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Abstract—Teaching topics related to high performance com-

puting and parallel and distributed computing in a hands-on

manner is challenging, especially at introductory, undergraduate

levels. There is a participation challenge due to the need to secure

access to a platform on which students can learn via hands-on

activities, which is not always possible. There are also pedagogic

challenges. For instance, any particular platform provided to

students imposes constraints on which learning objectives can

be achieved. These challenges become steeper as the topics

being taught target more heterogeneous, more distributed, and/or

larger platforms, as needed to prepare students for using and

developing Cyberinfrastructure.

To address the above challenges, we have developed a set

of pedagogic activities that can be integrated piecemeal in

university courses, starting at freshman levels. These activities

use simulation so that students can experience hands-on any

relevant application and platform scenarios. This is achieved by

capitalizing on the capabilities of the WRENCH and SimGrid

simulation frameworks. After describing our approach and the

pedagogic activities currently available, we present results from

an evaluation performed in an undergraduate university course.

Index Terms—Computer Science Education, High Performance

Computing, Parallel and Distributed Computing, Cyberinfras-

tructure, Simulation

I. INTRODUCTION

Teaching topics related to High Performance Computing
(HPC), including many topics in Parallel and Distributed
Computing (PDC), is most effective when students have
opportunities for hands-on learning. The common approach
is to provide students with access to a platform on which
they can develop and/or execute applications so as to achieve
various Student Learning Objectives (SLOs). Unfortunately,
instructors using this approach face several challenges.

A participation challenge stems from the need to provide
students with access to HPC platforms, which is not feasible at
all institutions. Even when an institution hosts such platforms,
there may be no straightforward mechanism to use them,
or even sizable subsets thereof, for education purposes (e.g.,
the platform serves a research community and pedagogic use
would disrupt production use). Also, a popular way to increase
participation is to develop Massive Open Online Courses
(MOOCs). However, developing a hands-on MOOC would
require that access to a representative platform be guaranteed
for a large, diverse, and distributed student population, which
is at best feasible only at a few institutions.

Even when students are provided with an HPC platform
for a course, there are pedagogic challenges. This is because
students are only exposed to the particular configuration of
that platform, leaving many relevant scenarios out of reach
(e.g., different scales, different hardware specifications of com-
pute nodes, different network topologies and fabrics, different
software stacks) and thus precluding achieving some SLOs
in a hands-on manner. Also, students must be trained on
platform usage mechanisms and policies. While some courses
could deliberately devote a large portion of the syllabus to
these mechanisms and policies, in other courses this would
be pure overhead (e.g., introductory freshmen courses). Also,
executing workloads on real-world platforms is not free: it
requires time, electricity, in some cases funds. There are
thus practical bounds on the number and/or scale of the
executions available to students, which can impede hands-
on learning. An additional cost is that instructors typically
devote a significant amount of effort to managing students’
use of the platform (e.g., platform monitoring and trouble-
shooting, interaction with platform administrators, managing
competition for resources among students).

The above challenges become steeper as the SLOs target
more heterogeneous, more distributed, and/or larger platforms.
At one end of the spectrum would be courses for which SLOs
can be achieved using a single, moderate-scale, commodity
cluster. Some institutions (e.g., Ph.D.-granting institutions) can
provide students access to a representative cluster with rela-
tively straightforward mechanisms and policies e.g., a batch
scheduler). But even in this “easy” case the participation and
pedagogic challenges are significant and have prompted the
exploration of alternate approaches [1]–[3]. At the other end of
the spectrum would be courses that attempt to teach principles
and practices of CyberInfrastructure (CI) computing, i.e., the
execution of application workloads via services deployed on
distributed environments with heterogeneous hardware and
software stacks. An example would include the execution of
a particular scientific application on a platform that comprises
cloud platforms, batch-scheduled HPC clusters, and data host-
ing services, all distributed over wide-area networks. Such CI
deployments would be available for teaching purposes only at
a few institutions, and would require that students learn a large
set of usage policies and mechanisms, likely precluding hands-
on teaching of CI-related concepts in introductory courses.



