄t

completely identical to �t except for the following: X̄
R
i2t =XR

i2t−�
and X̄R

i2� t+1 = XR
i2� t+1 + � for some 0< �� XR

i2t −XR
p2t . Let xt+1

and x̄t+1 be on-hand states generated by starting with xt , and
applying schedules XR

t and X̄R
t , respectively. Similarly, let xt+2

and x̄t+2 be on-hand states generated by starting with xt+1 and

x̄t+1, respectively, and applying schedules XR
t+1 and X̄R

t+1. We have

x̄i2� t+1 = xi2t + X̄E
i2t + X̄R

i2t − X̄R
i1t

= xi2t +XE
i2t +XR

i2t − �−XR
i1t = xi2� t+1 − �� (23)

x̄i3� t+1 = xi3t + X̄E
i3t − X̄E

i2t + X̄R
i3t − X̄R

i2t

= xi3t +XE
i3t −XE

i2t +XR
i3t − �XR

i2t − ��= xi3� t+1 + �� (24)

Next, we show that X̄R
i2t and X̄R

i2� t+1 are feasible in periods t
and t+ 1.

X̄R
i2t < XR

i2t �definition of X̄R
i1t �

� xi3t+XE
i3t−XE

i2t �XR
t is feasible�

= xi3t+X̄E
i3t−X̄E

i2t � �definition of �̄t�

X̄R
i2� t+1 = XR

i2� t+1+� �definition of X̄R
i2� t+1�
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� xi3� t+1+XE
i3� t+1−XE

i2� t+1+�

��XE
t �X

R
t � is feasible and optimal�

= xi3� t+1+�+X̄E
i3� t+1−X̄E

i2� t+1 �definition of �̄t�

= x̄i3� t+1+X̄E
i3� t+1−X̄E

i2� t+1� �by �24��

Therefore, X̄R
i2t is feasible in period t, and X̄R

i2� t+1 is feasible in

period t+ 1. Finally, we get

x̄i2� t+2 = x̄i2� t+1+X̄E
i2� t+1+X̄R

i2� t+1−X̄R
i1� t+1

�by �1� and Lemma 1�

= x̄i2� t+1+XE
i2� t+1+XR

i2� t+1+�−XR
i1� t+1

�definition of �X̄E
t �X̄

R
t ��

= xi2� t+1−�+XE
i2� t+1+XR

i2� t+1+�−XR
i1� t+1=xi2� t+2

�by �23��

x̄i3� t+2 = x̄i3� t+1+X̄E
i3� t+1−X̄E

i2� t+1+X̄R
i3� t+1−X̄R

i2� t+1 �by �1��

= x̄i3� t+1+XE
i3� t+1−XE

i2� t+1+XR
i3� t+1−�XR

i2� t+1+��

�definition of �̄t�

= xi3� t+1+�+XE
i3� t+1−XE

i2� t+1+XR
i3� t+1−XR

i2� t+1−�

= xi3� t+2� �by �23��

In period t + 2, the two policies result in the same on-hand

states. The two policies are identical starting in period t+ 2, and

they start out in identical states in period t+2; thus, they produce

identical states for the rest of the time horizon. We now evaluate

the difference in cost between the two policies.

Since: (i) xt is balanced through stage 2 by assumption; (ii)

XR
t is balanced at stage 1 by Lemma 2; and (iii) X̄R

t is identi-

cal to XR
t at stage 1, we get 
t�Õt�mini�xi1t + XR

i1t�� = 
t�Õt�
mini�xi1t + X̄R

i1t��. Thus,

Gt�Õt� xt���−Gt�Õt� xt� �̄�

= ��kRi2t +hi2t�+�EDt � Õt
�Gt+1�Õt+1� xt+1��t+1��

−�EDt � Õt
�Gt+1�Õt+1� x̄t+1� �̄t+1���

Next, by definition of X̄R
t+1, we get x̄i1� t+1+ X̄R

i1� t+1 = xi1� t+1+
XR

i1� t+1. Thus, for any given Õt+1, 
t+1�Õt+1�mini�xi1� t+1 +
XR

i1� t+1��= 
t+1�Õt+1�mini�xi1� t+1+ X̄R
i1� t+1��. As a result, we get

Gt+1�Õt+1� xt+1��t+1�−Gt+1�Õt+1� x̄t+1� �̄t+1�

=−��kRi2� t+1 +hi2� t+1�+ ��Hi2� t+1 −Hi3� t+1�

+�EDt+1 � Õt+1
�Gt+2�Õt+2� xt+2��t+2��

−�EDt+1 � Õt+1
�Gt+2�Õt+2� x̄t+2� �̄t+2��� (25)

Since xt+2 = x̄t+2 and �t+2 = �̄t+2, then (25) reduces to

−�kRi2� t+1. Substituting into the above expression for Gt�Õt� xt���

−Gt�Õt� xt� �̄�, we get Gt�Õt� xt���−Gt�Õt� xt� �̄� = ��kRi2t +
hi2t−�kRi2� t+1� > 0, by Assumption 3. Thus, it cannot be optimal in

any period t for any component i to place a regular order at stage 2
in excess of the regular order placed by any other component at

stage 2. Thus, if xt is balanced through stage 2, then it is optimal

for XR
t to also be balanced through stage 2 in every period t.

Thus, since xt is balanced through stage 2 by inductive assump-

tion, then it is optimal for XR
t to be balanced through stage 2. Fur-

thermore, XE
t is then also balanced through stage 2 by Lemma 3,

and therefore, by (1), xt+1 is balanced through stage 2. it follows

that xt is balanced through stage 2 for all t � t′ +1, and therefore

our result holds for j = 2: �XE
t �X

R
t � and xt are balanced through

stage 2 in every period t.
Assume inductively that our result holds for some stage j−1<

Ln, so that XR
t , X

E
t are balanced through stage j − 1 in every

period t. Since xt is balanced by inductive assumption for all t < t′

then, by Lemma 3, XE
t is balanced through all stages for t < t′

(and through stage j − 1 for all periods, by inductive assump-

tion). Since, by inductive assumption, XR
t is balanced through

stage j − 1 for all periods, it suffices to show that XR
t is balanced

at stage j all t < t′. Our proof proceeds by establishing that, under

the optimal policy �XE
t �X

R
t � in each period t and at each stage j:

XR
qjt +XE

qj� t+1 =XR
sjt +XE

sj� t+1� (26)

for any two components q and s in ��j�. In proving that we

proceed as follows.

Fix j , consider any period t � t′ and let u = u�j�XR
t � be a

component in ��j� such that XR
ujt =mini∈��j��XR

ijt+XE
ij� t+1�. Com-

ponent u is, therefore, a component with the smallest sum of the

regular order in period t and expedited order in period t+ 1 into

stage j . Suppose there exists a component i such that

XR
ijt +XE

ij� t+1 >XR
ujt +XE

uj� t+1� (27)

Now, consider any � such that 0 < � � XR
ijt + XE

ij� t+1 − XR
ujt +

XE
uj� t+1. In what follows, let �t �= 	�XE

t �X
R
t �� �X

E
t+1�X

R
t+1�� � � � �

�XE
T �X

R
T �� be an optimal policy for periods t through T . We now

distinguish three, mutually exclusive, cases.

Case 1: XR
ijt −XR

ujt � � and XE
ij� t+1 �XE

uj� t+1.

Consider another policy �̄t identical to �t except for the fol-

lowing: X̄R
ijt = XR

ijt − � and X̄R
ij� t+1 = XR

ij� t+1 + �. Let xt+1 and

x̄t+1 be the on-hand states generated by starting with xt , and

applying order schedules �XE
t �X

R
t � and �X̄E

t � X̄
R
t �, respectively, in

period t. Let xt+2 and x̄t+2 be generated by starting with xt+1 and

x̄t+1, respectively, and applying order schedules �XE
t+1�X

R
t+1� and

�X̄E
t+1� X̄

R
t+1� in period t+ 1.

We first prove that �̄t is feasible. By using the same steps as

earlier in this proof, it follows that X̄R
ijt and X̄R

ij� t+1 are feasible

in periods t and t + 1 (we omit the details). We also get that:

(i) x̄ij� t+1 = xij� t+1 − �; (ii) x̄i3� t+1 = xi3� t+1 + �; and (iii) x̄t+2 =
xt+2. Thus, in period t + 2, the two policies result in the same

on-hand states. The two policies start in identical states in period

t+2, and make identical decision in period t+2 (and thereafter);

thus, they produce identical states for the rest of the time horizon.

