
Balanced centroidal power diagrams for redistricting

Vincent Cohen-Addad

CNRS, Sorbonne Université, Paris

Philip N. Klein
∗

Brown University

Neal E. Young
†

University of California, Riverside

ABSTRACT
We consider the problem of political redistricting: given the

locations of people in a geographical area (e.g. a US state), the

goal is to decompose the area into subareas, called districts, so
that the populations of the districts are as close as possible and

the districts are “compact” and “contiguous,” to use the terms

referred to in most US state constitutions and/or US Supreme

Court rulings.

We study a method that outputs a solution in which each

district is the intersection of a convex polygon with the geo-

graphical area. The average number of sides per polygon is

less than six. The polygons tend to be quite compact. Every

two districts differ in population by at most one (so we call

the solution balanced).
In fact, the solution is a centroidal power diagram: each

polygon has an associated center in R3 such that

• the projection of the center onto the plane z = 0 is

the centroid of the locations of people assigned to the

polygon, and

• for each person assigned to that polygon, the polygon’s

center is closest among all centers. The polygons are

convex because they are the intersections of 3D Voronoi

cells with the plane.

The solution is, in a well-defined sense, a locally optimal so-

lution to the problem of choosing centers in the plane and

choosing an assignment of people to those 2-d centers so as to

minimize the sum of squared distances subject to the assign-

ment being balanced.

A practical problemwith this approach is that, in real-world

redistricting, exact locations of people are unknown. Instead,

the input consists of polygons (census blocks) and associated

populations. A real redistricting must not split census blocks.

We therefore propose a second phase that perturbs the solution
slightly so it does not split census blocks. In our experiments,

the second phase achieves this while preserving perfect popu-

lation balance. The district polygons are no longer convex at

the fine scale because their boundaries must follow the bound-

aries of census blocks, but at a coarse scale they preserve the

shape of the original polygons.

∗
Research supported by National Science Foundation Grants CCF-1409520 and

CCF-1841954.

†
Research supported by National Science Foundation Grant IIS-1619463.

Permission to make digital or hard copies of part or all of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for third-party components of

this work must be honored. For all other uses, contact the owner/author(s).

Conference’17, July 2017, Washington, DC, USA
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

KEYWORDS
redistricting, computational geometry, optimization, graph

algorithm

ACM Reference Format:
Vincent Cohen-Addad, Philip N. Klein, and Neal E. Young. 2019. Bal-

anced centroidal power diagrams for redistricting. In Proceedings of
ACM Conference (Conference’17). ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
1.1 Redistricting
In the context of elections, redistricting refers to decomposing

a geographical area into subareas called districts. The districts
are supposed to satisfy three properties.

First, in order to honor the principle of equal representation,

the districts are supposed to have equal population to the

extent possible. Although the Supreme Court has declined to

name a specific percentage limit on how much populations of

districts can differ, “a 2002 Pennsylvania redistricting plan was

struck down because one district had 19 more people . . . than

another.” [12, p. 499]

Second, districts are supposed to be contiguous to the extent
that is possible. “. . . Forty-nine [out of fifty] states require at

least one chamber’s state legislative districts to be contiguous

. . . the vast majority of congressional districts — perhaps every

one in the 2010 cycle — will be drawn to be contiguous” [18].

Contiguous can reasonably be interpreted to mean connected.
Third, is compactness. “Thirty-seven states require their

legislative districts to be reasonably compact; eighteen states

require congressional districts to be compact as well. Few

states define precisely what ‘compactness’ means, but a district

in which people generally live near each other is usually more

compact than one in which they do not.” [18]

There are other criteria considered by the states. Some

states require that district boundaries account in some way

for existing political boundaries such as county or city lines,

although there is flexibility in this rule.

In this paper, we focus on equal population, contiguity, and

compactness. Of these, compactness is the one that is not easy

to formalize. Some measures of compactness are based on

boundaries; a district is preferred if its boundaries are simpler

rather than contorted. Some measures are based on disper-
sion, “the degree to which the district spreads from a central

core” [18]. Idaho, for example, directs its redistricting commi-

sion to “avoid drawing districts that are oddly shaped.” Other

states loosely address the meaning of compactness: “Arizona

and Colorado focus on contorted boundaries; California, Michi-

gan, and Montana focus on dispersion; and Iowa embraces

both” [18].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

 26

 28

 30

 32

 34

 36

-106 -104 -102 -100 -98 -96 -94

 26

 28

 30

 32

 34

 36

-106 -104 -102 -100 -98 -96 -94

 26

 28

 30

 32

 34

 36

-106 -104 -102 -100 -98 -96 -94
Figure 1: (left) The current Texas districting plan for the 114th Congress [19], designed to respect some county bound-
aries. (middle) A solution to the idealized redistricting problem for Texas. (right) A solution that respects census
blocks. The middle and right figures are perfectly population-balanced.

In the literature, we note that Fryer and Holden [12], two

economists, state three properties that they argue every in-

dex of compactness should satisfy, and formulated a measure

of compactness they call relative proximity index (RPI). They

showed that any compactness index satisfying their three prop-

erties ranks districting plans identically to the RPI. The RPI

is based on a quantity we will call the dispersion of a district-

ing plan: it is the sum, over all districts, of the sum, over all

pairs of residents in a district, of the squared distance between

the two residents. The RPI of a plan is the ratio of the plan’s

dispersion to the minimum dispersion achievable. Achieving

the minimum dispersion is NP-hard. Fryer and Holden use a

local-search heuristic to upper bound the optimum, so as to

estimate the RPI of existing districting plans.