Furthermore, such platforms are subject to many effects that
can make application executions not completely repeatable,
which impedes learning. Finally, given the sheer number of
relevant software and hardware configurations, it is unclear
how a single CI deployment provided to students could be
“representative”. We argue that the aforementioned participa-
tion and pedagogic challenges are likely insurmountable in
most university courses as far as CI education is concerned.
And yet, it is critical to prepare students that will join the
national scientific research and engineering workforce for a
world in which CI computing is the norm.

An alternative to using real-world platforms for teaching
purposes is to use simulation, i.e., simulate executions using a
software artifact that mimics real-world executions. The par-
ticipation challenge is obviated as the only requirement is that
students have access to a computer on which the simulation
software is installed (e.g., a student laptop). The pedagogic
challenges are also addressed: simulated executions can target
arbitrary hardware and software stack configurations, includ-
ing those encountered in complex CI scenarios; one can pick
the level of details exposed to students regarding platform
usage mechanisms; simulated executions are repeatable and
can be executed quickly and at negligible cost.

In this work, we present a set of pedagogic activities
that target HPC and PDC SLOs, in particular as relevant
to CI computing. The intent is for these activities to be
integrated piecemeal in university courses, from freshman-
to graduate-level courses. These activities allow students to
acquire knowledge by experimenting with various application
and platform scenarios. The simulations used in these activities
provide both metrics and visualizations of executions through
which students can empirically verify their answers to relevant
questions. Students can also use simulations to explore com-
plex design spaces so as to acquire knowledge independently,
possibly with instructor-provided scaffolding. Finally, some
“capstone” activities consist of case-studies in which students
apply what they have learned in previous activities to solve
real-world problems. Our contributions are as follows:

• We describe and justify the use of the WRENCH [4]
simulation framework as a foundation for this work, and
how it makes it possible to quickly develop and release
our pedagogic activities;

• We describe the currently available pedagogic activities
and the SLOs they target, highlighting how simulation is
key to achieving these SLOs;

• We present evaluation results obtained in the classroom
during a pilot study conducted in a 3rd-year undergrad-
uate course at the University of Hawai‘i at Mānoa.

II. RELATED WORK

Several options have been proposed to address the challenge
of providing students with HPC platforms for teaching pur-
poses when such platforms are not readily available at their
institutions. These options, which include building low-cost
platforms [5]–[10] and emulating platforms using virtualiza-
tion and/or containers [11]–[14], often do not provide plat-

forms with capabilities, scales, and/or performance behaviors
representative of production environments. In this work, we
rely instead on simulation to provide students with hands-on
experience for arbitrary platform configurations.

Many simulation frameworks have been developed for par-
allel and distributed computing research and development,
several of which could also be used for education. These
frameworks span domains such as HPC [15]–[18], Grid [19]–
[21], Cloud [22]–[24], Peer-to-peer [25], [26], or Volunteer
Computing [27]–[29]. Some frameworks have striven to be
applicable across some or all or the above domains [30],
[31]. Two conflicting concerns are accuracy (the ability to
capture the behavior of a real-world system with as little
bias as possible) and scalability (the ability to simulate large
systems with as few CPU cycles and bytes of RAM as
possible). The aforementioned simulation frameworks achieve
different compromises between these two concerns by using
various simulation models. At one extreme are discrete event
models that simulate the “microscopic” behavior of hardware/-
software systems (e.g., by relying on packet-level network
simulation for communication [32], on cycle-accurate CPU
simulation [33] or emulation for computation). In this case,
the scalability challenge can be handled by using Parallel
Discrete Event Simulation [34], i.e., the simulation itself is
a parallel application that requires a parallel platform whose
scale is at least commensurate to that of the simulated plat-
form. At the other extreme are analytical models that capture
“macroscopic” behaviors (e.g., transfer times as data sizes
divided by bottleneck bandwidths, compute times as numbers
of operations divided by compute speeds). While these models
are typically more scalable, they must be developed with care
so that they are accurate. In previous work, it has been shown
that several popular simulation frameworks use macroscopic
models that can exhibit high inaccuracy [35]. One of the
key intellectual contributions of the SimGrid project [30] is
that it employs simulation models that are scalable (because
macroscopic) and yet accurate (as shown in several validation
studies [35]–[39]). As a result, SimGrid simulation can execute
quickly on, say, a student’s laptop, and yet yield accurate re-
sults even for complex simulation scenario. SimGrid provides
the core simulation technology for the WRENCH simulation
framework, which is used in this work.

