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We consider a nonstationary, stochastic, multistage supply system with a general assembly structure, in which customers
can place orders in advance of their future demand requirements. This advance demand information is now recognized in
both theory and practice as an important strategy for managing the mismatch between supply and demand. In conjunction,
we allow expediting of components and partially completed subassemblies in the system to provide the supply chain
with the means to manage the stockout risk and significantly enhance cost savings realized through advance demand
information. To solve the resulting assembly system, we develop a new method based on identifying local properties of
optimal decisions. This new method allows us to solve assembly systems with multiple product flows. We derive the
structure of the optimal policy, which represents a double-tiered echelon basestock policy whose basestock levels depend
on the state of advance demand information. This form of the optimal policy allows us to: (i) provide actionable policies
for firms to manage large-scale assembly systems with expediting and advance demand information; (ii) prove that advance
demand information and expediting of stock both reduce the amount of inventory optimally held in the system; and
(iii) numerically solve such assembly systems, and quantify the savings realized. In contrast to the conventional wisdom,
we discover that advance demand information and expediting of stock are complementary under short demand information

horizons. They are substitutes only under longer information horizons.
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1. Introduction

When customers place orders in advance of their future
demand requirements, the result is a portfolio of customers
with different demand lead times and demand requirements.
Such a portfolio generates what is known as advance de-
mand information. The ability of companies to collect and
utilize advance demand information (ADI) has come to
be recognized, in both industry and research literature, as
an important strategy for managing the mismatch between
supply and demand. One example of such a strategy is
Dell’s “Intelligent Fulfillment,” which offers customers four
different levels of response time: precision delivery with a
specific date, premium delivery that arrives the next day,
standard five-day delivery, and value delivery with longer
deliver times (Ozer and Wei 2004). Another example is
found in initiatives undertaken by automobile manufactur-
ers, such as Renault’s “Projet Nouvelle Distribution” and
BMW'’s Customer-Oriented Sales Processing (COSP), that
seek to utilize advance demand information to shift produc-
tion toward build-to-order (Miemczyk and Holweg 2004).
Other large manufacturers, such as General Motors and
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Boeing, have also undertaken initiatives to take advantage
of advance demand information in the face of uncertain
demand and capture the value of sharing that information
(Gayon et al. 2009).

Advance demand information allows a company to in-
crease profits by shifting its production from build-to-stock
to build-to-order, and thus deal with high variability of
demand with lower inventory requirements. At the same
time, lower inventory levels leave the supply chain vul-
nerable to potential high realizations of demand and the
resulting stockout costs. One strategy to mitigate exposure
to high demand realizations is to allow expediting of inven-
tory through the supply chain. Dell, for example, is quite
explicit in its annual 10-K that .. .our business model gen-
erally gives us flexibility to manage backlog at any point in
time by expediting .. .. customer orders” (Dell 2013, p. 11).
In addition, because the build-to-order production enabled
by ADI “increases process complexity and consequently
causes more expensive processes” (Ericsson et al. 2010,
p. 11), it becomes important to maximize cost savings made
possible by ADI. Existing research on ADI achieves cost
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reductions by adapting the regularly scheduled, periodic
replenishments to the acquired demand information in each
period. Although reasonable savings can be realized that
way, as shown in Gayon et al. (2009) and other studies,
more significant cost reductions can potentially be achieved
by giving a firm additional options, such as expediting, to
act on its knowledge of advance demand. Consequently,
expediting of inventory in the supply chain can also serve
to mitigate the cost impact of more expensive processes
by enhancing savings generated through advance demand
information. The key to realizing such savings, however, is
being able to manage the supply chain with both expedit-
ing and advance demand information, especially given that
expediting usually comes at a higher cost.

The main difficulties associated with making use of
advance demand information and shifting production to
build-to-order tend to come from a company’s assembly
processes (Weber 2006). Most companies cited in the lit-
erature for implementing ADI have significant assembly
operations. The academic literature has not yet proposed
strategies for managing assembly operations in the pres-
ence of either ADI or expediting of stock. Consequently,
in this paper we focus on supply chains with the assem-
bly structure. In particular, we consider the problem of
assembling products of a single type from multiple com-
ponents, each of which can be replenished through both
regular orders and expedited orders. Our model allows for
a general assembly structure, in which some components
may be assemblies, some may be subassemblies, some
may be (simple) parts, and some may be activities car-
ried out in parallel. Because companies’ cost structures
tend to change over the length of the product cycle or
planning horizon, in departure from the prevailing trend in
the assembly literature, we allow for nonstationary model
parameters. Formally, we consider a nonstationary, periodic
review, finite-horizon, assemble-to-stock model with ADI
and the option to expedite inventories of components and
partially completed assemblies at any stage in the system
(in addition to using regularly scheduled replenishments).

The challenge of (optimally) managing any kind of as-
sembly system is considerable, due to the severe curse of
dimensionality created by a very large state space. As a
result, assembly systems tend to be analyzed using simula-
tion methods (see, e.g., Sabuncuoglu et al. 2002). For the
assembly system considered in our paper, this challenge is
augmented by having two ordering decisions at each node
in the system. Because of this dual flow of components,
and because unit ordering costs and holding costs can vary
over time, standard approaches to solving assembly systems
by reducing them to equivalent series systems by means
of balancing echelon inventories do not yield fruit. Our
first contribution, therefore, is a new analytical approach
for solving complex assembly systems based on establish-
ing local properties of optimal decisions. We make use of
this approach to significantly reduce the state space of the

assembly problem with expediting and ADI, and the asso-
ciated curse of dimensionality. Our second contribution is
to identify the form of the optimal policy, which represents
a state-dependent, double-tiered, echelon basestock policy.
This form of the optimal policy allows the system to be
decomposed into a nested sequence of solvable convex sub-
problems. Our third contribution is to establish key mono-
tonicity properties, and, also, to prove that both advance
demand information and expediting of stock reduce the
amount of inventory optimally held throughout the supply
chain. This inventory reduction is the main driver of cost
savings realized through advance demand information and
expediting of stock.

Our analytical results also make it possible to numeri-
cally solve assembly systems with expediting and advance
demand information, and to quantify savings realized by
giving companies an additional option to act on their
knowledge of ADI by expediting stock. We find ranges
of model parameters (hence assembly system characteris-
tics) under which expediting is especially valuable to sup-
ply chains with advance demand information. Furthermore,
because both ADI and expediting of stock represent strate-
gies to deal with uncertain demand, and because they both
lower total inventory in the system, ADI and expediting
tend to be considered as substitute strategies. What we
discover, however, is that the demand information hori-
zon plays a key role: with short information horizons, ADI
and expediting are complements. The substitution effect
takes place only with longer information horizons. Thus,
economic complementarity and substitutability of advance
demand information and expediting of stock are shown not
to be absolute characteristics, but rather functions of the
supply chain structure. Our paper also provides the most
comprehensive numerical study of assembly systems to
date, allowing us to quantify the effect of structural factors
such as the length of the supply chain, demand correlation,
and the demand information horizon.

1.1. Literature Review

Our work is related to three streams of research. The first
of those pertains to serial multiechelon inventory systems.
The classic paper of Clark and Scarf (1960) shows how a
multistage inventory model can be reformulated to achieve
a decomposition of this multidimensional problem into a
sequence of single-dimensional problems. Federgruen and
Zipkin (1984) extend these results to the stationary, infi-
nite horizon case. Federgruen (1993) and Angelus (2011)
provide reviews of this literature. Of particular relevance
to our work is an important paper by Lawson and Porteus
(2000), who introduce expediting to a multiechelon series
system, show that such a system achieves the Clark-Scarf
decomposition, and prove the structure of the optimal pol-
icy is a top-down echelon basestock policy. One of our
contributions is to generalize Lawson and Porteus (2000)
in two important ways: (i) by considering a more general
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supply chain structure, in the form of an assembly system;
and (ii) by incorporating advance demand information.

The second related stream of literature studies sys-
tems with advance demand information. Gallego and Ozer
(2001) establish the optimality of state-dependent (s, S) and
basestock policies for single-stage systems with ADI and
with and without fixed costs. Chen (2001) studies how, by
offering different prices and delivery schedules, a firm is
able to segment customers by different advance demand
leadtimes. Hu et al. (2003) consider a manufacturer with
ADI who can meet customer demand by in-house produc-
tion or outsourcing, and show that the optimal policy is
a double-threshold policy. Wang and Toktay (2008) con-
sider single-stage inventory models with ADI and flexible
delivery schedules. With homogeneous customers, state-
dependent (s, S) policies are optimal, whereas heteroge-
neous customers also necessitate an allocation decision.
Gayon et al. (2009) address production with limited capac-
ity and several demand classes that share advance demand
information with the supplier. The optimal production pol-
icy is a state-dependent basestock policy, whereas the opti-
mal inventory-allocation policy is a multilevel rationing
policy. Benjafaar et al. (2011a) consider finite produc-
tion capacity, stochastic production times, and imperfect
advance demand information, and show the optimality of
a basestock policy whose levels depend on the number of
outstanding orders. Bernstein and DeCroix (2014) study
different types of advance demand information, such as
commonality, mix and volume information, and determine
the relationships among them.

When the multiechelon series system of Clark and Scarf
(1960) is extended to allow for advanced demand infor-
mation, Gallego and Ozer (2003) show that, for suffi-
ciently short information horizons, the optimal policy is
the echelon basestock policy; for longer information hori-
zons, basestock levels become state dependent. In the case
of periodic-review distributions systems, Ozer (2003) pro-
poses an effective heuristic to manage such a system under
ADI, and shows how ADI can be a substitute for leadtimes
and inventory. Under continuous review of such a distribu-
tion system with ADI and when each installation replen-
ishes its stock using basestock policies, Marklund (2006)
provides exact and approximate cost evaluation techniques
under various stock reservation and allocation policies for
different retailers. We are not aware of any research lit-
erature on assembly systems with either advance demand
information or expediting of stock.

The third related stream studies assemble-to-stock sys-
tems under stochastic demand. Schmidt and Nahmias
(1985) show that a two-component assembly problem with
joint ordering and assembly decisions can be decomposed
into component ordering and finished good assembly de-
cisions. The optimal policy, however, has a very complex
structure, with the optimal order for one component de-
pending on the inventory of the other. Benjafaar et al.
(2011b) address a complex assembly system with multiple

items, stages, and customer classes, where demand from
each class follows a compound Poisson process. The opti-
mal production policy is shown to be an inventory state-
dependent basestock policy, whereas the optimal allocation
policy is a multilevel inventory state-dependent rationing
policy.

Assemble-to-stock systems tend to have very large state
space and decision space because of the need to keep track
of inventory at a large number of locations (i.e., nodes)
in the system, and make decisions pertaining to each one
of those in each period. Because of the resulting curse
of dimensionality, the literature in this field has mostly
been focused on developing approaches to reduce the dif-
ficulty of managing such systems. Two such approaches
are currently available in the literature. The first approach
to solving general assembly systems was introduced in the
classic work of Rosling (1989), which considers a station-
ary, infinite horizon assembly system (with regular flow
only). Rosling’s unit of analysis is an item, which rep-
resents either a subassembly in which multiple preceding
items are assembled into another item that continues to
flow downstream toward the final assembly. Rosling’s for-
mulation of the problem makes use of echelon variables,
introduced by Clark and Scarf (1960), to account for the
echelon inventory level in each period and for each item,
as well as a vector of echelon inventory positions based
on a set of orders placed from the preceding item but not
yet received. Rosling determines inventory holding costs
associated with those echelon inventory levels and eche-
lon inventory positions for each item in each period, and
sums the discounted expected value of those costs over
the infinite time horizon. He makes use of that infinite
sum to show that the optimal policy for the system satis-
fies the “long-run balance” under which all echelon inven-
tory positions for an item closer to the final assembly are
lower than corresponding echelon inventory positions for
an item farther from the final assembly. Hence, the opti-
mal policy is such that, for any two items, their eche-
lon inventory positions pertaining to those orders that are
the same number of periods away from the final assem-
bly must be identical for any number of such periods.
Consequently, all echelon states and decisions in the sys-
tem become identical for any given number of periods that
orders are away from the final assembly. As a result, if the
initial state of the system satisfies the same balanced con-
dition, the optimal policy for the assembly system can be
reduced to that of an equivalent series system, in which all
items equally far from the final assembly are aggregated
together. Chen and Zheng (1994) offer another derivation
of this result. Rosling’s approach has subsequently been
used by DeCroix and Zipkin (2005) to address an important
extension of Rosling’s stationary, infinite-horizon assembly
model. They allow for uncertain product (and component)
returns from customers and describe the item-recovery pat-
tern and restrictions on the inventory policy under which an
equivalent series system is shown to exist. DeCroix (2013)
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also makes use of Rosling’s approach in considering an as-
sembly system subject to random supply disruptions, and
shows how such system can be simplified by replacing
some subsystems with a series structure. Chen and Muhar-
remoglu (2014) consider an assembly system identical to
Rosling’s (with only the regular flow of components) but
in which the initial state may not be balanced. Using the
customer-unit decomposition approach, they establish the
optimality of echelon basestock policies whose basestock
levels are dynamically changing in time as a function of
cumulative customer demands.

To analyze assembly systems with nonstationary costs,
Angelus and Porteus (2008) develop a different approach
to solving assembly systems (with regular flow of orders
only). They also make use of an echelon formulation of
the problem, but instead of using items as units of anal-
ysis, they analyze the system by means of components,
which represent items with no predecessors. Furthermore,
they work explicitly with stages through which components
flow downstream, one stage per period, toward final assem-
bly, rather than capturing stages through a set of echelon
inventory positions. The basic unit of analysis in Angelus
and Porteus (2008) is thus a component assembly system
in which there is only a single (final) assembly at the most
downstream stage. They formulate a dynamic program for
the objective cost function for the problem and identify
a new property of the objective cost function that is pre-
served under minimization. Under this property, referred to
as “balance-inducing,” the objective cost function increases
if any stage in the system has an excess of any compo-
nent relative to the component with the smallest echelon
inventory at that stage. In other words, given an underlying
echelon state and the corresponding objective cost function,
if additional inventory is added to any component at any
stage (other than the one with the smallest echelon inven-
tory at that stage), the objective cost function increases.
Angelus and Porteus make use of this property to show
that, if the system starts out in a balanced state, the opti-
mal policy for the system is balanced in every subsequent
period, so that there is an equal amount of every component
at every stage. This result, in turn, implies that a nonsta-
tionary assembly system with (only) the regular flow of
product can be reduced to an equivalent series system.

When it comes to nonstationary assembly systems with
multiple flows of product, such as having both regular and
expedited flow of product as allowed in our paper, nei-
ther of the two existing approaches in the literature yields
fruit. First, the classic approach of Rosling (1989) is lim-
ited by its assumption of stationary costs. Indeed, Rosling
(1989, p. 574) states that the “series interpretation gener-
ally cannot be expected to carry over when holding costs
or production costs are non-stationary.” With regard to the
approach of Angelus and Porteus (2008) on the other hand,
achieving the preservation of the balance-inducing property
identified in their paper when expediting is added to the
system necessitates imposing overly restrictive assumptions

on cost parameters in the model. In particular, it can be
shown that the preservation of the balance-inducing prop-
erty for an assembly system with expediting requires that
the unit expediting cost for every component at each stage
be so low that it becomes optimal to never place a regular
order in the system. Second, both existing approaches make
use of the echelon formulation which is imbued with a cer-
tain limitation when it comes to systems with multiple flow
of product. In particular, under echelon formulation, eche-
lon inventory positions in both Rosling (1989) and Angelus
and Porteus (2008) would be obtained by including both
the expedited and the regular flow orders. Therefore, with
expediting, the balanced echelon states found to be optimal
in those papers can be reached by unbalanced combina-
tions of regular and expedited orders. As a result, even
though inventory states may be balanced in each period,
such unbalanced optimal decisions would make it impos-
sible to reduce the system to an equivalent series one. In
other words, the echelon formulation of assembly systems
aggregates expedited and regular flow of product in a way
that renders it impossible to balance both of them at the
same time, under the optimal policy. Thus, instead of using
echelon variables, we formulate the assembly model by
means of installation stocks and replenishment decisions
related to those. Furthermore, instead of directly establish-
ing system-wide properties of the problem (long run bal-
ance in Rosling 1989, balance-inducing in Angelus and
Porteus 2008), we tackle the problem stage by stage and
establish local (i.e., stage-specific) properties of the opti-
mal policy. As shown in Section 3, these two aspects of
our approach make it possible to disaggregate those two
product flows (and, for that matter any number of flows),
as well as stages in the system, so that each type of order at
each stage can be shown to be balanced under the optimal
policy. In that manner, our approach makes it possible to
solve more general assembly systems.

In summary, our paper contributes to the assembly lit-
erature by (i) incorporating both advance information and
expediting of stock (neither of which was considered either
alone or together in the context of assembly systems);
(ii) allowing for nonstationary model parameters and finite
time horizons; (iii) characterizing the optimal policy that
makes it possible to manage the resulting assembly sys-
tem; and (iv) proposing a new approach to solve complex
assembly systems with multiple flows of product.

2. Model Description

2.1. Component Assembly System

We begin our analysis with a simplified assembly model
(see Figure 1), where components are assembled only once,
at the most downstream stage. We refer to this system as the
component (assembly) system because it is the components
that flow downstream until they are assembled into the final
product. Later we show that the component system plays a
key role in solving more complex assembly systems.
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Figure 1. Component assembly system.

Customer demand

i=n—1—>O—>

n j=Ln_1

Following the literature on assemble-to-stock systems
(e.g., Rosling 1989, DeCroix and Zipkin 2005), we assume,
without loss of generality, that assembling a product requires
exactly one unit of each of n components. Each compo-
nent i, i € (1,2,...n), has a standard leadtime of L, periods
between the placing of a regular order for the component and
its becoming a part of a final product. Our model allows for a
component to stay at a single physical location for more than
one period, as work-in-progress, which can be used to repre-
sent multiperiod leadtimes between adjacent physical stages
(in which case a single physical location would be repre-
sented by multiple completion stages). At the same time, if
expedited, a unit of any component can move through adja-
cent stages in the system within a single period, as elaborated
below. Without loss of generality, we order component types
so that L, < L, < --- < L,. Note that some components
can have the same leadtime as others, and that all possible
leadtimes need not be represented: In Figure 1, for example,
there is no component with a leadtime of one period. Fur-
thermore, we do not combine different components with the
same leadtime into a single aggregate component because it
is not necessarily optimal to manage them identically. Thus,
our starting model is a periodic review, nonstationary, finite-
horizon, component assembly system.

2.2. Advance Demand Information

Following Gallego and Ozer (2001, 2003), the demand seen
during period ¢ is of the form D, = (D, ,,...,D, ),
where D, | is the demand observed in period ¢ for delivery
in period s. D,  is assumed to have a continuous proba-
bility distribution for each ¢ and s. Period s is such that
s€|[t,...,t+ NJ, where N is the longest available delivery
time offered to the customer, referred to as the (demand)
information horizon. This formulation captures demands
that are realized now, but need to be fulfilled s periods
later. Such advance demand information helps the company
better manage the supply-demand mismatch by providing
exact information on a portion of demand that will need to
be satisfied in the future. Thus, at the beginning of period 7,
the observed demand to be fulfilled in future period s is
01, s = Ztil D

q=s—N ~q,s*

00O O i

~
Il
~

OO O

~
Il
w

j=2 j=1

At the beginning of each period 7, the available de-
mand information is the N dimensional vector O, := (s
O, 11>--->0, 4n_1), and the actual demand to be satisfied
in period ¢ is O, , = Z;;IHV D, .. By the end of period 7,
the pending demand (i.e., to be satisfied in period ¢) is
0t+1,t = Or,t +D, ;.

We allow components D, ,.; and D, . ; of the process D,
to be correlated with each other, and the process D, to
be correlated across time. In particular, we allow the pro-
cess D, to depend on O~t, which is known at the beginning
of period ¢ and before D, is realized. This provides the
model with the capability to capture the dynamic evolu-
tion of demand distributions based on previously realized
demands.

2.3. Dynamics

For each component i, at each stage, two decisions are
made regarding the flow of inventory: (1) how many units
to expedite downstream; and (2) how many units to move
to the next stage of completion. For convenience, we
will refer to the latter as regular order. Starting at the
upstream stage L; and proceeding downstream, expedited
orders arrive at the next stage downstream immediately
(i.e., before any other decision is made). Regular orders
reach the next stage downstream at the end of the period
(but before customer demand has been realized). The fol-
lowing parameters describe the system:

X;;, = on-hand inventory of component i in stage j if j > 1
(net inventory of component i if j = 1), at the
beginning of period #, prior to making any decisions;

XUEl = the number of units of component i expedited into
stage j from stage j+ | in period f;
Xij”f, = the number of units of component i regular

ordered into stage j from stage j+ 1 in period .

