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Abstract—Associative memory is a widespread self-learning
method in biological livings, which enables the nervous system to
remember the relationship between two concurrent events. The
significance of rebuilding associative memory at a behavior level
is not only to reveal a way of designing a brain-like self-learning
neuromorphic system but also to explore a method of comprehend-
ing the learning mechanism of a nervous system. In this paper, an
associative memory learning at a behavior level is realized that
successfully associates concurrent visual and auditory information
together (pronunciation and image of digits). The task is achieved
by associating the large-scale artificial neural networks (ANNs) to-
gether instead of relating multiple analog signals. In this way, the
information carried and preprocessed by these ANNs can be associ-
ated. A neuron has been designed, named signal intensity encoding
neurons (SIENs), to encode the output data of the ANNs into the
magnitude and frequency of the analog spiking signals. Then, the
spiking signals are correlated together with an associative neural
network, implemented with a three-dimensional (3-D) memristor
array. Furthermore, the selector devices in the traditional memris-
tor cells limiting the design area have been avoided by our novel
memristor weight updating scheme. With the novel SIENs, the 3-D
memristive synapse, and the proposed memristor weight updat-
ing scheme, the simulation results demonstrate that our proposed
associative memory learning method and the corresponding cir-
cuit implementations successfully associate the pronunciation and
image of digits together, which mimics a human-like associative
memory learning behavior.

Index Terms—Memristor, associative memory, artificial neural
networks, three-dimensional integrated circuit.

I. INTRODUCTION

BUILDING a neuromorphic computing system with a self-
learning capability like the brain has been investigated for a

long time [1]. The direct self-learning capability can potentially
allow the machines to have the adaptability of performing com-
plex tasks in a dynamic environment, like domestic robotics [2].
Self-learning capability of biological livings comes from asso-
ciative memory learning [3], which enables them to relate two
events that occur simultaneously [3], [4]. Through this learning
method, dogs can learn the sound of bells as a sign of food;
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people can remember a word representing an object [3], [4].
The investigations on associative memory at the cellular level
reveal that the changes in synaptic weight play a critical role
in the associative memory [3]. The weight of a synapse, the
amount of the chemical neurotransmitters, represents the con-
nection strength between two neurons. With the increase of the
connecting strength between neurons, the relationship between
two concurrent stimuli is memorized [3].

The emerging memristive devices are an ideal candidate for
electronic synapses since their resistance can be programmed
gradually, mimicking the changes in synaptic weight [5]–[9].
Some researchers have investigated to employ the memris-
tive synapses in a small-scale associative memory recently
[10]–[18]. However, these attempts only associate simple signals
together with several neurons (less than ten connecting synapses)
[10], [12], [13], [15]–[18]. More importantly, the information
carried by these signals is limited [3], [19]. However, the crit-
ical step for realizing a self-learning neuromorphic system is
to enable the system a capability to associate several pieces of
sophisticated information together [19], [20].

In the human brain, the different types of signals, e.g., sound,
vision, are processed at different locations through different
types of neural networks [3]. Having similar signal process-
ing capabilities, the ANNs can process different types of sig-
nals independently [21]–[24], and abstract the input informa-
tion to the outputs efficiently. For example, the convolutional
neural networks (CNNs) are generally used for processing two-
dimensional (2D) image signals [23], while recurrent neural net-
works (RNNs) are more suitable for processing time series sig-
nals [24]. In a classification problem, the outputs of these neural
networks are a set of scores representing the probabilities of the
input belonging to a particular category. Inspired by the working
mechanism of ANNs and distributed signal processing method-
ology in the brain, a novel behavior level large-scale associa-
tive neuromorphic architecture has been proposed. Instead of
relating pure analog signals together, this architecture associates
multiple ANNs together by adding one more layer of the neural
network, referred to the associative neural network in this paper.

The proposed architecture encodes the probabilistic scores
of the ANNs into the frequencies and magnitudes of spiking
signals through several specifically designed Signal Intensity
Encoding Neurons (SIENs). The spiking signals would be fur-
ther imported into the associative neural network for a large-
scale analog-based association. In this way, the information
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preprocessed and carried by the ANNs is associated with each
other. In this paper, we theoretically discussed the methodol-
ogy of realizing behavior level large-scale associative memory
learning, and the corresponding circuit designs. The detailed
contributions can be summarized as:

1) Instead of relating signals, a large-scale associative neu-
romorphic architecture is proposed to associate ANNs
together for implementing a behavior level associative
memory learning. Particularly we demonstrated an asso-
ciative memory behavior on learning the pronunciation
(auditory signal) and image (visual signal) of digits in this
paper.