Simulation is used routinely as a pedagogic tool in many
areas of the computer science curriculum. For instance, it is
traditional to use simulation frameworks for teaching computer
architecture and network concepts, since without simulation
it can be extremely challenging to create hands-on learning
opportunities in these domains. By comparison, the use of
simulation as a pedagogic tool is relatively rare in the parallel,
distributed, and/or HPC domains, likely because in some cases
it is possible to use some HPC platform for teaching purposes,
albeit facing the challenges outlined in Section I. Several
works in the early 1990’s proposed using simulation for
the purpose of parallel computing education [40]–[43]. More
recently, the authors in [1] describe the parallel computing
module of a M.S. degree in HPC, which relies on simulation



as a foundational technology. The simulation in use employs
microscopic simulation models, thus mandating that students
be provided by an HPC platform to run simulations. In this
work instead, because we rely on WRENCH for simulations,
students can easily run simulations on their own computers.
Another recent work, Paralab teachware, is presented in [2],
which uses the Paralab system [44] to teach parallel com-
puting concepts and algorithms using simulation. From what
information is provided in [44], Paralab implements naive
simulation models that are not necessarily representative of
real-world platforms, which is problematic when teaching
advanced topics and concepts. Finally, a major difference
between this work and all the above is that, instead of targeting
SLOs that pertain only to parallel computing on homogeneous
platforms, instead we target the much broader set of SLOs
relevant to PDC/CI concepts and practices.

III. USING WRENCH FOR EDUCATION

A. The WRENCH Simulation Framework
The simulators in our proposed pedagogic activities must

be developed on top of a simulation framework. We identify
four requirements for this framework:
#1 Accuracy: the framework’s simulation models must have

been the object of validation/invalidation studies;
#2 Scalability: it should be possible to run simulations

quickly on a single computer (e.g., a student laptop) with
low RAM footprint;

#3 Versatility: the framework must be expressive enough to
allow the simulation of a wide range of scenarios, from
a single homogeneous cluster running a standard HPC
application all the way to complex multi-site CI scenarios
with diverse software and hardware stacks;

#4 Easy development: the framework must provide APIs that
make it possible to implement simulations of complex
scenarios in, say, at most a few hundred lines of code.
This is so that developing a wealth of pedagogic activities
that students can use and benefit from is not labor-
intensive.

The last requirement is key as each pedagogic activity can
comprise several simulators, and as we ultimately intend to
develop dozens of such activities.

As discussed in Section II, many simulation frameworks
have been developed for the PDC domain. One framework
that meets the first three requirements above is SimGrid [30],
[45]. Its simulation accuracy and scalability have been shown
to be significantly better than that of its competitors [30],
[35] (requirements #1 and #2). It is applicable to and has
been utilized for scenarios ranging from the simulation of
MPI applications on clusters to the simulation of peer-to-
peer applications (requirement #3). It has also been actively
developed for almost two decades, with a regular release
schedule, a large team of developers, and a vibrant user
community. Finally, it has already been used successfully
for teaching purposes [3]. Unfortunately, SimGrid does not
meet requirement #4 above because its simulation abstractions
are low-level. The critical analysis in [46] recognizes that

SimGrid provides superior accuracy and scalable simulation
capabilities, but also observes that using it to implement a
simulator of a complex system, such as CI scenarios, is labor-
intensive.