Next we show that X̄E
i� j−1� t+1 is feasible for x̄ij� t+1 = xij� t+1−�,

which will imply that that X̄E
t+1 =XE

t+1 is feasible at every stage j
for x̄t+1. By Lemma 3 and the inductive assumption, we get the

following:

X̄E
i�j−1� t+1 = XE

i�j−1� t+1 �definition of �̄t�

= XE
u�j−1� t+1

�XE
t′ is balanced through stage j−1 for all t′�

� xuj�t+1+XE
uj�t+1 �XE

t+1 is feasible�

= xuj�t+XE
ujt−XE

u�j−1� t−XR
u�j−1� t+XR

ujt+XE
uj�t+1

�by �1��

= xijt+XE
ujt−XE

u�j−1� t−XR
u�j−1� t+XR

ujt+XE
uj�t+1

�xt is balanced�
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= xijt+XE
ijt−XE

i�j−1� t−XR
u�j−1� t+XR

ujt+XE
ij� t+1

�XE
t is balanced in period t�

= xijt+XE
ijt−XE

i�j−1� t−XR
i�j−1� t+XR

ujt+XE
uj�t+1

�XR
t is balanced through stage j−1�

� xijt+XE
ijt−XE

i�j−1� t−XR
i�j−1� t+XR

ijt+XE
ij� t+1−�

�definition of ��

= xij� t+1−�+XE
ij� t+1 �by �1��

= x̄ij� t+1+XE
ij� t+1 �x̄ij� t+1=xij� t+1−��

= x̄ij� t+1+X̄E
ij� t+1� �definition of �̄t�

Thus, X̄E
i� j−1� t+1 is feasible for x̄ij� t+1. Using identical steps, it

can be shown that X̄R
i� j−1� t+1 is also feasible for x̄ij� t+1. Since X̄

E
t ,

X̄E
t+1, X̄

R
t and X̄R

t+1 satisfy the required lower and upper bounds,

they are feasible for xt , and thus so is �̄t . We can now evaluate

the cost difference between �t and �̄t .

Gt�Õt� xt��t�−Gt�Õt� xt� �̄t�

= ��kRijt +hijt�+�EDt � Õt
�Gt+1�Õt+1� xt+1��t+1��

−�EDt � Õt
�Gt+1�Õt+1� x̄t+1� �̄t+1��

= ��kRijt +hijt�

+�EDt � Õt
	−��kRij� t+1 +hij� t+1�+ ��Hij� t+1 −Hi� j+1� t+1�

+�EDt+1 � Õt+1
�Gt+2�Õt+2� xt+2��t+2�

−Gt+2�Õt+2� x̄t+2� �̄t+2����

Since xt+2 = x̄t+2 and �t+2 = �̄t+2, then Gt+2�Õt+2� xt+2��t+2�=
Gt+2�Õt+2� x̄t+2� �̄t+2�, and the above reduces to Gt�Õt� xt���−
Gt�Õt� xt� �̄�= ��kRijt + hijt − �kRij� t+1�, which is strictly positive

(Assumption 3). Note, parenthetically, that the result XR
ijt =XR

ujt , if

XE
ij� t+1 �XE

uj� t+1, implies that XE
ij� t+1 =XE

uj�t+1, so that (26) holds

for every i ∈��j� by definition of u.
Consequently, if XE

ij� t+1 � XE
uj� t+1, it cannot be optimal in

period t for any component i to place a regular order at stage j
in excess of the regular order placed by any other component at

stage j , and so XR
ijt =XR

ujt for every component i ∈��j�. Thus, if
xt is balanced through stage j , then, in this Case 1, it is optimal

for XR
t to also be balanced through stage j . Therefore, because

XE
t is balanced in period t by Lemma 3, it follows from state

transitions in (1) that xt+1 is also balanced through stage j .
Case 2: XR

ijt �XR
ujt and XE

ij� t+1 −XE
uj� t+1 � �.

Consider another policy �̄t+1 identical to �t+1 with X̄E
t+1 and

X̄R
t+1 identical to XE

t+1 and XR
t+1 at all stages and for all compo-

nents except for the following: X̄E
ij� t+1 =XE

ij� t+1−�, and X̄R
ij� t+1 =

XR
ij� t+1+�. Using steps identical to those in the proof of Lemma 3,

it can be shown that X̄E
t+1 and X̄R

t+1 are feasible for xt+1. Let

xt+2 and x̄t+2 be the on-hand states generated by starting with

xt+1, and applying order schedules �XE
t+1�X

R
t+1� and �X̄E

t+1� X̄
R
t+1�,

respectively, in period t+ 1.

Following again the steps from the proof of Lemma 3, the

cost difference between the two policies becomes Gt+1�Õt+1�
xt+1��t+1� −Gt+1�Õt+1� xt+1� �̄t+1� = ��kEij� t+1 − kRij� t+1�, which
is positive by Assumption 1. Thus, it cannot be optimal in period

t+ 1 for any component i to place an expedited order at stage j
in excess of the expedited order placed by any other compo-

nent at stage j . Hence, XE
ij� t+1 = XE

uj� t+1 for each j and every

i ∈ ��j�. Since XR
ijt � XR

ujt by assumption, and XE
ij� t+1X

E
uj� t+1 as

just obtained, it follows from the definition of component u that

XR
ijt =XR

ujt for every i ∈��j�. Consequently, the optimal expedited

order schedule XR
t must be balanced through stage j in period t.

Thus, if xt is balanced through stage j , then, in this Case 2, it is

optimal for XR
t to also be balanced through stage j . Because XE

t

is balanced in period t by Lemma 3, it follows from (1) that xt+1

is also balanced through stage j .
Case 3: 0<XR

ijt −XR
ujt < � and 0<XE

ij� t+1 −XE
uj� t+1 <�.

In this case, it follows from (27) that there exist �1 > 0 and

�2 > 0 such that �1 + �2 = � and

XR
ijt −XR

ujt � �1 and XE
ij� t+1 −XE

uj� t+1 � �2� (28)

We now define �̄t to be identical to �t except for: X̄
R
ijt =XR

ijt −
�1, X̄

E
ij� t+1 =XE

ij� t+1 − �2, and X̄R
ij� t+1 =XR

ij� t+1 + �1 + �2. We fol-

low the usual definitions of xt+1 and x̄t+1, xt+2 and x̄t+2. We first

get

x̄ij� t+1 = xijt+X̄E
ijt+X̄R

ijt−X̄E
i�j−1� t−X̄R

i�j−1� t

= xijt+XE
ijt+XR

ijt−�1−XE
i�j−1� t−XR

i�j−1� t

= xij� t+1−�1� (29)

x̄i� j+1� t+1 = xi�j+1� t+X̄E
i�j+1� t−X̄E

ijt+X̄R
i�j+1� t−X̄R

ijt

= xi�j+1� t+XE
i�j+1� t−XE

ijt+XR
i�j+1� t−�XR

ijt−�1�

= xi�j+1� t+1+�1� (30)

We first establish that �̄t is feasible for x̄t and x̄t+1. Using

familiar steps from earlier in the proof, we find that X̄R
ijt �

xi� j+1� t + X̄E
i� j+1� t − X̄E

ijt and thus X̄R
ijt is feasible for xt . Next, we

have

X̄R
ij� t+1 = XR

ij� t+1 + ��1 + �2� �definition of �̄t�

� xi� j+1� t+1 +XE
i� j+1� t+1 −XE

ij� t+1 + ��1 + �2�

�XR
t is feasible�

= xi� j+1� t+1 + X̄E
i� j+1� t+1 − �X̄E

ij� t+1 + �2�+ ��1 + �2�

�definition of �̄t�

= x̄i� j+1� t+1 + X̄E
i� j+1� t+1 − X̄E

ij� t+1� �by �30��

Thus, X̄R
ij� t+1 is feasible for x̄t+1. Finally, we have

X̄E
i�j−1� t+1 = XE

i�j−1� t+1 �definition of �̄t�

= XE
u�j−1� t+1 �XE

t′ is balanced for all periods t′�

� xuj�t+1+XE
uj�t+1 �XE

t is feasible�

= xujt+XE
ujt−XE

u�j−1� t+XR
ujt−XR

u�j−1� t+XE
uj�t+1

�by �1��

= xijt+XE
ijt−XE

i�j−1� t−XR
u�j−1� t+XR

ujt+XE
uj�t+1

�xt and XE
t are balanced�

= xijt+XE
ijt−XE

i�j−1� t−XR
i�j−1� t+XR

ujt+XE
uj�t+1

�XR
t is balanced through stage j�

� xijt+XE
ijt−XE

i�j−1� t−XR
i�j−1� t+XR

ijt+XE
ij� t+1−�

�definition of ��
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= xij� t+1+XE
ij� t+1−� �by �1��

= xij� t+1+X̄E
ij� t+1+�2−� �definition of �̄t�

= xij� t+1+�1+X̄E
ij� t+1 ��=�1+�2�

= x̄ij� t+1+X̄E
ij� t+1� �by �30��

Consequently, X̄E
i� j−1� t+1 is feasible for x̄t+1. Identical steps dem-

onstrate that X̄R
i� j−1� t+1 is also feasible for x̄t+1. Thus, �̄t is feasi-

ble. Next, we evaluate the resulting states in period t+ 2.

x̄ij� t+2 = x̄ij� t+1 + X̄E
ij� t+1 + X̄R

ij� t+1 − X̄E
i� j−1� t+1 − X̄R

i� j−1� t+1

�by �1��

= x̄ij� t+1 +XE
ij� t+1 − �2 +XR

ij� t+1

+ �−XE
i� j−1� t+1 −XR

i� j−1� t+1 �definition of �̄t�

= xij� t+1 − �1 +XE
i2� t+1 +XR

i2� t+1 −XR
i1� t+1 + ��− �2�

�by �29��

= xij� t+2
 ��= �1 + �2�

x̄i� j+1� t+2 = x̄i� j+1� t+1 + X̄E
i� j+1� t+1 + X̄R

i� j+1� t+1 − X̄E
ij� t+1 − X̄R

ij� t+1

�by �1��

= x̄i� j+1� t+1 +XE
i� j+1� t+1 +XR

i� j+1� t+1 − �XE
ij� t+1 − �2�

− �XR
ij� t+1 + �� �definition of �̄t�

= xi� j+1� t+1 + �1 +XE
i� j+1� t+1 +XR

i� j+1� t+1 −XE
ij� t+1

−XR
ij� t+1 − ��− �2� �by �30��

= xi� j+1� t+2� ��= �1 + �2�

Consequently, the resulting states from the policies �t and �̄t

are in period t+ 2 are identical. As a result we get the following

difference in cost between the two policies:

Gt�Õt� xt��t�−Gt�Õt� xt� �̄t�

= �1�k
R
ijt +hijt�+�EDt � Õt

�Gt+1�Õt+1� xt+1��t+1��

−�EDt � Õt
�Gt+1�Õt+1� x̄t+1� �̄t+1��

= �1�k
R
ijt +hijt�+�EDt � Õt

	�1�Hij� t+1 −Hi� j+1� t+1�

− ��kRij� t+1 +hij� t+1�+ �2�k
E
ij� t+1 +hij� t+1�

+�EDt+1 � Õt+1
�Gt+2�Õt+2� xt+2��t+2�

−Gt+2�Õt+2� x̄t+2� �̄t+2����

Since xt+2 = x̄t+2 and �t+2 = �̄t+2, then Gt+2�Õt+2� xt+2��t+2�=
Gt+2�Õt+2� x̄t+2� �̄t+2�, and the above expression reduces to

Gt�Õt� xt��� − Gt�Õt� xt� �̄� = �1�k
R
ijt + hijt − �kRij� t+1�, which

is strictly positive by Assumption 3. Because �̄t is feasible and

results in a lower cost then �̄t , it follows that the optimal policy

must be such that XR
ijt =XR

ujt and XE
ij� t+1 =XE

uj� t+1 at each stage j
and for every i ∈ ��j�. Because both XR

t and XE
t are balanced

in period t, it follows from (1) that xt+1 is also balanced through

stage j .
Therefore, in all three cases that can arise if there exists a

component i at stage j such that XR
ijt + XE

ij� t+1 > XR
ujt + XE

uj� t+1,

the optimal policy is such that XR
ijt =XR

ujt and XE
ij� t+1 =XE

uj� t+1 at

each stage j and for every i ∈��j�. The only thing remaining to

show is that the same is true if XR
ijt +XE

ij� t+1 =XR
ujt +XE

uj� t+1, for

all i ∈ ��j�. In that case, we again define �̄t as identical to �t

except for the following: X̄R
ijt =XR

ijt − � and X̄R
ij� t+1 =XR

ij� t+1 + �.

The proof then proceeds by means of exactly the same steps as

proof for Case 1 above. Consequently, optimal order schedules

�XE
t �X

R
t � are balanced in every period t = 1� � � � � T . It follows

that the on-hand inventory state xt is balanced in every period

t = 1� � � � � T + 1.

Proof of Theorem 2. The total cost allocated to component i at

stage j in period t is �ijt�X
R
ijt+XE

ijt�. Let k̂
E
ijt �= kEijt+�ij , and k̂Rijt �=

kRijt + �ij . Then, Assumption 1 is satisfied for k̂Eijt and k̂Rijt directly.

Furthermore, since �ijt � ��ij� t+1 for all t by the assumption of

the theorem, then Assumption 3 also holds for k̂Eijt and k̂Rijt (given

that hijt remains unchanged). Consequently, by Theorem 1, the

optimal policy is balanced in each period t and for every Õt , and

the resulting state xt+1 in period t+ 1 is balanced.

Lemma 13 (Karush 1958). If f is an arbitrary smooth and con-
vex function on 
, then, given x � y, minx���y f ��� can be ex-
pressed as f +�x�+ f −�y�, where f + is smooth and convex in-
creasing, and f − is smooth and convex decreasing. In particular,
if f has a finite unconstrained minimizer S, then

f +�x� �=
{
f �S� if x� S


f �x� otherwise

and

f −�y� �=
{
f �y�− f �S� if y � S


0 otherwise�

If f is increasing, f −�y�= 0, and f +�x�= f �x�; if f is decreas-
ing, f +�x�= 0, and f −�y�= f �y�.

Proof of Lemma 4. Start with m= 1. By Lemma 13, we get

min
uj��j��j+1

j=1�2�����M

M∑
j=1

�j��j�

=�+
1 �u1�+ min

uj��j��j+1

j=2�3����M

[
�−

1 ��2�+�2��2�+
M∑
j=3

�j��j�

]
�

Since �1 =�1, then �+
1 =�+

1 and �−
1 =�−

1 . Thus, �2 =�−
1 +�2,

and (9) holds for m = 1. Assume inductively that (9) holds for

some m. Using the definition of �m+1, the RHS of (9) becomes

m∑
j=1

�+
j �uj�+ min

uj��j��j+1

j=m+1�����M

[
�m+1��m+1�+

M∑
j=m+2

�j��j�

]

=
m+1∑
j=1

�+
j �uj �+ min

uj��j��j+1

j=m+2�����M

[
�−
m+1��m+2�+�m+2��m+2�+

M∑
j=m+3

�j��j�

]

=
m+1∑
j=1

�+
j �uj�+ min

ujt�j��j+1

j=m+2�����M

[
�m+2��m+2�+

M∑
j=m+3

�j��j�

]
� (31)

where the second equality above follows from Lemma 13. Thus,

by (31), it follows that (9) also holds for m+1. This concludes the

proof, since smoothness and convexity carry over directly from

Lemma 13.

Proof of Lemma 5. This lemma follows directly from the as-

sumption that ft+1�Õt+1� ·� is smooth and additively convex, and

from definition of gjt and Ujt .
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Proof of Theorem 3. The theorem clearly holds for period T +
1. Assume that ft+1�Õt+1� ·�, as defined in Equation (6), is smooth

and additively convex for each Õt+1, so that there exist smooth

convex functions 	f1� t+1� � � � � fL� t+1� such that ft+1�Õt+1� zt+1�=∑L
j=1 fj� t+1�Õt+1� zj� t+1� for each Õt+1. Using the definitions of

gjt and Ujt given in Lemma 5, we get

ft�Õt� zt�

=−
L∑

j=1

kE
j zjt + min

zjt�ZEjt �ZEj+1� t
1�j�L

{
L∑

j=1

cEjtZ
E
jt +

L∑
j=1

min
ZEjt �ZRjt �ZEj+1� t

1�j�L

�gjt�Õt�Z
R
jt ��

}

�definition of gjt�Õt� ·��

=−
L∑

j=1

kE
j zjt + min

zjt�ZEjt �ZEj+1� t
1�j�L

{ L∑
j=1

cEjtZ
E
jt +

L−1∑
j=1

�g+
jt �Õt�Z

E
jt �+ g−

jt �Õt�Z
E
j+1� t��

+ g+
Lt�Õt�Z

E
Lt�

}
�by Lemma 13�

=−
L∑

j=1

kE
j zjt + min

zjt�ZEjt �ZEj+1� t
1�j�L

{ L∑
j=1

Ujt�Õt�Z
E
jt �

}
� �definition of Ujt�Õt� ·��

Let V1t�Õt� ·�� � � � � VLt�Õt� ·� be defined recursively as

Vjt�Õt� zjt� �= Ujt�Õt� zjt� + V −
j−1� t�Õt� zjt�, with V0t�Õt� zjt� �= 0.

Then, V1t�Õt� ·�� � � � � VLt�Õt� ·� are smooth and convex, and, by

Lemma 4, for any n<L,

min
zjt�ZE

jt �ZE
j+1� t

j=1�2�����L

L∑
j=1

Ujt�Õt�Z
E
jt �

=
n∑

j=1

V +
jt �Õt� zjt�

+ min
zjt �ZE

jt �ZE
j+1� t

j=n+1�����L

{
Vn+1� t�Õt�Z

E
n+1� t�+

L∑
j=n+2

Ujt�Õt�Z
E
jt �

}
�

where the minimization is over ZE
t = �ZE

1t � � � � �Z
E
Lt�. Letting n=

L− 1, the above expression yields

ft�Õt� zt� = −
L∑

j=1

kEj zjt +
L−1∑
j=1

V +
jt �Õt� zjt�

+ min
zLt�ZE

Lt

�V −
L−1� t�Õt�Z

E
Lt�+ULt�Õt�Z

E
Lt��

= −
L∑

j=1

kEj zjt +
L−1∑
j=1

V +
jt �Õt� zjt�

+ min
zLt�ZE

Lt

�VLt�Õt�Z
E
Lt�� �definition of VLt�

=
L∑

j=1

�V +
jt �Õt� zjt�− kEj zjt�� �Lemma 13�

Proof of Theorem 4. Let Õt in period t be given. As shown in

the proof of Theorem 3, for any n<L,

ft�Õt� zt�=−
L∑

j=1

kEj zjt +
n∑

j=1

V +
jt �Õt� zjt�

+ min
zjt�ZE

jt �ZE
j+1� t

j=n+1�����L

[
Vn+1� t�Õt�Z

E
n+1� t�+

L∑
j=n+2

Ujt�Õt�Z
E
jt �

]
� (32)