The collection x, of all on-hand inventories x;,, will
be referred to as the on-hand (inventory) state; the col-
lection of all expedited orders XZ, denoted by XZ, will

ijt® r
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be referred to as the expedited order schedule; the collec-
tion of all regular orders X/, denoted by X[ will be re-
ferred to as the regular order schedule. The sequence of
events in each period ¢ is as follows: (1) on-hand inventory
state x, is observed; (2) expedited order schedule XF is
selected, starting with the most upstream stage and moving
down; (3) expedited amounts are received; (4) regular order
schedule X? is selected; (5) regular orders are received;
(6) vector D, of customer demands is observed, outstand-
ing demand O, .., is satisfied to the extent possible, and
unmet demand is backlogged; and, (7) costs are incurred.
Since each expedited order arrives at the destination
stage before any other decision is made, then the expedited
order into stage j + 1 arrives before the decision on the
expedited order into stage j has to be made; thus, XW <
X 1+ XE j+1,0» for each i and every j < L;. Since regular
orders are placed after all expedlted quantities have arrived,
then X/ <x; ;. ,+ X/, , — X, for each component i
and stage j < L,. Note that the delivery of expedited units
from any stage to any downstream stage occurs within a
single period, and before regular orders are placed. Given
x,, the set of feasible decisions X(x,) becomes

R E
X(x,) = {X . X, >0|ijt<xl J+1L t+X1 J+1, t’letgxl jH1,1

+ X[ — X for 1<i<n, 1<j<L;}.

ijt

The state transition equations are given by
xtlt+tht+Xll[ 0t+1,t lf]:17
XR (l)

i,j—1,t

+ X5, —

ijt

Xij+1 = Y x. 4+ XE — XE.

ijt ijt i,j—1,t

if j=2,...,L,.

1

The constraints of the feasible set X(x,) imply that
x;i; 2 0 for every i and j > 2 in each period ?.

2.4. Costs

A backlogging cost p, is charged for each unit of demand
not satisfied by the end of any period; a unit inventory
holding cost H;; is incurred on the amount of component i
located at stage j at the end of a period. Holding a unit of
assembled product incurs a holding cost H;*. Each unit of
component i expedited into stage j incurs a unit expediting
cost kl‘ft, whereas each unit of component i regular ordered
into stage j incurs the unit ordering cost of kR in period 7.
All unit costs are positive. Let « be the dlscount factor.

If the unit cost of a regular order were to exceed the unit
cost of expediting for a component at a particular stage,
it would always be optimal to expedite every single unit
of that component through that stage; such a stage would
thus effectively not exist in the system, as the associated
single-period leadtime would disappear for all units arriv-
ing into that stage (relevant costs could be allocated to the
next stage upstream). We assume that all such stages have
already been folded into the system, so that the remaining
ones are those for which the expedited order cost exceeds
the regular order cost. The following assumption thus pre-
serves the structure of the system.

ASSUMPTION 1. k[, > kf% for every component i, stage j,
and period t.

We also assume that unit inventory holding costs are
increasing going downstream, because increasing unit
inventory holding costs “...reflect higher physical and
financial holding cost typically associated with items that
have progressed farther through the system” (DeCroix and
Zipkin 2005).

ASSUMPTION 2. Hy > H, ;. ,, for every component i,
stage j and period t.

To avoid inventory replenishment decisions being made
for speculative purposes (that is, solely for the purpose of
exploiting the time variability of regular order costs rather
than satisfying customer demand), we impose the following
restriction on how quickly those unit costs can change in
time.

ASSUMPTION 3. kR +H,; —H > ak®

ijt i,
component i, stage j and period t.

i for every

Next period’s unit regular order cost for any compo-
nent cannot exceed this period’s regular order cost by more
than the difference in unit holding costs. (Under Assump-
tion 2, Assumption 3 is satisfied for any stationary costs).
If the unit regular order cost of some component were to
increase excessively from one time period to another, then
it would be optimal to stockpile that component at a down-
stream stage despite higher inventory holding costs, solely
for the purpose of saving on future regular order costs.
Assumption 3 rules out such stockpiling through regular
orders. Furthermore, because of Assumption 1, Assump-
tion 3 also acts to rule out such stockpiling through expe-
dited orders. Note that Assumption 3 is automatically satis-
fied in Rosling (1989), both because the only costs assumed
in his paper are inventory holding costs, and because all
model parameters are stationary. Thus, in addition to gener-
alizing Rosling (1989) to allow for expediting of stock and
advance demand information, we also extend his results
to include nonstationary model parameters. Hence, these
results also bring the assembly literature one step closer to
practical implementation.

Because assembly requires one unit of each component,
the quantity of assembled products at the end of period 7,
prior to demand realization, is min(x,,, + X{;, + X, x5, +
X3+ X3 - X+ X0, + X0 Let hy = Hy — H; 11,
with H; ; ., ,:=0. One-period costs in period 7 therefore
become

Yt(Ot’mln(xtlr_l_let tlt )+ZZ[k5IXI]EI+k5tXIJRI
i=1j=1
Hy (= Xy = X5+ X5+ X0 ]

=Y (01’ mln(-lef +ler +let )

+ZZ (ki +hy) X+ (kf +hg ) X+ Hyxg ], (2)

i=1j=1
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where y,(0,, x) := ED,»,\é,[pt(OH—l,I - 0"+ H'(x -
O,;1.,)"], which is convex. The expectation is taken over
D, ,, given 0~, to account for correlation across periods. Let
G,(0,, x,, XE, X®) denote the minimum expected present
value of the costs over periods ¢ through T, as of the begin-
ning of period ¢, given that the state x, is observed and
schedules X* and X! are selected. The optimality equa-
tions become
Gr(0~t’ Xt XtE’ XR) = yt<0~t’ miin(x,-l, + XiElt + Xilit )

t

n L;
+ 3 DOk, + hy) X5 4 (K 4 hy) XJ + Hyx ]
i=1 j=1

+ aE[F,H(O~,+1, X))l (3)

where the expectation is with respect to the entire vector
of demands {D, ,,..., D, ,, v}, given O,. Furthermore,

F(0,,x)=__ min
XE, xReX(x,)

Gt(ét’xf’X[E’Xl‘Ie)’ (4)

where the time horizon is 7 periods. The terminal value
function Fy, (O, X7, is assumed to be zero.

The optimality equations given for F.(O,,x,) bear a
severe curse of dimensionality: the state space has ) ", L,
inventory dimensions plus N advance demand dimensions.
Furthermore, optimal order quantities XUE[ and X,_.’; for each
component i and stage j depend on all the variables in the
state space. This formidable dimensionality of the decision
space and the state space renders the problem practically
impossible to solve numerically, even for systems with very
few components and very few nodes in the system.

What makes this problem difficult are two flows of com-
ponents in the system, the regular flow and the expedited
flow, and the nonstationary cost parameters in the model.
Because of these factors, neither the classic methods of
Rosling (1989) for collapsing the state space (also em-
ployed in DeCroix and Zipkin 2005, DeCroix 2013) nor the
balance-inducing approach of Angelus and Porteus (2008)
are conducive to solving the problem. This is due to the
echelon formulation used in both of those papers, under
which expedited and regular orders are aggregated to form
echelon inventory positions.

3. Optimality Results for Assembly Systems

3.1. Component Assembly System

Our first set of results addresses some fundamental prop-
erties of the optimal policy for the component assembly
system described by Equations (3) and (4). All proofs are
deferred to the appendix.

LEMMA 1. It is never optimal to expedite any component i
into stage 1.

Because both expedited orders and regular orders into
stage 1 arrive before the demand is realized in each period,

then, given the smaller unit regular order cost, it will always
be cheaper to move product by regular order than by expe-
dited order into stage 1. Thus, expedited orders will never
be used to replenish inventory at stage 1, and any expedit-
ing of components will only take place at most down to
stage 2.

Next, for each j=1,...,L,, let C(j) be the set of com-
ponents with a leadtime greater than or equal to j, referred
to as the relevant components at stage j. The following def-
initions are stated in terms of the on-hand state x,, but also
apply to X7 and X*. We say that x, is balanced at stage j
in period ¢ if x;, = x;;, for all i,k € C(j). An inventory
state balanced at stage j has exactly the same number of
units of each relevant component at stage j. Thus, there
are no unmatched components at stage j. We say that x, is
balanced through stage j if x, is balanced at each stage [,
le{l,...,j}. If x, is balanced through the very last stage

L,, we simply say that x, is balanced.
ASSUMPTION 4. For each j=1,...,L,, x; = x for all
i,k e C(j).

Thus, the system starts out balanced in the very first
period. The initial on-hand inventory state in period 1 has,
for each stage j, the same number of relevant components
scheduled to complete assembly in j periods. This assump-
tion is satisfied, for example, if we start out with no com-
ponents of any kind.

LEMMA 2. The optimal regular order schedule XF is bal-
anced at stage 1 in every period t =1, ..., T. The on-hand
inventory state x, is balanced at stage 1 in every period
t=1,...,T+1

Because of the complexity of the assembly model con-
sidered in this paper, and the nonstationary nature of model
parameters, it is not feasible to balance the whole system
at once as is done in Rosling (1989), DeCroix and Zipkin
(2005), or Angelus and Porteus (2008). Instead, it becomes
necessary to balance the system stage by stage, and this
necessitates application of a methodology different from
those found in the existing literature. Lemma 2 represents
the first step in this approach.

LEMMA 3. If the on-hand inventory state x, is balanced
through stage j in period t, for any j < L,, then the opti-
mal expedited order schedule XF is also balanced through
stage j in period t.

A balanced inventory state x, thus results in a balanced
optimal expedited order schedule XF.

THEOREM 1. Optimal order schedules (XF,XF) are bal-
anced in every period t =1, ..., T. The on-hand inventory
state x, is balanced in every period t=1,...,T 4+ 1.

To provide a better understanding of our approach, and
motivate its application to other assembly problems, we
sketch what is involved in proving our last two results.
Briefly, if we can show that the optimal policy (X~, XF) is
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balanced in each period, so that X, = X[, and X[ = X[,
for any components i and i’ relevant at any stage j, then,
given that x, is balanced in period 1 by Assumption 4,
this would imply that all decisions and states are balanced
under the optimal policy for all subsequent periods. This
would allow the collapse of dimension i, and thus establish
the existence of an equivalent series system.

The proof proceeds by a double induction on ¢ and j,
where x,; being balanced by assumption provides the base
case for the induction. If X’ is not balanced in some
period ¢, then there exists a component i whose expedited
order X,.JE, at stage j is in excess of some other component’s
expedited order (say, that of component i’) at that same
stage j. In that case, move the excess of that expedited
order to the regular order for component i at stage j in
period 7. More specifically, if X/, — X/, =& > 0, we mod-
ify component i’s orders to X/, = X/, — & and X = X[ +8.
Since kf;, > kfi, by Assumption 1, this modification leads to
a lower total cost. If, on the other hand, X [R is not balanced
in some period ¢, so that there exist components i and 7’
such that X — X, =& > 0 at some stage j, we move the
excess of that regular order in period ¢t to component i’s
regular order in period ¢+ 1. Thus, in this case, we modify
the regular orders for component i to X% = X% — & and
XX, =XE . +8. Assumption 3 that kf, + hy, > akf
then implies that this modification leads to lower total cost.
This shows that the optimal policy at stage j in period ¢
should be balanced, and therefore x,,, is balanced, which
completes the induction step. (An important part of the
proof is showing that modified orders remain feasible.) In
this manner, for each component flow, we move progres-
sively upstream one stage at a time, and then one period at
a time, until optimal decisions are shown to be balanced at
each stage and in every time period.

As a consequence of Theorem 1, it is no longer necessary
to manage each component separately; instead, those com-
ponents that are at the same stage can be managed together
as a kit, where the kit for stage j has one each of every
component in C(j). We can therefore represent the on-hand
inventory for each relevant component at every stage j by
a single variable y,; thus, x;, =y, for every i € C(j). Let
Y= (1s>-+-» Y1, ). Because the optimal order schedule is
balanced, the optimal decisions X,.JE, (and X,'JR;) are the same
for every i € C(j), and they can each, therefore, be repre-
sented by a single variable Y, (and Y) at each stage j. Let
YP = (Y, ....YF ) and Y= (Y{,...,Yf ). The state
space of inventory dimensions thus collapses from > | L,
dimensions to only L=:L,.

It is worth noting that the key feature of our proof of the
collapse of the state space involves balancing components
one flow at a time, first the expedited flow and then the
regular flow. What enables each flow to be disaggregated
in this way is our formulation of the problem based on
installation-stocks. That is, instead of considering echelon
inventory levels (of items, as in Rosling 1989, or compo-

nents as in Angelus and Porteus 2008), we work directly

with on-hand inventory levels and the replenishment deci-
sions pertaining to those. Since the landmark paper of Clark
and Scarf (1960), research in multiechelon inventory theory
has primarily focused on managing echelon inventory lev-
els, rather than installation stocks. The disadvantage of the
multiechelon formulation in the context of an assembly sys-
tem with multiple flows of product is that those flows can-
not be disaggregated, since each echelon inventory decision
variable will inevitably represent a sum of both regular and
expedited orders at all stages downstream of a particular
stage. Our approach, by means of which we can disaggre-
gate flows and stages in the system, thus demonstrates that
there is still merit in working with installation stocks even
in a multistage setting. To the best of our knowledge, this
is the first time that an assembly system has been solved
by working with the installation stocks, rather than echelon
inventory levels. We believe this approach can help solve
other complex assembly systems that may not be amenable
to previous solution approaches.

3.2. Generalization to Systems with Subassemblies

Our second set of results concerns assembly systems
where subassemblies are allowed at any stage prior to
the final assembly. One example is shown in Figure 2.
We refer to each node k = 1,2,..., N in the system as
“(sub)assembly,” regardless of whether the node involves
processing a single or multiple components.

For each k, let [, be the incremental leadtime required
to complete assembly k, where Assembly 1 is the fin-
ished product. Let s(k) be the unique immediate successor
assembly to assembly k. Let L, := [, =0, and, for each
k>1,let L, :=1, + Ly, be the leadtime for assembly k.
Let P(k) be the set of immediate predecessor assemblies of
assembly k. The set of components of such a system is the
set of assemblies that have no predecessor assemblies. Let
(k) denote the set of components required in the com-
position of assembly k. In Figure 2, for example, s(6) =
2and Ly=8 (=1ly+1; + 13+ L), while P(1) = {2,3},
P(2) ={5,6}, P(3) = {4,7}, P(4) = {8}, P(7) = {9, 10},
P(5) = P(6) = P(8) = P(9) = P(10) = &, and (1) =
{5,6,8,9,10}, 4(2) = {5,6}, «(3) ={8,9, 10}, A(4) =
{8}, 4(7) = {9, 10}, and si(k) = {k}, for k =5,6,8,9, 10.
We refer to such a system as the general assembly system.

Assume, for convenience, that the only extra costs in-
curred in this system, in addition to the costs already intro-
duced, are the assembly costs: Let ¢, be the discounted
present value of the costs related to assembling/purchasing/
transforming assembly k, evaluated at the beginning of
period ¢. This cost may be the purchasing cost for compo-
nents (e.g., 5, 6, 8, 9, and 10), as they have no predecessor
assemblies.

We now introduce the constraint-relaxation approach
from Atkins (1990) and the cost allocation ideas of Atkins
(1994) and Chen and Zheng (1994). The Atkins papers
develop an approach to relaxing some of the constraints in
the problem to provide lower bounds on the cost for certain
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Figure 2. A system with subassemblies.

multistage inventory models with deterministic demand.
Such a relaxed version of the problem will have lower costs
because of fewer constraints in the system, and thus provide
a reasonable lower bound on the cost for the original prob-
lem. With the right choice of constraints to relax, a problem
can be broken down into simpler subproblems. By choos-
ing an optimal cost allocation, it is possible to derive tight
lower bounds on the cost function for the original prob-
lem. Chen and Zheng (1994) extend this method to systems
with stochastic demands, and prove the original results of
Clark and Scarf (1960) and Rosling (1989) in a more direct
manner. They relax the constraints, and find the optimal
policy for the simpler, relaxed problem thus obtained. This
optimal policy for the relaxed system is then shown to be
feasible in the original system. Since this policy is optimal
for the less constrained system, and found to be feasible in
the original, more constrained system, then the policy must
also be optimal for the original system.

To apply the constraint-relaxation and cost-allocation
methods to our problem, we first relax the constraint(s)
that there must be exactly the right number of each com-
ponent ready when any (sub)assembly takes place (other
than the final assembly at stage 1). We refer to those
constraints as the component-matching constraints. Relax-
ing those constraints provides a system in which the
performance is at least as good as in the original one.
Furthermore, this relaxed system has exactly the same
constraints as the component assembly system analyzed
in Section 3.1, so that a general system with subassem-
blies (with relaxed component-matching constraints) can be
treated as an equivalent component assembly system. Thus,
for example, with relaxed component-matching constraints,
the system with subassemblies shown in Figure 2 becomes
structurally equivalent to a five-component assembly sys-
tem (components 5, 6, 8, 9, and 10 in the original system)
with component leadtimes of 4, 5, 6, 7, and 8 periods.

Next, we design a cost allocation scheme so that, if the
solution is balanced, then the total expected cost is the
same in the equivalent component system and the original
system with subassemblies. If there exists an allocation of
assembly costs to its components that satisfies the required
conditions, then, by Theorem 1, there exists an optimal pol-
icy for the equivalent component system that is balanced.

Since it is balanced, this policy is feasible in the original
constrained system, because every balanced policy satis-
fies component-matching constraints. Because this policy is
optimal for the equivalent component system, and feasible
for the original constrained system, then it must be optimal
for it.

Let B, denote the portion of the assembly cost for
assembly k that is allocated to component i, for each i €
(k) in period ¢ (e.g., allocate the assembly costs of assem-
bly 1 equally to each required component, so that 35, =
Bois = Bsii = Boi, = Bro.11 = 1/5). In general, we require
full allocations, namely, that } ;. By = 1 for each k
and ¢. For example, we require that 3g,, = 1 because assem-
bly 4 requires only component 8. Thus, each component
i is allocated By,c;., for each k for which i € (k). If
assembly k is initiated at the beginning of period ¢, it will
require one unit of component i for each i € 9(k), and the
amount ;¢ will be allocated to each such component i
for stage L, in period t.

The allocated assembly costs for the system in Figure 2
are summarized in Table 1. Component 6 is shown as bear-
ing the full cost of assembly 6—it is the only component
needed for that particular assembly. The cost of assembly 7,
by contrast, is shared among components 9 and 10. The
following theorem describes how to allocate subassembly
costs to ensure the existence of a balanced optimal policy.

THEOREM 2. Let L(j):={k | L, = j} be the set of assem-
blies with leadtime Ly equal to j. Let 6 =3 ¢ ;) Bty
for each i and j. If for each component i at stage j in each
period t there exists an allocation of assembly costs such
that 0, > ab,; ., then the optimal policy is balanced in
every period.

Table 1. Allocation of assembly costs to components
and stages.

i L, k=1 2 3 4 5 6 7 8§ 9 10

5 4 Bsicl! By c§

6 5 Bact Beuc) g

8 6 Byt Bsscs < cf

9 7 Byct Boscs Borcs e

10 8 310,10? 310,3"? ,310,7C§x et
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If a policy is balanced, then, when an allocation of costs
satisfies the condition in Theorem 2, the actual costs in-
curred in the general system with subassemblies are the
same as those captured by the equivalent component model.
Since we allow each of the components to be independently
managed in a component assembly system, then the opti-
mal solution of the equivalent component system is at least
as good as the best one in the original (i.e., general assem-
bly) system. Under Assumptions 1-4, the optimal policy
for the equivalent component system is balanced; therefore,
that policy is feasible in the original system with subassem-
blies, because, being balanced, it satisfies the component-
matching constraints. Thus, this balanced policy must be
optimal for the original system.

The condition required by Theorem 2 states that the allo-
cation of assembly costs across components cannot change
too quickly in time. Otherwise, if, for example, in one
period assembly costs are allocated evenly across compo-
nents and in the next period they are all allocated to some
component i, it may be optimal to withhold that particular
component from assembly for one or more periods, thus
unbalancing the system. The requirement that 6, > af;; .
eliminates such pathological changes of cost allocations
across time. This condition is only mildly restrictive: it
holds, for example, for the case of stationary assembly
costs or when the assembly costs are allocated equally to
each required component in each period. Thus, under the
specified set of permissible cost allocations, the optimal
policy for a nonstationary assembly system with subassem-
blies is balanced, and the system can thus be reduced to an
equivalent series system.

4. The Characterization of the Optimal Policy

By Theorems 1 and 2, those components in the assembly
system that are at the same stage can be managed together
as a kit, where the kit for stage j has one each of every
component in C(j). We can thus represent the on-hand
inventory for each relevant component at stage j by a single
variable y;,.

Since the optimal expedite order and regular order sched-
ules are balanced, then the optimal expedite order deci-
sion for component i at stage j, XUE.,, is the same for every
i€ C(j), and can therefore be denoted by a single vari-
able, Yf Similarly, because the optimal regular order deci-
sion for component i at stage j, Xif,, is also the same for
every i € C(j), it can be denoted by a single variable, Y;*.