It is in part to meet requirement #4 that the WRENCH
project [4], [47] was initiated. WRENCH builds on SimGrid,
so that simulations can be accurate and scalable, to expose
reusable high-level simulation abstractions, so that implement-
ing simulators of CI scenarios can be done with minimal
software engineering efforts. For instance, WRENCH provides
several simulated implementations of “compute services” for
bare-metal hardware resources, virtualized hardware resources,
cloud platforms, batch-scheduled clusters, or HTCondor pools.
The whole set of WRENCH-provided simulation abstractions
is listed on WRENCH’s Web site [47] (version 1.4 of the
WRENCH software was released in April 2019). Demonstrat-
ing WRENCH’s ease of use, the work in [4] describes how
a simulator of a production Workflow Management System
that executes scientific workflow applications on several CI
hardware/software stacks can be implemented with only a few
hundred lines of code.

B. Pedagogic Activities with WRENCH

Given the discussion in the previous section, we use
WRENCH to implement our pedagogic activities. Each activ-
ity is a Web page that introduces concepts to students through
a narrative. For each concept students are asked questions
that they must answer before proceeding forward. Students
answer questions in two ways: (i) they discover a valid answer
by running simulations to explore the space of simulated
executions; (ii) they come up with an answer through analysis
and validate/invalidate this answer by running simulations.
Students invoke simulators provided to them, using particular
input. All such invocations are made through an interactive
Web graphical interface. This interface displays simulation
output as both non-interactive and interactive visualizations.

Each simulator consists of a main program that sets up
the environment to simulate; and of a simulated application
execution management system, which orchestrates a particular
application workload on available resources. At the time of
writing, 4 different simulators are provided as part of our
pedagogic activities and consist of only 362, 516, 224, and
442 lines of C++ including comments.

To ensure ease-of-use and portability, we package all nec-
essary software (Web app, simulators, WRENCH and its de-
pendencies, SimGrid and its depencies) in a Docker container.
When instructed to do so students simply run this container
on their own machines. The container starts a Web server
on a local port and hosts a Web app that students access by
navigating to a local URL in a browser. The instructions given
to students for running a simulator are straightforward:

1) Copy-and-paste in the terminal: docker pull <name>
2) Copy-and-paste in the terminal: docker container run

-p 3000:3000 -d <name>
3) Visit http://localhost:3000/



where <name> is the name of the Docker container we
provide. The only software requirement is that Docker be
installed.

IV. THE WRENCH PEDAGOGIC ACTIVITIES

A. Overview
To date we have released 5 activities that are all available

on-line [48]. These activities are designed to be performed as
a sequence and target the following topics:
(I) Networking – In this activity, students acquire essential
network concepts as they relate to the execution of applications
on distributed CI deployments. These concepts include notions
of latency, bandwidth, and topology, and how they are used to
reason about data transfer times.
(II) Workflows – This activity introduces students to concepts
necessary to understand how a workflow application can
execute on a distributed CI deployment, and how application
execution time can be estimated given application specification
and available hardware resources.
(III) Data Locality – Building on the previous two activities,
this activity introduces the concept of data locality. Students
evaluate different application execution scenarios and experi-
ment first-hand the impact of data locality on performance.
(IV) Parallelism – Building on the first two activities as
well, this activity introduces students to notions pertaining to
parallel computing (e.g., speedup, dependent vs. independent
tasks) and parallel computing platforms (e.g., multi-core nodes
with limited RAM, multi-node clusters).
(V) Resource Provisioning – In this capstone activity, stu-
dents use the concepts acquired in previous activities to solve a
real-world problem. Students are presented with an application
and a set of hardware resources. Given a budget, students
must determine the best way to spend this budget on hardware
upgrades in order to minimize application execution time.

Table I shows a curriculum map for the above activities,
indicating coverage of a set of 15 SLOs. These SLOs in no
way constitute a full curriculum. We are currently designing
and implementing other activities to target missing essential
SLOs (e.g., Amdahl’s law, overhead, strong scaling vs. weak
scaling) and more advanced SLOs (e.g., scheduling, fault-
tolerance). Due to lack of space we cannot describe all the
above activities and refer the reader to our Web site for full
details [48]. In the next section, we provide an overview of one
of our activities. Although (purposely) at an introductory level,
this activity showcases our overall approach for delivering
pedagogic content using simulation.