2) In order to associate the outputs data of the ANNs together,
several circuitry modules are designed: SIENs encoding
the input, e.g., image, audio, into the magnitude and fre-
quency of an analog spiking signal, and a 3D memristive
synapse array serving as the associative neural network,
and a novel memristor weight updating scheme with no
selector devices;

3) Compared with other state-of-the-art memristor-based as-
sociative memory models (<10 synapses) listed in Ta-
ble V, the proposed 3D large-scale memristive synapse
model successfully relates the signals from 20 neurons to-
gether with 100 memristive synapses, realizing a behavior
level large-scale associative memory learning.

This paper is organized as follows: Section II introduces the
background of associative memory in biology; Section III dis-
cusses the proof-of-concept method that realizes a behavior level
large-scale associative memory learning; Section IV demon-
strates the corresponding circuitry module designs; Section V
comprehensively summarizes our work.

II. ASSOCIATIVE MEMORY IN BIOLOGY

Associative memory was initially investigated at a behav-
ior level by Ivan Pavlov through a series of experiments with
dogs [3]. In the experiments, Pavlov first rocked the bell and
then provided the food to the dog [3]. After a few repetitions,
Pavlov noticed that the dog started to salivate when the bell
sounded around him even with no food presented. By studying
this phenomenon, Pavlov concluded that salivation, normally
evoked by a visual input from food, can also be invoked from a
disparate signal perception pathway, like auditory sensation.

In Pavlov’s study, the dog food is defined as an unconditional
stimulus (US) because it would unconditionally evoke the sali-
vation reflection without learning procedures. Meanwhile, the
sound of the bell is defined as a conditional stimulus (CS) be-
cause its evocative capability is acquired by learning. Pavlov’s
study reveals that the stimulus signals from two unrelated events
can be associated with each other by their concurrence repeat-
edly. This self-learning behavior by relating concurrent events
phenomenon is widely referred to associative memory [3].

The associative memory learning at the cellular level was in-
vestigated by Dr. Kandel’s research on Aplysia (2000 Nobel
Prize) [3]. As illustrated in Fig. 1, the associative memory learn-
ing mechanism in Aplysia is simplified into two signal pathways
marked in blue and red respectively.

Fig. 1. (a) Conditional stimulus pathway and unconditional stimulus pathway
in the cellular level associative memory learning mechanism of Aplysia; (b) a
larger magnitude of the received signal at gill motor neuron under paired stimulus
from Siphon (CS) and Tail (US) [3].

The US applied on the tail unconditionally evokes the
shrinking response of a gill motor neuron. However, the CS
from the siphon does not invoke the response of the gill motor
neuron alone due to the high signal attenuation effect of the
synapse connecting the sensory neuron and response neuron.
The higher attenuation effect of the synapse stimulates, the
lower received input signal at postsynaptic neuron (motor
neuron). This attenuation effect of the synapse comes from
the chemical neurotransmitter molecules released from the
synapse. When the neurotransmitter arrived at the terminal of
the postsynaptic cell, a spiking signal would be stimulated.

The magnitude of the stimulated spiking signal at the postsy-
naptic cell is highly dependent on the amount of the neurotrans-
mitter received. A larger amount of neurotransmitter molecules
stimulates a larger magnitude spiking signal and vice versa.
The amount of the neurotransmitter determines the connec-
tion strength between neurons, which is widely referred to the
“weight” of the synapse.

Normally, the gill motor is unresponsive to siphon stimulation
of the siphon before learning. However, by performing a training
experiment which consisted of applying a shock to the tail (US)
and touching the siphon (CS) simultaneously and repeatedly,
the gill motor neuron became more responsive to inputs from
the siphon sensory neuron (CS). As depicted in Fig. 1(b), the
stimulus from US and CS are paired and overlapped with each
other in time that is considered as a trigger condition of asso-
ciative memory learning at the cellular level [3]. The increased
magnitude of the gill motor response results from a stronger
synaptic connection induced or imprinted between the sensory
neuron of the siphon and the motor neuron of the gill during the
associative learning process. This cellular association learning
behavior comes from the increment connection strength between
the sensory neuron and response neuron due to the repeatedly
and simultaneously US and CS.

III. FROM SMALL-SCALE TO LARGE-SCALE ASSOCIATIVE

MEMORY LEARNING

In this section, we discuss how to extend the associative mem-
ory learning from a cellular level associating pure signal to a be-
havior level having the capability of associating multiple pieces
of sophisticated information together.
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Fig. 2. Cellular level associative memory model with a memristor as the elec-
tronic synapse.