Let the new cost parameters kjf , k;f . H,,, and hj, for each
stage j be defined as follows:

E . E. R . R.
kjt = Z kijt’ kjr = Z kijt’
i<C0) i<C()
H,:= Y Hy: and h,:= ) hy.
i€C(j) i€C(j)

We can formulate the new optimality equations for the
assembly model with ADI and expediting as follows:

Syt(ét’yr)z min
Y,E,Y,REY(y,)
(gl(ONI’yl’ YrE’ YtR) =’yl(0~[,y“—‘rY1€+Y{:)
L

+Z[(k/§ +h_/r)szE + (k;f +h_/'t)yjf +H;7Yn]

Jj=1

+aE[g,+l (0~,+19y[+l)]'

G(0,.y.YE.Y" ()

The feasible decision set Y(y,) for a given on-hand
inventory state y, becomes

Y(y,) = {YtE’ YrR | Y,f SVt Yjﬁ-l,t’ Y,f SYjt

+Y5, Y 1<) <L},

The following corollary completes the reduction of an
assembly system with advance demand information and
expediting to an equivalent series system.

COROLLARY 1. Fix t and y,. If x;, =y, for all j and i €
C(j), then F,(O,,x,) =%,(0,,y,) for every O,.

Note that the only subscript in the optimality equations
given above, other than the time label, is the stage of the
system in sequential order, so that the assembly model with
expediting and ADI has now been reduced to an equivalent
series system with L = L, stages.

4.1. Formulation in Terms of Echelons

We now reformulate the series system given in Equation (5)
using the following echelon variables:

Z; i= Yy, + -+ y,—Echelon j (on-hand) inventory, at
the beginning of period ¢;

Zj := z; + Y;—Echelon j inventory position after
expedited orders have arrived;

Z :=Z}+Y,}—Echelon j inventory position after both
expedited and regular orders have arrived.

Updated echelon inventories are z; ., = Zj’f — 0,11,
Let z, := (z;5...,2;,) be the echelon (inventory) state,
ZE:=(Zf, ..., ZE) be the post-expedite echelon schedule,
and ZR:=(ZR, ..., ZR) be the post-regular order echelon
schedule. Thus, ZF and Z¥ are the decision variables of the
model for each 7.

The single period cost function becomes v,(0,, Z{) +
Yk — kD ZE + (kK 4 hy,)ZE — kEz;,]. Our assembly
system can thus be reduced to an equivalent series one with
these optimality equations:

£(0,.2,)

L

- _ E i

= Ekajt—i— min Wi
j=1

zZE, 7Re7(z,)

L
{v,(o,, Zi)+ (2 + et 2

B[S, (0, 2 om,,)]}, ®)
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where, for notational convenience, cj‘f = kE k]’f , and c
kff + h;,. The feasible set Z(z,) becomes
Z(z,) ={Z}.Z} | 3 SZELZE

ELLn1<i<L). (7)

The echelon inventory position after expediting is, at each
stage, bounded from below by the echelon inventory at that
stage, and, from above, by the echelon inventory position
after expediting at the next stage upstream. Those two ech-
elon positions then determine the feasible interval for the
echelon position after regular ordering. Our third set of
results concerns the solution to the dynamic program given
in (6).

4.2. Preservation of Additive Convexity

In what follows, if f is an arbitrary smooth and convex
function on R with a finite unconstrained minimizer S, then
we define functions f* and f~ as

frx):= {f(S) fx<S; and

f(x) otherwise;

S) if y<S; ®
f()_{f(y) £(S) if y<s;

otherwise.

Clearly, f* is increasing, and f~ is decreasing for every
such function f. Furthermore, if f is increasing, then
f7(y) =0, and f(x) = f(x); if f is decreasing, f*(x) =
0, and f~(y) = f(y). The following lemma presents a new
result in convex optimization pertaining to the preservation
of additive convexity of multidimensional objective func-
tions minimized over the feasible set with linear, ordered
boundaries.

LEMMA 4. Let u:= (uy, u,, ..., uy) be a given vector in
RY such that u; < u;,, for every j. Let ¢, ¢,, ..., ¢y
R — R be smooth convex functions. Then, for any m < M,

min
ujgglqu(l) (£))
j=12,. M

=Y py(u)+ min {¢m+1<§m+1>+ 5 ¢_,~(§,»)}, ©)

j=I i I;H{I\gﬁr Jj=m+2
where the minimization is over the vector { :== ({,, ..., {y),
an-d Junctions ¢; are defined recu.rswely by ¢;:=¢,;+ (ChS
with @, := 0. Furthermore, ¢; is smooth and convex for
every j.

The following intermediate results introduce a set of new
functions needed for subsequent analysis and establish their
smoothness and convexity properties.

LEMMA 5. Assume that f,H(ON,H, -), as defined in Equa-
tion (6), is smooth and additively convex for each O, ,, so
that there exist smooth convex functtons i oo fom}
such that ﬁ+l(0f+l’zt+l) = Z] i t+l(0z+l’ zZ;, z+1) Jfor
each 0, -

(i) Let functions {g, ,,....8y.,} be defined, for each

0,, as
gjt(ér’z)
’YI(Z) + Cﬁz + aE[fl,t+l(0~t+l’ Z— Ot+l,r)]
fj=1
= ] (10)
lefz +aE[f; 1410011, Z = 0,y )]
ifj>1,

Then, gj,(ét, -) is smooth and convex for every 0
(ii) Given g, ,,...,8y., as above, let gﬁ(O,, ) and
8 (0,, ) be as defined in Lemma 13. For each O,, let

CltZ+g1 [(OnZ)
. fj=1
U,(0,.2) = ) y (11)
C/€Z+gj‘j(0t7z)+gj_—l,t(0t’Z)
ifl<j<L.

Then, Uj,(ON,, -) is smooth, convex, and

L
ft(otvzt)_ mlnF {Z jt(OtsZ]f }
Z/I\ij St Jj=1

1L

THEOREM 3. For every z, and 0, in each period t, let
Ui(0,.z;) be as defined in Lemma 5. Let functions
Vi (0, ), .. . V,,(0,,-) be defined recursively as V;,(0,,z;,)
_l]jt(Ot’ t)+v lt(Ot’ t) with VOZ(OI’ )—0 Then,
the functlon (0,, ) is smooth and convex, and £.(0,,z,)=
Z/ 1 jt (OT’Z/[) k th

The multivariable objective cost function for a multieche-
lon inventory system with ADI and expediting can therefore
be reduced to a sum of single-variable smooth convex func-
tions. This result acts to significantly reduce the curse of
dimensionality inherent in the original problem, to the point
where each component function depends only on a single
(echelon) inventory dimension (in addition to any advance
demand information state variables). Theorem 3 completes
our objective of decomposing a complex assembly system
with advance information and expediting of stock into a
nested sequence of solvable convex subproblems. Each sub-
problem now contains only N + 1 dimensions, and becomes
numerically tractable because the demand information hori-
zon N is typically not very large in practice, and because
the optimization of each component function is only over
the single (echelon) variable z;,

4.3. Structure of the Optimal Policy

In what follows, we use the symbols “Vv” and “A,” in the
conventional sense, to represent the maximum and the min-
imum, respectively, of two or more numbers or variables.
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THEOREM 4. For any given O,, let gﬁ(Ot, ) and V, (é ) Table 2.  Implementation of the optimal policy.
be as Lemma 5 and Theorem 3, respectively. Let Echelon (j) Sf  sF 2}*,,71 2 25 f/,,E 2;5 Aj,f
SHO,) = max(argmin (O, Z)) and 1 — 8 8 -1 -1 0 7 8
z 2 8 12 12 3 7 4 7 0
SE(0,) :=max(argmin V,(0,, 7)) 3 7015 15 6 7 1 11 4
i (00 5 (0. 2) 4 0 20 20 11 11 0 18 7
5 18 24 24 15 18 3 24 6

for each j.
. (i)~ Then, the optimal echelon j position after expediting,
Z7(0,,z,) is given by

L

Z£(0,.2,) = Nz v 55 (0)]. (12)

i=j

(ii) Given ZE(O,,z,) the optimal echelon j position
after regular ordering, Z (Ot, z,), Is given by

2,5(0,,z,>:={[Z'E(0)V HOAZE 0N i<Ls
Z£(0) V1 (0) if j=L.

Thus, the optimal policy for a multiechelon system with
ADI and expediting is a double-tiered, echelon basestock
policy whose basestock levels depend on the state of ADI.

4.4. Implementation of the Optimal Policy

Imagine an organization with two departments charged with
managing replenishment: “the expediting” department and
“the regular order” department, each with a manager at
every stage. The implementation of the optimal policy is
top-down, starting with the expediting manager at eche-
lon L who observes his echelon inventory z,,, and com-
pares it to his basestock level SF, (0) If SE (0) 7y, 18
positive, he expedites that dlfference to stage L — 1. Oth-
erwise, he stays put. Finally, he informs his regular order
counterpart, as well as both managers at stage L — 1, of
his decision Z¥ ,. Having been informed about ZZ_, , the
expediting manager at stage L — 1 observes his own echelon
inventory level z; _, ,, selects the point within the interval
[z,_1..» ZE ] closest to Sffl’t(é,), and orders the (positive)
difference between that point and z;_, ,. Next, he commu-
nicates his decision 25—1,[ to the two replenishment man-
agers at stage L — 2. The implementation of the optimal
expediting schedule thus starts at the top, and continues
downstream.

Once information on optimal echelon j and j+ 1 posi-
tions after expediting reaches the regular order manager at
stage j, he holds those decisions as fixed and ignores all
other decisions in the system. He chooses a point in the
interval [Z]’f . ZE,, ] closest to his corresponding basestock
level SR(O ), and places a regular order for the (positive)
difference between that point and Zj’f.

We now demonstrate this process using a set of actual
basestock levels for a five-echelon system shown in Table 2.
For simplicity, we assume no advance demand informa-
tion. Suppose that regular basestock levels were achieved in

period # — 1 so that 2;*’,71 in Table 2 is identical to S} for
each j. Let the realized demand at stage 1 in period ¢ — 1
be 9. The resulting state z;, at the beginning of period 7 is in
column 5. Thus, going in the direction of the optimal policy
implementation, which is top-down, ZE = max(zs,, SF) =
18; and ZF = min[max (z,, ), ZE]=11; and so on. The
optimal number of units Y E expedited into each stage is
shown in column 7: stage 5 receives 3 expedited units;
stage 4 does not expedite units; stage 3 receives 1 expedited
unit, and stage 2 receives 4 expedited units.

Because S¥ > ZF, | for every j < L in Table 2, basestock
levels SJR cannot be achieved anywhere in the system except
at the uppermost stage, where the regular order decision
is not constrained. Thus, Z% i+1,, represents the highest level
that Zj’f , the optimal echelon j inventory position after reg-
ular ordering, can feasibly achieve. Thus, column 8§ shows
that all but the uppermost echelon inventory positions after
regular ordering are exactly equal to echelon inventory posi-
tions after expediting at the next stage upstream. The num-
ber f/]f of actual units optimally ordered through regular
flow into each stage is shown in column 9.

5. Properties of the Optimal Policy

This section establishes the monotonicity properties of the
optimal policy with regard to the parameters that character-
ize advance demand information and expediting of stock.
Those properties have both theoretical and practical value.
The value to theory is from understanding the behavior
of optimal decisions, which facilitates both the implemen-
tation of the optimal policy and its calculation. Practical
value comes from helping companies understand how key
parameters of those two strategies drive cost savings in
assembly systems, so that they can make better decisions
when it comes to investing in those capabilities.

LEMMA 6. Optimal order schedules (Z Zf) are such that

ZJE+1 P 2, [<Z z;; for each t and j.
Since Z£, , —z;,,,=YE, , and ZF — 7, = YF + YF,

Lemma 6 has an important 1mphcat10n a umt expedlted
into any stage in the system never stays there—it is always
moved at least one more stage downstream within the same
period, either by expedited or regular flow. In other words,
expediting is used only when it is optimal to move a unit
downstream more than one stage within a single period.
This is because, if a unit were to be moved downstream
only a single stage within a period, then it would be cheaper
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to do so by regular order rather than an expedited one,
because regular order is less costly.

LEMMA 7. For any given O,, Sff(é,) > ij(0~,) for each j
in every period t.

Lemma 7 establishes explicit ordering between basestock
levels for regular orders and basestock levels for expedited
orders at each stage. It ensures that regular orders will occur
at each stage in the system, for if Sj’f (0,) were less than
ij ((5[) at some stage j, only expedited orders would be
placed at that stage.

5.1. Impact of Advance Demand Information

We now address the monotonicity properties of the optimal
policy relative to advance demand information. In particu-
lar, we explore what happens in period ¢ when an amount €
of advance demand that needs to be fulfilled j periods
ahead (in period ¢ + j) is reassigned to be fulfilled j + 1
periods ahead (in period ¢ + j + 1). This analysis helps
companies decide whether to focus on collecting advance
demand information for shorter horizon orders or longer
horizon orders, and understand their relative impact on cost
savings.

For that purpose, for each j=1,..., N, we define an
N-dimensional unit vector ¢; whose jth entry is 1 (the rest
of the elements are zeros). Thus, O, +€e ; adds € units to the
demand to be fulfilled in period ¢+ j; in other words, O, ;
becomes O, . ; + €. Our interest is in uncovering the rela-
tionship between Z/f(é,, z,) and ij(0~, —€e;+€e;,,,2,),
as well as between Zj’f(ér, z,) and 2}5(0, —€e;+ee;,,7,),
for every j < N and € > 0. We use D,f(x,y) to refer to
the first derivative of f with respect to y.

LeEmMA 8. Let f, g: RY xR — R be two functions of (x, y)
that are smooth, convex and coercive in y. Assume that
D,f(x,y) < D,g(x,y) for all (x,y). Let s,(x) and s,(x)
be the largest minimizers of f and g, respectively, over y,
for any given value of x. Then, the following hold.

(i) sp(x) = s,(x) for every x;

(i) D,f*(x,y) < D,g*(x,y)
D g™ (x,y) for all (x,y).

We use the notation O? > O/ for two advance demand
information vectors O? and O] such that each element
of O? is greater than or equal to the corresponding element
of O/.

and D, f7(x,y) <

THEOREM 5. The following hold in every period t.

(i) For any O} > O/, S5(0}) > S5(0}), and SF(O}) >
SK(0}) for every J; i i

(ii) For any O, and & >0, S; (O, + de;) > S;(O, +
8eyy1) and SF(O, + 8ey) = SK(O, + ey, ) for every j=
1,...,Nandk=~1,...,N—1; ~ ~

(iii) For any O, and 3~> 0, S7(O, +de;) — S;(0,) <8
and S{(0, + 8e,) — S§(0,) < 8 for any j, k.

Therefore, optimal basestock levels for both regular
order and expediting decisions are increasing in observed
advance demand. Furthermore, the observed advance de-
mand that is closer to the current period has more impact
on optimal basestock levels than the observed demand fur-
ther in the future. In other words, an additional unit of
advance order to be delivered 7 periods later increases the
optimal basestock levels for the current period more than
an additional unit of advance order to be delivered 7" > 7
periods later. Furthermore, as shown in part (iii) of The-
orem 5, an increase of O units in the observed advance
demand increases the basestock levels for either expedited
or regular flow order by less than &.

THEOREM 6. The following hold for every period echelon
state z, in each period t.
(i) For any éf}é} and every j=1,...,N:
(@) Zj(0%.2,) > Z;(0.2,);
(b) 2;(0,2,) > 2;(0/. 2,); and
(© £i(0F,2) = £i(0;. 2,);
(ii) For any O,, >0, every j=1,...,N and k< q:
(a) Z_;E(Ot’ 7,) 2 Z_;E(O, —Oe, + Beq, 2,3
(b) ij(~0~[, z,) = Zf(é, — e, + e, z,); and
(©) fi(0,,z,) 2 f,(O, — S, + aeq’ Z,)-

Theorem 6 has two important implications. First, it
shows that having advance demand information in the sys-
tem decreases the amount of inventory held in the supply
chain. This result reveals the main mechanism responsi-
ble for cost savings generated with ADI: having advance
demand information requires less inventory at each stage,
and that reduces inventory holding costs. Second, in the
sense of allocating advance demand across the information
horizon, the objective cost function is decreasing in the
length N of that horizon, because a longer demand infor-
mation horizon allows allocations further into the future,
which, by Theorem 6, has the effect of reducing costs. This
conclusion provides a measure of justification for compa-
nies to invest in information and sales technologies that
enable longer advance demand horizons.

5.2. Impact of Expediting

For notational convenience, and without loss of generality,
going forward we assume that unit expediting costs are sta-
tionary, so that kj; = k7 at each stage j and for all periods 7.

LEMMA 9. Let ];t(0~,, ) = V;(é,, %) — lijEzjt for each j.
Then, for each O, in every period t, g,(0,,"), U,(O,,"),
Vi(O,,), and f,(O,,-) are independent of k!, for every
Jj>m.

Thus, components of the objective cost function vary only
with downstream unit expediting costs. We now investigate,
at each stage j, the behavior of basestock levels and opti-
mal decisions as functions of the unit expediting cost k
at a given stage m < j, while keeping all other unit costs
constant. We use the notation Sy (0, | kE), Sj’f(0~, | kE),

t
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ZE(0,z,|KE), ZR(O. z, | kE). and £,(O,. z | kL) to indicate
that basestock levels, optimal decisions, and cost functions
at every stage j vary with the unit expediting cost at stage m.
We denote only the dependence on a single k% because we
vary only a single k£ at a time.

LEmMMA 10. Fix j, and suppose that )( and k¥ are two
different unit expediting costs at stage j such that )( > kE
Then, the following hold for every 0 in every period t.

(i) kF = xF <D,£,(0,, 2| xF) = D.f(0,, 2 | KF) <0

(11) kE_X <ngt(0zsz| ) ngt(Ot,Z|kE)<0

(iii) 0< D.V,(0,, 2| xF) — D& V(0,2 | kD) < xf — kT

(iv) §; (Ot | X,E) > SH(O0, | kf) and SF(O, | X}) <
S;i (0, | kf )-

As we increase the unit expediting cost at a particular
stage, basestock levels for regular orders at that stage in-
crease, and those for expedited orders decrease.

LemmaA 11. Fix j> 1, and suppose that x}  and k7 | are
two different unit expediting costs at stage j — 1 such that
Xj > ki_|. Then, the following hold for every O, in every
period t.

() D.fi (O 2| XF\) = D.f(Oy, 2 | KE ) <

(i) Dg,,(O,,ZI)(] ) - Dg,,(Ol,ZIk, 1)<0

(iii) D.V, (OI’Z|XJ )= DL ]I(OI’Z|kJ 1)<0

(iv) S; (0 | XE1) > SF(O, | kE.)) and SE(O, | xF.) >
S (O, [ k7).

LEMMA 12. Fix j, and suppose that xE and kE are two
different unit expediting costs at a given stage m, m < j,
such that xE > kE. Then, the following hold for every O,
in every period t.
(1) ij‘,(O,,Z|X )_Df (Ot’z|kE)<O
(i) SF(O, | xi) =S (0, | k) and
S;i (0, | kﬁ)-

SEO, | XE) >

These monotonicity results concerning expediting of
stock in the system allow us to establish the following key
relationship between expediting and the optimal amount of
inventory held in the system.

THEOREM 7. Suppose that xE and kE are two different unit
expedltmg costs at any given stage m such that xt > kE.
Then, Z§(0,.z,| x5) = ZF(O}, 2, | KE) for every stage j.

The amount of inventory optimally held in the system
increases as expediting costs increase. Because, for suffi-
ciently high unit expediting costs, the option to expedite is
no longer exercised and the system reduces to one with reg-
ular flow only, Theorem 7 implies that having the option to
expedite stock in the supply chain acts to reduce the amount
of inventory held in the system (relative to the correspond-
ing system with regular flow only). With expediting, com-
panies can therefore expect to hold less inventory through-
out the supply chain, and this is the main source of savings
realized by the option to expedite inventory. Although this
conclusion may not be surprising, what is less intuitive is

the combination of monotonicity properties needed to make
it happen, such as the fact, not found in the research lit-
erature, that increasing unit expediting costs at a particular
stage increases expedited orders at every upstream stage.

6. Quantifying the Value of
ADI and Expediting

In this section, we carry out numerical studies to investi-
gate the benefit of having both ADI and stock expediting
in a supply chain, and the nature of their mutual interac-
tion. We quantify cost savings from having (i) only ADI;
(ii) only expediting; (iii) both ADI and expediting. In what
follows, all cost savings numbers are reported in percentage
terms, relative to the classical multiechelon model without
either ADI or expediting. We also explore the sensitivity of
those cost savings to: (i) the unit backlogging cost; (ii) unit
expediting costs; (iii) demand variability and correlation;
(iv) allocations of total demand to ADI; (v) total leadtime
of the assembly system; and (vi) the length of the demand
information horizon.

We use Poisson random variables to model the demand
vector (D, ,, D, .., ..., D, . y)., following Ozer (2003) and
Levi and Shi (2013). In many practical situations, demand
behaves like a Poisson process, especially when it comes
from many small, nearly independent sources such as indi-
vidual customers (Zipkin 2000, p. 179). In our basic model,
demand vectors {D, ,, D, ., ..., D, 5} are not correlated
across time.

We begin by analyzing the four-component assembly
system displayed in Figure 3, referred to as the basic
assembly model. This system has one subassembly at
node 4, a system leadtime of 3 periods (i.e., L = 3), and
a single period of advance demand (N = 1). Nodes 2, 3,
5, and 6 are components. To facilitate interpretation of
numerical outputs, we use stationary model parameters and
demands. Table 3 shows unit costs for each component at
each stage. Subassembly costs at node 4 are assumed to
have already been allocated to components 5 and 6 in the
manner prescribed by Theorem 2.