B. Sample Activity: Parallelism
Activity (IV) focuses on parallelism and presents students

with the CI deployment depicted in the left-hand side of
Figure 1. The deployment consists of three sites. The site on
the top left (storage_db.edu) hosts a Storage Service with
infinite storage capacity. The site on the right hosts a Compute
Service (accessible via hpc.edu). These two sites are con-
nected via a network link with 100µs latency and 125 MB/sec
bandwidth. The third site (my_lab_computer.edu) is

where the user resides and runs a Workflow Management
System software that will orchestrate application executions
using the hardware resources provided by the Storage and
Compute Services.

The application to be executed on the above CI deployment
is provided to students as depicted on the right-hand side of
Figure 1. It consists of 20 identical and independent single-
threaded tasks, each taking in a 2GB input file, computing
3600 TFlop using 4GB of RAM, and producing a 2GB output
file. A last, also single-threaded, task takes in all these output
files, computes 300 TFlop using 42GB of RAM, and produces
a final 2GB output file. The first 20 input files, are initially
stored on the Storage Service at host storage_db.edu. All
tasks must be executed on the Compute Service. This service
has local scratch space (with fast bandwidth of 1250 MB/sec)
to which intermediate files (i.e., the output files of the first 20
tasks) are written. Finally, the last output file must be written
back to the Storage Service.

The above scenario is presented to the students in the form
of a narrative, with the depictions in Figure 1, and some
review of the SLOs achieved in previous activities. Using
an example, students are introduced to the concept of core
utilization and core idle time. Students are then asked to
answer a series of questions, assuming the Compute Service
only hosts one single-core node. An example question is:
“What do you expect the overall execution time to be? Write a
simple formula, and use the simulator to check your answer”.
The activity then evolves the scenario to cases in which the
compute node at the Compute Service has 10, 15, or 20 cores.
In each cases, students quantify the performance gain, or lack
thereof, and experience first-hand the interplay between core
utilization and application performance.

In a second phase of this activity, the Compute Service
hosts multiple multi-core nodes, which is depicted to students
as in Figure 2. At the same time, each of the first 20 tasks
uses 12GB more RAM, thus limiting the utilization of each
compute node (whose RAM capacity is 80GB). The narrative
explains to students how RAM constraints impact parallelism
on a compute node, and then presents students again with
a series of questions. An example question is: “What is the
minimum number of 3-core nodes that achieves the previously
determined fastest possible execution time?” Students can
answer this question analytically and check their answer in
simulation, or empirically by running several simulations to
do a binary search. Other questions pertain to core utilization,
getting to the notion of which hardware investments are “worth
it”. This notion is fully explored in Activity (V), which focuses
on Resource Provisioning.

Students invoke the provided simulator via a Web app
packaged as a Docker container, as described in Section III-B.
Figure 3 shows the portion of the Web app through which
students configure and run the simulator. In the example, the
simulator is configured for a Compute Service with three 6-
core compute nodes, and for the tasks to require extra RAM.
Clicking the “Run Simulation” button invokes the simulator
(which takes less than 1 second), and updates the Web page



TABLE I
CURRICULUM MAP FOR 5 WRENCH PEDAGOGIC ACTIVITIES: (I) NETWORKING; (II) SCIENTIFIC WORKFLOWS AND THEIR EXECUTIONS ON CI
DEPLOYMENTS; (III) DATA LOCALITY; (IV) PARALLELISM; (V) RESOURCE PROVISIONING. (E: EMERGING, D: DEVELOPING, P: PROFICIENT).

