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Abstract

Loop closure detection is a fundamental problem for simulta-
neous localization and mapping (SLAM) in robotics. Most of
the previous methods only consider one type of information,
based on either visual appearances or spatial relationships of
landmarks. In this paper, we introduce a novel visual-spatial
information preserving multi-order graph matching approach
for long-term loop closure detection. Our approach constructs
a graph representation of a place from an input image to inte-
grate visual-spatial information, including visual appearances
of the landmarks and the background environment, as well as
the second and third-order spatial relationships between two
and three landmarks, respectively. Furthermore, we introduce
a new formulation that formulates loop closure detection as a
multi-order graph matching problem to compute a similarity
score directly from the graph representations of the query and
template images, instead of performing conventional vector-
based image matching. We evaluate the proposed multi-order
graph matching approach based on two public long-term loop
closure detection benchmark datasets, including the St. Lucia
and CMU-VL datasets. Experimental results have shown that
our approach is effective for long-term loop closure detection
and it outperforms the previous state-of-the-art methods.

Introduction

Loop closure detection (also referred to as place recognition)
is a fundamental challenge for visual simultaneous localiza-
tion and mapping (SLAM) in robotics, which has become an
active research field over the past decades. The goal of loop
closure detection is to determine whether the robot’s current
location has been previously visited by matching the current
robot’s observation with previous experiences. Loop closure
detection is a necessary component for all SLAM techniques
to reduce ambiguity and accumulated errors in constructed
maps, thus significantly improving a robot’s localization and
mapping accuracy (Durrant-Whyte and Bailey 2006).

Over the past several years, long-term loop closure detec-
tion has attracted an increasing attention for visual SLAM
in various real-world long-term autonomy applications, such
as autonomous driving, with the goal to identify previously
visited locations during long-term robot operations (e.g., at
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Figure 1: Overview of the proposed visual-spatial informa-
tion preserving multi-order graph matching approach. It cre-
ates graph representations from the query and template im-
ages to integrate information of both visual appearances and
multi-order spatial relationships, and it formulates loop clo-
sure detection as a new multi-order graph matching problem
to perform place matching directly from the graph represen-
tations, instead of relying on vector-based place representa-
tion and matching.

different times of a day, or over months and seasons). Long-
term changes in the environment makes long-term loop clo-
sure detection a challenging problem to solve. For example,
when an autonomous vehicle operates over various seasons,
the same place in the environment can look quite differently
due to long-term changes, including illumination (e.g., noon
versus midnight), weather (rainy versus sunny), and vegeta-
tion changes.

Given the importance of long-term loop closure detec-
tion, a number of methods were developed to address this
problem (Siinderhauf, Neubert, and Protzel 2013; Linegar,
Churchill, and Newman 2016). A category of these methods
focused on using visual appearance information to represent
and match places, e.g., based on local features (Cummins
and Newman 2008; Mur-Artal and Tardés 2014) and visual
holistic scenes (Naseer et al. 2014; Latif et al. 2014). An-
other category of these previous methods considered spatial
relationships of landmarks for loop closure detection (Ho
and Newman 2006; Panphattarasap and Calway 2016). In
spite of their promising performance, the problem of how
to integrate visual appearance cues and spatial relationships



of landmarks in a principled way has not yet been well ad-
dressed for long-term loop closure detection.

We propose a novel visual-spatial information preserv-
ing multi-order graph matching method for long-term loop
closure detection in this paper. The proposed approach di-
vides an input image into regions that contain landmarks and
non-landmark background regions. These regions are rep-
resented as graph nodes and visual features are extracted
from the regions to encode the visual appearances of the
nodes. Then, our approach computes distances between two
nodes and angles among three nodes to encode the second
and third-order spatial relationships, respectively. Thus, the
constructed representation integrates both visual and spatial
information of the place from an input image. Given graph
representations of a pair of query and template images, our
approach formulates loop closure detection as a multi-order
graph matching problem, which computes a similarity score
between the pair of graph representations that encode both
visual and spatial cues from the query and template images.