In the cellular level associative memory, a larger voltage re-
ceived at the postsynaptic neuron demonstrates a successful as-
sociative memory learning resulting in less attenuation effect of
the synapse. Our previous work [25] realizing this less attenua-
tion effect physically through a memristive synapse is illustrated
in Fig. 2.

In this model, the cellular level associative neural network
is simplified (Fig. 1) into two main signal pathways: condi-
tional and unconditional pathway, respectively. The uncondi-
tional pathway directly connects the sensory neuron A1 (US)
to the response neuron, while the conditional pathway connects
sensory neuron B1 (CS) to the response neuron through a mem-
ristive synapse.

On the conditional signal pathway, an analog summation de-
vice is used to couple conditional stimulus from neuron B1 and
an unconditional stimulus from neuron A1. Initially, the stimulus
signal from B1 to response neuron is small due to the attenuation
effect caused by the high resistance of the memristor. Further-
more, the magnitude of the spiking signals generated by A1 and
B1 are both smaller than the set voltage of the memristor, mean-
ing the signals from A1 and B1 cannot update the weight of
memristive synapse alone. Consequently, the associative mem-
ory learning cannot be achieved. However, when the neuron A1
and B1 fire simultaneously, their coupled output spiking sig-
nals would potentially exceed the set voltage of the memristive
synapse, consequently decreasing its resistance. As a result, the
magnitude of the signal arriving in response neuron is increased
indicating this model perfectly reproduces the cellular level as-
sociative memory learning phenomenon in Aplysia.

The main drawback of the cellular level associative memory
model is the associated signals can only carry limited sophisti-
cated information restricting the capability of the system from
learning more complex information. Nevertheless, the pieces of
sophisticated information can be processed by various ANNs.
The outputs of an ANN are usually a probabilistic number
(score) between “0” to “1”, representing a degree of predic-
tion accuracy. The score indicates the probability of the original
import data, e.g., video, voice, belonging to a specific category.

In this way, the information carried by these images, voices,
etc., is transformed and embedded into a series of probabilistic
scores. Therefore, if these scores are associated together, the
information carried by these scores theoretically would be also
related together. In this paper, this idea is implemented by us with
a large-scale associative neuromorphic architecture illustrated in
Fig. 3.

Fig. 3. Proposed large-scale associative neuromorphic architecture partitioned
into two pathways constructed by two ANNs.

As illustrated in Fig. 3, the original data is first processed by
the ANNs. The information carried by the original data is ab-
stracted into the output scores of ANNs. Then the scores are
further imported into the SIENs, Next, SIENs encode the scores
into a series of spiking signals whose magnitudes and frequen-
cies corresponding to the values of the scores. The highest scores
would be transferred into a spiking signal with the highest peak
magnitudes and shortest internal between spikes, accordingly.
At last, the spiking signal outputs of SIENs would be delivered
to a synaptic array for a large-scale association. The size of the
synaptic array is i× j which are the index of SIENs at two stim-
ulus pathways as illustrated in Fig. 3. The input original data of
these two stimulus pathways could be visual and auditory sig-
nals, corresponding to the presence of food and sound of bells in
the Pavlov’s behavior level associative memory learning experi-
ment. In this paper, we associate the visual (image) and auditory
data (pronunciation) of digits together.

In the synaptic array, the spiking signals couple and superpose
with each other at the synaptic cells described by the following
equation:

Vsynapse = Vcoupled = VAi
+ VBj

, (1)

where VAi
and VBj

are the output spiking signals from SIEN
Ai and Bj , respectively. Vsynapse is the voltage potential
between the terminals of the synapse, which is the coupled sig-
nal from VAi

and VBj
. Since the scores from ANNs are dif-

ferent (within the interval [0 1]), the magnitudes of the VAi

(VBj
) are various accordingly. Apparently, the largest spik-

ing signals Vsynpasemax
would be generated from the largest

signals of SIEN Ai (VAmax
) and Bj (VBmax

). An associa-
tive memory learning behavior would occur under the condi-
tion of Vsynpasemax

> Vset, where Vset is the set voltage of the
memristor.