Student Learning Objective
Activity

(I) (II) (III) (IV) (V)

#1 Understand notions of network topology, bandwidth, and latency E E D - P

#2 Be able to reason about bottleneck links and bandwidth sharing E E D - P

#3 Be able to estimate data transfer times given a topology, including for concurrent data transfers E E D - P

#4 Be exposed to CI deployments that consist of storage and compute services deployed on wide-area
networks of heterogeneous resources - E E D P

#5 Understand the structure of scientific workflow applications and the notion of task depencies - E D D P

#6 Be able to estimate workflow execution time for a given CI deployment including computation and I/O - E D D P

#7 Understand notions of data locality and data proximity E - D - P

#8 Be able to quantify the impact of data locality on application execution time E - D - P

#9 Be familiar with multi-core compute nodes and how they can be aggregated to form compute clusters - - - E D

#10 Understand parallelisms and parallel speedup - E E D P

#11 Understand the tradeoff between parallelism and core utilization - - - D P

#12 Understand how memory footprint constraints can limit parallelism - - - D P

#13 Be able to estimate application execution times when tasks are executed in parallel on a cluster of
multi-core compute nodes with limited RAM capacity - - - D P

#14 Be able to compare resource provisioning alternatives for a given application - - - E D

#15 Be able to make appropriate resource provisioning decisions for a given application given budget constraints - - - E D

Fig. 1. Activity (IV) simulated CI deployment (left-hand side) and workflow application (right-hand side).

with several visualizations of the simulated execution. Figure 4
shows a Gantt chart visualization, which displays, for each task
on the vertical axis, the task execution timeline with input read,
computation, and output write. Tasks that read/write input
concurrently split the bandwidth, which is why I/O times for
the 5 tasks that start around time 3,900 are lower than that of
the 15 tasks that start at time 0. Hovering about any component
in this visualization pops up a tooltip with qualitative and
quantitative information (e.g., task and file names, durations,
start and end times). Another provided visualization is the
core utilization time-line shown in Figure 5. This visualization
shows idle core time due to I/O operations (e.g., the gap at
time 0), due to RAM limitation (e.g., the 6th core on a node

is never used), due to imperfect load-balancing (e.g., the 2nd
and 3rd nodes are fully idle after time 3,900), and lack of
parallelism (e.g., all cores but one are idle while the last task
executes). Here again, a student can hover over any component
of this visualization to gain more detailed information.

V. EVALUATION

A. Preliminary Evaluation

In February 2019, we performed a preliminary pedagogic
evaluation of our activities with three student participants.
These participants were seniors in the B.S. in Computer Sci-
ence program at the University of Hawai‘i at Mānoa (UHM),
and were recruited on a volunteer basis. Their motivation



Fig. 2. Simulated hardware specification of the cluster hosted by the Compute
Service for Activity (IV).

Fig. 3. Simulator input panel for Activity (IV).

Fig. 4. Sample Gantt chart of task executions for Activity (IV) given the
input shown in Figure 3.

Fig. 5. Sample core utilization time-line for Activity (IV) given the input
shown in Figure 3.

for participating was a desire to learn more about a crucial
topic that is often not (sufficiently) taught in the standard
curriculum. Students were given a reading assignment in
which they had to perform activities (I) and (II) on their own.
A week later, in a 1-hour session, the pedagogic team (the first
and last author of this paper) together with the students did
activity (III), answering questions based on group discussion.
A week later, in another 1-hour session, the participants did as
many questions as possible in activity (IV), with the pedagogic
team providing necessary scaffolding.

Students were given pre and post knowledge tests, as well as
questionnaires about their experience. The purpose was mostly
to identify potential improvements in the tests and question-
naires themselves, and in the pedagogic content. Based on
participant feedback we made several content changes: (i) we
removed content that proved too detailed and detrimental to
learning; (ii) we added text and figures to clarify points of
confusion; (iii) we improved simulated execution visualiza-
tions to include more information. In spite of these students
being presented with a preliminary version of our activities,
feedback was overall very positive and students felt that they
acquired new knowledge easily.

B. Classroom Evaluation

The last author of this paper regularly teaches the under-
graduate Operating Systems (ICS 332) course at UHM. A PDC
module was added to the course syllabus for the Spring 2019
semester, which consists of the following steps:

1) A 30-minute lecture on PDC to motivate the topic;
2) A reading assignment in which students performed activ-

ities (I) and (II) on their own;
3) A 75-minute in-class interactive session during which the

pedagogic team did activity (III), soliciting participation
from students and fielding questions;



Fig. 6. Daily numbers of simulations executed by students.