The main contribution of this paper focuses on the pro-
posal of the novel visual-spatial information preserving
multi-order graph matching method for long-term loop clo-
sure detection. Specifically, we first implement one of the
first graph representations that integrates both visual ap-
pearances and multi-order spatial relationships of the im-
age regions encoding landmarks and the background envi-
ronment. Second, we introduce a novel formulation that for-
mulates loop closure detection as a multi-order graph match-
ing problem to compute a similarity score directly from the
graphs of query and template images, instead of performing
vector-based place matching used in almost all previous ap-
proaches. Third, we develop an effective optimization algo-
rithm to solve the formulated non-convex optimization prob-
lem in order to obtain the best match of multi-order graphs.

Related Work
Representations for Loop Closure Detection

Constructing a robust representation of places is essential
for long-term loop closure detection (Williams et al. 2009;
Lowry et al. 2015). Existing approaches for representation
construction can be divided into two major categories, based
on visual appearance information or spatial relationships of
landmarks.

Approaches based upon visual appearances used local,
global, or a combination of both types of visual features
to build a representation of places for loop closure detec-
tion. Representations based on local features were shown
less effective to represent long-term environment changes
(Naseer et al. 2014). Thus, most methods based on visual
cues used global features, such as GIST (Latif et al. 2014),
HOG (Naseer et al. 2014), and CNN (Siinderhauf et al.
2015), to construct representations of the holistic scene in
the robot view. Besides using a single type of features, sev-
eral approaches integrated multiple types of features to en-
code places (Pronobis et al. 2010; Han et al. 2017).

The other category of approaches use the spatial relation-
ship of landmarks in the environment to perform loop clo-
sure detection, such as using co-visibility matrix to encode
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the neighborhood relationship of consistently co-observed
landmarks in a sequence (Stumm et al. 2015), encoding the
connection between semantic regions by graphs (Gawel et
al. 2018). In addition, random walk (Gawel et al. 2018),
graph kernel (Stumm et al. 2016), graph embedding (Han,
Wang, and Zhang 2018; Liu et al. 2019) techniques are
widely applied to embed the graph-based structural informa-
tion into the linear vector space. Deep learning techniques
are also commonly used to encoding the spatial structure of
landmarks into a vector-based descriptor. For example, the
CNN-based landmark spatial descriptor (Chen et al. 2017;
Panphattarasap and Calway 2016), bag of semantic words
to encode the layout of 3D map (Schonberger et al. 2018).
Instead of using vector-based descriptors, associations be-
tween two scans are also studied based on second order
spatial relationship of key-points by CRF-matching (Ramos,
Kadous, and Fox 2009) and based on high-order potentials
through hypergraph matching (Nguyen, Gautier, and Hein
2015).

Existing methods generally utilize one type of cues only,
i.e., based on visual appearances of the holistic environment,
or based on spatial relationships of landmarks. The problem
of fusing visual appearance of holistic environment and spa-
tial relationship of landmarks in a principled way has not
yet been well studied. In addition, most methods implicitly
encode structural information in linear vector space or hid-
den states, which have low interpretability and are hard to
analyze the importance of each cue. Our proposed approach
aims to address this key research problem.

Matching Methods for Loop Closure Detection

After obtaining a representation of places, existing methods
generally apply a separate matching procedure that matches
a query observation to templates of previously visited places
for loop closure detection. Given a vector-based represen-
tation, matching methods typically calculate a similarity
score between query and template image based upon an Eu-
clidian or cosine distance (Newman, Cole, and Ho 2006;
Naseer et al. 2015). Given the association between graphs,
separate procedure using the number of associations is ap-
plied to calculate the matching similarity (Ramos, Fox, and
Durrant-Whyte 2007).

The previous methods are generally consider representa-
tion construction and place recognition as two separate pro-
cedures, i.e., after optimizing vector-based representations
of input images, a separate matching technique is applied on
the representation vectors to perform place matching. We in-
troduce a formulation based on multi-order graph represen-
tation and matching that formulates loop closure detection
under a unified optimization framework.