IV. LARGE-SCALE ASSOCIATIVE NEUROMORPHIC

ARCHITECTURE IMPLEMENTATIONS

A. 3-D Memristor-Based Synaptic Array

The memristive device, also referred to Resistive Random-
access Memory (RRAM), is widely applied as an ideal electronic
synapse candidate due to its programmable resistance [13].
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Fig. 4. Illustration of the switching mechanism of a memristor. The memristor
has two states (HRS and LRS) marked as (1) and (3), and two transition states
(set and reset processes) marked as (2) and (4), respectively. Note that this paper
would mainly focus on modeling the set process indicated as a remembering
process instead of a biological disremembering process.

The resistance of a memristor is modified with the applied volt-
age on its terminals excesses a specific value, called as its set
voltage. The resistance modification from the high resistance
state (HRS) to the low resistance state (LRS) is defined as a set
process. Typically, the memristor is constructed by the metal-
insulator-metal configuration. The decrease of the resistance is
caused by the formation of the conductive filament in its insulator
layer. The increase of synaptic weight, indicating a successful
associative memory learning behavior [3], can be realized by
programming the resistance of the memristor from its HRS into
LRS. Consequently, the received voltage/current of the postsy-
naptic response neuron would increase, demonstrating the ac-
complishment of the learning processes [3].

In the metal oxide, the bonding between oxygen ions
and metal atoms is breakable. Under the high electric field
(>10 MV/cm) stimulated by the applied voltage, some oxy-
gen ions in the metallic oxide would escape from the con-
straint of the bonding force and drift toward the anode side of a
memristor [26]. Fig. 4 demonstrates the switching states of a
memristor and the corresponding formation of CFs. The defi-
ciency of oxygen ions leaves the oxygen vacancies or metal
precipitates, which would further construct the CFs [27], [28].
As a result, two current paths exist in its LRS. One is through the
original oxide and the other is through CFs. These two paths in
the parallel lead to the decline of the memristor resistance. In the
reset process, the oxygen ions at the interface migrate back into
the oxide to refill the oxygen vacancy or re-oxidize the metal
precipitates to update the resistance of the memristor back to its
HRS.

The memristive synapse in this paper is used for demonstrat-
ing a biological-like associative memory mechanism (Fig. 1) in-
dicating the synaptic connection strengthening between neurons
as the associative learning accomplishment. This strengthening
behavior is modeled as the memristor resistance switching from
HRS to LRS. Therefore, this paper would mainly focus on mod-
eling the set process of the memristor without discussing the
reset process, which reduces the connection strength between
neurons and is considered as a biological disremembering phe-
nomenon [3].

In this paper, the memristive synapse is modeled with the fila-
ment growing method [29]. As illustrated in Fig. 4, the resistance

Fig. 5. Current paths of the memristor at the HRS and LRS.

switching between HRS and LRS comes from the construc-
tion/deconstruction of the CFs in the metallic oxide. The CFs in
the oxide provide an alternative current path with lower resis-
tance. By modeling two current paths with different resistances,
notated with RD (dielectric resistance) and RC (resistance of
CFs), the memristor models at HRS and LRS are illustrated in
Fig. 5. Since the disconnection of the memristor only occurs at
the interfacial region, the resistance of LRS is actually combined
with two cascaded parts, RD and RC .

The currents in the CFs and intact oxide region are modeled
with metal-like (ICF ) and hopping current (Ihop), respectively.
The resistance of HRS is mainly determined by the RD with the
hopping current Ihop, and the resistance at LRS is dominated
by the RD with the current ICF . The current ICF and Ihop are
governed by the equations in the filament growing method [29]:

Ihop = I0
(
πw2/4

)
exp (−x/xT ) sinh (Vgap/VT ) , (2)

ICF =
πw2VCF

4ρ (x0 − x)
, (3)

where x0 is the initial value of gap distance. xT and VT are the
characteristic length and voltage in hopping, respectively. Vgap

and VCF are the voltage over the gap region and CF region,
respectively. In the set process, the w, and x are growing under
the stimulus voltage by the following equations:

dx/dt = af exp (− (Ea − αaZeE) /kBT ) (4)

dw/dt =

(
Δw +

Δw2

2w

)
fexp

(
−Ea − αaZeE

kBT

)
. (5)

The parameters in Equ. (4) and (5) are listed in Table I.
Based on the conductive filament evolution concept discussed,

a memristor model is developed for the memristive synapse ar-
ray simulation in our large-scale associative memory learning
system. Fig. 6 illustrates the V-I characteristic curve compari-
son in the set process of our memristor model and the measure-
ment data. As depicted in Fig. 6, the resistance of the memristor
model would switches from its HRS (1.6 MΩ) to LRS (64 KΩ) at
∼3.2 V. the current is at ∼50 μA, which matches the mea-
surement data. The current response mismatch above 50 μA
comes from the activated current-compliance for protecting the
device on the measurement setting. The detailed parameters of
the memristor model are listed in Table I.
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TABLE I
PARAMETERS OF THE MEMRISTOR MODEL

Fig. 6. Set switching V-I characteristic curve of the memristor. The current
response mismatch above 50 µA comes from the activated current-compliance
for protecting the device on the measurement setting.