Figure 3.

The basic assembly model.

0t+1,t




Angelus and Ozer: Oprimal Policies for Assembly Systems with Expediting and Advance Demand Information

1352

Operations Research 64(6), pp. 1338-1371, © 2016 INFORMS

Table 3. Unit costs in the basic assembly system.

Comp. H;, H,, H. kf kFy kFy5 ki kP, kfy

i

2 03 0.1 0 05 02 0 09 04 O
3 04 02 0 07 04 O 1.2 07 0
5 05 03 01 12 1.0 08 20 1.8 1.6
6 06 04 03 16 14 12 27 22 18

Mean demands used are {(5,0),(4,1),(3,2),(2,3),
(1,4),(0,5)}, where (g, 1) = (5, 0) represents a system
with no ADI, and, in the absence of expediting, such a
system is the reference point for the percentage savings
presented below; with (g, 1) = (0, 5), all of the demand
is realized one period in advance. By Theorems 1 and 2,
the basic assembly system in Figure 3 can be reduced to an
equivalent series system whose unit costs are obtained by
aggregating unit assembly costs over relevant components
as follows: k¥ 1= 3, c;) kf kY ==Y ,cc( kfi» and h; =
> icc(j) hij- Thus, for the equivalent series system, echelon
inventory holding costs are h, = 0.8, h, = 0.6, and hy; =
0.4; ordering costs are kf = 4.0, k¥ =3.0, and k¥ =2.0;
and expediting costs are k¥ = 6.8, k5 =5.1, and k¥ =3.4.
Also, HA =1.5.

6.1. Cost Savings as a Function of the
Unit Backlogging Cost

Table 4 presents cost savings from using ADI only, whereas
Table 5 displays cost savings from using both ADI and
expediting, as a function of the unit backlogging cost. The
cost savings shown in both tables are increasing as a greater

Table 4. Cost savings—ADI only.

Mean demand Unit backlogging cost (p) (%)

(1os 141) 10 20 30 40 50

(5.0) 0.0 0.0 0.0 0.0 0.0
(4,1) 0.9 1.2 1.4 1.4 1.2
(3,2) 2.1 2.7 2.6 2.8 2.8
(2,3) 34 4.1 4.4 4.4 4.2
(1,4) 4.8 6.2 6.2 6.6 6.5
(0,5) 8.6 10.8 11.5 11.9 11.8

Note. As a function of the backlogging cost.

Table S. Cost savings—ADI with expediting.

proportion of total demand is known in advance (i.e., as u,
is increasing and w, = u™* — u, decreasing). Our results
in Table 4 are in line with numerical studies conducted on
systems with ADI only in Ozer (2003). Although the mono-
tonicity of cost savings as a function of the greater pro-
portion of total demand known in advance is predicted by
Theorem 6(ii), the value of quantifying those cost savings
lies in their actual values. For example, at the unit backlog-
ging cost of 10, cost savings from expediting almost double
when half of the total average demand becomes known one
period in advance.

As far as we know, the value of the option to expedite
stock in a multistage system has not been quantified before,
even though Lawson and Porteus (2000) highlight the need
for it. Our results show that this value can be substantial.
Even when unit expediting costs are 70% higher than reg-
ular order costs, savings from expediting alone range from
5.7%-23.5% of total costs (the top row of Table 5).

To quantify the value of adding expediting to a system
with ADI, Table 6 presents cost savings from the model
with both ADI and expediting relative to the model with
ADI only. As shown in Table 6, this marginal value of
(adding) expediting to a system with ADI is significant and
increasing in the backlogging cost and the amount of ADIL.
Thus, the greater the portion of demand that a company
receives in the form of ADI, the more beneficial it is to
also develop expediting capability in the supply chain.

When it comes to the cost savings displayed in Tables 4
and 5, one would expect to see a strong substitution effect
between ADI and expediting of stock, since they both serve
to reduce the mismatch between the supply and demand,
and they both reduce total inventory held in the system.
What we observe in Tables 4 and 5, however, is some-
thing different. For example, when the backlogging cost
is 20, the option to expedite stock, without ADI, generates
11.3% in cost savings. Having only ADI, without expe-
diting, results in the cost reduction of 4.1% when mean
demands are (2,3). Having both ADI and expediting at
those same demand means results in 16.7% cost savings—
more than the sum of cost savings from ADI alone and
from expediting alone. In other words, what we observe is
complementarity.

Table 6. The marginal value of expediting.

i kloggi
Mean demand Unit backlogging cost (p) (%)

i kloggi
Mean demand Unit backlogging cost (p) (%)

(1os 141) 10 20 30 40 50 (1os 111) 10 20 30 40 50
(5.0) 57 113 158 199 235 (5.0) 5.7 113 15.8 19.9 235
(4,1) 70 126 175 214 250 (4,1) 6.1 11.6 164 203 24.1
(3.2) 8.5 146 193 234 268 (3.2) 6.5 12.3 17.1 212 247
(2.3) 102 167 213 256 292 (2.3) 7.1 13.1 176 2211 26.0
(1,4) 12.5 194 244 285 319 (1,4) 8.0 14.1 194 235 272
(0,5) 176 263 319 363 399 (0,5) 9.9 17.3 230  27.8 31.9

Note. As a function of the backlogging cost.

Note. As a function of the backlogging cost.
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Table 7. The synergy differential.

Unit backlogging cost (p) (%)

Mean demand

(Mhos 1) 10 20 30 40 50

(5.0) 0.00 000 000 000  0.00
4,1) 035 020 038 010 035
(3.2) 069 067 08 072 054
(2,3) 1.16 1.35 1.08 1.30 1.45
(1,4) 1.95 193 245 212 1.91
(0,5) 335 422 459 459 465

Note. As a function of the backlogging cost.

To assess the strength of this complementarity effect, we
take the difference between percentage cost savings with
both ADI and expediting (i.e., the entries in Table 5) on the
one hand, and the sum of the cost savings from ADI alone
(i.e., the entries in Table 4) and cost savings from expe-
diting alone (i.e., the top row of Table 5) on the other, for
each choice of model parameters. We refer to this differ-
ence as the synergy differential. Equivalently, if we define
F,.«ic to be the optimal cost with neither ADI nor expe-
diting, F,p; to be the optimal cost with ADI only, Fgyp to
be the optimal cost with expediting only, and F,p, gxp tO
be the optimal cost with both ADI and expediting, then the
synergy differential becomes

(E:Iassic - FADI+EXP) - (F::Iassic - FADT) - (Fz:lassic - FEXP)
F

classic

. (14)

Table 7 presents this synergy differential. Positive val-
ues indicate complementarity between ADI and expedit-
ing (negative values would imply that they are substitutes).
Contrary to the conventional wisdom, ADI and expediting
are found to be complements with regard to cost savings in
the system.

Understanding this complementarity requires a closer ex-
amination of the dynamics between ADI and expediting.
With ADI, a portion of future demand becomes known in
advance, so that it becomes optimal to keep less inventory
in the system. Keeping less inventory, however, leaves the
supply chain more vulnerable to high realizations of de-
mand and resulting stock-outs. Expediting of stock protects
the supply chain against such stock-outs and the associ-
ated backlogging costs by making it possible to expedite
inventory downstream, and making it available for cus-
tomer demand sooner than with only regular flow of stock.
The vulnerability created by ADI is thus “hedged” by the
option to expedite stock, and this hedging acts to create the
synergistic effect between ADI and expediting observed in
Table 7. Furthermore, the more total demand is realized
through advance demand, the less likely it is for the sys-
tem to stock out, so that, as u, increases, the less costly it
becomes for expediting to provide a hedge to ADI, and the
complementarity effect grows stronger. One may therefore
expect that a longer demand information horizon would

have an even more negatively correlated impact on the com-
plementarity of ADI and expediting.

6.2. Cost Savings as a Function of
Unit Expediting Costs

We now investigate cost savings for the basic assembly
model in Figure 3 as a function of unit expediting costs.
The unit backlogging cost is 30. Let p; := k¥ /k¥ be the
ratio of the unit expediting cost to the unit regular order
cost for each stage j. Instead of varying each of the three kf
parameters individually, we now vary them at the same time
by choosing identical ratios for each j. We set p=p, =
p, = ps, and we refer to p as the expedite-to-regular cost
ratio, or E-to-R Cost Ratio. We evaluate cost savings as p
takes on the values {1.3,1.5,1.7,1.9,2.1}. (In Tables 4-7,
p = 1.7.) Table 6 remains unchanged because changing p
does not impact cost savings from ADI alone. Thus, what is
of interest are cost savings with both ADI and expediting,
as well as the synergy differential, as a function of p. The
results are in Tables 8 and 9.

Cost savings from having both ADI and expediting are
decreasing in unit expediting costs. Although this mono-
tonicity result follows analytically from the single-period
cost function, the benefit of having numerical results in
Table 8 is in knowing the exact rate at which the optimal
cost is increasing in p. The synergy differential remains
positive for all model parameters explored in Table 9.
For each value of unit expediting costs, the synergy dif-
ferential is also monotonically increasing in the amount
of ADIL

Table 8. Cost savings—ADI with expediting.

E-to-R cost ratio (p) (%)

Mean demand

(1o. 111) 1.3 1.5 1.7 1.9 2.1
(5.0) 20.5 174 158 147 139
4,1) 22 191 17.5 164 155
(3,2) 242 211 19.3 180 17.1
(2,3) 261 230 213 203 19.5
(1,4) 292 262 244 232 223
(0,5) 366 336 319 308 299

Note. As a function of expediting costs.

Table 9. The synergy differential.

E-to-R cost ratio (p) (%)

Mean demand

(140s 111) 1.3 1.5 1.7 1.9 2.1
(5.0) 000 000 000 000 0.0
4,1) 028 041 038 029 026
(3.2) 1.01 105 088 069 057
(2.3) 117 120  1.08 1.18 1.26
(1,4) 251 260 245 231 223
(0,5) 455 469 459 450 448

Note. As a function of expediting costs.
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6.3. Impact of Variability and Correlation

Next, we investigate the impact of demand variability and
demand correlation (across time periods) on realized sav-
ings and the synergy differential. Regarding demand vari-
ability, the coefficient variation for a Poisson Process with
mean u is given by 1/,/u. Consequently, to examine the
impact of variability in the context of our basic assembly
system, we vary the coefficient of variation of the Pois-
son distribution for both the current period’s demand and
the one period of advance demand. In particular, we start
with (g, #,) = (2, 2) and raise both distribution means in
increments of one until we reach (u,, u,) = (7,7). Thus,
we vary the coefficient of variation from 0.707 to 0.378.
Relevant results are in Tables 10 and 11.

As observed in Table 10, the impact of variability on cost
savings with both ADI and expediting depends on the unit
backlogging cost: for small unit backlogging costs, higher
variability leads to higher percentage cost savings, whereas
with larger unit backlogging costs the opposite happens.
With regard to the synergy differential (Table 11), demand
variability does not seem to have a monotonic impact.

To evaluate the impact of demand correlation across time
periods on realized savings and the synergy differential, we
model the joint distribution of D, ,, the demand observed
in period ¢ for delivery in period ¢, and D, , ,, the demand
observed in period # — 1 for delivery in period ¢, with
bivariate Poisson distribution. Bivariate Poisson Distribu-
tion has been used, for example, to study multi-item inven-
tory systems (Song 1998), and assemble-to-order systems
with multiple product types (Lu et al. 2003)

Table 10. Cost savings—ADI with expediting.

Mean demand Unit backlogging cost (p) (%)

) 10 20 30 40 50

(7,7) 8.9 16.8 23.0 28.2 32.6
(6,6) 8.9 16.7 22.7 27.9 322
(5.5) 9.0 16.5 22.4 27.3 31.7
(4,4) 9.0 16.3 21.9 26.5 30.6
(3.3) 9.2 15.8 21.0 25.4 29.1
(2,2) 9.5 15.1 19.1 23.1 26.4

Note. Impact of variability.

Table 11. The synergy differential.

The joint probability mass function ¢(y,,y,) of the
bivariate Poisson distribution of random variables Y, and
Y, is defined by three (positive) parameters, A,, A,, and A4
as follows:

Po(yo, yi [ A1s Ay, A5)

=e(A1+A2+A3)A_'}Yl)‘_§mm%yl)<yo) ()’1)1.‘( Ay )l
vl vl o i i AA,

It can be shown that ¥, and Y, are then marginally dis-
tributed as Poisson with means u, = A, + A; and w, =
A, + A5, respectively (see, e.g., Kocherlakota and Kocher-
lakota 1992). The covariance of ¥, and Y, is A5, so that the
correlation coefficient becomes A;/(y/A; + A5/ A, + A5).
Using joint and marginal probability distributions, we
derive the conditional distribution of Y, given Y, to be the
following.

minG ) 7y 1 . ehAP! s

e S ) e
where 7 := A;/(A; + A,). Letting Y, :=D, ,, Y, :=D, |,
and A; = A, =2, we are now in the position to capture the
correlation between advance demand information realized
in the previous period for delivery this period and the dis-
tribution of demand realized this period for delivery this
period. We evaluate cost savings and the synergy differen-
tial as A; varies from O to 5 in increments of 1. (This corre-
sponds to varying the covariance from O to 5, and the cor-
relation coefficient from 0.05 to 0.2.) Thus, w, = u, varies
from 2 to 7. Results are in Tables 12 and 13, where for con-
venience, we label the first column with (A, + A5, A, + A5).

Table 12 displays cost savings from having both ADI and
expediting as a function of the covariance A; and the unit
backlogging cost. Percentage cost savings are uniformly
increasing in A5 across all values of the unit backlogging
cost. Furthermore, by comparing those value with corre-
sponding values without correlation in Table 10, which
displays cost saving for the system with identical mean
demands but no correlation, having positive correlation
across time can be seen to uniformly increase relative cost
savings generated by expediting and ADI in the system.
One interpretation for this effect is that, with positive cor-
relation, advance demand information provides “a signal”

Table 12. Cost savings—ADI with expediting.

i kloggi
Mean demand Unit backlogging cost (p) (%)

i kloggi
Mean demand Unit backlogging cost (p) (%)

(1tos 111) 10 20 30 40 50 (A + A5, 4 + ) 10 20 30 40 50

(7.7) 048 061 063 067 06l (7.7) 100 184 247 300 345
(6, 6) 053 071 071 071  0.67 (6, 6) 99 181 243 295 339
(5.5) 060 077 072 078  0.78 (5.5) 98 177 237 287  33.0
(4,4) 076 083 084 079  0.90 (4,4) 95 170 227 276 316
(3.3) 079 090 1.1 094 087 (3.3) 95 160 213 257 295
(2,2) 086 126 069 114 095 (2,2) 95 151 191 231 264

Note. Impact of variability.

Note. Impact of correlation.
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Table 13. The synergy differential.

Unit backlogging cost (p) (%)

Mean demand

A+ A5, Ay + A5) 10 20 30 40 50

(7,7) 1.81 226 237 243 235
(6.6) 1.81 230 244 243 241
(5.5) 1.82 232 241 241 240
(4,4) 177 216 229 239 232
(3.3) 132 192 206 201 210
(2,2) 086 126 069 1.14 095

Note. Impact of correlation.

Figure 4.

A four-period assembly model.

Ot+1,t

about next period’s demand realization and thus serves to
reduce the uncertainty of future demand (and related costs).
Furthermore, as seen by comparing Table 13 with Table 11,
incorporating positive demand correlation also acts to sign-
ficantly increase the synergy differential, up to fourfold
for small values of the unit backlogging cost. Therefore,
companies that find positive covariance between advance
demand information and current demand realization are
especially well positioned to reap the benefits of having
both expediting and ADI capabilities in their supply chains.

6.4. Higher Echelon Systems

Next, we quantify cost savings from ADI and expediting
in higher echelon assembly systems. We consider the four-
and five-period assembly systems shown in Figures 4 and 5,
respectively. In the spirit of changing only one parame-
ter at a time, we maintain one period of advance demand.
To make fair cost comparisons across assembly systems
with different total leadtimes, the sum of each category’s
costs (i.e., holding costs, regular order costs, and expediting

Figure 5. A five-period assembly model.

ly=1

Table 15.

Cost savings—ADI only.

Mean demand Unit backlogging cost (p) (%)

(1os 111) 10 20 30 40 50
(5.0) 0.0 0.0 0.0 0.0 0.0
4,1) 0.8 0.9 1.1 0.9 0.9
(3.2) 1.7 2.0 2.1 2.1 2.0
(2.3) 2.8 32 3.4 3.1 3.1
(1,4) 4.1 48 4.9 48 47
(0,5) 7.1 8.5 8.8 8.6 8.3

Note. Four-period assembly model.

costs) across the total leadtime for the system is kept con-
stant. The holding cost for the assembled product is also
the same: H* = 1.5. The assembly system in Figure 4 has
a total leadtime of four periods (L =4), and, like our basic
assembly system, it has one subassembly at node 4. This
subassembly now also requires a component 7, which has
a two-period leadtime. For this system, nodes 2, 3, 5, 6, 7
are components. All stage-dependent unit costs are shown
in Table 14.

Tables 15 and 16 present cost savings for the four-period
assembly system with ADI only, and with both ADI and
expediting. Although cost savings with ADI alone are still
increasing in the percentage of demand allocated to ADI,
they are less than those for the basic assembly system. The
longer the supply chain, the more inventory there is in the
system, so that reductions in inventory from ADI are about
the same in total terms, but lesser relative to the basic three-
period assembly system.

With both ADI and expediting, cost savings increase
with the total leadtime (Table 16). The longer the supply
chain, the more options there are for expediting—inventory
can be expedited into stage 2 from an increasing number of

Table 14. Unit costs for the four-period assembly model.

Comp. H; H; H; 5 H; 4 kf| kfz kfs kf4 kfl kfz kfa kfzx
2 0.2 0.1 0 0 0.3 0.1 0 0 0.6 0.3 0 0
3 0.2 0.1 0 0 0.5 0.2 0 0 1.0 0.5 0 0
5 0.3 0.2 0.1 0 0.6 04 0.2 0 1.2 0.7 0.3 0
6 0.3 0.2 0.1 0 1.0 0.6 0.3 0 1.5 0.8 0.5 0.0
7 0.5 0.4 0.3 0.2 1.6 1.2 1.0 1.0 2.5 2.0 1.8 1.7




Angelus and Ozer: Oprimal Policies for Assembly Systems with Expediting and Advance Demand Information

1356

Operations Research 64(6), pp. 1338-1371, © 2016 INFORMS

Table 16. Cost savings—ADI with expediting.

Table 18. Cost savings—ADI only.

Mean demand Unit backlogging cost (p) (%)

Unit backlogging cost (p) (%)

Mean demand

(Mhos 1) 10 20 30 40 50 (Mhos 1) 10 20 30 40 50
(5,0) 112 20.5 27.6 33.5 38.4 (5,0) 0.0 0.0 0.0 0.0 0.0
4,1) 12.3 21.7 29.0 34.7 39.7 4, 1) 0.7 0.7 0.9 0.7 0.7
(3,2) 13.5 23.1 30.6 362 410 (3,2) 1.4 1.6 1.7 1.6 1.5
(2,3) 15.1 25.1 32.2 38.0 42.8 (2,3) 2.4 2.7 2.7 2.4 2.3
(1,4) 17.4 27.5 348 403 44.8 (1,4) 3.6 3.9 3.8 3.7 35
(0,5) 22.2 33.4 41.0 46.6 51.1 (0,5) 6.2 7.0 6.9 6.6 6.2
Note. Four-period assembly model. Note. Five-period assembly model.
origination stages, and this additional optionality directly Table 19. Cost savings—ADI with expediting.
results in correspondingly larger cost savings for both the . .
Unit backl t %

system with expediting alone and with the system with both Mean demand nit backlogging cost (p) (%)
ADI and expediting. As a consequence, the synergy differ- (o> 1) 10 20 30 40 50
entn?ll remalns.(roughly) unchanged. . (5,0) 16.1 287 376 446 500

Figure 5 dlsplays a five-period assemb.ly model with 4,1 17.1 29.8 38.8 45.6 51.0
two subassemblies, at nodes 4 and 9, while nodes 2, 3, (3.2) 18.3 31.0 40.2 46.8 52.0
7, 8, 10, and 11 are components. Cost parameters for this (2,3) 19.7 32.7 41.5 48.3 53.5
assembly model are in Table 17. Cost savings for the five- ((1)’ ‘5‘) gég igg ig; ggé 28}
period assembly model with only ADI (Table 18) con- ©.5) : i : i i
tinue to decrease with the length of the supply chain: each Note. Five-period assembly model.
entry in Table 18 is smaller than the corresponding entry
in Table 15. Table 20.  The synergy differential.