The Proposed Approach

Notation. We denote matrices and tensors (i.e., 3D matri-
ces) by bold capital letters, e.g., M = {m;;} € R™ " and
T = {t;r} € R > respectively. Vectors are denoted
by bold lowercase letters. In addition, we denote the vector-
ized form of the matrix M € R™*"’ using m € R™" that is
a concatenation of the columns of M into a vector.
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Figure 2: Given an image, our approach creates a graph rep-
resentation that encodes the visual appearances of landmarks
and the background environment, as well as the second and
third-order spatial relationships of the nodes.

Problem Formulation

Graph Representation. We represent places with a graph
representation that fuses both visual and spatial information
from input images (Figure 2). Specifically, given an image
with observed landmarks, we tessellate the image into a grid
of rectangular cells. Each cell contains either none, partial,
or complete landmarks. Cells with a part of the same land-
mark are merged to generate a region that contains a com-
plete landmark. All generated regions that include a land-
mark are denoted by the set S;. The remaining cells con-
taining no landmarks are denoted by S,,. Then, the observed
image can be divided into a set of regions S = {S;, S, }.
Given the region set S, we represent a place with a graph
G =(W,H,E,C). The nodes V = {v;,i = 1,...,n} rep-
resents the locations of all regions in S, with v; encoding
the location of the i-th region. The node set can be further
divided into two subsets V = {V}, V,.} to represent the land-
mark regions and non-landmark regions, respectively. We
define a feature set C = {c;,% = 1,...,n} to include vi-
sual features that encode the appearances of the regions in
S, where ¢; € R? is the feature vector of length d that is
extracted from the ¢-th region. The feature set C can be also
divided into two subsets C = {C;,C,} to include features
extracted from landmark regions and non-landmark back-
ground regions, respectively. C,- and C; together describe the
visual appearance of the holistic environment as the features
inC = {C;,C, } cover all pixels of the whole image. The set
& ={eij,i,7=1,2,...,n,i # j} represents the distance
between a pair of nodes, where e; ; represents the distance of
the i-th and the j-th nodes in V. Since a distance describes
the relationship between two nodes, the set £ encodes the
second-order spatial relationship of the nodes. The set H =
{hi,j,k‘ = [91791a ak]?imja k = 1. n, 7é .] 7é k} en-
codes the triangular relationship among three nodes, where
hi .k = [0:,0;, 0] denotes three angles of the triangle con-
structed by the i-th, j-th and k-th nodes in V. Since the an-
gle vector [6;,0;, 0;] describes the relationship among three
nodes, the set H encodes the third-order spatial relationship.

Graph-based Place Matching. Based upon the graph rep-
resentation, we propose the new formulation that formulates
loop closure detection as a multi-order graph matching prob-
lem. Formally, given a query image and a template image,
we build their graph-based representations G = (V, H, &,C)
and G’ = (V',H',E',C"), respective. The two graphs G and
G’ can contain a different number of nodes (i.e., n can be dif-
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ferent from n’), because the query and template images may
contain a different number of landmarks. Then, loop closure
detection is performed by matching the graphs G and G’.

In order to preserve the information of both visual appear-
ances and spatial relationships of the nodes when matching
the graphs, we model three types of similarities in a unified
multi-order graph matching framework. First, we compute a

vectorized matrix b = {b;»} € R"™" to represent feature
similarities, where b;;» represents the similarity between the
feature vectors ¢; € C and ¢} € C’, which can be computed

using a dot product of two feature vectors:
e

; (D

leilllleil

C;

biiw =

Since C and C’ encodes visual appearances of the landmarks
and the background environment, Eq. (1) represents the sim-
ilarity of visual appearances of the landmarks and the back-
ground. Because Eq. (1) uses one node from each graph, we
refer to this similarity as the first-order similarity.

Second, we calculate the distance similarity matrix A =
{air jjr} € R™ > where a; ;; tepresents the similar-
ity of the edge ¢; ; € & and the edge ¢}, ;, € &', which can
be computed by:

)

This similarity is computed using the nonlinear exponential
function, with /3 as the hyper parameter, to transfer any non-
negative input to an output value between 0 and 1. Because
Eq. (2) computes the similarity of the second-order spatial
relationships that involve two nodes from each graph, this
similarity is referred to as the second-order similarity.