TABLE II
MEASUREMENT RESULTS OF THE MEMRISTOR

The measurement data in Fig. 6 come from the memristive
device (Cu/TaOx/Rh) fabricated at the Micro and Nanofabrica-
tion Laboratory at Virginia Tech [30]. In the memristor, Copper
(Cu) serves as a top metal electrode, oxygen-deficient tantalum
oxide (TaOx) as solid electrolyte and Rhodium (Rh) as a bottom
electrode. The device has been characterized by monitoring the
forming voltage (Vform) when conductive filaments (CFs) are
being formed initially. The reset voltage (Vreset), the set volt-
age (Vset), and the resistance switching characteristic with the
applied ramp-shape stimulus having a rate of 2.0 V/s. Table II

Fig. 7. 3D vertical memristive synapse structure.

Fig. 8. Top view of the 3D vertical memristive synapse structure.

Fig. 9. Side view of the 3D vertical memristive synapse structure.

lists the characteristic parameters of the fabricated memristor.
For this device, the set voltage is 2.85 V and the reset voltage
is −3 V.

The traditional large-scale memristor array is fabricated in a
2D crossbar configuration which suffers the large design area,
power consumption, etc. Therefore, in this paper, a vertical mem-
ristor structure is used to offer the following promising bene-
fits, the design area, and power consumption would be reduced
by 50% [6] and 35% [31], respectively. Furthermore, a plane
is used as the layer access port due to the large resistance at-
tenuation effect of the narrow nanowire on accessing multiple
memristors [32].

Figure 7 illustrates our vertical 3D memristive synapse array
structure. The geometry of the structure is illustrated in Fig. 8
and Fig. 9. This structure uses vertical planes and monolithic
inter-tier vias (MIVs) serving as horizontal and vertical access
ports. The MIVs electrode and the plane materials were modeled
as copper and rhodium, respectively. The TaOx is used as mem-
ristor material sandwiched at the intersection region between
the horizontal plane and the vertical MIVs. The 3D vertical
memristor structure can be modeled with an array configura-
tion illustrated in Fig. 10. Since the memristor at each layer are
connected with each other with a plane metal physically, the port
denoted as Port_Pi, can access each memristor with the plane
resistance denoted as Rplane. The resistances of the MIVs is
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Fig. 10. Model of the vertical memristive synapse array.

TABLE III
PARAMETERS OF OUR VERTICAL 3-D MEMRISTIVE SYNAPSE MODEL

TABLE IV
GEOMETRY AND MATERIALS OF OUR VERTICAL 3-D MEMRISTIVE SYNAPSE

denoted Rv . The values of the parasitic capacitance between the
planes (Cp_p), the plane to the via (Cp_v), and the MIV to the
MIV (Cv_v) are listed in Table III. These values are extracted
by the ANSYS Q3D Extractor, an industry standard tool for
capacitance and resistance computation. The detailed geometry
of the 3D vertical memristive synapse structure is listed in Ta-
ble IV. Due to the extremely small parasitic capacitance (∼fF),
the effect of parasitic capacitance in our design is negligible.

B. Signal Intensity Encoding Neuron Design

In the proposed behavior level large-scale associative mem-
ory learning, SIENs would be used to encode the analog input
signals into the frequency and magnitude of the spiking signal
outputs. As a result, the proposed SIENs implement two unique

Fig. 11. Signal Intensity Encoding Neuron (SIEN) schematic.

characteristics: input dependent firing frequency/magnitude,
and simultaneous excitatory/inhibitory outputs. Although these
features widely exist in biological neurons [3], other state-of-
the-art neuron designs [33]–[36] lack the realization of these
features. The associative memory learning is realized through
updating the synaptic weight with a concurrent firing behavior
of the sensory neurons at US and CS pathways. The weight up-
dating behavior occurrence depends on whether the magnitude
of the coupling signal from the sensory neurons exceeds the set
voltage of the memristor (electronic synapse). Thus, the SIENs,
as the sensory neurons, are specifically designed to generate
a spiking signal, whose magnitude is proportional to the input
stimulus (see Equ. (6)–(9)). The model of SIEN is simulated by
TSMC 180 nm technology.