Let SE
jt �Õt� �= argminZ Vjt�Õt�Z� be the unconstrained min-

imizer of Vjt�Õt� ·� over Z for j = 1� � � � �L. Thus, by (32),

given any ZE
j+1� t , Ẑ

E
jt �Õt� zt� = zjt ∨ �SE

jt �Õt� ∧ ZE
j+1� t�. For n =

L− 1, (32) yields ft�Õt� zt�=−∑L
j=1 k

E
j zjt +

∑L−1
j=1 V

+
jt �Õt� zjt�+

minzLt�ZE
Lt
VLt�Õt�Z

E
Lt�. Therefore, Ẑ

E
Lt�Õt� zt� = �zLt ∨ SE

Lt�Õt��,
and thus part (i) holds for j = L. Assume inductively that (i) holds

for j + 1� � � � �L, so that

ẐE
j+1� t�Õt� zt�=

L∧
i=j+1

�zit ∨ SE
it �Õt��� (33)

It follows that

ẐE
jt �Õt� zt� = zjt ∨ �SE

jt �Õt�∧ ẐE
j+1� t�Õt� zt��

�ẐE
jt �Õt� zt�= zjt ∨ �SE

jt �Õt�∧ZE
j+1� t��

= �zjt ∨ SE
jt �Õt��∧ �zjt ∨ ẐE

j+1� t�Õt� zt��

�distributive property of “∨′′�

= [
zjt ∨ SE

jt �Õt��∧ ẐE
j+1� t�Õt� zt�

�since ẐE
j+1� t�Õt� zt�� zj+1� t � zjt�

By making use of the inductive hypothesis given in in (33), we

then get

ẐE
jt �Õt� zt� = �zjt ∨ SE

jt �Õt��∧
L∧

i=j+1

�zit ∨ SE
it �Õt��

=
L∧
i=j

�zit ∨ SE
it �Õt���

To prove part (ii), let SR
jt �Õt� be an unconstrained minimizer of

gj� t+1�Õt� ·� for each j . The result then follows directly from the

convexity of gj� t+1�Õt� ·�, shown in Lemma 4, and the specifica-

tion of 	 in (7).

Proof of Lemma 6. Let Y E
jt = ẐE

jt − zjt and Y R
jt = ẐR

jt − ẐE
jt for

each j . We need to establish that optimal schedules Y E
t and Y R

t in

period t are such that Y E
j+1� t � Y E

jt + Y R
jt for each j . Suppose that

for some j < L, Y E
j+1� t > Y E

jt + Y R
jt . Consider schedules �Ȳ E

t � Ȳ
R
it �

identical to �Y E
t � Y

R
t � except for: Ȳ

E
j+1� t = Y E

j+1� t − � and Ȳ R
j+1� t =

Y R
j+1� t + �, for any 0 < � � Y E

j+1� t − Y E
jt − Y R

jt . Ȳ
E
j+1� t is feasible

since Ȳ E
j+1� t < Y E

j+1� t , and

Ȳ R
j+1� t = Y R

j+1� t+� �definition of Ȳ R
j+1� t �

� yj+2� t+Y E
j+2� t−Y E

j+1� t+� �Y R
j+1� t is feasible�

= yj+1� t+Y E
j+2� t− Ȳ E

j+1� t �Ȳ E
j+1� t=Y E

j+1� t−� is feasible�

= yj+1� t+ Ȳ E
j+2� t− Ȳ E

j+1� t � �definition of Ȳ E
t �

Ȳ E
jt = Y E

jt �definition of Ȳ E
jt �

� Y E
jt +Y R

jt �Y R
jt �0�

� Y E
j+1� t−� �definition of ��

= Ȳ E
j+1� t�yj+1� t+ Ȳ E

j+1� t � �definition of Ȳ E
j+1� t �

Thus, Ȳ R
j+1� t and Ȳ E

jt are feasible. Finally,

Ȳ R
jt = Y R

jt �definition of Ȳ R
jt �

� Y E
j+1� t − Y E

jt − � �definition of ��

= Ȳ E
j+1� t − Ȳ E

jt �definitions of Ȳ E
jt and Ȳ E

j+1� t �

� yj+1� t + Ȳ E
j+1� t − Ȳ E

jt
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Thus, �Ȳ E
t � Ȳ

R
t � is feasible for yt . Furthermore, the resulting

state in period t + 1 is identical under both sets of schedules at

each stage j . The difference in the cost between two sets of order

schedules becomes

�t�Õt�yt�Y
E
t �Y

R
t �−�t�Õt�yt�Ȳ

E
t �Ȳ

R
t �

=�kEj+1� t+hj+1� t��Y
E
j+1� t− Ȳ E

j+1� t�+�kRj+1� t+hj+1� t��Y
R
j+1� t− Ȳ R

j+1� t�

=�kEi1t−kRi1t��>0�

by Assumption 1. Thus, it can never be optimal to have Y E
jt >

YE
j−1� t + Y R

jt . This concludes the proof.

Proof of Lemma 7. By Theorem 4, the basestock level for

the regular order decision at echelon j is given by SR
jt �Õt� �=

maxargminZ gjt�Õt�Z� for each Õt . Let j = L. Suppose that

there exists some advance demand information state Õt such that

SR
Lt�Õt� < SE

Lt�Õt�. Consider another basestock level S̄R
Lt�Õt� de-

fined as S̄R
Lt�Õt� = SR

Lt�Õt� + � for any �, 0 < � � SE
Lt�Õt� −

SR
Lt�Õt�. Thus, S

R
Lt�Õt� < S̄R

Lt�Õt�� SE
Lt�Õt�.

Let ZR
Lt�Õt� be the optimal echelon L regular order decision

obtained by SR
Lt�Õt� and Z̄R

Lt�Õt� be the optimal echelon L regular

order decision obtained by means of the basestock level S̄R
Lt�Õt�.

Then, we have

ZR
Lt�Õt�−Z̄R

Lt�Õt� = ZE
Lt�Õt�∨SR

Lt�Õt�−Z̄E
Lt�Õt�∨ S̄R

Lt�Õt�

�by Theorem 4�ii��

= zLt∨SE
Lt�Õt�∨SR

Lt�Õt�

−zLt∨SE
Lt�Õt�∨ S̄R

Lt�Õt� �by Theorem 4�i��

= zLt∨SE
Lt�Õt�−zLt∨SE

Lt�Õt�=0�

�SR
Lt�Õt��S̄

R
Lt�Õt��SE

Lt�Õt��

Therefore, the two regular order decisions at echelon L are

identical (as are all other regular and expedited decisions made

in the system). As a result, all the costs associated with those

two different basestock levels are identical. Consequently, because

gLt�Õt�Z� is smooth and convex in Z for every Õt , it fol-

lows that S̄R
Lt�Õt� = argminZ gjt�Õt�Z�. But, since SR

jt �Õt� �=
maxargminZ gjt�Õt�Z� this implies that SR

Lt�Õt�� S̄R
Lt�Õt� which

is a contradiction. It follows that SR
Lt�Õt�� SE

Lt�Õt� must be true.

Now consider j < L. Assume there exists an Õt such that

SR
jt �Õt� < SE

jt �Õt�. Consider another basestock level S̄R
jt �Õt� de-

fined as S̄R
jt �Õt�= SR

jt �Õt�+� for any �, 0<�� SE
jt �Õt�−SR

jt �Õt�.

Thus, SR
jt �Õt� < S̄R

jt �Õt�� SE
jt �Õt�. Let Z

R
jt �Õt� be the optimal ech-

elon j regular order decision obtained by SR
jt �Õt� and Z̄R

jt �Õt� be

the optimal echelon j regular order decision obtained by S̄R
jt �Õt�.

We have that

ZR
jt �Õt�zt� = �ẐE

jt �Õt�∨SR
jt �Õt��∧ẐE

j+1� t�Õt�

�by Theorem 4�ii��

= 	��zjt∨SE
jt �Õt��∧ẐE

j+1t�Õt��∨SR
jt �Õt��∧ẐE

j+1� t�Õt�

�by Theorem 4�i��

= 	�zjt∨SE
jt �Õt�∨SR

jt �Õt��∧�SR
jt �Õt�∨ẐE

j+1� t�Õt���

∧ẐE
j+1� t�Õt�

= �zjt∨SE
jt �Õt��∧ẐE

j+1� t�Õt� �SR
jt �Õt��SE

jt �Õt���

By identical steps, Z̄R
jt �Õt�= �zjt ∨SE

jt �Õt��∧ ẐE
j+1� t�Õt�. Thus,

ZR
jt �Õt� = Z̄R

jt �Õt�. Since gjt�Õt�Z� is convex and smooth in Z,

it follows that S̄R
jt �Õt�= argminZ gjt�Õt�Z�. But, since SR

jt �Õt� �=
maxargminZ gjt�Õt�Z� this implies SR

jt �Õt�� S̄R
jt �Õt� which is a

contradiction. It follows that SR
jt �Õt�� SE

jt �Õt� must be true.

Proof of Lemma 8. To prove (i), let Dyf �x� y��Dyg�x� y� for

all �x� y�. Let sf �x� and sg�x� be the largest minimizers of f
and g, respectively, over y, for any x. Suppose there exists an x
such that sf �x� < sg�x�. This implies Dyg�x� sg�x��= 0. Because

f �x� y� is convex in y, then, since sf �x� is the largest minimizer

of f �x� y� and sf �x� < sg�x�, we must have Dyf �x� sg�x�� > 0.

Since Dyg�x� y�= 0 for y = sg�x� by definition of sg�x� (g�x� ·� is
convex and smooth), we get that Dyf �x� sg�x�� > Dyg�x� sg�x��.
That contradicts the initial assumption that Dyf �x� y��Dyg�x� y�
for all �x� y�.