Third, we also compute the angular similarity tensor T =
{tis jjr k' } € Rnn xnn'xnn' ywhere tiir jj’ kk denotes the
similarity between h; j , = [6;,6,,60x] € H and hg,ﬂ-,’k, =
1] € H', which can be computed by:

Z |cos(8,,

uGi,J,k,UGz/,]’ k'

1

Qi jj0 = €XP <—6(€m‘ — e jr) 2

[/ !/
Vi8] j’u

— cos(6,)] 3)

tiir jj' kk' = €XP

where « is a hyperparameter of the exponential normaliza-
tion function. Since Eq. (3) calculates the similarity of the
third-order spatial relationships, we refer to this similarity
as the their-order similarity.

Given the definitions of the three similarities that are com-
puted from graph representations of the query and template
images, loop closure detection is formulated as multi-order
graph matching by solving the optimization problem:

nn TLTL

max )\3 E E E t“ il kk’zzz’x]]’xkk’

w'=177'=1kk'=1

nn 'ILTL

+ A2 Z Zau 33 Tiit Ty + A1 Z bisr i

s.t. X]-n’><1 S 1n><1aX 1n><1 S 1n’><1 (4)



where X e {0,1}"*" is correspondence matrix, with
z;» = 1 denoting that the i-th node in V and the ¢’-th node
in V" are matched, and 1 is a all 1 vector.

The first term in Eq. (4) represents the accumulated third-
order triangular relationship of two graphs given the corre-
spondence matrix X, which sums up all third-order similari-
ties t;; ke Of two triangles h; ;5 € H and hl, ik € H'.
The second term represents the accumulated second order
relationship of two graphs, which sums up all second order
similarities a;y j; of two edges ¢; ; € £ and el g € &
The third term denotes the accumulated s1m11ar1ty on visual
appearances of two graphs, which sums up all visual appear-
ance similarities of the feature vectors ¢; € C and ¢ € C'.
A1 >0, Ay > 0 and A3 > 0 are hyperparameters to control
the importance of the first, second and third-order similari-
ties, which satisfy A; + Ay + A3 = 1. The constraints in Eq.
(4) are designed to enforce the one-to-one correspondence:
each row or column in X can at most have one element equal
to 1, and all others are equal to O.

We can rewrite Eq. (4) into a concise matrix form:

max AT ®1 X ®9 X Rz X

+dox Ax + \b'x

st. X1y < 1n><17XT1n><1 < 1uxi

&)

where x = {x;} € {0,1}"" is the vectorized correspon-
dence matrix X, ® denotes a tensor product, and ®;,1 =
1,2, 3 denotes multiplication between x and the mode-/ ma-
tricization of T (Rabanser, Shchur, and Giinnemann 2015).

After optimizing X to decide the correspondence between
the nodes in two graphs, the value of the objective function
in Eq. (4) denotes the similarity of the two graphs built from
the query and template images. Different from conventional
methods that convert each image into a vector representation
and match images based on vector matching, our approach
computes a similarity score directly from graph representa-
tions of the query and template images through multi-order
graph matching.

Addressing Scale Changes. Linear perspective variations
(i.e., objects look smaller when they are further away from
a camera) cause scale variations of objects in images, which
are not considered in the definitions of the visual and spatial
similarities used in the formulation in Eq. (5). Furthermore,
landmark regions (e.g., buildings and stop signs) are usually
more informative than regions of background environments
for place matching. Accordingly, we propose to address the
scale changes of the landmarks in order to improve loop clo-
sure detection. Mathematically, given the i-th region s; € S,
we first normalize the sizes of all landmark regions by:

v, = 2s0)
’ ZSJES;, Q(SJ)

where (s;) represents the area size of s; and 1(-) denotes
an indicator function, which is equal to 1 when s; € §; (i.e.,
s; is a landmark region), otherwise 0. Eq. (6) computes the
normalized sizes for all landmark regions, and assigns a zero
value for all regions from the background environment using
1(-) to distinguish landmark and background regions.