As a result, the external stimulus signal with lower magni-
tude generates the spiking signals with smaller magnitude ac-
cordingly, which thus can not trigger the associative memory
learning. As introduced in Section III, the coupled spiking sig-
nal from neuronsAi andBj is responsive to updating the weight
of memristive synapse. The higher main frequency (smaller in-
tervals between spikes) of the spiking signal would increase the
opportunity of superposition of two spiking signals.

As depicted in Fig. 11, there are three central parts of an SIEN:
Current Starved Ring Voltage Controlled Oscillator (VCO), a
switch pair, and a resistor-capacitor (RC) oscillator. The analog
input signal would firstly be imported into the Current Starved
VCO to generate an oscillating signal, and its frequency is pro-
portional to the input signal magnitude. Next, this oscillating
signal controls a switch pair constructed with a PMOS (positive
channel metal oxide semiconductor) transistor and an NMOS
(negative channel metal oxide semiconductor) transistor. By
controlling the oscillating signal, the switch pair would be charg-
ing and recharging the RC oscillator to generate a spiking sig-
nal sequence. The frequency of the generated spiking signal
sequence by RC oscillator would be proportional to the magni-
tude of the input analog signal due to the Current Starved VOC
controlling the “on” and “off” switching frequency of the switch
pair. The neuron firing frequency is determined by the Current
Starved VOC with the governing equation [37]:

ffire =
Id

NCtotalVDD
, (6)

where N is the number of inverter stage, Ctotal is total charging
and discharging capacitance of one stage inverter in Current
Starved VOC, and VDD is the power supply voltage. The firing
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Fig. 12. Positive and negative output spiking signals of an SIEN with 700 mV
square wave signal as an input stimulus.

Fig. 13. (a) Characteristics curve of SIEN outputs (b) Distribution of image
and speech recognition scores on digits using the datasets: MNIST and Spoken
Digit Commands Dataset.

frequency is determined by the current Id, controlled by the input
stimulus as illustrated in Fig. 11.

Moreover, the source terminal of the PMOS transistor in the
switch pair is connected to the input signal serving as a charge
provider to control the magnitude of the output spiking signal.
The effective switching resistances of the PMOS and the NMOS
are denoted as Rp and Rn, respectively.

The governing equations of the charging and discharging pro-
cesses are listed as:

Vcharge =
R1

R1 +Rc
× Vinput

(
1− e−τt

)
, (7)

Vdischarge =
R1

R1 +Rp +R2
e−t/(RdC1) × Vinput, (8)

where Rc equals R2 +Rp, τ is (R1 +Rc)/R1RcC1, Rd rep-
resentsR1Rn/(R1 +Rn). The steady-state voltage value of the
output is governed by the equation:

Voutput =
R1

R1 +Rp +R2
Vinput. (9)

Moreover, the SIENs could also generate positive and negative
signals simultaneously, which is critical for our novel memristive
synapse updating method. Fig. 12 demonstrates the positive and
negative output spiking signals of an SIEN with 700 mV square
waveform as the stimulus input. The firing response frequency
and magnitude corresponding to the different input voltages is
illustrated in Fig. 13(a). In this paper, the pronunciations (audio

Fig. 14. Novel memristor weight updating scheme.

signal) and images (visual signal) of digits are associated to-
gether to produce a behavior level associative memory learning.
The SIENs need to map the scores to the frequency and magni-
tude of their outputs. As depicted in Fig. 13(b), the scores mainly
distribute within the intervals [0 0.05] and [0.95 1], indicating
the lowest and highest scores respectively. This means the input
of SIENs will be within two separated ranges, below 0.05 V and
above 0.7 V, accordingly, which are marked in Fig. 13(a).

The scores in Fig. 13(b) are generated by using the datasets
of Modified National Institute of Standards and Technology
database (MNIST) for digit image recognition [38] and Spo-
ken Digit Commands Dataset (SDCD) for digit speech recogni-
tion. SDCD is a subset of the Speech Commands Dataset from
Google containing 10,000 training and 1,000 test recordings cor-
responding to spoken digits from 0 to 9 [39].