To prove (ii), we use part (i). Since sf �x�� sg�x� for every x,
then by Lemma 4,

Dyf
+�x� y�−Dyg

+�x� y�

=

⎧⎪⎨
⎪⎩
0 if y � sg�x�


−Dyg�x� y� if sg�x� < y � sf �x�


Dyf �x� y�−Dyg�x� y� if sf �x�� y�

Since −Dyg�x� y�� 0 for y > sg�x�, and Dyf �x� y�� Dyg�x� y�
for all �x� y�, by assumption, we conclude that Dyf

+�x� y� �
Dyg

+�x� y� for every �x� y�. Similarly, Dyf
−�x� y��Dyg

−�x� y�
for every �x� y�.

Proof of Theorem 5. We show that for every Õ2
t � Õ1

t ,

DZgjt�Õ
2
t �Z� � DZgjt�Õ

1
t �Z� and DZVjt�Õ

2
t �Z� � DZVjt�Õ

1
t �Z�.

The result follows from definitions of SR
jt �Õt� and SE

jt �Õt�, by
Lemma 8(i).

Let t = T , and Õ2
T � Õ1

T . Since gjt�Õt� ·� is smooth, and

the salvage value function is zero, we get DZgjT �Õ
2
T �Z� =

DZgjT �Õ
1
T �Z� for every j; thus, SR

jT �Õ
2
T � = SR

jT �Õ
1
T �. Assume

inductively that DZ gjt�Õ
2
t �Z� � DZ gjt�Õ

1
t �Z� for Õ2

t � Õ1
t for

some t. Then, by Lemma 8(i), SR
jt �Õ

2
t �� SR

jt �Õ
1
t �. We get

DZUjt�Õ
2
t �Z�−DZUjt�Õ

1
t �Z�

=

⎧⎪⎨
⎪⎩
DZg

+
1� t�Õ

2
t �Z�−DZg

+
1� t�Õ

1
t �Z� if j = 1


DZg
+
jt �Õ

2
t �Z�−DZ g

+
jt �Õ

1
t �Z�+DZg

−
j−1� t�Õ

2
t �Z�

−DZg
−
j−1� t�Õ

1
t �Z� 1< j � L�

Consequently, by Lemma 8(ii), DZUjt�Õ
2
t �Z� � DZUjt�Õ

1
t �Z�

for every j and Z, and any Õ2
t � Õ1

t . Since, by definition,

V1t�Õt�Z� �= U1t�Õt�Z�, then DZV1t�Õ
2
t �Z� � DZV1t�Õ

1
t �Z�.

Assume inductively that DZVjt�Õ
2
t �Z� � DZVjt�Õ

1
t �Z� for Õ2

t �

Õ1
t and some j < N . Thus, by Lemma 8(b),

DZV
−
jt �Õ

2
t �Z��DZV

−
jt �Õ

1
t �Z�� (34)

By definition, we have Vj+1� t�Õt� zj+1� t� �=Uj+1� t�Õt� zj+1� t�+
V −
jt �Õt� zj+1� t�. Thus, for any Õ2

t � Õ1
t ,

DZV
−
j+1� t�Õ

2
t �Z�−DZV

−
j+1� t�Õ

1
t �Z�

=DZU
−
j+1� t�Õ

2
t �Z�−DZU

−
j+1� t�Õ

1
t �Z�+DZV

−
jt �Õ

2
t �Z�

−DZV
−
jt �Õ

1
t �Z�

�DZV
−
jt �Õ

2
t �Z�−DZV

−
jt �Õ

1
t �Z�

�since DZUjt�Õ
2
t �Z��DZUjt�Õ

1
t �Z��

�0 �by �34���
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Thus, DZVjt�Õ
2
t �Z��DZVt�Õ

1
t �Z�. By Lemma 8(ii) and The-

orem 4(i), this yields SE
jt �Õ

2
t �� SE

jt �Õ
1
t �.

It remains to show that the relation DZgj�t−1�Õ
2
t−1�Z��

DZgj�t−1�Õ
1
t−1�Z� holds for Õ

2
t−1� Õ1

t−1 in period t−1. Note that,

by Lemma 8(ii),DZVjt�Õ
2
t �Z��DZVt�Õ

1
t �Z� shown above implies

DZV
+
jt �Õ

2
t �Z��DZV

+
jt �Õ

1
t �Z� and DZV

−
jt �Õ

2
t �Z��DZV

−
jt �Õ

1
t �Z�.

By Theorem 3, fjt�Õt�zt�=V +
jt �Õt�zjt�−kEj zjt , then, for every j ,

DZfjt�Õ
2
t �Z��DZfjt�Õ

1
t �Z�� (35)

Next, we make use of (10) to construct DZgj� t−1�Õ
2
t−1�Z� �

DZgj� t−1�Õ
1
t−1�Z� for Õ

2
t−1 � Õ1

t−1. Thus,

DZgj�t−1�Õ
2
t−1�Z�−DZgj�t−1�Õ

1
t−1�Z�

=�E�DZfjt�Õ
2
t �Z−O2

t� t−1�−DZfjt�Õ
1
t �Z−O1

t� t−1��

��E�DZfjt�Õ
2
t �Z−O1

t� t−1�−DZfjt�Õ
1
t �Z−O1

t� t−1��� (36)

by convexity of fjt�Õt�Z� since Õ
2
t−1 � Õ1

t−1 implies Z−O2
t� t−1 �

Z − O1
t� t−1. Because Õ2

t−1 � Õ1
t−1 implies that Õ2

t � Õ1
t , and

because (35) holds for every Õ2
t � Õ1

t , we get DZ gj� t−1�Õ
2
t−1�Z�

�DZ gj� t−1�Õ
1
t−1�Z�.

To prove (ii), start with k= 1. Let �jt�Z�= 
t�Z� if j = 1 and

�jt�Z�= 0 if j > 1. Use (10) to get

DZgjt�Õt�Z−��

=DZ�jt�Z−��+cRjt +�E�DZfj�t+1�Õt+1�Z−�−Ot+1� t��

�DZ�jt�Z�+cRjt +�E�DZ fj�t+1�Õt+1�Z−�−Ot+1� t��

��jt�·� is convex�
=DZ gjt�Õt+�e1�Z��

Thus, DZgjt�Õt�Z− ���DZgjt�Õt + �e1�Z� for every Z, j =
1� � � � �N and �> 0. Since the largest minimizer of gjt�Õt�Z−��

is exactly SR
jt �Õt� + �, then, by Lemma 8(i), SR

jt �Õt + �e1� −
SR
jt �Õt� � �, and part (c) holds for SR

jt when k = 1. Since

DZgjt�Õt�Z − �� � DZgjt�Õt + �e1�Z�, then, by Lemma 8(ii),

DZg
+
jt �Õt�Z− ���DZg

+
jt �Õt + �e1�Z� and DZ g

−
jt �Õt�Z− ���

DZ g
−
jt �Õt + �e1�Z�.

Thus, by definition of Ujt�Õt�Z�, we get DZUjt�Õt�Z − �� �

DZUjt�Õt + �e1�Z� for j = 1� � � � �N . By Lemma 8(ii),

DZU
−
jt �Õt�Z− �� � DZU

−
jt �Õt + �e1�Z� for j = 1� � � � �N .

Thus, DZV1t�Õt�Z− �� � DZV1t�Õt + �e1�Z�. As shown

above, U−
jt �Õt�Z − �� exhibits the same property, hence, by

straightforward induction, and definition of Vjt�Õt�Z�, we get

DZVjt�Õt�Z− �� � DZVjt�Õt + �e1�Z� for j = 1� � � � �N . Thus,

DZV
+
jt �Õt�Z− ���DZV

+
jt �Õt +�e1�Z� and DZV

−
jt �Õt�Z−���

DZV
−
jt �Õt + �e1�Z�.

Since the largest minimizer of Vjt�Õt�Z − �� is exactly

SE
jt �Õt�+ �, then, by Lemma 8(i), SE

jt �Õt + �e1�− SE
jt �Õt� � �,

and part (c) holds for SE
jt when k = 1. Since fjt�Õt�Z − �� =

V +
jt �Õt�Z− ��− kEj , then

DZfjt�Õt�Z−���DZ fjt�Õt+�e1�Z�� (37)

DZg
+
jt �Õt+�e1�Z�

=DZ�jt�Z�+CR
jt +�E�DZ fj�t+1�Õt+1�Z−Ot+1� t−���

�DZ�jt�Z�+CR
jt +�E�DZ fj�t+1�Õt+1+�e1�Z−Ot+1� t�� �by �37��

=DZg
+
jt �Õt+�e2�Z�� (38)

Thus, DZgjt�Õt + �ek�Z� � DZgjt�Õt + �ek+1�Z�, is true for

k= 1 and j = 1� � � � �N .

Assume inductively that DZgjt�Õt + �ek�Z� � DZgjt�Õt +
�ek+1�Z� is true for some k < N − 1. Then, by applying the

same steps already used, it follows that: (a) DZUjt�Õt +�ek�Z��

DZUjt�Õt + �ek+1�Z�; (b) DZVjt�Õt + �ek�Z� � DZVjt�Õt +
�ek+1�Z�; and (c) DZfjt�Õt + �ek�Z� � DZfjt�Õt + �ek+1�Z�.