1(s; € S1) 6)
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Then, in order to address scale variations of the landmark
regions, we introduce the weight matrix O = {07 j;/ ki €
R}"”/X"”/X”"/ to adjust the third-order spatial similarities
T, the weight matrix P = {p;ir j;» € R} ¥ to adjust
the second-order spatial similarities A, and the matrix q =

{qi € R}””/ to adjust the visual appearance similarities b,
which are defined as follows:

04 jj' kk' = €xp | — Z [wy, — wy| @)
w€i,j,kvei’ 5’ k'
Piir jj = €xp | — Z [wy, — wy| ¥
u€i,j;vei’ 5’
1
Giir = €xp <_U|wi - wz’l) &)

where o is a hyperparameter of the exponential normaliza-
tion function. The weights are designed to address the scale
change of the landmarks. For example, if two pairs of land-
mark regions have similar scales (i.e., s, € S; and s}, € S’
aswell as s; € S; and 59/ € &'; exhibit similar scales), then
Dii ;5 has alarge value. If the two pairs of landmark regions
show different scales, p;; ;;» has a smaller value. When the
pairs contain regions from the background, p;; ;; also takes
small values. 03/ ;¢ rr and g;;/

After integrating the weight matrices to address the scale
changes of landmark regions, we formulate loop closure de-
tection as follows:

nn TITL

Il'laX )\3 § E E 04’ 55, kkCii gl kk! Tii' X' Tk’

ii'=1jj'=1kk’'=1

Tl’ﬂ ’I’LTl

+)\2 § E Piir jj' Qii’ 55" Lii! L5

i’

+ A1 Z iirDiir T
Y
st X1yt < Luxt, X1 < Ly (10)
We can rewrite the formulation into a concise matrix form:
m)%X)\gOOT®1X®2X®3X

+Xox ' PoAx+ A\i(qob)'x

st XLyxa < Lk, X Lyt S Losa (1)
where o denotes the entrywise product.
Addressing Varying Number of Nodes. After solving the

optimization problem in Eq. (11) to obtain the optimal X*,
the matching score between the query and template images
can be computed as the value of the objective function:

S=X00T ®; x" ® x" ®3x*
+ X (x*) TP o Ax* + A\i(qob) " (12)
However, graph representations of input images often con-
tain a varying number of nodes, and this matching score also

changes its value proportionally to the number of nodes. In
the following, we show that the matching score is bounded.



Theorem 1. The objective function of the optimization prob-
lem in Eq. (11) is bounded by [0, 377, 225, where r =
min{n,n’}.

Proof. Assume that two graphs G, G’ have n and n’ nodes,
and r = min{n,n’}. Computing the third-order similarity
depends on 7 which is the number of matches between G
and G’. Then, the number of the third-order similarities is
equal to the permutation of picking three pairs of nodes from

r!

the final matches, which can be calculated by = Since
tiir ik € [0,1] and 0y’ jj' kk' € [0, 1], we obtain:
0<00T@ XxByxPyx< —— (13

(r—3)!

Similarly, the number of the second-order similarities is
equal to the permutation of selecting two pairs of nodes from
the final matches, and the number of the appearance similar-
ities is equal to the permutation of selecting one pair of node
from the final matches. So we obtain:

!

(r—2)!
7!
(r—1)!

Adding these three equations on both size weighted by the
hyperparameters, we obtain:

0<A00T ® x® X V3 X

+Xox ' PoAx+ A\i(qob)'x
3

)\7'7"!
< vt
_; (r—1)!

Thus, the objective function of the optimization problem
in Eq. (11) is bounded by [0, 7, 722%5]. O

0<x PoAx< (14)

0<(qob)'x< (15)

(16)

In order to enable our approach to match graphs that have
different numbers of nodes, we calculate the final match-

-1
ing score by S (2?21 %) , which utilizes the upper
bound to normalize the score to take values always between
[0, 1] for any number of nodes. Then, we determine whether
two places are matched by comparing the normalized match-
ing score with a threshold. Different from existing methods
based upon vector-based matching, our approach formulates
loop closure detection as a multi-order graph matching prob-
lem to compute a matching score directly from graphs.