The benefit of having only ADI is decreasing in the sup- . -
ply chain length, whereas cost savings with both ADI and Mean demand Unit backlogging cost (p) (%)
expediting still increase in the length of the supply chain, (o> 11) 10 20 30 40 50
reaching more than 60% (Table 19). Thus, there exists a
structural difference between systems with ADI only and EZ (]); 8(3)8 822 8(3)2 822 82(1)
Fhose with both ADI and ex.pedi.ting—the savings from hav- (3: 2) 0.64 0.55 0.91 0.61 0.60
ing ADI only are decreasing in the length of the supply (2,3) 1.12 1.38 1.26 1.43 1.35
chain, whereas those from having both ADI and expediting (1,4) 2.07 2.23 2.38 1.98 1.75
are increasing. As a result, in practice, with ADI, longer 0,5) 3.91 4.46 4.59 4.44 4.42

supply chains have more to benefit from adding the option
to expedite inventory than shorter ones do.

The synergy differential for the five-period assembly
model is shown in Table 21. As observed, the comple-
mentarity effect persists unabated even as we increase the
length of the supply chain.

6.5. Longer Demand Information Horizons

We now explore the impact of longer demand information
horizons on cost savings. We use the four-period assembly
system whose structure is shown in Figure 5 and costs in

Note. Four-period assembly model.

Table 14, and present results for the case of two periods of
advance demand (N =2).

Tables 22 and 23 display cost savings with ADI only and
with both ADI and expediting for the four-period assembly
system with two periods of advance demand information.
By Theorem 6, since costs in the system are decreas-
ing with N, the demand information horizon, those cost
savings can be expected to exceed those in Tables 15
and 16 (when the system has only one period of advance

Table 17. Unit costs for the five-period assembly model.

Comp. H; H; , H, H; 4 Hi s kfl kfz kfs kf4 kfs kiE,l kfz kiE,3 ks kiE,4
2 0.6 0.3 0 0 0 0.2 0.1 0 0 0 0.4 0.1 0 0 0
3 0.7 0.4 0 0 0 0.3 0.1 0 0 0 0.5 0.3 0 0 0
7 0.8 0.5 0.3 0.1 0 0.4 0.2 0.1 0.1 0 0.6 0.4 0.2 0.1 0
8 1.0 0.6 04 0.1 0 0.5 0.3 0.2 0.1 0 0.7 0.5 0.3 0.2 0
10 1.3 0.7 0.5 0.2 0.1 0.5 0.4 0.3 0.2 0.1 0.8 0.6 0.5 0.3 0.1
11 1.6 0.8 0.6 0.3 0.2 0.6 0.5 0.4 0.3 0.1 1.0 0.7 0.6 0.5 0.2
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Table 21. The synergy differential.

Unit backlogging cost (p) (%)

Mean demand

(1os 141) 10 20 30 40 50

(5.0) 000 000 000 000 0.0
(4,1) 033 036 031 028  0.39
(3.2) 074 065 087 056  0.63
(2,3) 1.18 1.36 1.26 1.28 1.24
(1,4) 212 223 224 1.81 1.65
(0,5) 392 436 430 404 391

Note. Five-period assembly model.

Table 22. Cost savings—ADI only.

i kloggi
Mean demand Unit backlogging cost (p) (%)

(Moo b1+ fLr) 10 20 30 40 50

(5.0,0) 0.0 0.0 0.0 0.0 0.0
(2.2, 1) 55 7.1 8.2 8.8 9.4
(2.1,2) 80 108 129 141 15.5
(1,1,3) 119 161 189 211 230
(0, 1,4) 175 235 272 299 320
(0,0,5) 206 274 318 349 375

Note. Four-period assembly model, with N =2.

Table 23. Cost savings—ADI with expediting.

Mean demand Unit backlogging cost (p) (%)

(Lhos o1+ Iho) 10 20 30 40 50

(5,0,0) 112 205 276 335 384
(2.2, 1) 16.1 259 330 387 435
(2,1,2) 171 268 337 394 441
(1,1,3) 203 300 370 423 467
(0,1,4) 261 367 439 492 535
(0,0,5) 269 375 445 498 541

Note. Four-period assembly model, with N =2.

demand information), and that is exactly what we observe
in Tables 22 and 23. The size of the increase in the savings
from ADI alone is particularly noteworthy, as the demand
information horizon is increased from one to two periods.

Table 24 displays the synergy differential for this as-
sembly model with two periods of advance demand

Table 24. The synergy differential.

i kloggi
Mean demand Unit backlogging cost (p) (%)

(Ho- fh1s o) 10 20 30 40 50

(5.0,0) 0.0 0.0 0.0 0.0 0.0
(2.2, 1) ~05 —-17 —28 -36 —43
(2,1,2) —21 —46 —-67 -83 —98
(1,1,3) —27  —66 —95 —124 —147
(0, 1,4) —28 —72 —109 —142 —168
(0,0,5) —49 104 —148 —18.7 —21.7

Note. Four-period assembly model, with N = 2.

information, respectively. When it comes to the interaction
between ADI and expediting of stock, the length of the de-
mand information horizon plays a key role in determining
if the two are complements or substitutes. With a single
period of demand information horizon, ADI and expediting
are complements; as the information horizon increases, so
does the substitution effect between them. Economic com-
plementarity and substitutability of advance demand infor-
mation and expediting of stock are thus shown not to be
absolute characteristics, but rather functions of the supply
chain structure.

This observation concerning economic complementarity
between advance demand information and expediting of
stock being a function of the demand information horizon
is further confirmed by our study of the identical four-
period assembly model with three periods of advance
demand information (not shown). In that study, savings
from ADI alone and with both ADI and expediting con-
tinue to increase, whereas the synergy differential becomes
more negative. In particular, in a system with three periods
of advance information, most of the savings from having
both ADI and expediting are captured by having ADI alone,
as the system comes close to running in the make-to-order
mode.

7. Capacity Constraints on Expediting

We now demonstrate how the approach developed in this
paper for solving assembly systems with ADI and expe-
diting can be applied to analyze additional structural fea-
tures of those systems. In particular, we now allow limits
on expedited orders, in the form of capacity constraints on
the amount of each component expedited into each stage,
throughout the assembly process. Referring to our compo-
nent assembly system in Figure 1, let K;; be the capacity
constraint on orders for component i expedited into stage j,
so that the new set of feasible decisions X(x,) becomes

X(x,) = {XzE’ XrR 20| XUEt < min(xi,j+l,t + ij+1,n Kij);

R E E
Xijt <X jp, T Xi,j+1,t - Xijt

for1<i<n, 1<j<L;}.

We will refer to the component assembly system under
those capacity constraints on expedited orders as the capac-
itated component (assembly) system.

THEOREM 8. For the capacitated component assembly sys-
tem, the following hold.

(i) Optimal order schedules (XE, X®) are balanced in
each period t=1,...,T;

(ii) The on-hand inventory state x, is balanced in each
periodt=1,...,T+1;

(iii) Let K} :=min,c; K;; for j=1,...,L,. For any j
and every i € C(j), XE < K3 in each period t.

ijt
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Thus, in a capacitated component assembly system, it is
no longer necessary to manage each component separately;
instead, those components that are at the same stage can
again be managed together as a kit. We can therefore repre-
sent the on-hand inventory for each relevant component at
every stage j by a single variable y,, (i.e., x;, = y; for every
i € C(j)) and optimal decisions X/, and XR for all i € C(j)
by single variables ij and ij for each j, respectively. Fur-
thermore, at each stage j, we can also replace capacity
constraints K;; for all i € C(j) with a single capacity con-
straint K. In that manner, a capacitated component system
can be reduced to an equivalent series system with ADI and
expediting and capacity constraint K} on all orders expe-
dited into every stage j. Next, we extend this result to a
general assembly system, such as the one shown in Fig-
ure 2, in which subassemblies are allowed throughout the
system, and in which every expedited order (for any com-
ponent i into any stage j) may be subject to the capacity
constraint K;;. We will refer to such a system as the general
capacitated (assembly) system.

THEOREM 9. If; in a general capacitated system there exists
an allocation of assembly costs such that 0, > a,; ., for
every component i, stage j, and period t, then the optimal
policy is balanced in every period. Given j, all capacity
constraints K;; for i € C(j) can be replaced with the single
constraint K.

A general capacitated assembly system with ADI and
expediting can thus be reduced to an equivalent series sys-
tem with ADI and capacity constraints K} on orders expe-
dited into each stage j. The optimality equations for the
resulting series system are

£(0,.2,)

— ZkEzﬂ + min
P 2F. 2Rel(z)

{mz )+Z<cﬁzﬁ ey

a1 (B0. 2~ O, ,)1} (16)
where

2(z,) = {2F, 2R |z,

o < Zjp <min(z;, + K7, Z%E ),

ZESZRCZE | s 1<j< LY. (17)

jt jt J+1, t’
Note that, in the above expression, the upper boundary
of the feasible region for each ZZ, the echelon j inven-
tory position after expediting, depends on both z;, and
Z jEHq .» which, in effect, implies that this boundary depends
on all echelon inventory levels at stage j and all stages
upstream of it. As a result, the system cannot be expected
to achieve the decomposition of the objective cost function
into a sum of single-variable convex functions. We remark
that even for a series system with only capacitated regu-
lar orders the general form of the optimal inventory policy
is not known. The solution of the dynamic program given

in Equations (16) and (17) therefore remains outside the
scope of this work. Although the series-equivalent results
of Theorems 8 and 9 therefore have limited practical value,
especially for longer assembly systems, their main contri-
butions is to highlight the importance of making progress
on multiechelon systems with capacity-constrained expedit-
ing, which have so far not been addressed in the literature.

There exists a special case of the general problem given
in (16) and (17) amenable to analysis: when only the last
stage in the series system has a capacity constraint (K)
on expedited orders, we are able to solve the problem and
establish the form of the optimal policy, as shown in the
following theorem.

THEOREM 10. For every z, and ét in each period t, let
g]t(O,, J,) and U, (0,,z;) be as defined in Lemma 5 (with
Fii+1(0rs157) replaced by f‘j[+1(0t+l’ ). Let functions
V”(O,, ) VL,(Ot, ) be defined recurszvely as'V. (O[,zﬁ)
=U, (O,,z],)—i—V ]t(O,,z,,) with VO,(Ot,z],) =0. Then the
following hold. ~

(i) The function (O,,) is smooth and convex, and
f,(O,,Z) Z] =1 "jt (Ot’ /)+VL;(Ot’Zéz+K);

(ii) Let S (0) _max(argminz (O,,Z)) for every j=
1,...,L. Then Z £(0,,z,) is given by

2,5(5,,z,>=/\[z VSE(O)IA Gz, +K).  (18)

i=j

(iii) Let Sj’f(0~,) :=max(argminzgjt(6,,Z)) for every j=
1,...,L. Then, given the optimal echelon positions after
expedltmg, Z (O,,z ), Z (O,,z ) is given by

ZR(O“’ z )._ [zjf(ét)vs]f(ét)]A2f+lt(6t) l..fj<L;

j [ VA 5 I~ I~ op e

8 ZIE,t(Ot)VSft(Ot) lf]:L-
(19)

8. Concluding Remarks

Companies with assembly operations are increasingly using
ADI systems in an effort to shift production to make-to-
order, and thus reduce variability of demand. Allowing
expediting of stock in such systems provides an opportunity
to significantly enhance the resulting cost savings. Assem-
bly systems with ADI and expediting, however, are very
difficult to solve because of the curse of dimensionality of
a large state space. We approach this problem by intro-
ducing a new way to analyze assembly systems, which is
based on disaggregating product flows and identifying local
properties of optimal decisions satisfied at each stage in
the system. This new approach enables us to characterize
the structure of the optimal policy that makes it possible
to optimally manage such systems in an analytically and
numerically tractable manner.

The key feature of the optimal policy is that it is no
longer necessary to manage each component (or subassem-
bly) separately; instead, those components that are at the
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same stage can be managed together as a “kit,” where
the kit for a particular stage has one each of every rele-
vant component. The concept of a “kit-in-time” in which a
supplier provides all parts or components (of a subassem-
bly system) just-in-time to the manufacturer is not new to
industry. What is novel, from the perspective of practical
implementation, about the balanced policy found to be opti-
mal for the assembly system considered in this paper, is the
idea that balancing each kit has to extend across multiple
suppliers of subassemblies. Thus, for example, in Figure 2,
it is not enough that the supplier of subassembly 7 provide
a kit with balanced amounts of components 9 and 10; in
addition, those components also have to be balanced across
the supplier of component 8 and the supplier of compo-
nent 6. In other words, it is not just one supplier that has
to provide a balanced kit for subassembly at a particu-
lar stage, but rather his component orders also have to be
matched among all other suppliers relevant at all stages that
precede and include that subassembly. What enables that
implementation to be carried out in practice are cutting-
edge enterprise resource planning (ERP) systems that are
wide enough to offer transparency across the entire sup-
ply chain, and deep enough to provide information about
component-level decisions.

In our study, advance demand information and expedit-
ing of stock are found to be complements with regard to the
realized savings when demand information horizon is short,
and substitutes under longer information horizons. There-
fore, companies looking to shift their production/assembly
operations from make-to-stock to make-to-order by gather-
ing advance demand information could find it profitable to
also implement expediting, much like Dell has done, espe-
cially when they are able to collect advance demand for
only the near future, and when advance demand informa-
tion is positively correlated with future demands.

In practice, advanced demand information (ADI) typi-
cally reduces to having information about the timing and
quantity of future customer orders. This information can
be obtained by satisfying customers who are willing to pay
higher prices for shorter leadtimes, by offering price dis-
counts to those customers willing to accept longer lead-
times, and by employing information technologies, such
as electronic data interchange and Internet-based soft-
ware. Advance demand information can also be assessed
through clickstream data, as shown empirically in Huang
and Van Mieghem (2014). Collaborative planning and fore-
casting and replenishment (CPFR) enables supply-chain
partners to receive better information on demand, and can
thus also serve as effective means of collecting advance
demand information (Hu et al. 2003). Another strategy to
ascertain future demand is through recent advances in sup-
ply chain integration, which are making advance demand
information commonly available in a wide range of indus-
tries (see, e.g., Gallego and Ozer 2001, Wang and Toktay
2008, Huang and Van Mieghem 2014).

Expediting of stock, by comparison, is already a well es-
tablished service provided by a number of logistics, freight-
forwarding, shipping, and 3PL companies. The necessary
task for the supply chain function of an organization, when
it comes to maximizing the value of that logistics service,
is to integrate expediting of stock with the company’s ADI
capabilities and related technologies.

In conclusion, with advance demand information, com-
panies obtain valuable knowledge about customers needs;
with the option to expedite stock, they can better act on
this information.
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Appendix.

ProOF OF LEMMA 1. Suppose that it were optimal to expedite
some component i into stage 1 in some period 7. Let X7 and XF
be the optimal order schedules for component i in penod t. Thus,
Xt >o.

Consider another policy for component i in period ¢ given by

set of order schedules (X, X¥) such that X}, =0 and XR =

XE, + XE,. For every j> 1, let Xw X/, and XUR, XJ5. (Opti-
mal schedules for component i remain unchanged in all future
periods.) Because the resulting state in period 7 + 1 is identical
under both sets of schedules, the difference in the cost between

two sets of order schedules becomes

G,(0,,x,. XE, X"~ G,(0,, x,, XE, XF)
_(ktlt+htll)let+(ktlt+htI/)let (kllr+htll)(let tlt
_(klll I|I)XIE]I >0

since k5, > k&, by Assumption 1. Thus, it can never be optimal

to expedite any component 7 into stage 1.

PrOOF OF LEMMA 2. By Assumption 4, x, is balanced in period 1.
Assume inductively that x, is balanced at stage 1 for some ¢ <
T + 1. Thus, x;;, = x;,, for all i,k € C(1). Let X* and XR be
optimal schedules in period ¢, and 7, := {(XF, XF), (X[, |, XX |
, (XE, XF)} be an optimal policy for periods ¢ through 7. By
Lemma 1, X5, =0 for every component i for each 7. Let g =
q(1, X[) be a component in C(1) such that X[, = min;.c;, X},
Thus, component ¢ is the component with the smallest regular
order into stage 1 in period 7. If X[, = X[, for every i, then
regular orders into stage 1 for all components are balanced, and
by state transition equation given in (1), it follows that x, is
balanced at stage 1.
Assume there exists a component i € C(1) such that X%, >
ql .- Consider a policy 7, completely identical to 7, except for
the following: XX, _Xl’f, §and X8 ., =XF . +6 for some
0<d8< XS, —Xf, Let x,,, and X,,, be on-hand states gen-
erated by starting with x,, and applying schedules X* and X,R,
respectively in period ¢, for some given O, ,. Similarly, let x,,,
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and X,,, be on-hand states generated by starting with x,,, and

X,41, respectively, and applying schedules X? Y, and Xt %1, in period
t+ 1. We have
Xit 41 = X1y +X§; =0 =X, + Xﬁx —0—0,1,
= Xj1, 141 — 0. (20)

le t+1 — 'x12 I+X12t +X12t Xll?t
= X+ X5+ X5, — (Xji, = 8) =xp, 1 +6. (21)

Next, we show that XX and XX 1141 are feasible in periods ¢ and
r+ 1L

R R
Xllr < Xllt

t2t + XtZt [(XtE’
= Xp + Xm-

[definition of XF ]
XF) is feasible and optimal]

[definition of 7, ]
Thus, XX, is feasible in period . Furthermore,

XR

i = Xin r+1+6 [definition of th i1

N

X+ X5 1 +0 [(XF,X]) is feasible and optimal]
Xp 1 +0+X5 ., [definition of 7,]

= ii2,z+1+XiE24,t+1 [by (21)]
Therefore, XX . is feasible in period  + 1. Finally, we get

L1+ +Xi1§,t+l =05, [by (1]
[definition of X[} ]

Xil 2 = %
= fi1,1+1 +Xﬁ,z+1 +5_01+2,z+1
= Xil,1+1 _8+Xﬁ,r+1+8_01+2,r+1 [by (20)]

i1, 142+ [by (1)]

Tiwe = et H X H X =X [by (1]
= T o1 F X5 1 X5, — (X7 +6)

[definition of 7,]
= X, t+1+6+X12 z+1+X:2x Xﬁr o [by (21)]
Xp, 2 [bY (D]

In period ¢ + 2, the two policies result in the same on-hand
states. The two policies are identical starting in period 7 + 2, and
they start out in identical states in period 7+ 2; thus, they produce
identical states for the rest of the time horizon. We now evaluate
the difference in cost between the two policies.

Since x, is balanced at stage 1 by assumption, then, be-
cause Xﬁt > thlt’ we have 7t(6t’mini’ (xilr + Xﬁt)) = 'Yt(éra
min, (x,;, + X5 ) = 7,(0,. (x,,,+XX%,)). by definition of g. Then,
by means of (3),

G (6t’ Xt 77) - G1(0~t’ Xt ﬁ-)
= S(km +hy) + aED, | 6:[Gz+1 (6x+1’ Xeit> M)
- aED, | é/[GH—I (61+1 X1 M) ]

Next, by (20) and definition of X[ . . we get X, ., +
X,l +1 = XiL 41 8—|—X,1 w1 F6=xy .+ X5 .. Thus, for

any given 0r+1, 7I+1(0H~l7mln (%31, 121 +X,1 ) = %+1(0r+1’

min; (x4 + X% .1)). As a result, by using the definition of

XE .| and expressions (20) and (21), we get

Gy (6t+1 X)) Tgt) — Gy (0~r+| s X 1s Tigr)
= S(kﬁ, 1+1 + hil,r+1) + S(Hil,rﬂ - Hiz, r+1)
+aEp 16, (G 12(0yi2s X100 T,10)]
—akp, 16,16 12(0a, Xppns T (22)

As already shown, x,,, = X,,,. Therefore, since 7, , = 7,,,,
then the bottom line of (22) becomes identically zero, and the
RHS of (22) reduces to —8kf; ;. Substituting this result, we get

Gt(ér’ Xt Tr) G (Ot’ Xt» 77) - 6(kzlr + hilt - akiRL,/-*—l) > 0’

by Assumption 3. Thus, it cannot be optimal in period ¢ for any
component i to place a regular order at stage 1 in excess of the
regular order placed by any other component at stage 1. In other
words, if x, is balanced at stage 1 in any period ¢, then it is
optimal for X to also be balanced at stage 1 in period 7.

Since x, is balanced at stage 1 by inductive assumption, and
because it is optimal for XX to be balanced at stage 1, then by (1)
and Lemma 1, x,,, is balanced at stage 1. This completes the proof.

Proor oF LEMMA 3. We begin with j = 2. Thus, assuming that
x, is balanced through stage 2, we show that XF is also balanced
through stage 2. By Lemma 1, it is optimal not to expedite any
component i into stage 1. Thus, X5, =0 for all i and 7, and X7 i
balanced at stage 1. We only need to show that X7 it is balanced
at stage 2. Let ¢ = q(2, XF) be a component in C(2) such that
XqZ, = Mil;cc(y) X5,. Thus, component ¢ is the component with
the smallest expedited order into stage 2 in period 7. If Xj5, = X[,
for every i, then XF is balanced at stage 2.