Thus,

DZgjt�Õt+�ek+1�Z�

=DZ�jt�Z�+CR
jt +�E�DZfj�t+1�Õt+1+�ek�Z−Ot+1� t��

�DZ�jt�Z�+CR
jt +�E�DZfj�t+1�Õt+1+�ek+1�Z−Ot+1� t��

�by statement �c� above�

=DZgjt�Õt+�ek+2�Z��

Thus, DZgjt�Õt + �ek�Z� � DZgjt�Õt + �ek+1�Z� holds for

every k; by Lemma 8, SR
jt �Õt + �ek� � SR

jt �Õt + �ek+1� for j =
1� � � � �N , and k = 1� � � � �N − 1. By identical steps, DZgjt�Õt +
�ek�Z��DZgjt�Õt+�ek+1�Z� also implies DZUjt�Õt+�ek�Z��

DZUjt�Õt + �ek+1�Z� and DZVjt�Õt + �ek�Z� � DZVjt�Õt +
�ek+1�Z� for j = 1� � � � �N and k = 1� � � � �N − 1. Thus, by

Lemma 8, SE
jt �Õt + �ek�� SE

jt �Õt + �ek+1�.

To prove part (iii), we make use of the inequalities already

established in the proof of part (b):

SR
jt �Õt + �e1�− SR

jt �Õt�� �
 (39)

SE
jt �Õt + �e1�− SE

jt �Õt�� �� (40)

Then, part (iii) of Theorem 5 follows directly from part (ii),

since SR
jt �Õt + �ej�− SR

jt �Õt�� SR
jt �Õt + �ej−1�− SR

jt �Õt�� · · ·�
SR
jt �Õt +�e1�−SR

jt �Õt�� �, where the last inequality is just (39).

Similarly, using (40), SE
jt �Õt +�ej�−SE

jt �Õt�� SE
jt �Õt +�ej−1�−

SE
jt �Õt�� · · ·� SE

jt �Õt + �e1�− SE
jt �Õt�� �.

Proof of Theorem 6. Part (i) follows from Theorem 4. Part (ii)

follows from Theorem 5, since SE
jt �Õt� = SE

jt �Õt − �ek + �ek� �

SE
jt �Õt − �ek + �ej�, as well as SR

jt �Õt� = SR
jt �Õt − �ek + �ek� �

SR
jt �Õt − �ek + �ej�.

Proof of Lemma 9. Being zero, fj�T+1�ÕT+1� zj�T+1� satisfies

the Lemma for every j . Assume that fj� t+1�Õt+1� ·� satisfies the

Lemma for all j and some t+ 1. Then, gjt�Õt� ·�, defined in (10)

is also independent of kEqt for every q > j , and so are g+jt �Õt� ·�
and g−jt �Õt� ·�. Therefore, Ujt�Õt� ·�, defined in (11), is also inde-

pendent of kEqt for every q > j . Furthermore, since Vjt�Õt� zjt� �=
Ujt�Õt� zjt�+V −

j−1� t�Õt� zjt�, with V0t�Õt� zjt� �= 0, this implies that

Vjt�Õt� ·� is independent of kEqt for every q > j . Since fjt�Õt� zt�=
V +
jt �Õt� zjt�− kEj zjt by Theorem 3, then fjt�Õt� ·� is independent

of kEqt for every q > j .

Proof of Lemma 10. Part (i) holds for period T + 1 because

fT+1 = 0. Suppose part (i) holds for some t+1 so that kEj −�E
j �

Dzfj� t+1�Õt� z � �E
j � − Dzfj� t+1�Õt� z � kEj � � 0. By definition of

gjt�Õt�Z�, we get

kEj −�E
j �Dzgjt�Õt� z � �E

j �−Dzgjt�Õt� z � kEj �� 0� (41)
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By Lemma 8, this implies that SR
jt �Õt � �E

j �� SR
jt �Õt � kEj �. Next,

DzUjt�Õt�Z ��E
j �−DzUjt�Õt�Z �kEj �

=

⎧⎪⎨
⎪⎩
�E
1 −kE1 +Dzg

+
1� t�Õt�Z ��E

j �−Dzg
+
1� t�Õt�Z �kEj � if j=1


�E
j −kEj +Dzg

+
jt �Õt�Z ��E

j �+Dzg
−
j−1� t�Õt�Z ��E

j �

−Dzg
+
jt �Õt�Z �kEj �−Dzg

−
j−1� t�Õt�Z �kEj � if 1<j�L�

By Lemma 9, g−j−1� t�Õt�Z� does not depend on any unit expe-

diting costs above stage j − 1, and thus, g−j−1� t�Õt�Z � �E
j � =

g−j−1� t�Õt�Z � kEj �, so that the above expression reduces to

DzUjt�Õt�Z � �E
j �−DzUjt�Õt�Z � kEj �

= �E
j − kEj +Dzg

+
jt �Õt�Z � �E

j �−Dzg
+
jt �Õt�Z � kEj �� (42)

for every j . Next, using the definition of g+ from (8), and

SR
jt �Õt � �E

j � � SR
jt �Õt � kEj � established above, we evaluate the

difference Dzg
+
jt �Õt�Z � �E

j � − Dzg
+
jt �Õt�Z � kEj �. We get the

following.

Dzg
+
jt �Õt�Z � �E

j �−Dzg
+
jt �Õt�Z � kEj �

=

⎧⎪⎨
⎪⎩
0 if Z� SR

jt �Õt � kEj �

−Dzgjt�Õt�Z � kEj � if SR

jt �Õt � kEj � < Z� SR
jt �Õt � �E

j �


Dzgjt�Õt�Z � �E
j �−Dzgjt�Õt�Z � kEj � if Z > SR

jt �Õt � �E
j �


For SR
jt �Õt � kEj � < Z � SR

jt �Õt � �E
j �, by convexity of gjt�Õt� ·�,

and definition of SR
jt �Õt � kEj �, we have that Dzgjt�Õt�Z � kEj �� 0,

and thus −Dzgjt�Õt�Z � kEj �� 0. Furthermore, for any such Z, by

definition of SR
jt �Õt � �E

j �, Dzgjt�Õt�Z � �E
j � � 0. Since, by (41),

kEj − �E
j � Dzgjt�Õt� z � �E

j �−Dzgjt�Õt� z � kEj �, this implies that,

for SR
jt �Õt � kEj � < Z� SR

jt �Õt � �E
j �, we have −Dzgjt�Õt�Z � kEj ��

kEj −�E
j . Thus, by (41),

kEj −�E
j �Dzg

+
jt �Õt� z � �E

j �−Dzg
+
jt �Õt� z � kEj �� 0� (43)

Substituting (43) into (42), we get

0�DzUjt�Õt�Z � �E
j �−DzUjt�Õt�Z � kEj �� �E

j − kEj � (44)

By Lemma 8 and Theorem 4, the LHS of the inequality in (44)

implies that SE
jt �Õt � �E

j �� SE
jt �Õt � kEj �.

Next, we use the definition of Vjt�Õt� ·� given in Theorem 3 to

get the following.

DzVjt�Õt�Z � �E
j �−DzVjt�Õt�Z � kEj �

=DzUjt�Õt�Z � �E
j �−DzUjt�Õt�Z � kEj �

− �DzV
−
j−1� t�Õt�Z � �E

j �−DzV
−
j−1� t�Õt�Z � kEj ��

=DzUjt�Õt�Z � �E
j �−DzUjt�Õt�Z � kEj �� (45)

by Lemma 9, since Vj−1� t�Õt� ·� does not vary with kEj . By means

of (44), (45) then implies that

0�DzVjt�Õt�Z � �E
j �−DzVjt�Õt�Z � kEj �� �E

j − kEj � (46)

Next, we use SE
jt �Õt � �E

j �� SE
jt �Õt � kEj � established above to eval-

uate DzV
+
jt �Õt�Z � �E

j �−DzV
+
jt �Õt�Z � kEj �.

Dz V
+
jt �Õt�Z � �E

j �−Dz V
+
jt �Õt�Z � kEj �

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if Z� SE

jt �Õt � �E
j �


DzVjt�Õt�Z � �E
j � if SE

jt �Õt � �E
j � < Z� SE

jt �Õt � kEj �

DzVjt�Õt�Z � �E

j �−DzVjt�Õt�Z � kEj �
if Z > SE

jt �Õt � kEj �


If SE
jt �Õt ��E

j �<Z�SE
jt �Õt �kEj �, then by convexity of Vjt�Õt�·�,

and definition of SE
jt �Õt ��E

j �, we have that DzVjt�Õt�Z ��E
j ��0.

Furthermore, for any such Z, by definition of SE
jt �Õt �kEj �,

DzVjt�Õt�Z �kEj ��0. Since, by (46), 0�DzVjt�Õt�Z ��E
j �−

DzVjt�Õt�Z �kEj ���E
j −kEj , this implies that, for SE

jt �Õt ��E
j �<

Z�SE
jt �Õt �kEj �, we must have DzVjt�Õt�Z ��E

j ���E
j −kEj . Con-

sequently, applying (46), we see that the above expression for

DzV
+�Õt�Z ��E

j �−DzV
+
jt �Õt�Z �kEj � implies that

0�DzV
+
jt �Õt�Z � �E

j �−DzV
+
jt �Õt�Z � kEj �� �E

j − kEj � (47)

Finally, because fjt�Õt� zjt� �= V +
jt �Õt� zjt� − kEj zjt by Theo-

rem 3, then we get

Dzfjt�Õt� z � �E
j �−Dzfjt�Õt� z � kEj �

=DzV
+
jt �Õt�Z � �E

j �−DzV
+
jt �Õt�Z � kEj �− ��E

j − kEj ��

which combined with (47) completes the proof of part (i), and

thus parts (ii)–(iv) as well.