Non-Convex Optimization Solver

The optimization problem in Eq.(11) is challenging to solve,
since it is a non-convex problem with no closed-form solu-
tion (Duchenne et al. 2011). Accordingly, we implement a
new solver based upon the general random re-weighted walk
framework (Lee, Jungmin and Cho, Minsu and Lee, Kyoung
Mu 2011), which is presented in Algorithm 1.

After defining M = \30 0T, N = \2PoAandz =
A1q o bin Step 1, Step 2 rewrites Eq. (11) as:

maxM ®; X Qo x ®3x+x Nx+2z' x 17

10:

12:
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Algorithm 1: An algorithm to solve the formulated non-
convex optimization problem in Eq. (11).

Imput : Oand T € R/ xnn'xnn’ P ang
A e R *nn and g and b € R™
Output: X =€ {0,1}"*"

- Initialize the vectorized matrix x € {0,1}"";

2. Compute M =0OoT,N=PoAandz=qob;

: Compute M’ N’ and z" according to Eq. (18), Eq. (19),

and Eq. (20), respectively;

while not converge do
Update x by Eq. (21);
Compute the jump vector j by Eq. (22);
Normalize j using the bistochastic normalization;
Update x with reweighted jumps by Eq. (23);

end

Recover x to X;;

. Discretize X using the Hungarian algorithm;

return X

v

R AN

In Step 3, we convert M, N, z to stochastic forms in order
to normalize the original matrix:

M’ =M/ max » M, (18)
3 ]7k
N’ =N/max Y N;; (19)
J
7z = z/ maxz; (20)
In Step 5, X is updated by:
X" =M ®yx" @3x" +x" N + 2 (21)

where x" ! denotes the update from x".

In Step 6, in order to jump out local optima, inspired by
the Page-Rank algorithm (Haveliwala 2002), we implement
a re-weighting jump vector j € R™" as:

j = exp(x” 0 q/ max(x" o q)) 22)

where q is applied to guide the jumps toward a direction to
match nodes representing regions with similar scales.

Step 7 employs a bistochastic normalization to normalize
each row and column in j so that to enforce the one-to-one
correspondence. Then, in Step 8, to facilitate x to jump out
of local optima, x is updated by:

X = a(M @, x" @3 x" +x" N +2') + (1 — a)j
(23)

where « is a hyperparameter that controls the update rate.
Since X uses real-valued numbers in the optimization, we
discretize it to obtain the binary correspondence matrix X €
{0,1}"*" using the Hungarian algorithm in Step 11.
Complexity. The complexity of the optimization problem
in Eq. (11) is O(n®), dominated by O o T. Since we can ap-
ply nearest neighborhood search to compute matches locally
(Nguyen, Gautier, and Hein 2015), the complexity reduces



Table 1: The St Lucia (Glover et al. 2010) and CMU-VL (Badino, Huber, and Kanade 2012) datasets are used in the experiments

to benchmark long-term loop closure detection methods.

[ Dataset | Scenario \ Statistics \ Challenge |
St Lucia Different times of a day 10 instances x 22,000 frames, 640 x 480 Lighting changes, shadows, dynamic objects
CMU-VL | Different months of a year | 5 instances x 13,000 frames, 1024 x 768 | Vegetation, weather, and view changes, dynamic objects

to O(n?k), where k is the number of nearest neighborhoods.
We set k = n?, and the final complexity becomes O(n*). In
our experiments, given 10-25 detected landmarks per image,
the runtime of our matching approach is around 160 Hz.

Experiments

We employ two large-scale long-term loop closure detection
datasets to benchmark our approach, including St. Lucia and
CMU-VL datasets. Information of this benchmark dataset is
presented in Table 1. The precision-recall curve is used as
the evaluation metric, which is a standard metric used in the
loop closure detection literature (Lowry et al. 2015).