Assume that there exists a component i € C(2) such that X5, >
X7,,. Consider another set of order schedules XF and XR identical
to XF and X7 at all stages and for all components except for the
followmg X5 =XE, — 8, and XE, = XE, + 8, for some 0 < § <
Xf, — X2, First, we show that X/ and X/ are feasible for x,.
Since X5, < X5, < x5, + X5, = x;5, + XE,, by definition of X7,
then X5, is feasible. And,

VERED ¢

ilt ilt

[definition of X]

R
- qul

< X+ X5, — X

qlt

[X? is balanced at stage 1]
[XE is feasible for x,]

= X, +XqEZ, [by Lemma 1]

= X5+ X5, [x, is balanced at stage 2]
< Xy, + X5, —8  [definition of §]
= Xxp, + X5, [definition of X5, ]
X8 = X% +8 [definition of XF]
< x5, + X5, — X5, +8  [XF is feasible for x,]
= x;5, + X5, — X5, [definition of X”]

Since X¥ and X7 satisfy the required lower and upper bounds,
they are feasible for x,.

Next, let x,,, and x,,; be on-hand states gene{ated_ by starting
with x,, and applying schedules (X[, X[) and (X[, X[), respec-
tlvely in period 7, for some given value of O, ,. Since X%,

, for every i € C(1), it follows that x; ., =X; ,, for every
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i € C(1). Since the decisions at all stages above stage 2 are iden-
tical for (X[, X[) and (X[, XF) then X;; ,,, = x;; ,;, for every
Jj =4, and every i € C(j). Furthermore,

ij,t

Alt +X!2t Xﬁ t [by (1)]
= Xiy + Xth + X12t XR

il,t
8) + (X3, +8) — Xii,
[definition of X* and XF]

X, ie1 = Xy +XE
[by Lemma 1]
= Xiot + (XrZI

[by (1)]
Xi3, rp1 = Xi +)_(‘ XzEzr +Xm ng . [by (1)]
= Xt XtSt (XIZZ 8) + Xﬁt (XtZ t + 6)
[definition of X and XF]

= X2, 141+

[by (1)]

Therefore, X, ; = x,,;. As a result the cost difference between
the two sets of order schedules becomes

= Xi3, 141+

Gt(Ot,x[,X,E,XIR)—GI(O”X[, XR)_B(km kzgr) >0,
by Assumption 1. Thus, it cannot be optimal in period ¢ for any
component i to place an expedited order at stage 2 in excess of
the expedited order placed by any other component at stage 2.
Consequently, the optimal expedited order schedule for XF must
be balanced through stage 2.

Assume inductively that the lemma holds for some j — 1, so
that, if x, is balanced through stage j — 1, the optimal expe-
dited order schedule X7 is also balanced through j— 1. Let x, be
balanced through stage j. Since that implies that x, is balanced
through stage j — 1, it follows from the inductive assumption that
XE is also balanced through stage j — 1. Thus we only need to
show that X7 is balanced at stage j.

Let s = s(],XE) be a component in C(j) such that th =
min; ¢ ;) XW Thus, component s is the component with the small-
est expedited order into stage j in period 7. If XUz = Xf;, for
every i, then XF is balanced at stage j. Assume there exists a
component i € C(]) such that X > X[ .

Let schedules X* and XX identical to X* and X* except for
the following: X}, = X[, — 5 and X = X,f, + 6, for some 0 <
8 < X[, — XE,. To show that X[ and X[ are feasible for x,, we
follow steps identical to those given earlier in the proof, when
showing feasibility for stage 2-modified policies To avoid repeti—
tion, we omit the details except to show that X* and XF

are feasible. First we have

i,j—1,1 i,j—1,1

XF_, =XF_,, [definition of Xf]

= X5, ., [XF}is balanced at stage j—1]

< xsj,—i—X XSE] 1. [X[ is feasible for x,]

= x;+X =X, ., [xis balanced at stage ;]
xm—|—X —0— Xf/ .., [definition of 8]

= xw—|—XUEr o— X,E] L [XZ is balanced at stage j— 1]

= x,/,—|—X Xl i1, [definition of XE]

Furthermore,
XFo =X, [definition of X*]
= ij_, , [XE is balanced at stage j—1]

< x +XE

sjt sjt

[XF is feasible for x,]

=X —I—X

ijt

< x —|—X —0 [definition of J]

ijt

[x, is balanced at stage j]

= x; —I—X

ijt

[definition of X*]

Since X% and X7 satisfy the required lower and upper bounds,
they are feasible for x,. Let x,,; and X, , be on-hand states
generated by starting with x,, and applying schedules (XF, XF)
and (X%, XR), respectively. We follow the same steps used ear-
lier in the proof (with stage 2-modified policies) to show that
X,41 = X,4;. (Note that this implies that X%, = X%, is feasible at
every stage j in period f + 1).

The cost difference becomes G,(0,, x,, X, X®) — G,(0,, x,,

EXRy= B(klﬂ ljr), which is positive by Assumption 1. Thus,
it cannot be optimal in period ¢ for any component i to place an
expedited order at stage j in excess of the expedited order placed
by any other component at stage j. Consequently, the optimal
expedited order schedule XF must be balanced at stage j. There-
fore, if x, is balanced through any stage j, then so is XF, which
completes the proof.

PrOOF OF THEOREM 1. We use induction within induction to
prove that the optimal schedule X and XX and the echelon
state x, are balanced through stage j, for every j < L, and in every
period t. Since x, is balanced at stage 1 for all # by Lemma 2, we
start with stage 2. By Assumption 4, x, is balanced in period 1.
Assume inductively that x, is balanced in every period #, t < t'.

Because x, is balanced for all # < ¢ then, by Lemma 3, the
optimal expedited order schedule X7 is also balanced for all # < ¢/
Since, by Lemma 2, the optimal regular order schedule XF is
balanced at stage 1 for all periods, we only need to show that X*
is balanced ar stage 2 for all + < ¢'. For that purpose, pick any
period 7 < ¢/, and let p = p(2, XF) be a component in C(2) such
that X% por = Milego) XE . Thus, component p is the component
with the smallest regular order into stage 2 in period #. Suppose
XPR is not balanced at stage 2. Thus, there exists a component i
such that X8 > X%, .

Let 7, == {(XF, XF), (xE,, XX, ,(XE, XX)} be an opti-
mal policy for periods ¢ through 7. Consider another policy ,
completely identical to , except for the following: XE =XxE -8
and X8 . =X£ ., + 8 for some 0 <8< X5, — szt Let x, 4
and x,,; be on-hand states generated by starting with x,, and
applying schedules X® and XX, respectively. Similarly, let x,_,
and x,,, be on-hand states generated by starting with x,,, and

X,.1, respectively, and applying schedules XX %, and X, % - We have
Xig, 141 = Xin +X12t +X,21 Xﬁz
=xp + X5+ X5, —0—X\, =x5,,, 0. (23)
X1 = X+ Xy, — X5, + X5, — X5,
= Xizs +Xi ng +Xz3; (Xlzt 8) =x;3.,41+6. (24)
Next, we show that X%, and X% ,,, are feasible in periods ¢
and 14 1.
X8 < X% [definition of X% ]
< x5, + X5, — X5, [XF is feasible]
= x;5,+X5,— X5, [definition of 77, ]
)_(S =X t+1—|—6 [definition of X,2 1)
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< xi3,t+l+xi§,t+l 12 4110

[(XE,XF) is feasible and optimal]
= X301 +0+X5 1 — X5, [definition of 7]

[by (24)]

Therefore, X%, is feasible in period #, and X K 41 is feasible in
period ¢ + 1. Finally, we get

_ = GE GE
= X311 X 0 = X -

)EiZ,t+2 = fiz,H-l +}_(l€,t+1 +Xil§,t+l _Xil\l,,wrl
[by (1) and Lemma 1]
= 12 t+1 +X12 1+1 +X12 I+l+8_X£,t+l
[definition of (X, X%)]
= Xig 141 6+X12 r+1+X12 r+1+6_X§,t+1 =X, 142
[by (23)]
12 +1 +Xn +1 )_(ig +1 [by (1]
12 1+1 +X13 t+1 (XtZ 1+1 +8)

- _ = GE
Xi3 142 = Xi3, 141 +Xi3 417
= X1+ X5 0 —

[definition of 7]
= Xi3,1+1 +5+Xi§,t+]
[by (23)]

In period t + 2, the two policies result in the same on-hand
states. The two policies are identical starting in period 7 + 2, and
they start out in identical states in period 7+ 2; thus, they produce
identical states for the rest of the time horizon. We now evaluate
the difference in cost between the two policies.

Since: (i) x, is balanced through stage 2 by assumption; (ii)
XX is balanced at stage 1 by Lemma 2; and (iii) XX is identi-
cal to X% at stage 1, we get y,(0,, min,(x;;, + X)) = v,(0,,
min, (x;;, + XX,)). Thus,

R
12 t+1 +Xt3 +1 Xzz +1 6

= X3, 142+

G (ONt’ Xps 7T) - Gt(én Xps 'ﬁ-)
=8k, + hin) + aEp 16,[G i ((RVEAN. )
- aED |0, (G (61+1 s X1 W) -

Next, by definition of X% |, we get &, +)_(,’i 1 =Xt T
X 1z1- Thus, for any given 01+1a Vet (Opays min; (x4 +
X;I 1) = 7r+1(01+19 min, (X, 4y +le 1+1))- As a result, we get

Gy (0t+l’ Xppt> Tpp1) — G,+1(0,+1, Xiits Tip)

= _S(kiRZ, 1+1 + hiz, 1+1) + S(Hiz, +1 Hi3.t+1)
+aEp, 6., [G112(01i2: X420 Ty4)]

- aED,H [041 [Gt+2(0~t+27 X2 Tip)]- (25)

Since x,,, = %,., and 7, = 7,,,, then (25) reduces to

—8kf +1- Substituting into the above expression for G (0, x,, )
—G,(0,, x,, @), we get G,(0,, x,, ™) — G,(0,, x,, 7) = S(k&, +
hy, — aklzq 1) > 0, by Assumption 3. Thus, it cannot be optimal in
any period ¢ for any component i to place a regular order at stage 2
in excess of the regular order placed by any other component at
stage 2. Thus, if x, is balanced through stage 2, then it is optimal
for XX to also be balanced through stage 2 in every period .

Thus, since x, is balanced through stage 2 by inductive assump-
tion, then it is optimal for X® to be balanced through stage 2. Fur-
thermore, X is then also balanced through stage 2 by Lemma 3,

and therefore, by (1), x,,, is balanced through stage 2. it follows
that x, is balanced through stage 2 for all < ¢+ 1, and therefore
our result holds for j =2: (XF, XF) and x, are balanced through
stage 2 in every period 7.

Assume inductively that our result holds for some stage j—1 <
L,, so that XX, XF are balanced through stage j — 1 in every
period 7. Since x, is balanced by inductive assumption for all # < ¢’
then, by Lemma 3, XF is balanced through all stages for t <1’
(and through stage j—1 for all periods, by inductive assump-
tion). Since, by inductive assumption, X* is balanced through
stage j — 1 for all periods, it suffices to show that XF is balanced
at stage j all r < ¢'. Our proof proceeds by establishing that, under
the optimal policy (X7, XF) in each period ¢ and at each stage j:

XE +XxE =X+ X

qjt sjt sj, 412

(26)

for any two components ¢ and s in C(j). In proving that we
proceed as follows.

Fix j, consider any period # < ¢ and let u = u(j, XX) be a
component in C(j) such that X, = min;cc [ X/} + X[ ,,,]. Com-
ponent u is, therefore, a component with the smallest sum of the
regular order in period ¢ and expedited order in period 7+ 1 into
stage j. Suppose there exists a component i such that

XURI + XIE/ t+1 > XuR;I + Xu/ 41 (27)
Now, consider any & such that 0 < & < X + X[, XW, +
X7 11 In what follows, let m, := {(X/ XR) (X,)il, XED. ...

(XE, X%} be an optimal policy for periods ¢ through 7. We now
distinguish three, mutually exclusive, cases.

Case 1: X,ﬁ ij, > 6 and XU 1 <XM] 41

Consider another policy 7, 1dentlcal to m, except for the fol-
lowing: X% = Xf — & and X[, = X[ ., +6. Let x,,, and
X,y be the on-hand states generated by starting with x,, and
applying order schedules (X7, XF) and (XF, XF), respectively, in
period ¢. Let x,,, and X, ,, be generated by starting with x,,, and
X,41, respectively, and applying order schedules (X,EH, X,’i,) and
(XE,. XK ) in period ¢ + 1.

We first prove that 77, is feasible. By using the same steps as
earlier in this proof, it follows that X,/, and )_(ff‘, 4 are feasible
in periods # and 7+ 1 (we omit the details). We also get that:
() )Eij, 1 = Xij i1 — d; (ii) X3, 1 = X3, 041 T 9; and (iii) ¥,,, =
X;4,. Thus, in period t + 2, the two policies result in the same
on-hand states. The two policies start in identical states in period
t 42, and make identical decision in period ¢ 42 (and thereafter);
thus, they produce identical states for the rest of the time horizon.

Next we show that X/ L is feasible for x;; , ;= x;; 11 — 9,
which will imply that that X% .1 = X[, | is feasible at every stage j
for x,, ;. By Lemma 3 and the inductive assumption, we get the
following:

. _ E .. _
Xi 101 = Xi ;1,41 [definition of 7]
_ yE
- Xu,jfl,tJrl

[X% is balanced through stage j—1 for all ']

E E :
< Xy X [Xpg 1s feasible]

= xuj t+XuE/t XuE/ 1,1 Xu j—1 t+X11f/t+Xu/ t+1
[by (1]
- xt/t—’_Xqut Xf/ It Xu Jj—1, t+XuRjt+Xu/ t+1

[x, is balanced]
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_ E R E
= xw+X =X Xu -1 r‘*’Xqu"‘XU o+ i € C(j). Since th < W by assumption, and Xu 11X 141 @S

[XZ is balanced in period ¢]

= xut+Xth XIEJ 1,6 lj 1, t+X5/t+Xuj t+1
[X, is balanced through stage j—1]
< xijt+x XIEJ Lt z, 1, t+xyt+le +1 -6

[definition of 8]
1/ t+1 6+le t+1 [by (1)]
jij, +1 +X5,t+1 [ii_i,H—l =Xij 417 d]

% +XE ., [definition of 7]

Thus, XF j—1,141 Is feasible for x; .. Using identical steps, it
can be shown that XX i j—1,141 18 also feasible for x;; .. Since XE,
XE |, XK and XR | satisfy the required lower and upper bounds,
they are feasible for x,, and thus so is 77,. We can now evaluate

the cost difference between 7, and 7,.
Gr(ét’ X, ) — GT(0~I’ X;, )
= 5("5: + hqz) + aED, | o,[ 1+1 (6z+| s Xpits Tigr)]

- CVED |0, epm (OH—I s X1 Tipr)]

= 8(kfy + hy,)

ijt

+aEj 4, {— S(ku e Tl ) FO(H o — Hy iy 1)
+ O‘EDM [041 [Gt+2(0t+2’ X425 M)
- Gt+2(6t+2’ XH»Z’ ﬁ-t+2)]}’

Since X, =X, and 7,5 =, , then G12(0,, Xig2o M) =
G2(0 0, X0, i), and the above reduces to G,(O,, x,, ) —
G,(0,, x,, ) = 6(k”, hyje — akf;’ ++1)» which is strictly positive
(Assumption 3). Note, parenthetically, that the result X} = X[, if
X< XW 141> implies that X[ = X7 so that (26) holds
for every i € C(j) by definition of u.

Consequently, if X[, < X[, it cannot be optimal in
period ¢ for any component i to place a regular order at stage j
in excess of the regular order placed by any other component at
stage j, and so X\ = X, for every component i € C(j). Thus, if
x, is balanced through stage j, then, in this Case 1, it is optimal
for X* to also be balanced through stage j. Therefore, because
XE is balanced in period ¢ by Lemma 3, it follows from state
transitions in (1) that x,, is also balanced through stage ;.

Case 2: X < XF, and X[ ., — X}, ., >0. )

Consider another policy 7, e identical to ar,,, with X, and
XR | identical to X7, and X% 1 at all stages and for all compo-
nents except for the followmg Em= X,/ 41— 0, and X” =
X[} 11 +8. Using steps identical to those in the proof of Lemma 3,
it can be shown that X2, and XX are feasible for x,,,. Let
X.4, and X, be the on-hand states generated by starting with
x,41,» and applying order schedules (X, X% ) and (X,H, XKD,
respectively, in period ¢+ 1.

Following again the steps from the proof of Lemma 3, the
cost difference between the two policies becomes G, +1(0~, L1
Xt Tipn) — Gy (0r+| S Xigs Tign) = 8(li +1 kf}, 1+1)> Which
is positive by Assumption 1. Thus, it cannot be optimal in period
t+ 1 for any component i to place an expedited order at stage j
in excess of the expedited order placed by any other compo-

nent at stage j. Hence, X~ = ij’, 4 for each j and every

ujt+1°

ij, t+1

just obtained, it follows from the definition of component u that
leRt =X uRﬂ for every i € C(j). Consequently, the optimal expedited
order schedule X must be balanced through stage j in period 7.
Thus, if x, is balanced through stage j, then, in this Case 2, it is
optimal for X¥ to also be balanced through stage j. Because X*
is balanced in period # by Lemma 3, it follows from (1) that x,,
is also balanced through stage j.

Case 3: 0 < X[l = X[ <8and 0 < X[ ., — X[ . <&

In this case, it follows from (27) that there exist 6, > 0 and
0, > 0 such that 6, +6, =6 and

XE

XF—xE >8 and XE i 2

it ujt =

P > 0,. (28)
We now define 77, to be identical to 7, except for: XUR, =X} -
o1, Xz] 1 =Xj 1 — 8, and Xij, i1 = X5 1 8, +8,. We fol-
low the usual definitions of x,; and X, ,, x,,, and X, ,. We first

get

- _ E R E R
xij,H»l - x17t+XUt+let Xl j—1t Xi,jfl,t
_ E R E R
- xljl+let+ny 8 Xl j—Lt Xi,jfl,t
l] t+1 51 (29)

- _ 2 R
Xij+l 41 = xi,j+1,t+Xi,j+1 ' ny+X: e~ X

= xi,j+1,t+ij+l t X +Xl JjH+1t (Xl]t )

ijt

= X ji1,401 01 (30)

We first establish that 77, is feasible for X, and X, ,. Using
familiar steps from earlier in the proof, we find that X,.ft <
Xi 1+ X[y — X[, and thus X[ is feasible for x,. Next, we
have

ng 1 = XiI;,x+1 +(8,+06,) [definition of ]

N

Xi 1,141 +ij+1.z+1 X,'f w1 T (8,+06,)
[XE is feasible]
=X jil, 41T ij+|,1+1 - (25 1T 8,) + (8, +6,)
[definition of 77, ]

= Xi it 11 +XiE,j+l,t+1 - Xf 1+ [by (30)]

Thus, X/, is feasible for X,,,. Finally, we have
)_(il,fj—l,t+l = X,.Ejflyr+1 [definition of 7,]
=X, 1.1 [X] is balanced for all periods ']
< X+ X (XD s feasible]
xujt+XuE}'I u, j 1, t+Xf]r u, ] 1, I+Xuj t+1
[by (1]
= xl]1+X Xz j—1,t Xu j—1, t+Xu7t+Xuj 1+1
[x, and X are balanced]
= x17t+X XI j—11 Xl Jj—L t+XuR;t+Xuj t+1
[XF is balanced through stage j]
< xl]1+X Xt j=1,t Ij 1 t+tht+X5,t+l_6

[definition of &]
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= xij,t+1+X,-’f,t+1—5 [by (1)]
= x; 1+ X[, +6,—8 [definition of 7]
=X 6 +X5 ., [6=848,]
=X m+X5 . [by (30)]
Consequently, , j—1,141 18 feasible for x, .. Identical steps dem-

onstrate that Xl j—1,1+1 s also feasible for x, . Thus, 7, is feasi-
ble. Next, we evaluate the resulting states in period 7 + 2.

- - GE SR GE _$R
X2 = Xijot T X ot T X o — Xi o — X ot
[by (D]
_ - E
= Xy T X 1 — 02 "‘XU +1

R
- X J=1, 141

+8—xF [definition of 77,]

i, j—1,1+1

= Xij, 141 — 0, +X12 +1 +X12 +1 Xﬁ 1t (0—8)

[by (29)]
= X;j 42 [6=0,+6,]
ii,j+l,t+2 = )Ei,j+14,t+1 +ij+1,/+| +ij+l,1+1 - XIE/ 1+1 —Xﬁm
[by ()]
= X ja 41 +ij+1,t+1 +Xi},aj+l,r+l (x; i1 — 02)

(XU 41 +0) [definition of 7]
= X+l +5 +X¢ JH1, 41 +X1 JH1,t+1 X;E/ 1+1

lj t+1 (8 82) [by (30)]
[6=10,+0,]

= Xij+1 142

Consequently, the resulting states from the policies m, and 7,
are in period ¢+ 2 are identical. As a result we get the following
difference in cost between the two policies:

G,(0,,x,,m)—G,(0, x,, )
=0 (kf;, +hy) +aEp 6, [G t+1(6t+1’ Xogts Topr)]
—aEp |5, (G (OH»I’ Xpts M)
=0 (k5t+hyt)+aED,|Ot{6 (Hyj, o1 — Hi ji1141)
= (ki iy P ) + Ok g+ By )
+aEp 16, [G12(01i2: X420 Ty y5)
G112(0p1: Frin, T 0) )

Since X, =X, and ., = 7,5, then Gi2(01yar X0, i) =

. +2~(0, +2> Xp40s Tyn), and the above expression reduces to
G,(0,,x,,m) —G,(0,,x,,7) =8 V(K + hy, — ak,’f ++1)» Which
is strictly positive by Assumption 3. Because 7, is feasible and
results in a lower cost then 7r,, it follows that the optimal policy
must be such that X = X% and X[ .| =X}, ., at each stage j
and for every i € C(j). Because both X and XF are balanced
in period ¢, it follows from (1) that x,_, is also balanced through
stage j.