C. Cellular Level Small-Scale Associative Memory Learning
With Novel Memristor Weight Updating Scheme

The cellular level small-scale associative memory model with
memristor discussed in Section III (see Fig. 2) requires addi-
tional nanowires and adders for the signal coupling, which in-
creases the circuit design area. To address this issue, we proposed
a novel memristor weight (resistance) updating scheme without
the extra modules of the previous work [25]. Furthermore, the
memristor resistance updating behavior of the proposed scheme
is controlled by the applied voltage at its two terminals rather
than through a selector device [40]–[43]. Thus, the proposed
memristor updating scheme makes a nanoscale 3D synaptic ar-
ray practicable, since the design area of the 3D memristor array
is mainly limited by the large selector device, e.g., transistors or
diodes [44].

As depicted in Fig. 14, the memristor in this novel scheme re-
ceives two opposite polarity signals at its terminals whose volt-
age potential difference is the stimulus signal for triggering resis-
tance updating of the memristor. The spiking signals from neu-
ron B1 and A1 can be considered as the waveforms propagating
in the wires. With the impedance matched terminals, no reflec-
tion signals would cause a distortion of the spiking signals. The
weight (resistance) of the memristor would be modified when
the voltage potential at the terminals exceeds its set voltage.

Figures 15 and 16 illustrate the simulation results of the pro-
posed memristor weight updating scheme. The output spik-
ing signal of SIEN B1 is negative. In Fig. 15, two square
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Fig. 15. Input analog signals and output spiking signals of Neuron A1 and
Neuron B2.

Fig. 16. Voltage potential at terminals of the memristor, which is the super-
posed voltage from Neuron A and B outputs, and the corresponding current.

inputs of SIENs are not perfectly synchronized and only par-
tially overlapped. At the non-overlapping part, both signals are
small, and cannot trigger the memristor switching alone (see
Fig. 16).

At the overlapping part, two signals are superposing their
peak values with each other. Consequently, the magnitude of
the superposed spiking signal will be larger than the set voltage
of the memristive synapse, resulting in a resistance modification
behavior. As illustrated in Fig. 16, the current after learning is
larger than the current before learning indicating a successful
associative memory learning behavior.

D. Behavior Level Large-Scale Associative Memory Modeling

By employing the SIENs, 3D memristive synapse array, and
the novel memristor weight updating scheme, we produced and
mimicked a behavior level large-scale associative memory learn-
ing illustrated in Fig. 17. Unlike the cellular level associative

memory with two simple nanowires (Fig. 2), the US and CS
pathways in our behavior level large-scale associative memory
learning system are constructed by two ANNs that can prepro-
cess and inference the visual and auditory signals respectively. In
Fig. 17, the auditory signal and the visual signal of digit number
“3” are separately imported into the ANNs for preprocessing.
The output is ten scores indicating the probability of the input
original data belongs to a specific category. The scores for au-
ditory and visual information of digit 3 are listed in Fig. 17(a).
In this paper, we use MNIST [38] and SDCD for the visual and
auditory input data, respectively. SDCD is a subset of the Speech
Commands Dataset from Google containing spoken digits from
0 to 9 [39]. We can observe that the scores for “3”, marked in
red, are highest among other scores. The values of these scores
would be further mapped into corresponding spiking signals by
SIENs.

Generally, the neural networks of the brain are categorized
into training and operating phases [3]. In the operating phase,
the topology of the neural network and its synaptic weights are
constant, whereas the synaptic weights are changeable in the
training phase [3].

As illustrated in Fig. 17(a), the associative memory learning
paradigm is divided into two phases: the preprocessing phase and
the association phase. the ANNs in the design are used for the
operating phase, which means their synaptic weights are trained
and fixed. The function of these ANNs is to preprocess the orig-
inal data from the real world, e.g., visual and auditory signals.
The features extracted by them are the image and speech recog-
nition results. Specifically, their outputs indicate the probability
of the input (original data) belongs to a specific category.

At the association phase, the prediction scores would be im-
ported into the SIENs to transform the numerical value into a
sequence of spiking signals, so that they can be coupled together
through the memristive synapse array.

In Fig. 17, the SIENs from visual data is notated as Ai within
the unconditional signal pathways. Meanwhile, the sensory neu-
rons (Bj) at conditional signal pathways are connected to the
response neurons through a memristive synapse array. Through
the SIENs, the largest scores would generate a spiking signal
with the largest magnitudes and highest frequencies and vice
versa. The memristive synapses connecting the sensory neuron
Ai and Bj are notated as M_Ai_Bj . The memristive synapse
array for the unconditional pathways (red-dash lines) is mod-
eled by the 3D vertical memristor structure. As illustrated in
Fig. 17(a), the memristive associative neural network contains
20 neurons and 100 memristive synapses.