In the experiment, only stable and static landmarks (e.g.,
houses, traffic signs, and fire hydrants) are used, following
recent landmark-based methods (Han et al. 2018; Liu et al.
2019). We use histogram of oriented gradient (Hog) features
to describe the visual appearance of each region and land-
marks are fully connected to generate graph-based represen-
tations. We compare the proposed visual-spatial information
preserving multi-order graph matching approach with meth-
ods based on visual features, including SRAL (Han et al.
2017) that integrates multiple types of visual features by rep-
resentation learning, and methods based on a single type of
features, including Color that uses color features, LBP that
uses local binary pattern features, Hog that uses Hog fea-
tures, Brief-Gist that uses Brief-Gist features (Siinderhauf
and Protzel 2011), and NormG that computes normalized
gradients of grayscale images (Milford and Wyeth 2012).
We also compare our method with the landmark-based ap-
proach HALI (Han, Wang, and Zhang 2018), which learns
a projection from semantic landmarks to a vector represen-
tation, and graph matching-based approach BCAGM which
only uses spatial relationship of landmarks (Nguyen, Gau-
tier, and Hein 2015) for loop closure detection.

Results on the St Lucia Dataset

The St Lucia dataset was recorded in the suburban of St Lu-
cia in Australia at different times of a day. GPS information
was also collected as the ground truth for vehicle locations.
Quantitative results obtained by our approach are demon-
strated in Figure 3(a) based on the precision-recall curve as
an evaluation metric. Results from the previous methods are
also shown in Figure 3(a) for comparison with our approach.
It is seen that the proposed approach outperforms the previ-
ous methods compared in this experiment. In order to further
study this observation, we assess our approach and compare
with other methods using the area below the precision-recall
curve as a single-value evaluation metric, which takes values
in [0, 1] with a greater value indicating a better performance,
and a value 1 indicating the perfect performance. The results
are listed in Table 2. It is observed that our approach obtains
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the score of 0.7207, which significantly outperforms the best
visual-appearance based SRAL approach, and the landmark-
based HALI method, which uses visual appearances of land-
marks but not embeds their spatial relationships. The results
show that integrating visual-spatial information in our multi-
order graph matching approach can improve performance of
long-term loop closure detection.

The qualitative results obtained by our approach on the St
Lucia dataset are demonstrated in Figure 3(b), which illus-
trates three matched places in the query and template images
recorded at different times of a day. We observe from these
matching results that different numbers of landmarks can be
extracted in a same place at different times, and the environ-
ment of the same place can look very differently at different
times of the day, e.g., due to lighting and shadow variations.
Furthermore, we observe that the proposed method can well
address these long-term variations, and obtains good match-
ing results for loop closure detection based upon multi-order
graph representations with varying numbers of nodes.
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Figure 3: Experimental results on the St Lucia dataset. Fig-
ure 3(a) presents quantitative results based on the precision-
recall curve as the evaluation metric. Figure 3(b) illustrates
qualitative results of place matches in query images recorded
at 8:00 AM (left) and template images recorded at 3:00 PM
(right). The figures are best viewed in color.

Results on the CMU-VL Dataset

CMU Visual Localization (CMU-VL) benchmark dataset
was collected by two cameras installed on a car in differ-
ent months of a year. GPS data was recorded to provide the
ground truth location.

The quantitative results obtained by our method and com-
pared approaches are presented Figure 4(a). We further cal-
culate the area under the precision-recall curve as the single-
value performance indicator, as demonstrated in Table 2. We
can observe that our approach obtains a score of 0.7452, and



Table 2: Experimental results obtained by our and compared
approaches on both datasets. The area under the precision-
recall curve is used as a single-value evaluation metric, with
a greater value in [0,1] indicating a better performance.