Therefore, in all three cases that can arise if there exists a
component i at stage j such that Xf + X[ ., > XK + X7 .,

ijt
the optimal policy is such that X® = XX ‘and XE ,,, =XE | at

ijt ujt ij, t+1 = “uj, 1+
each stage j and for every i € C(j). The only thing remaining to

show is that the same is true if X,’f; —I—X” = Xﬁ, +Xu, 41> for

all i € C(j). In that case, we again define 77, as identical to ,
except for the following: Xf = X[ —& and X£ . =X  +38.
The proof then proceeds by means of exactly the same steps as
proof for Case 1 above. Consequently, optimal order schedules
(XE, XR) are balanced in every period r =1,..., T. It follows
that the on-hand inventory state x, is balanced in every period

t=1,....,T+1.

PrOOF OF THEOREM 2. The total cost allocated to component i at
stage j in period 7 is 6, (X + X;). Let kft = kft +0,;, and kff; =
kf +6,;. Then, Assumption 1 is satisfied for klft and kl’ft directly.
Funhermore since 0, > ab;; ., for all 1 by the assumption of
the theorem, then Assumption 3 also holds for kf, and k,’;t (given
that A, remains unchanged). Consequently, by Theorem~l, the
optimal policy is balanced in each period ¢ and for every O,, and

the resulting state x,,, in period ¢ + 1 is balanced.

LemmMmaA 13 (KarusH 1958). If f is an arbitrary smooth and con-
vex function on R, then, given x <y, min,yc, f(0) can be ex-
pressed as fT(x) + f~(y), where f* is smooth and convex in-
creasing, and f~ is smooth and convex decreasing. In particular,
if f has a finite unconstrained minimizer S, then

f+(x) = {f(S) lfx<s

f(x) otherwise;

and

[ )=

f(y) FS) ify<s
otherwise.
If f is increasing, f~(y) =0, and f*(x) = f(x); if f is decreas-
ing, f*(x)=0, and f~(y) = f(¥).

PrOOF OF LEMMA 4. Start with m = 1. By Lemma 13, we get

min
2, 2 Zfb ()
j=12...m"

—oiw)+, min [d1(@)+ b+ 00 |
JREjR6j+1 j=3
j=23..M :

Since ¢, = ¢,, then ¢ = ¢ and ¢, = ¢; . Thus, ¢, = d; + ¢,
and (9) holds for m = 1. Assume inductively that (9) holds for
some 7. Using the definition of ¢,,,,, the RHS of (9) becomes

M
> 67 )+ min [¢m+]<§m+1)+ 5 ¢>,-<z,>]

UjSEjSEjt1 j=
J= j=mAl, M J=m+2

=S¢+, min [wmﬂ(é,n+2)+¢>m+2<§m+z>+ > 46|

j=1 Jj=m+3

m+1 M
=S ety min et ¥ @) 6D

j=1 ; ]:ni\z f*}w j=m—+3
where the second equality above follows from Lemma 13. Thus,
by (31), it follows that (9) also holds for m+ 1. This concludes the
proof, since smoothness and convexity carry over directly from
Lemma 13.

Proor oF LEMMA 5. This lemma follows directly from the as-
sumption that f,,,(O,,,) is smooth and additively convex, and
from definition of g, and Uj,.



Angelus and Ozer: Optimal Policies for Assembly Systems with Expediting and Advance Demand Information

Operations Research 64(6), pp. 13381371, © 2016 INFORMS

1365

ProOOF OF THEOREM 3. The theorem clearly holds for period 7 +
1. Assume that f, (QH, -), as defined in Equation (6), is smooth
and additively convex for each é, 41> so that there exist smooth
convex functions {fy .y, .., f 141} such that Foi1(Opi1s 2041) =
Z i ,+1(O,+l,zj 1) for each O,,,. Using the definitions of
g and U, given in Lemma 5, we get

fi(0.2)
L
= _Zkfzjl TEl'lll’l Z‘fzﬁ"‘z minE [gjr(on _[I)]
Jj=1 %jt<Zj, ng_H 1 =1 Zif ger gZ,'-¢—1,1
I<j<L I<j<L

[definition of g, (0,, )]

L L-1
_ E E~E +(0
- Zk,l Z.fl+ rEnm {chlzﬂ +Z[gj1(01’
j=1 g<zfi<zby U j=1

I<j<L

Z;) +,(0,. 25, )]
+¢:.(0,, ZE, } [by Lemma 13]

L L
_ E
—-Yug+ i %
j=1 ﬂgzﬂ\ /+]l Jj=1
i<j<L

U,(0,. Z/f)}. [definition of U, (0, -)]

Let v,,(0,, Voo V., (0,,") be defined recursively as
V(0. 2) = Ui (0, z;) + Vj_—l,r(ot’ z;p), with V,(0,, z;,) :== 0.
Then, V,(0,,-),...,V,,(0,,-) are smooth and convex, and, by
Lemma 4, for any n < L,

L
A E
min > U, (0,, Z;
*/’gzjl gZj+l 1 j=1
j=1,2,...L

ZV*(O,,

L
+ mln { n+l,t(Oz’ZnE+l,t)+ Z th(oxazﬁ }v
/+1r

Zjr <Z/, <zt Jj=n+2
Jj=n+1,.

where the minimization is over ZF = (ZE, ...
L — 1, the above expression ylelds

, ZE). Letting n =

ft(éta z,) = _Zk 2+ Z V+(0

+ min [ [_u(On

*IY\ZLI

L1) + ULt(ét! Zf/)]

= —Zk ZJ,+ZV+(O

+ min [VL,(O,, ZE)] [definition of V;,]

2<Zf,
L

‘/};r(0~t7 th) — kfzf,]. [Lemma 13]

Il
v

j=1

ProOF OF THEOREM 4. Let O~t in period ¢ be given. As shown in
the proof of Theorem 3, for any n < L,

fr(é,,Z[)— Zkb +Z (étvzjt)

L
+ mln |: n+l,t(0t’Zf+l,t)+ Z l]j[(OI’Z‘]f i| (32)
J+1.t

jt <th <z Jj=n+2

Jj=n+1,..., L

Let Sf(0~,) = argmin, Vj,(0~,, Z) be the unconstrained min-
imizer of Vj,(é,,-) over Z for j=1,...,L. Thus, by (32),

glven any Z,+1 - (6,,z)_ V(S (0)/\Z]Jrl ,). For n =
-1 (32) ylelds ft(ot’ Zt) - Z/ 1 kE ZL ! V+(0rs th) +
min,_ <zt VL,(O,, ZE)). Therefore, Z (O,, z,) =z, V SEI(O )],

IR

and thus part (i) holds for j = L. Assume inductively that (i) holds

for j+1,..., L, so that
R ~ L
250,00 2) = N [z v SE(O)]. (33)
i=jt1

It follows that
25(0,.2,) = 3, V[SE(O,) A 25, (0,.2,)]
[Z5(02) =2, v (5
[z v 25, ,(0,.2)]
[distributive property of “V"]

[Z Vv SE(O A Z/E+1 t(ér’ )

F(0)NZ] )]
= [th 4 Sf(ét)]

[since Z],, (O, 2,) > 241, = 2]

By making use of the inductive hypothesis given in in (33), we
then get

Z;i(01,2) =[5 v SF(O)IA N\ [ v S5 (0)]
= Alzi VS5 (0)].

i=j

To prove part (ii), let S/.’f(0~,) be an unconstrained minimizer of
;. +1(0,, ) for each j. The result then follows directly from the
convexity of g; ,,(0,, ), shown in Lemma 4, and the specifica-
tion of Z in (7).

PROOF OF LEMMA 6. Let Y = ZE —z;, and Y = 7R — ZE for
each j. We need to establlsh that optlmal schedules Yé and YR
period 7 are such that Y/, , <Y + Y for each j. Suppose that

for some j <L, Y5, > YF+ YR. Consider schedules (¥, ¥;f

identical to (Y%, Y}) except for YJ’?H =Y}, ,—38and Y,+1 .=
Y]’L ,+8, forany 0 <8 <Y, — Y7 - YL Y, is feasible
since YJ+1 t<Y/+1 ,» and

YJISH .= Y]R+l ,+6 [definition of YJrl B

Vo A Y, = Y5 46 [V, is feasible]
=YY 0, — Y5, [V, =Y/, —38 is feasible]

= yj+1,,+Y]+2 . YfH .. [definition of ¥*]

Y =Y} [definition of Y]
SYP+YE (Y >0]
<Y/, ,—8 [definition of 8]

Y,+1 (SYi f+Y/+1 .- [definition of YJJrl A
Thus, Y&, , and Y[ are feasible. Finally,

ij = Y-R [definition of I?j.f]

<Yf,,— Y —5 [definition of 5]
= YﬁH . )_’jf [definitions of YE and Yﬁl .

vE vE
< yj+l,t+Yj+l.t - er
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Thus, (Y, YF) is feasible for y,. Furthermore, the resulting
state in period 7+ 1 is identical under both sets of schedules at
each stage j. The difference in the cost between two sets of order
schedules becomes

G (é,,y,,YlE,Y[ )—
_(k]+l t+hj+1 t)( Lt
= (kjj, —ki1,)8>0,

(é,,yt,)_/ Yvr

[
+1 x)+(k]+l [+h1+1 t)( Jj+1t inl,t)

it

by Assumption 1. Thus, it can never be optimal to have YﬁE >
Y/, ,+ Y} This concludes the proof.

ProoF OF LEMmA 7. By Theorem 4, the basestock level for
the regular order decision at echelon j is given by .Sf/.’f(é,) =
max arg min,, gj,(é,,Z) for each 6,. Let j = L. Suppose that
there exists some advance demand information state 0 such that
Sk (0,) < SE (O) Consider another basestock level S¥ (0,) de-
fined as Sf,(O) = SR (0) + 6 for any 6, 0 <9< Sf,(é,) —
SR (0,). Thus, S (0, ) < Sk (0,) < SE(O,).

Let th(é,) be the 0pt1ma1 echelon L regular order decision
obtained by SX (0,) and ZF (0,) be the optimal echelon L regular
order decision obtained by means of the basestock level .S:ft(0~,).
Then, we have

Z(0)—-Z}(0) = Z[(0,)v S;(0,)—Z},(0,) VS (0,)

[by Theorem 4(ii)]

=7,,VSE(0,) VSR (0,
—2,,VSE(0,)v SR (0,) [by Theorem 4(i)]
=7,,VSE(0,)—z,,vSE(0,)=0.
[S5.(0,),55,(0,)<S1,(0,)]

Therefore, the two regular order decisions at echelon L are
identical (as are all other regular and expedited decisions made
in the system). As a result, all the costs associated with those
two different basestock levels are identical. Consequently, because
2.:(0,,Z) is smooth and convex in Z for every O,, it fol-
lows that L,(O) = argmlnzgj,(O,,Z) But, since SR(O) =
max arg min,, gj,(O,, Z) this implies that S¥ (0,) > Sf,(O ) which
is a contradiction. It follows that S fr(O )>SE (0 ) must be true.

Now consider j < L. Assume there exists an 0 such that

(6) <S (6) Consider another basestock level .S_'Jf (0,) de-
ﬁned as SR(O )= f(ét)+8 forany 8,0 < 8 < ij(ON,) —Sj’f(0~,).
Thus, S}f(o ) <SF (6,) < S5(0,). Let Z£(0,) be the optimal ech-
elon j regular order decision obtained by S;/(0,) and Zj{(O,) be
the optimal echelon j regular order decision obtained by 5;5(01).
We have that

Z§(0,,2) = [Z5(0)V SF(OIAZE,, (0)
[by Theorem 4(ii)]
= {[(z; VSF (O AZS, (ODIVSF (O} AZE,, (O)
[by Theorem 4(i)]
= {[z; VS; (O)VSEONIALSE(O)VZE, (0]}
/\ZJ.Jrl ,(0,)
= [z,,st(o NAZE, (0) [SF(0)<S(0)].

By identical steps, Z (0 )=lz; Vv SE(O A Z]E+l ,(0,). Thus,
Z/If(é,) = (0) Slnce g],(O,,Z) is convex and smooth in Z,

it follows that SR(O ) = argmin, gj,(O,, Z). But, since S (6 )=
max arg min,, gj,(O,, Z) this implies SR(O) SR(O) wh1ch is a
contradiction. It follows that SR(O ) > (0 ) must be true.

Proor or LEmma 8. To prove (i), let D, f(x,y) < D,g(x, y) for
all (x,y). Let s/(x) and s,(x) be the largest minimizers of f
and g, respectively, over y, for any X. Suppose there exists an x
such that s;(x) < s,(x). This implies D, g(x, s,(x)) = 0. Because
f(x,y) is convex in y, then, since s,(x) is the largest minimizer
of f(x,y) and s;(x) < 5,(x), we must have D, f(x, s,(x)) > 0.
Since D, g(x, y) =0 for y = s5,(x) by definition of s5,(x) (g(x, -) is
convex and smooth), we get that D, f(x, 5,(x)) > D, g(X, 5,(x)).
That contradicts the initial assumption that D, f (x, y) < D, g(X, y)
for all (x, y).

To prove (ii), we use part (i). Since s,(x) >
then by Lemma 4,

D,f*(x,y) = Dyg"(x,)
0 if y <s.(x):
=1-D,g(x,y) if 5,(x) <y <sp(x);
D,f(x,y) = Dyg(x,y) if 5,(x)<y
Since —D,g(x,y) <0 for y > s,(x), and D f(x,y) < D,g(x,y)
for all (x y), by assumption, we conclude that D ST y) <

D,g"(x,y) for every (x,y). Similarly, D, f~(x, y) < D,g™(x,y)
for every (x,y).

5,(x) for every x,

PROOF oF THEOREM 5. We show that~f0r every 0? > O,

Zgjt(Ot . Z) < ng]t(sz) and DV, (0 Z) <D er(grls Z).
The result follows from definitions of SK (0,) and S5(0,), by
Lemma 8(i).

Let 1 =T, and O3 > O). Since gj,(0~,, -) is smooth, and
the salvage value function is zero, we get DZgJT(OT,Z) =
D,g;(0},Z) for every j; thus, S/RT(OZ) = S%.(0}). Assume
inductively that D, g,,(O,,Z) D, g,,(O Z) for 0~t2 > 0~t' for
some 7. Then, by Lemma 8(i), SX(0?) > § (0~,1). We get

. S
ZUjr(érz’Z) _DZ(J_/t(ét 7Z)
ngr,<02 Z)=Dy8,(0,.2) ifj=1;
= g]t (0 )_~ g_]l(O Z)+DZgj_—1,t(0t2’Z)
—ngj_]'t(O,,Z) 1<j<L.

Consequently, by Lemma 8(ii), D,U, (5 ,Z) < DZU/,(0~[‘,Z)
for every j and Z, and any 0 > 01 Since, by definition,
V“(O,,Z) = Ulr(OzaZ) then ~DZV11(O; Z) < DZVI1(0t13Z)'
Assume inductively that DZV/t(Otz, Z) < DZVJ.,(Otl, Z) for O? >
O! and some j < N. Thus, by Lemma 8(b),

2V (07.2) <DV, (0}.2). (34)

By deﬁnmon we have V/ +1 t(Ot’ J-H t) - j+] t(Ot’ZH—] t)+
(0,,21+l ,). Thus, for any 02> O],

D,V (0],2)-D,V},, (0/.2)
:DZUjjrl,r(étz’Z)_DZUj_Jrl,t(érl’Z)+DZer_(O~t2’Z)
-D,V;(0}.2)

<DZ (0 ,Z)— DZ (0 Z)

[since D, U,,(ONII,Z)]

<0 [by (34)].

U(0;.2)<D,
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Thus, DZV]-,(O~,2, 7)< DNZV[(0~11, Z). By Lemma 8(ii) and The-
orem 4(i), this yields Sy (07) > S5 (0)). )

It remains to show that the relation Dyg;, (0%,.2)<
Dyg;, 1(0).2) holds for 0> Qli in period 7 — 1. Note that,
by Lemma 8(ii), DV, (0}, Z) < D;V,(0;, Z) shown above implies
DZV;(OtZ,Z) gDij:r(Ozl’Z) an~d DZVj;(O,Z,Z) gDszri(OzI»Z)
By Theorem 3, f;,(0,,z,)=V; (O,,z;) —k¥z,, then, for every j,

D,f,(02,2) < D,f,(0}, 7). (35)

Next, we make use of (10) to construct ngj,,,l(éf_l,z) <
Dyg; (0}, Z) for O}, > O]_,. Thus,

DZgj,t—l (0~r2—1 .Z) _DZgj,t—l (6:71’2)
=aE[D,f,(0;.Z—0},_)-D,f,(0!.Z-0/,_ )]
<aE[D,f,(0;,Z-0/, )-D;£,(0;,Z-0;, )], (36)

by convexity of ]j,(é,, Z) since ~0~,2,1 >0, implies Z — Qtz -1 S
Z — 0}, . Because O, > O}, implies that O} > O/, and
because (35) holds for every Otz > 0~,1, we get D, g . (0~,2,1, Z)
<Dy 8. z—l(OtI—l’ Z).

To prove (ii), start with k =1. Let I,(Z) = y,(Z) if j=1 and
[,(Z)=0if j> 1. Use (10) to get

D,;,(0,,Z—9)
=Dzrjr(2—5)+c_§ +aE[Dij,t+l (0~r+1’2_3_ 041,01
<DT(Z)+cf+aE[D, f; ,41(0,4,.Z—8-0,,, )]
[ (+) is convex]
=D, (0,+5e,,2).

Thus, D,g,,(0,,Z — 8) < D,g,(0, + 8e,, Z) for every Z, j =
1,...,N and 8 > 0. Since the largest minimizer of g; (O,, Z — J)
is exactly S§(0,) + 8, then, by Lemma 8(i), S§(O, + &e¢;) —
S§(0,) < 8, and part (c) holds for SF when k = 1. Since
D,,(0,,Z — 8) < D;8;(0, + de¢,, Z), then, by Lemma 8(ii),
ng;(oj, A 8) < ng;(Ol + 561, Z) and DZ gj;(on Z— 6) <
ngj;(od‘selvz) _ _

Thus, by definition of U,(0,, Z), we get D,U,(0,,Z — 8) <
D,U,(0, + 8¢,,Z) for j =1,...,N. By Lemma 8(i),
DZU].;(OI,Z—§) < DU (0, + Bfl,Z) for j =1,...,N.
Thus, D,V,,(0,,Z—38) < D;V,,(O, + 0e;,Z). As shown
above, U; (0,,Z — §) exhibits the same property, hence, by
straightforward induction, and definition of V,(O,, Z), we get
D,V (0,,Z —8) < D,V (0, + 8e¢,,Z) for j=1,...,N. Thus,
DV, (0,.Z~8) <DV, (0, +8e,. 2) and D,V; (0,.Z—8) <
DZ‘/jt_(Ot+ael9Z)' _

Since the largest minimizer of V,(0,,Z — ) is exactly
S7(0,) + 8, then, by Lemma 8(i), S (O, + de;) —NSJf(O,) <4,
and part (c) holds for ij when k = 1. Since f,,(0,,Z —§) =
Vii(0,.Z —8) — kP, then

D,f,(0,,Z—8)< D, f,(0,+de,,Z), (37)
D,g5(0,+8¢,.2)
=D, 1,(2)+Cf +aE[D; [, 141(0,11.Z= 0,41, —9)]
<D, T(Z)+Cf+aE[D, f; 11(0,y+8¢,,Z—0,,, )] [by (37)]

:ng;(oz—i-sez,Z). (38)

Thus, ngj[((i +6e,7Z) < ngjt((jt + e, Z), is true for
k=1land j=1,...,N.

Assume inductively that ng]—,(é, + 8¢, 2) < ngj,(ér +
0¢;,,,Z) is true for some k < N — 1. Then, by applying the
same steps already used, it follows that: (a) Dy, LG,(O, +6e;,Z) <
DU, (O, + 6e,y,Z); (b)~ DV, (O, + 0¢;, Z) < D2V, (0, +
8e;y1.2); and (¢) D, f (O, + 8¢, Z) < Dy f;(O, + dery1. Z).
Thus,

DZgjt(ét+Bek+l’Z)
:Dzrjr(z)+CJ$+0‘E[szj,t+1(0~r+1 +6€k’z_0t+l,t)]
<DZI—}t(Z)+C‘j1[e+aE[DZf‘j,t+l(0~t+l +Sek+l’z_0t+l,t)]
[by statement (c) above]

=ngjt(ét +0¢,12.2).