Figure 17(b) and (c) depict the simulation results. With dif-
ferent analog input signals corresponding the scores, the super-
posed voltage difference at the memristive synapses is different
accordingly. The synapse of M_A4_B4 has the largest input
stimulus due to the corresponding highest scores. Fig. 17(b) il-
lustrates the detailed current response in memristive synapse
M_A4_B4. When only the auditory signal is provided (no fir-
ing behavior in Ai neurons), the current in M_A4_B4 is smaller
(<1uA) than the threshold of the postsynaptic neuron [45], [46].
Meanwhile, as introduced in Section II (Fig. 1), the key condition
of a successful associative memory learning is to increase the
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Fig. 17. (a) Behavior level large-scale associative memory learning procedure. (b) the detailed associative memory learning signals at the memristive synapse of
M_A4_B4. (c) the resistance values of the memristive synapses (HRS and LRS) before and after associative memory learning. The associative memory learning
only occurs at M_A4_B4 marked in the red square.

synaptic connection strength between the sensory neuron and
the response neuron so that the received signal at the postsy-
naptic neuron would exceed its threshold. As a result, the firing
phenomena would occur in the postsynaptic neuron. Therefore,
the critical design condition of the memristive synapse is its re-
sistance range between the HRS and the LRS should be large
enough, so that its response currents before and after learning
process are smaller and larger than the threshold of the post-
synaptic neuron, respectively. Thus, the effect of the nonlinear
updating feature of the memristive synapse on associative mem-
ory learning is negligible, as long as its resistance range is suf-
ficiently large as illustrated in Fig. 17(b).

During the learning process, the visual and auditory input
are presented simultaneously (firing behavior occur in Ai and
Bj neurons), the current in M_A4_B4 is gradually increasing,

which indicates the resistance reduction of the memristor and
the associative memory learning behavior is accomplished.

From Fig. 17(c), we can observe that the memristive synapse
of M_A4_B4 switches from its HRS (1.6 MΩ) to its LRS
(64 KΩ). On the contrary, other memristive synapses, connect-
ing the sensory neurons receiving lower input analog stimulus
signals, do not switch since the voltage potentials of the spiking
signals at their terminals are lower than the set voltage of the
memristors.

The simulation results indicate that two outputs of ANNs
with the highest probability numbers are associated together
to realize a large-scale associative memory learning purpose,
which not only relates the pure signals but also associates
the large-scale ANNs together. Table V lists the comparison
between other state-of-the-art memristor-based associative
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TABLE V
COMPARISONS OF SCALES AND ASSOCIATION CAPABILITY WITH OTHER RELATED WORKS

[18]

[16]

[17]

[15]

[12]

[10]

[14]

memory learning works and our approach mainly in the scale
of the learning system and association capability. As we can
observe that our approach increases the number of neurons and
memristive synapses to 20 and 100, respectively. Unlike other
works employing a few memristive synapses, our approach uses
an advanced vertical 3D memristive synapse structure. More-
over, the electrical characteristics of the structure are analyzed.
At last, the association methodologies are also different. Our
design associates two large-scale ANNs together enabling the
system to have the capability of learning sophisticated informa-
tion from the real world, e.g., visual and auditory signals. To
our best knowledge, this is the first time of proposing this idea
and realizing with memristive devices, making our work has the
uniquely innovative contribution to the neuromorphic field.

V. CONCLUSION

In this paper, we proposed and analyzed a novel behavior-
level large-scale associative memory learning methodology with
the corresponding neuromorphic circuitry designs including
SIENs, 3D memristive synapse array, and a synapse updat-
ing scheme. Instead of another cellular level associative mem-
ory learning methods, our approach successfully associates two
large-scale ANNs together, realized by associating the outputs
of ANNs with an extra layer of neural network referred to an
associative neural network.

The outputs of the ANNs representing the probabilities of
the input belonging to a particular category or prediction would
be encoded into the magnitudes and frequencies of spiking sig-
nals and associated together for the corresponding memristive
synapse weight updating. The coupling signal from the two high-
est values of the outputs of ANNs would decrease the resistance
of the memristive synapse from HRS to LRS. The decrease of
the synaptic weight demonstrates that the connection between
presynaptic and postsynaptic neurons is becoming strong, which

further indicates an accomplishment of successful associative
memory behavior.

Through a large-scale simulation with 20 neurons and 100
memristive synapse array, the proposed behavior level associa-
tive memory learning system demonstrates the ability to asso-
ciate the auditory and visual information of digits together like
our brain.
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