4) A 75-minute in-class interactive session during which
students, either individually or in groups of up to 3,
started on activity (III) with scaffolding provided by the
pedagogic team;

5) A homework assignment in which students answered 4
late questions of activity (III), with solutions to preceding
questions provided to them; and

6) Three problems on the final exam (covering SLOs #1 to
#13 in Table I). These problems were worth 10% of the
final exam, which was itself worth 30% of the overall
grade for the course.

We gathered qualitative and quantitative data:
• Anonymous post questionnaires about experience and

perceived learning in step 3 and 4 above;
• Anonymous pre and post knowledge tests in step 3 and

4 above;
• Informal feedback volunteered by students directly and/or

entered in UHM’s course evaluation system;
• Non-anonymous grades for the homework assignment;
• Non-anonymous grades for relevant final exam questions;
• Non-anonymous time-stamped trace data from activity

Web apps for each simulator execution.
What is missing from our evaluation data is a control group,

i.e., another group of students that are taught the same material
but without using simulation. A comparison to a version
of the module taught without any hands-on experience for
student would only evaluate the benefit of hands-on education,
which is already well documented. What is needed instead
is a comparison to teaching this module using a real-world
infrastructure. However, as explained in Section I, using a real-
world infrastructure for this purpose is extremely difficult, and
is typically not done (especially at the undergraduate level).
This is precisely why we advocate the use of simulation in
the first place. But as a result, we cannot provide comparisons
with results obtained with a sensible control group.

C. Results

Question #1: Are students using the simulation?

55 students took the final exam in the course, and 45 of these
students ran simulations. Daily totals are shown in Figure 6.
Overall 1008 simulations were executed by 45 students in
a 16-day period, with expected peak days when the reading

TABLE II
CORRELATION BETWEEN NUMBER OF SIMULATIONS EXECUTED AND

AVERAGE GRADE ON PDC-FOCUSED FINAL EXAM QUESTIONS.

# of simulations # of students grade average
0 10 67.6
1-10 14 88.8
11-20 13 99.8
21-30 6 81.0
31+ 12 75.5

assignment was posted, during the two in-class activities, and
leading up the homework assignment’s due date. Note that
during the 1st in-class session it was not a requirement for
students to run simulations, but many of them opted to “follow
along” on their own computers. For the 16-day period, and
only considering students who ran at least one simulation, each
student executed 22 simulations on average (with a maximum
of 61 simulations for one student).

Activity (IV), which was started in the 2nd in-class session
and completed in the homework assignment, explicitly asks
students to run the simulator 7 times for particular input
settings. But we find that 82% of students ran more than 7
simulations (with the average at 21). Furthermore, we find that
40% of simulation runs were for input settings that were not
suggested to students. We conclude that most students used
simulation independently for better learning the material and
completing their assignments. And indeed, in the classroom
the pedagogic team observed groups of students “trying out”
various simulation configurations to check whether they un-
derstood the material, often just out of curiosity. However,
students who struggle with the material could also be running
many simulations, perhaps even haphazardly.
Question #2: Are students learning the material?

Table II shows how grades obtained by students on the
final exam, counting only those questions that pertain to PDC
SLOs, correlate with the number of simulations that students
have executed. Recall that during in-class sessions students
often worked in groups, meaning that for some students
lower numbers of simulations were recorded because they
worked with another student who ran the simulations using
their computer. We find that students who have executed no
simulations perform much worse than other students, to the
point of not getting a passing grade on average. Interestingly,
students who ran a lot of simulations also do not perform
well, scoring a C on average. These are likely students who
struggled with the material (recall that Activity (IV) asks
students to run, at a minimum, 7 simulations). We find that
students who ran between 11 and 20 simulations performed
best, with almost a perfect score on average. Note that there
was a difficult extra credit PDC question on the exam, which
allows some students to score above 100%. Overall, out of the
55 students who took the final exam, the grade distribution for
the PDC-related questions was as follows: A: 25; B: 10; C: 5;
D: 6; F: 9. In Activity (IV)’s pre knowledge test, only 23%
of students answered correctly the multiple-choice question:
“You have two 4-core machines, and your application has 10
independent tasks. Each task runs in 1 minute on a single



core and uses only a few bytes of RAM. How fast can you
run your application?”. Scores on the final exam show that
close to 82% of students answered similar but more difficult
questions correctly.