Thus, ngjt(ét + 8¢, Z) < ngj,(ét + d¢iyy.Z) holds for
every k; by Lemma 8, S§(O, + 8¢;) > S§(O, + deyy) for j =
1,...,N, and k = 1,..., N — 1. By identical steps, ngj,(O, +
dey, Z) < D;g,(0,+8e;,, Z) also implies D, U, (0, +0¢;, Z) <
DZLGr(ér + 6ek+lvz) and DZVjt(0~t + Sekvz) < DZ‘/j't(0~t +
oe,Z) for j=1,...,N and k =1,...,N — 1. Thus, by
Lemma 8, Sf(é, +8¢;) > .S‘j’f(0~, +8e.1).

To prove part (iii), we make use of the inequalities already
established in the proof of part (b):

SF(0, +be;) — S§(0,) < 8 (39)
Sf(0,+6e;) - S5 (0,) <6. (40)

Then, part (iii) of Theorem 5 follows directly from part (ii),
since SK(O, + de)) - SK(O,) < SF(O, +8e;_) = SF(0,) <--- <
S§(0,+8e)) —SF(0,) < 8, where the last inequality is just (39).
Similarly, using (40), S7(0,+de;) - S7(0,) <Sj(0,+8e;_;)—
S]E(Or) < S S]_I[:"(Ot + 861) - S]E(Ot) <0.

PRrOOF OF THEOREM 6. Part (i) follows from Theorem 4. Part (ii)
follows from Theorem 5, since Sy (O,) = S}/ (O, — de, + d¢;) >
Si(0, = de, + ey), as well as SF(0,) = SF(O, — e, + dey) >
SK(O, — 8¢ + 8e)).

Proor oF LeEmMA 9. Being zero, f; T+1(0~le’zj,T+l) satisfies
the Lemma for every j. Assume that f; ,,(O,,,, ) satisfies the
Lemma for all j and some ¢+ 1. Then, g;(O,, -), defined in ~(10)
is also independent of ke, for every ¢ > j, and so are g (0,,)
and g (O,, -). Therefore, U;(O,, -), defined in (11), is also inde-
pendent of kft for every g > j. Furthermore, since V,(0,, z;) :=
Uy (0,,21) + V2, (0, 7;,), with Vy, (0, z;,) := 0, this implies that
VJ"(ON” -) is independent of kft for every g > j~. Since f;,(0,, z,) =
Vi (0,,z;) — k¥ z;, by Theorem 3, then f,(O,, ") is independent
of k, for every g > j.

Proor oF LEMMA 10. Part (i) holds for period T + 1 because
fr+1 =0. Suppose part (i) holds for some 7+ 1 so that k¥ — x| <
D.f; 11102 | X7) = D.f; 1+1(0,, z | k) < 0. By definition of
8:(0,,Z), we get

ki —x; <D.gi(0,. 2| x{) = D.8(0,, 2| k¥) 0. (41)
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By Lemma 8, this implies that § (0 | xF) = Sf RO, | k¥). Next,

(0,,Z|XE) D.U,(0,.Z k")
F—kf+D.g(0,.Z|xF)—D.g/ (0,.Z|kF) if j=1;
= XE kE+ng,T(0,,Z|X,)+D 81.(0.Z | xF
28] jt(Ot’Z|k_]E) ng_/—l,z(otvz|kf) if 1<j<L.

By Lemma 9, g ,(0,, Z) does not depend on any unit expe-
diting costs above stage j — 1, and thus, g; ,(0,,Z | x ) =

81, (0,.Z| k%), so that the above expression reduces to
Ui(0,, Z| Xj) = D.U,(0,, Z | k)
=X —kj +D.gi (0, Z| X)) = D.g; (0, Z|Kf),  (42)

for every j. Next using the definition of g™ from (8), and

((3 X)) > (0 | k%) estabhshed above, we evaluate the
dlfference Dgﬂ(O,,Z | x7) — (0,,Z | k7). We get the
following.

D.g;(0,.Z| x{) —D.g; (0, Z | k})

0 if Z< SO, | k)
=1-D.g(0,, Z|kE) if SF(O, | kE) <z<SR(é | x5);
D.g(0,.Z | xF)—D.g(0,. Z|kf) if Z>SF(O, | x});
For SR(O [kf) <Z <SS .t(O, | X{), by convexity of gj,(O,, ),
and definition of é'JR(O | kf), we have that ngj,(é,, Z|k}) =0,
and thus —D gﬂ(Ot, Z | kE) < 0. Furthermore, for any such Z, by
definition of SR(O |X/E) D. gj,(O,,Z | xf) > 0. Since, by (41),
k¥ —xF <D .8:(0,. 2] )(, ) D.g(0,.z| k), this implies that,
for SR(O |[kf)<Z<S (0 | x;), we have —D g],(O,,Z|k ) >
kK — xr. Thus, by (41)
K —xF<D.gf (0,21 xf) = D.gf (0., 2| k¥)<0.  (43)
Substituting (43) into (42), we get

0<D.U (0, Z | x{) = D.Up(O, Z | k) S xf —kf. (44)

zYjt
By Lemma 8 and Theorem 4, the LHS of the inequality in (44)
implies that S (0 X)) <S50, k).
Next, we use the definition of V;,(O,, -) given in Theorem 3 to
get the following.
D.V(0,, Z | X{) = D.V, (0, Z | k)

=D.U,(0,.Z| xF)—D.U,(0,. Z | k¥)
—[D.V;7, (0,2 x\) =D,V (0, Z | k)]
=D.U,(0,.Z| x)—D.U,(0,. Z | k¥), (45)

by Lemma 9, since ijly,(O,, -) does not vary with kjE. By means
of (44), (45) then implies that

0<D.V, (0,,2 | x;)— D, ],(0,,2 |KF)<xj—ki.  (46)

Next, we use SE(O | x;) < SE(O, | k%) established above to eval-
uate D.V; (0,.Z | x¥) = D.V;/(0,. Z | kF).

DV, (01’ Z| XE) - D, V/T(Ot’ Z| kf)

0 ~ if Z< S5O0, | xP):

D.V,(0,.Z] X,E) if S50, /) <Z<
D.V,(0,,Z | x) = D.V;(0,, Z | k})

if Z> SE(O |kE)

SE(O, | K5):

If SE(O IXF)<Z<S; E(Q, | k%), then by convexity of V, 7.(0,.-),
and deﬁmtlon of Sf(O |Xf), we have that D, I,(O,,Z |,\/ )=0.
Furthermore for any such Z, by definition of § (0 |kE ),

D. ,,(0,,Z|kE)<0 Since, by (46), 0<D£VJ,(0,,Z|)(]E)—

D, ],(0,,Z|kE)< —k¥, this implies that, for SE(O IXF) <
Z<SE(0 |kF), we must have D.V, (0[,Z|X_]E)<)(_/ —k¥. Con-
sequently, applymg (46) we see that the above expression for
D, V+(01,Z| £)=D.V; (0,,Z|k¥) implies that

0<D.V,(0,.Z|x)=D.V,[ (0, Z| kKf) < xF —kE. (47)

Finally, because fj,(O,,z_i,) = V,-,*(O~,,zj,)
rem 3, then we get

D.f(0,, 2| x{) = D.f;,(0,, 2| kF)
=D, V+(01’Z|X ) Dz Jt (0[’Z|kE)_(XJ kf)’

gt

— k¥z;, by Theo-

which combined with (47) completes the proof of part (i), and
thus parts (ii)—(iv) as well.

ProoF ofF LEMMA 11. Being zero, fj,”l(ON”,,ij“,) satis-
fies the Lemma for every j. Assume D_f; (0,1, 2| X/ ) <
D.f; ,H(Om,z | k ~,) for all j in some perlod t + 1. Then, by
(10) we get D g],(O,,z | )(, l) <D, gﬂ(O,,z | k7)) for all j. By
Lemma (8), this implies S; k0, I X)) > (0 | k7)) for all j.
Following steps identical to those used in the proof of Lemma 10
to obtain (43), we now get

D.g; (02| xf)) = D.gif (O, 2| k) <0 (48)

Since V.,(0~,, Z) 1= U‘z(ét’ Zi) +Vio
DV,(0, 2| X)) =DV, (0,2 k[,
=D.Uy(0,, 2| x{-)+ DV, (02| X)) = D.Uy (0, 2| kS
—D.Vi, (0,.z|KE)). (49)

l,t(Ot’ th)’ we get

For anyk_l,lt is DV, 1,(6,,z|k )=D.U, 1,(6,,z|k "D+

D,V 2,(0,,z|k/ D= D U; 1,(0,,z|k/ 1), since, by Lemma 9,
Vi 2,(0,,z) does not vary w1thk - Thus, DV~ It(O,,z|kJ D=

D.U_, ,(O,,z|k £ ) for every k 1> and, consequently, by (49),
D, j,(O,,z|X] )—D, ,,(0,,z|k 1) reduces to

~th(0t’z | Xj—l)+DZUj:l.t(0~t’Z | XIE—I)

—D.U,(0,.2k" ) =D.UZ, (O,.z| k). (50)

Let S;,,(0, | x£,) := inf(argmin, U,(0,.Z | x£,)) and
S, 1,(0 | k%)) := inf(arg min, U (0,,Z | k% 1)) Because, by
Lemma 10(iii), D,U; |1(01’Z|X, 1)>D U/ L ,(0,,z|kj 1), by
Lemma 8 we musthave S ],(0 |X, DS, 1,(0 |k ). Con-
sequently, by (8), we get

DzUj_—l,t(ét’Z | X/E—l) _DzUj_—l,r(énz | kf—l)

DzUjfl,t(ét’Z|Xﬁl)_DzUj*I,t(éf’Z|kf*1)
if Z< Sy (0,1 xf )
= _DzUj—l,t(0~[7Z|k1‘E—l)
iij,l,,(é,|Xf;])<Z<S 1 (O, 1 KE )
0 ifZ>S8;_,,(0]k)).

IfZ>5§; 1,(0 |X, 1), then D_U; 1,(0,,z|)(j l) 0. Con-
sequently, if we have S, _1.,(0, |)(_,_1) <Z<S “(O | k) —
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D.U;_ l,(O,,z|k s thenalsomequallty -D_U; l,(0,,z|kj )
< DrU—l,r(Ot’Z | XJ—]) / lt(Ol’Z | ) hO]dS

Since DZU,,L,(O”,,Z | xE) — D,U] (0.2 | KE 1) 0 by

Lemma 10(iii), the above expression implies
DU, t(él’ z| XjE—l) DU, r(én z| kf—l)
<D.U; 11(0172|X1 1)_DU,11(Osz|k _1)- (51)
Substituting (50) and (51) into (49), we get
Vi 2 Xf0) = D.Vi(0r 2 [ Ky)
<D.U(0,.z| X)) +D.U_, (0,.2]x"))
—D.U, (0,.z]kF))
=[D.; (0. 2| xj-) +D.g_y (O 2| X))
+[D.gt, (0,21 X2 ) +D.giy (O, 2| XE )]
—[D.gf (0, 2| kE. )+ D.giy (O, 2] k5 )]
—[D.g, (0.2 | KE )+ D.gi, (O, 2 KE )] (52)

By Lemma9, D_g;, (0,.z| x£,)=0and D g7, (O,.z| k)
=0. Furthermore,

g1, r(0~,,Z|XjE71)+8]t1 1(0~,,Z|XjE71):gj71 t(0~t’Z|XjE—l)’ and
8- lz(Ot’Z|k 1)+g, 1;(0t’2|k] )= 8j— 1;(0nz|k, 1)
Therefore, (52) reduces to
DV, (0, z|xf\) =DV (0,, 2| kS )
<D (0, 2| Xfy) = D.g;i (0, 2| kF )
+D.g 1,02 xE) = D.gi 1 (0.2 k). (53)

By (48), D.gi (O z | X)) — D.gi (0,2 | ki) < 0. By
Lemma 10(ii), D g, 1 t(ONZIXJE ) —D.gi . ,(0,,2|kf 1) <0

Consequently, D (0,,2 | x/) — D, /,(0,,1 | k%)) < 0.
By Lemma (8), thrs inequality implies that Sj (0 | X/—l) >
Sf(é, | k%)) for all j, and, following familiar steps, that

DV (0.2 Xj-) = D.V, (0.2 | kj ) <0, (54)

By definition of f, (Theorem 3 and Lemma 10), expression
(54) implies that D, f, (O, z | x/)) — k) <0
which therefore completes the proof.

zJjt t
PrROOF OF LEMMA 12. By Lemma 11, this result holds for m =
j — 1. So, going forward we consider only m < j — 1. Being
€10, [ 144 (ONTH, 7; 741) satisfies the lemma for every j. Assume
inductively that szj,r+1(éz+1v z] Xﬁ) < sz/,z+1(61+1 .2 ki) for
all j and m < j — 1 in some period 7+ 1. Then, by (10),

D gjt(Ot’Z | Xm)

for all j and m < j—1 in 7. By Lemma (8), it follows that Sj’f(0~, |
xXE) > S,’f(0~, | kE) for all j and m < j — 1. Following the same
steps as in the previous proofs, we then get that, for all j and
m<j—1,

ngjt(ér’z |kf1)’ (55)

D¢ (0, 2| xn) <
ngj;(ot’ < | Xm)

D.g;(0,.z|ky) (56)
<D.g; (0, 2| ky). (57)

Fix j and m. Then,

Ui(0,.Z| ;) = D.U;(0,.Z | ky,)

7]1

=D, g,z (0[,Z|X )+D g; lr(Otszl)( )
8 (0,.Z|k;)=D.g;, (0,,Z|kl,

zYjt

) <0,

m

because ng}'(ét,Z | xE) < D, g;'(O,,Z | kE) by (56), and
D.giy (0., Z | xy) < D.giy (0, Z | k},) by Lemma 11(ii) if
m=j—2,or by (57) if m < j —2. Thus, D, /I(OI,Z | xE) <

D.U,(0,. Z | KE).

Next, we use induction on j to prove that D,V (0,, Z | xE) -
D, Vj,(0~,, Z | kE) < 0. We are considering any ] such that 0 <
m < j—1, so our base case is j =3, which allows only m = 1.
We get

D, V3t(0t7Z|X )—D, V%r(or’Z|kE)
=DZU3,(O[,Z|X1E)-|—DZV27(0,,Z|)(1E)
= D.Us,(0,, Z | k) = D. V5, (0,. Z | k{) <0,

since DUy (0,.Z| xF) <D, Uy, (0,.Z|k¥), and D.V;;(0,.Z| xF)
<D VZI(O,,Z |kE) follows directly from Lemma 11 (iii). Thus,
D. V;,(O,,Z|X1E) <D V3,(0,,Z |kF). Assume inductively that we
have D.V,,(0,,Z|xE)—D, q,(O,,Z|kE)<O for all ¢g=3,.

zVqt
j—1,and m <g—1. Then, we get

D.V,(0,,Z | xk) — D,V (0,, Z | k})
=D.U(0.Z|xs)+D.VZ, (0,.Z]| x})

Ui(0,, Z | k) =D,V (0, Z | Kl;)
<DV, (0., Z | xp) = DV, (0. Z | ky)
Ui(0,, Z | k5]
Vqt(O,,Z)]

[since D,U,(0,, Z | xE)< D

zYjt

<0. [by inductive assumption on D,

By Lemma 8, D v, (0,,Z | XE) < D.V,(0,, Z | kE) implies that

(0 | XE) > (O | kEY. Furthermore by steps used before,
D Vi(0,.Z | XE ) <D.V,(0,,Z | kE) yields DV, (O,,Z | XE) <
D V*(O,,Z | kE). Consequently, we get ij,(O,,Z | XE) <

Vi
D, ]j,(O,, Z | kE ) which completes the proof.

m

PROOF OF THEOREM 7. If m > j, thenby Lemma 9, Z (O,, z, | xE)
(0, ,7, | kE) and so the result holds. Thus, assume m < ;.
Consrder first j = L. In that case, Z5,(0,) = z;, v SE(O,), and
we get
th(ét | Xrlr;;) - fo(ét | ki)
=250, 1 xm) v 8101 | x) = 21, (0, 1K) v 1O, | k)

[by Theorem 4(ii)]

m

=21, VSE(O, | xm) v SE(O, | i)
— 2, VSE(O, | kEY v SR (O, | KE)

=L Vv SLt(Or | Xm) — 2Lt 4 SL:(Ot | kf,) [by Lemma 7] (58)

If m=j=L, then S} (O, | x) > SF (O, | k) by Lemma 10(iv);
if m< L, then SX (0O, | xE) > SR,(O | k,,) by Lemma 12(ii). In
either case, (58) implies that ZX (O, | x£) > ZF (O, | kE).

Now suppose j < L. Then, we address two dlstrnct cases.
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Case 1: m < j. In that case, by Lemma 12(11) SEO, | xE) =
S§(0~, | kE) for every i = j,..., L. Since Zf(O,) = /\,.L:j[z,, v
SE(0,)] by Theorem 4(i), it follows that

ZE(O, | kL) (59)

j+l 1(0 |km) (60)

fo(ét |Xm)
ZJE+1.1(0~t |X,€) >2Z

Applying (59) and (60), we get

ZR(O, | x5 = Z5(O0, | kb)) =125 (O, 1 xi) v S (O, | xi)]
/\Z]‘E+l,t(0~t |Xrﬁ)

—[Z5 (0, | k) v SK(O, | ki) IAZE,, (O, [Ks) 20,

since SR(O | XE) > (0 | kE) by Lemma 12(ii).
Case 2: m = j. In this case, by Lemma 12, S (0 |)(]E)
(0 | kE) for every q > j and, consequently, by Theorem 4(i),

+l t(O |X]E) l t(O |kE)

Now suppose ﬁrstthat (0 |)( )>Z oL t(O |)(E) In that case,
(0 1x/)= 75, (0, |X,) By Theorem 4(ii), ZR(0, k) <
]+l t(O |kE) Sll’lCC j+l t(o |X]E)> Jj+1, t(O |kE) it follows
that ZR(O IXEY=Z t(0,|k,’;71). Next suppose that S (0 Ixf)<

]H,,(O, [X[). Then, we get
Z5(0,1x)

=Z5(0,.1x)VSEO, | xF) by (13)]
(25,1 (001X Az v SE (O, I XENTVSE(O, 1 xF) [by (12)]
(25,100 | X))V SE (01 X))

[Z,,VSE(O,,IX]E)V (0, 1x)]
Z5 (0n I XP) ALz v SE (0, | XE)VSF (01 xE)]
[ (0 |XJE)<Z/+1 1(0~1 |X/E)]

=Z510, | X)) ALz v SE (O, 1 X)) [by Lemma 7] (61)

Continuing with the case when SR(O |)(/E)>ZJ+1 (0, IX7)
yielding (61), suppose that SR(O |kE)>Z 2.0, | k%) holds, so
that we have ZR(O |kF)= Z,+1 (0, |kJE~) Since S, ,,(OthjE)

(0 |kE) by Lemma 10 (iv), then S5(O, | xf) = 2%, (O, |k}).
§1nce ]+1z(0 |X]E)>Z]+1,(0 |k7), then (61) implies that
ij(0,|)(f)> ]t(q,|kf).~ If, on the other hand, we suppose
that S§(O,|k¥) <Z%,, (O, |k}EA), then the identical steps to those
used to derive (61) yield Z{(O,|k¥)=Z%, (O, |k})Alz;V
SR(O, [k)]. Thus,

Z§(0,1x}) =2} (O, |k}) = Zﬁ] (O 1XP) AL VS (O, 1 X))

25,10 [ k) Az v SH (O, k)] 20,

because SR(Ot | xF) > (O | kF) and Z,+1 (0, | X5 =
_1+17,(0, | k¥). This completes the proof.

PROOF OF THEOREM 8. It is straightforward to verify that Lem-
mas 1 and 2 continue to hold for a capacitated component system.
To prove parts (i) and (ii), we follow steps identical to those in the
proof of Lemma 3. The only additional step needed to establish

the feasibility of X/ is to prove that the expedited order X}, sat-
isfies the appropriate capacity constraint at every stage j. Using
Xf =X} — 6, we get

ijt T

XE = XE — & [definition of X*]

it ijt

< Xm [6>0]

< K.

[XE is feasible]

Thus, )_( L satisfies the appropriate capacity constraint, and is
thus fea51ble Since, by Lemma 3, XU; also leads to lower cost,
it is optimal, which proves (i) and (ii). To prove (iii), fix j. Let
g be a component in C(j) such that K, ; := min;¢;, K;;, so that
K7 =K,;. Consider any component i € C(j). Then, we get

X =x~

yt qjt

<K

[by part (i), XF is balanced]

o X7, is feasible]

= K;. [definition of K7]

Therefore, the expedited order for each component i relevant at
stage satisfies the capacity constraint K7, so that the capacity con-
straint for all such components i at each stage j can be replaced
with K without affecting either the optimal policy or the optimal
cost. This completes the proof.

ProOOF OF THEOREM 9. The proof of Theorem 9 follows exactly
the same steps as the proof of Theorem 2 since relaxing the
component-matching constraints of the general capacitated assem-
bly system allows the resulting relaxed system to inherit capacity
constraints from the original system. Thus, a general capacitated
assembly system can be reduced to an equivalent capacitated com-
ponent assembly system.

Proor oF THEOREM 10. The proof of Theorem 10 follows the
exact same steps as those used in the proofs of Theorems 3 and 4,
and therefore we omit the details.
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