[ Approach | StLucia [ CMU-VL |
LBP 0.1363 0.1958
Color 0.3186 0.3970
NormG (Milford and Wyeth 2012) 0.3672 0.4170
Hog (Naseer et al. 2014) 0.5517 0.5514
HALI (Han, Wang, and Zhang 2018) 0.5206 0.5558
Gist-Brief (Siinderhauf and Protzel 2011) 0.5569 0.5612
BCAGM (Nguyen, Gautier, and Hein 2015) | 0.6122 0.4878
SRAL (Han et al. 2017) 0.5630 0.6274
Ours 0.7207 0.7452

it performs better than the compared methods on the CMU-
VL dataset that exhibits challenging vegetation and weather
variations. The qualitative results obtained by the proposed
approach on CMU-VL are demonstrated in Figure 4(b) to il-
lustrate matched places. We observe that our approach well
matches places to perform loop closure detection when long-
term changes are present (e.g., trees with or without leaves
and different lighting conditions).
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Figure 4: Experimental results on the CMU-VL benchmark
dataset. Figure 4(a) demonstrates the quantitative results on
precision-recall curves. Figure 4(b) shows qualitative results
of place matches in query images recorded in March (left)
and template images recorded in September (right).

Discussion

We study the characteristics of our method using the CMU-
VL dataset, including importance of visual-spatial cues, ro-
bustness to scale changes, and hyperparameter analysis.

Importance of Visual-Spatial Cues. The results from ap-
proaches that utilize different visual-spatial cues are pre-
sented in Figure 5(a). We can see that the spatial relation-
ships are more important than visual appearance cues. Meth-
ods utilizing the second and third-order spatial relationships
obtain a score of 0.7179 and 0.6178, respectively, based on
the area under the precision-recall curve as a metric, which
is much better than the score of 0.5350 obtained by the
method using visual appearance cues. Combining the sec-
ond and third-order spatial relationships can lead to a score
of 0.7448. Our complete approach that integrates both vi-
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Figure 5: Analysis of our approach on the CMU-VL dataset.
Figure 5(a) compares methods using different visual-spatial
cues. Figure 5(b) compares the performance when the scale
change is addressed or not. Figure 5(c) depicts performance
variations given different hyperparameter values.

sual and spatial information further improves performance
of loop closure detection and obtains a score of 0.7452.

Robustness to Scale Changes. The results of approaches
with and without addressing scale changes are illustrated in
Figure 5(b). The area score with addressing scale changes is
0.7452, which is better than the score of 0.5661 when scale
changes are not addressed. This generally shows the bene-
fit of addressing scale changes in our proposed approach to
improve loop closure detection performance.

Hyperparameter Analysis. We present our method’s per-
formance changes given different hyperparameter values in
Figure 5(c), using the area under the precision-recall curve
as the metric. Although our approach has three hyperparam-
eters that control relative weights of information cues in Eq.
(12), since they satisfy 2?21 Ai=1land \; >0,i=1,2,3,
only two of them are independent. Accordingly, the depen-
dent hyperparameters can be presented and illustrated in the
standard simplex topological space (Zhang et al. 2014). For
a point in this triangular topological space, the three hyper-
parameter values can be retrieved along the edge directions.
For example, the point marked as a cross in Figure 5(c) rep-
resents Ay = 0.02, Ao = 0.49, and \3 = 0.49, which results
in the best performance. We can also observe that the perfor-
mance decreases toward the bottom left corner (i.e., A\ = 1,
A2 = 0, and A3 = 0), indicating that only utilizing appear-
ance cues without considering spatial relationships reduces
performance. This observation is consistent with the results
from the analysis of visual-spatial cues in Figure 5(a).

Conclusion

We propose the novel visual-spatial information preserving
multi-order graph matching method for long-term loop clo-
sure detection. It implements a graph representation that
fuses both visual appearances and multi-order spatial rela-
tionships of image regions representing landmarks and the
background environment. It is also based upon a fresh for-
mulation that formulates loop closure detection as a multi-
order graph matching problem to compute similarity of
query and template images directly from graph represen-
tations, instead of performing vector-based place matching.
Evaluation on two benchmark datasets have shown our ap-
proach outperforms the previous state-of-the-art approaches



for long-term loop closure detection.
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