It is difficult to generalize conclusions from a single group
of students, albeit 55 of them. Nevertheless, we feel that
the above results indicate that running simulations enhances
learning. This result, however, could be merely about the
benefits of hands-on learning in general. But, as explained
earlier, without simulation it is extremely difficult to teach
this material hands-on in the first place.
Question #3: Are students having a positive experience?

Students were asked for feedback on their experience via
anonymous questionnaires. Overall, when accounting for all
answers to a multiple-choice question about the level of
difficulty of the material, 60% of students answered “just
right”, 23% answered “too hard but useful”, 10% answered
“too hard to be useful”, 7% answered “too easy but useful”.
95% of students answered “yes” to the question “have you
learned something new?” During the in-class sessions the
pedagogic team observed that many students were engaged in
the material, with many groups having animated discussions
throughout the whole sessions. Written-in comments in course
evaluations were all positive (e.g., “I’ve really enjoyed the sim-
ulations and feel like they were a nice simplified introduction
to some complicated ideas”, “Nice addition to the course es-
pecially for someone who’s never seen Distributed Computing
before,” “I would rate this experience 100/100,” “It was fun
but also challenging,” “It was engaging and educational”). In
fact, 3 students from this course approached the third author
of this paper asking whether they could volunteer to developed
simulation software for future pedagogic activities. All three
students are currently working on this project (for credit and/or
as research assistants), each developing various simulators and
helping the authors develop pedagogic content.

The questionnaires also asked students for feedback on the
pedagogic content, which was overall very positive. For the
more challenging Activity (IV), 83% of students would have
liked to see more of a step-by-step structure in which steps
are revealed after completion as opposed to a sequence of
questions on a single page. We plan to split this activity into
two separate activities and, for all activities, provide more
dynamic Web pages with portions that can be collapsed or
expanded by students.

Finally, about 20% of students had technical difficulties
running our simulator, which was a surprise. This was caused
by Windows 10 Home laptops on which virtualization was
disabled and/or not accessible to Docker. Several of these
problems were addressed, but we had to loan a few laptops to
some students. In the future, we will likely host our Web app
on a public server.

VI. CONCLUSION

We have presented pedagogic activities to teach HPC and
PDC concepts and practices, in particular as relevant to CI

computing. The key aspect of this work is that, using simula-
tion, students can learn in a hands-on manner by experimenting
with various application and platform scenarios. Our activities
can be integrated in university courses as we have done our-
selves in a 300-level undergraduate course. Results obtained
via a pedagogic evaluation in that course, to be confirmed in
subsequent evaluations, indicate that students used simulation
effectively to achieve SLOs in a hands-on manner.

Ongoing work includes using student feedback collected
during the above study to improve both the content and the or-
ganization of our pedagogic activities. A clear future direction
is to develop new activities. First, we will develop activities
similar to the ones currently available but for other SLOs
that target fundamental topics (e.g., Amdahl’s law). Second,
still following the same model, we will develop activities for
more advanced topics (e.g., scheduling, fault-tolerance, cloud
computing). Third, we will develop activities that train stu-
dents for particular technologies. For instance, we are planning
a “batch scheduler activity” through which students interact
with a simulated batch-scheduled cluster subject to simulated
workloads, using, e.g., a subset of the SLURM interface. The
simulation capabilities for all the above are already available
in WRENCH. We encourage instructors to browse the (ever
evolving) set of available pedagogic activities (available on the
project’s Web site [48]), and consider including some of these
modules into actual courses.

A broader future plan includes conducting user studies, with
small groups of students, that quantify the extent to which
knowledge acquired through our simulation-driven pedagogic
activities translates to proficiency when using a real-world in-
frastructures. Results from such studies will provide invaluable
information to improve the content of our pedagogic activities.
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