Proof of Lemma 11. Being zero, fj�T+1�ÕT+1� zj�T+1� satis-

fies the Lemma for every j . Assume Dzfj� t+1�Õt+1� z � �E
j−1� �

Dzfj� t+1�Õt+1� z � kEj−1� for all j in some period t + 1. Then, by

(10) we get Dzgjt�Õt� z � �E
j−1� � Dzgjt�Õt� z � kEj−1� for all j . By

Lemma (8), this implies SR
jt �Õt � �E

j−1� � SR
jt �Õt � kEj−1� for all j .

Following steps identical to those used in the proof of Lemma 10

to obtain (43), we now get

Dzg
+
jt �Õt� z � �E

j−1�−Dzg
+
jt �Õt� z � kEj−1�� 0� (48)

Since Vjt�Õt� zjt� �=Ujt�Õt� zjt�+V −
j−1� t�Õt� zjt�, we get

DzVjt�Õt�z ��E
j−1�−DzVjt�Õt�z �kEj−1�

=DzUjt�Õt�z ��E
j−1�+DzV

−
j−1� t�Õt�z ��E

j−1�−DzUjt�Õt�z �kEj−1�

−DzV
−
j−1� t�Õt�z �kEj−1�� (49)

For any kEj−1, it is DzVj−1�t�Õt�z �kEj−1�=DzUj−1�t�Õt�z �kEj−1�+
DzV

−
j−2�t�Õt�z �kEj−1�=DzUj−1�t�Õt�z �kEj−1�, since, by Lemma 9,

V −
j−2�t�Õt�z� does not vary with k

E
j−1. Thus, DzV

−
j−1�t�Õt�z �kEj−1�=

DzU
−
j−1�t�Õt�z �kEj−1� for every kEj−1, and, consequently, by (49),

DzVjt�Õt�z ��E
j−1�−DzVjt�Õt�z �kEj−1� reduces to

DzUjt�Õt� z � �E
j−1�+DzU

−
j−1� t�Õt� z � �E

j−1�

−DzUjt�Õt� z � kEj−1�−DzU
−
j−1� t�Õt� z � kEj−1�� (50)

Let Sj−1� t�Õt � �E
j−1� �= inf�argminZ Ujt�Õt�Z � �E

j−1�� and

Sj−1� t�Õt � kEj−1� �= inf�argminZ Ujt�Õt�Z � kEj−1��. Because, by

Lemma 10(iii), DzUj−1� t�Õt� z � �E
j−1��DzUj−1� t�Õt� z � kEj−1�, by

Lemma 8 we must have Sj−1� t�Õt � �E
j−1�� Sj−1� t�Õt � kEj−1�. Con-

sequently, by (8), we get

DzU
−
j−1� t�Õt� z � �E

j−1�−DzU
−
j−1� t�Õt� z � kEj−1�

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

DzUj−1� t�Õt� z � �E
j−1�−DzUj−1� t�Õt� z � kEj−1�

if Z� Sj−1� t�Õt � �E
j−1�


−DzUj−1� t�Õt� z � kEj−1�

if Sj−1� t�Õt � �E
j−1� < Z� Sj−1� t�Õt � kEj−1�


0 if Z > Sj−1� t�Õt � kEj−1��

If Z > Sj−1� t�Õt � �E
j−1�, then DzUj−1� t�Õt� z � �E

j−1� � 0. Con-

sequently, if we have Sj−1� t�Õt � �E
j−1� < Z � Sj−1� t�Õt � kEj−1� −
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DzUj−1� t�Õt� z � kEj−1�, then also inequality−DzUj−1� t�Õt� z � kEj−1�

� DzUj−1� t�Õt� z � �E
j−1� − DzUj−1� t�Õt� z � kEj−1� holds.

Since DzUj−1� t�Õt� z � �E
j−1� − DzUj−1� t�Õt� z � kEj−1� � 0 by

Lemma 10(iii), the above expression implies

DzU
−
j−1� t�Õt� z � �E

j−1�−DzU
−
j−1� t�Õt� z � kEj−1�

�DzUj−1� t�Õt� z � �E
j−1�−DzUj−1� t�Õt� z � kEj−1�� (51)

Substituting (50) and (51) into (49), we get

DzVjt�Õt� z � �E
j−1�−DzVjt�Õt� z � kEj−1�

�DzUjt�Õt� z � �E
j−1�+DzU

−
j−1� t�Õt� z � �E

j−1�

−DzU
−
j−1� t�Õt� z � kEj−1�

= �Dzg
+
jt �Õt� z � �E

j−1�+Dzg
−
j−1� t�Õt� z � �E

j−1��

+ �Dzg
+
j−1� t�Õt� z � �E

j−1�+Dzg
−
j−2� t�Õt� z � �E

j−1��

− �Dzg
+
jt �Õt� z � kEj−1�+Dzg

−
j−1� t�Õt� z � kEj−1��

− �Dzg
+
j−1� t�Õt� z � kEj−1�+Dzg

−
j−2� t�Õt� z � kEj−1�� (52)

By Lemma 9, Dzg
−
j−2�t�Õt�z ��E

j−1�=0 and Dzg
−
j−2�t�Õt�z �kEj−1�

=0. Furthermore,

g−j−1�t�Õt�z ��E
j−1�+g+j−1�t�Õt�z ��E

j−1�=gj−1�t�Õt�z ��E
j−1�� and

g−j−1�t�Õt�z �kEj−1�+g+j−1�t�Õt�z �kEj−1�=gj−1�t�Õt�z �kEj−1��

Therefore, (52) reduces to

DzVjt�Õt� z � �E
j−1�−DzVjt�Õt� z � kEj−1�

�Dzg
+
jt �Õt� z � �E

j−1�−Dzg
+
jt �Õt� z � kEj−1�

+Dzgj−1� t�Õt� z � �E
j−1�−Dzgj−1� t�Õt� z � kEj−1�� (53)

By (48), Dzg
+
jt �Õt� z � �E

j−1� − Dzg
+
jt �Õt� z � kEj−1� � 0. By

Lemma 10(ii), Dzgj−1� t�Õt� z � �E
j−1�−Dzgj−1� t�Õt� z � kEj−1�� 0.

Consequently, DzVjt�Õt� z � �E
j−1� − DzVjt�Õt� z � kEj−1� � 0.

By Lemma (8), this inequality implies that SE
jt �Õt � �E

j−1� �

SE
jt �Õt � kEj−1� for all j , and, following familiar steps, that

DzV
+
jt �Õt� z � �E

j−1�−DzV
+
jt �Õt� z � kEj−1�� 0� (54)

By definition of fjt (Theorem 3 and Lemma 10), expression

(54) implies that Dzfjt�Õt� z � �E
j−1� − Dzfjt�Õt� z � kEj−1� � 0,

which therefore completes the proof.

Proof of Lemma 12. By Lemma 11, this result holds for m =
j − 1. So, going forward we consider only m < j − 1. Being

zero, fj�T+1�ÕT+1� zj�T+1� satisfies the lemma for every j . Assume

inductively that Dzfj� t+1�Õt+1� z � �E
m��Dzfj� t+1�Õt+1� z � kEm� for

all j and m< j − 1 in some period t+ 1. Then, by (10),

Dzgjt�Õt� z � �E
m��Dzgjt�Õt� z � kEm�� (55)

for all j and m< j−1 in t. By Lemma (8), it follows that SR
jt �Õt �

�E
m� � SR

jt �Õt � kEm� for all j and m < j − 1. Following the same

steps as in the previous proofs, we then get that, for all j and

m< j − 1,

Dzg
+
jt �Õt� z � �E

m��Dzg
+
jt �Õt� z � kEm� (56)

Dzg
−
jt �Õt� z � �E

m��Dzg
−
jt �Õt� z � kEm�� (57)

Fix j and m. Then,

DzUjt�Õt�Z ��E
m�−DzUjt�Õt�Z �kEm�

=Dzg
+
jt �Õt�Z ��E

m�+Dzg
−
j−1� t�Õt�Z ��E

m�

−Dzg
+
jt �Õt�Z �kEm�−Dzg

−
j−1� t�Õt�Z �kEm��0�

because Dzg
+
jt �Õt�Z � �E

m� � Dzg
+
jt �Õt�Z � kEm� by (56), and

Dzg
−
j−1� t�Õt�Z � �E

m� � Dzg
−
j−1� t�Õt�Z � kEm� by Lemma 11(ii) if

m = j − 2, or by (57) if m < j − 2. Thus, DzUjt�Õt�Z � �E
m� �

DzUjt�Õt�Z � kEm�.
Next, we use induction on j to prove that DzVjt�Õt�Z � �E

m�−
DzVjt�Õt�Z � kEm� � 0. We are considering any j such that 0 <
m< j − 1, so our base case is j = 3, which allows only m= 1.

We get

DzV3t�Õt�Z � �E
1 �−DzV3t�Õt�Z � kE1 �

=DzU3t�Õt�Z � �E
1 �+DzV

−
2t �Õt�Z � �E

1 �

−DzU3t�Õt�Z � kE1 �−DzV
−
2t �Õt�Z � kE1 �� 0�

since DzU3t�Õt�Z ��E
1 ��DzU3t�Õt�Z �kE1 �, and DzV

−
2t �Õt�Z ��E

1 �
�DzV

−
2t �Õt�Z �kE1 � follows directly from Lemma 11 (iii). Thus,

DzV3t�Õt�Z ��E
1 ��DzV3t�Õt�Z �kE1 �. Assume inductively that we

have DzVqt�Õt�Z ��E
m�−DzVqt�Õt�Z �kEm��0 for all q=3�����

j−1, and m<q−1. Then, we get

DzVjt�Õt�Z � �E
m�−DzVjt�Õt�Z � kEm�

=DzUjt�Õt�Z � �E
m�+DzV

−
j−1� t�Õt�Z � �E

m�

−DzUjt�Õt�Z � kEm�−DzV
−
j−1� t�Õt�Z � kEm�

�DzV
−
j−1� t�Õt�Z � �E

m�−DzV
−
j−1� t�Õt�Z � kEm�

�since DzUjt�Õt�Z � �E
m��DzUjt�Õt�Z � kEm��

� 0� �by inductive assumption on DzVqt�Õt�Z��

By Lemma 8,DzVjt�Õt�Z � �E
m��DzVjt�Õt�Z � kEm� implies that

SE
jt �Õt � �E

m� � SE
jt �Õt � kEm�. Furthermore, by steps used before,

DzVjt�Õt�Z � �E
m� � DzVjt�Õt�Z � kEm� yields DzV

+
jt �Õt�Z � �E

m� �

DzV
+
jt �Õt�Z � kEm�. Consequently, we get Dzfjt�Õt�Z � �E

m� �

Dzfjt�Õt�Z � kEm�, which completes the proof.

Proof of Theorem 7. Ifm> j , then by Lemma 9, ẐR
jt �Õt� zt � �E

m�

= ẐR
jt �Õ

1
t � zt � kEm� and so the result holds. Thus, assume m� j .

Consider first j = L. In that case, ẐE
Lt�Õt� = zLt ∨ SE

Lt�Õt�, and
we get

ẐR
Lt�Õt � �E

m�− ẐR
Lt�Õt � kEm�

= ẐE
Lt�Õt � �E

m�∨ SR
Lt�Õt � �E

m�− ẐE
Lt�Õt � kEm�∨ SR

Lt�Õt � kEm�
�by Theorem 4�ii��

= zLt ∨ SE
Lt�Õt � �E

m�∨ SR
Lt�Õt � �E

m�

− zLt ∨ SE
Lt�Õt � kEm�∨ SR

Lt�Õt � kEm�
= zLt ∨ SR

Lt�Õt � �E
m�− zLt ∨ SR

Lt�Õt � kEm�� �by Lemma 7� (58)

If m= j = L, then SR
Lt�Õt � �E

m�� SR
Lt�Õt � kEm� by Lemma 10(iv);

if m < L, then SR
Lt�Õt � �E

m� � SR
Lt�Õt � kEm� by Lemma 12(ii). In

either case, (58) implies that ẐR
Lt�Õt � �E

m�� ẐR
Lt�Õt � kEm�.

Now suppose j < L. Then, we address two distinct cases.
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Case 1: m< j . In that case, by Lemma 12(ii), SE
it �Õt � �E

m��

SE
it �Õt � kEm� for every i = j� � � � �L. Since ẐE

jt �Õt� =
∧L

i=j �zit ∨
SE
it �Õt�� by Theorem 4(i), it follows that

ẐE
jt �Õt � �E

m�� ẐE
jt �Õt � kEm� (59)

ẐE
j+1� t�Õt � �E

m�� ẐE
j+1� t�Õt � kEm� (60)

Applying (59) and (60), we get

ẐR
jt �Õt ��E

m�−ẐR
jt �Õt �kEm�= �ẐE

jt �Õt ��E
m�∨SR

jt �Õt ��E
m��

∧ẐE
j+1� t�Õt ��E

m�

−�ẐE
jt �Õt �kEm�∨SR

jt �Õt �kEm��∧ẐE
j+1� t�Õt �kEm��0�

since SR
jt �Õt � �E

m�� SR
jt �Õt � kEm� by Lemma 12(ii).

Case 2: m = j . In this case, by Lemma 12, SE
qt�Õt � �E

j � �

SE
qt�Õt � kEj � for every q > j and, consequently, by Theorem 4(i),

ẐE
j+1� t�Õt � �E

j �� ẐE
j+1� t�Õt � kEj �.

Now suppose first that SR
jt �Õt ��E

j �� ẐE
j+1�t�Õt ��E

j �. In that case,

ẐR
jt �Õt ��E

j �= ẐE
j+1�t�Õt ��E

j �. By Theorem 4(ii), ẐR
jt �Õt �kEj ��

ẐE
j+1�t�Õt �kEj �. Since ẐE

j+1�t�Õt ��E
j �� ẐE

j+1�t�Õt �kEj �, it follows

that ẐR
jt �Õt ��E

m�� ẐR
jt �Õt �kEm�. Next suppose that SR

jt �Õt ��E
j �<

ẐE
j+1�t�Õt ��E

j �. Then, we get

ẐR
jt �Õt ��E

j �

= ẐE
jt �Õt���E

j �∨SR
jt �Õt ��E

j � �by �13��

= �ẐE
j+1� t�Õt���E

j �∧�zjt∨SE
jt �Õt���E

j ���∨SR
jt �Õt ��E

j � �by �12��

= �ẐE
j+1� t�Õt���E

j �∨SR
jt �Õt ��E

j ��

∧�zjt∨SE
jt �Õt���E

j �∨SR
jt �Õt ��E

j ��

= ẐE
j+1� t�Õt���E

j �∧�zjt∨SE
jt �Õt���E

j �∨SR
jt �Õt ��E

j ��

�SR
jt �Õt ��E

j �<ẐE
j+1� t�Õt ��E

j ��

= ẐE
j+1� t�Õt���E

j �∧�zjt∨SR
jt �Õt ��E

j ��� �by Lemma 7� (61)

Continuing with the case when SR
jt �Õt ��E

j �� ẐE
j+1�t�Õt ��E

j �

yielding (61), suppose that SR
jt �Õt �kEj �� ẐE

j+1�t�Õt �kEj � holds, so

that we have ẐR
jt �Õt �kEj �= ẐE

j+1�t�Õt �kEj �. Since SR
jt �Õt ��E

j ��

SR
jt �Õt �kEj � by Lemma 10 (iv), then SR

jt �Õt ��E
j �� ẐE

j+1�t�Õt �kEj �.
Since ẐE

j+1�t�Õt ��E
j �� ẐE

j+1�t�Õt �kEj �, then (61) implies that

ẐR
jt �Õt ��E

j �� ẐR
jt �Õt �kEj �. If, on the other hand, we suppose

that SR
jt �Õt �kEj �<ẐE

j+1�t�Õt �kEj �, then the identical steps to those

used to derive (61) yield ẐR
jt �Õt �kEj �= ẐE

j+1�t�Õt��kEj �∧�zjt∨
SR
jt �Õt �kEj ��. Thus,

ẐR
jt �Õt ��E

j �−ẐR
jt �Õt �kEj �= ẐE

j+1� t�Õt���E
j �∧�zjt∨SR

jt �Õt ��E
j ��

−ẐE
j+1� t�Õt��kEj �∧�zjt∨SR

jt �Õt �kEj ���0�

because SR
jt �Õt � �E

j � � SR
jt �Õt � kEj � and ẐE

j+1� t�Õt � �E
j � �

ẐE
j+1� t�Õt � kEj �. This completes the proof.

Proof of Theorem 8. It is straightforward to verify that Lem-

mas 1 and 2 continue to hold for a capacitated component system.

To prove parts (i) and (ii), we follow steps identical to those in the

proof of Lemma 3. The only additional step needed to establish

the feasibility of X̄E
t is to prove that the expedited order X̄E

ijt sat-

isfies the appropriate capacity constraint at every stage j . Using
X̄E

ijt =XE
ijt − �, we get

X̄E
ijt = XE

ijt − � �definition of X̄E
t �

< XE
ijt �� > 0�

� Kij � �X̄E
t is feasible�

Thus, X̄E
ijt satisfies the appropriate capacity constraint, and is

thus feasible. Since, by Lemma 3, X̄E
ijt also leads to lower cost,

it is optimal, which proves (i) and (ii). To prove (iii), fix j . Let
q be a component in ��j� such that Kqj �=mini∈��j� Kij , so that

K∗
j =Kqj . Consider any component i ∈��j�. Then, we get

XE
ijt = XE

qjt �by part �i��XE
t is balanced�

� Kqj �XE
qjt is feasible�

= K∗
j � �definition of K∗

j �

Therefore, the expedited order for each component i relevant at
stage satisfies the capacity constraint K∗

j , so that the capacity con-

straint for all such components i at each stage j can be replaced

with K∗
j without affecting either the optimal policy or the optimal

cost. This completes the proof.

Proof of Theorem 9. The proof of Theorem 9 follows exactly

the same steps as the proof of Theorem 2 since relaxing the

component-matching constraints of the general capacitated assem-

bly system allows the resulting relaxed system to inherit capacity

constraints from the original system. Thus, a general capacitated

assembly system can be reduced to an equivalent capacitated com-

ponent assembly system.

Proof of Theorem 10. The proof of Theorem 10 follows the

exact same steps as those used in the proofs of Theorems 3 and 4,

and therefore we omit the details.
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