1.2 The idealized redistricting problem:
assuming known locations of residents

Here is one natural way to formulate redistricting as a compu-

tational problem: the input specifies the desired number k of

districts and a set of points (the locations of the residents). The

output is a decomposition of the state into polygons. Assum-

ing this formulation, a minimum-dispersion set of districts has

the following desirable properties:

(P1) Each district is the intersection of the state with a con-

vex polygon.

(P2) The average number of sides per polygon is less than

six.

(P3) The populations of the districts differ by at most one

(or zero if the total population is divisible by k).

Districts that are convex polygons with few sides on average

are arguably not “oddly shaped” and have boundaries that are

not “contorted” [18]. Section 2 discusses a practical method

(“Phase One”) that achieves properties P1–P3. The middle of

Figure 1 shows the output of Phase One for Texas. For contrast,

the left of the figure shows the actual current districts (for the

114th Congress).

It is worth emphasizing Property P3 — that populations of

districts differ by at most one (zero if the total state population

is divisible by k). We say a districting plan with this property

is (perfectly) balanced.

1.3 A more practical redistricting problem:
respecting census blocks

The problem formulation in Section 1.2 is idealized. In reality,

the exact locations of residents are unknown. The input con-

sists of polygons (census blocks) and associated populations.

Because the locations of the residents within each census

block are unknown, a real districting plan must not split cen-
sus blocks. Unfortunately, ideal districts that satisfy properties

P1–P3 will have polygonal boundaries that cut right through

census blocks. To what extent can we preserve properties P1–

P3 while also respecting (that is, not splitting) census blocks?

Adding this requirement to the three legal requirements

— population balance, contiguity, and compactness — makes

the problem considerably more difficult. As far as we know,

no previously published redistricting method both respects

census blocks and achieves contiguity and perfect population

balance. Hess et al. [16] report population differences ranging

between 6.8% and 9.5%.
1
Garfinkel and Nemhauser [13] tried to

respect larger geographical units (counties) and had a tradeoff

between compactness and population deviation; for one of

theirmore difficult instances (Washington state), they achieved

3.8% population deviation with a solution that was slightly

less compact than the existing redistricting plan. Helbig et

al. [15] report a 2.84% difference between largest and smallest.

Mehrotra et al. [21] report that their method generated a plan

whose maximum population deviation from exact balance

was 1.86% but that when they allowed greater deviation, they

obtained a more compact solution (with a better objective

value) with a deviation of 3.73% after postprocessing. Spann et

al. [24] limit the population deviation to at most 2%. Some of

1
This is the percentage by which the greatest district population exceeds the

least in a given plane.

2

these methods respect (or try to respect) larger geographical

units than census blocks (census tracts or counties), which

further impedes achieving population balance.

Our main contribution is a method that in all our experi-

ments succeeded in respecting census blocks while achieving

contiguity and perfect population balance. The method con-

sists of two phases:

• Phase One uses local search to find an idealized district-

ing plan satisfying properties P1–P3. For this phase,

the population of a census block is considered to be

located at the centroid of the block, but (if the center

is on a district boundary) this population may be split
and assigned to different districts.

• Phase Two assigns each of the boundary census blocks

(the census blocks intersected by the boundaries of

the polygons) to one of the districts, then reassigns

the entire population of each such block to its district.

The assignment is guaranteed to respect census blocks

and preserve connectivity. It is chosen to minimize the

maximum population change induced on any district.

In each of our experiments, Phase Two exactly preserved the

population of each district, so the final districts both respect

census blocks and are all perfectly balanced.

Furthermore, since Phase Two only affects the boundary
census blocks, the resulting districts largely retain the virtues

of the Phase-One solution. The Phase-Two districts are no

longer convex polygons with few sides — the polygon bound-

aries become more complicated. But that complexity is in a

sense due to the complexity of the census-block boundaries.

At a large scale, the district boundaries still resemble those of

the Phase-One polygons. Moreover, since only boundary cen-

sus blocks are affected, Phase Two only slightly increases the

value of the dispersion measure. The right of Figure 1 shows

the output of Phase Two for Texas.

2 PHASE ONE: BALANCED CENTROIDAL
POWER DIAGRAMS

Proposals to use optimization for redistricting date as far

back as 1965 [13, 16] and continued to the present day [11].

See [1, 23] for additional references. In this section we focus

specifically on balanced centroidal power diagrams, which is

what the first phase of our algorithm computes. We start with

definitions and relevant history.

Fix an input (P,k), where P , the population, is a set ofm
residents (points in a Euclidean space), and k is the desired

number of districts. Given (P,k), phase one outputs a pair

(C, f), where C is a sequence of k centers (points in the Eu-

clidean space) and f : P → C is an assignment of residents to

centers. Let d(y, x) denote the distance from resident y ∈ P to

a possible center x .
Given, along with centers C , a weight wx ∈ R for each

center x ∈ C , the power diagram of (C,w), denoted P(C,w), is

defined as follows. For any center x ∈ C , the weighted squared
distance from any point y to x is d2(y, x) −wx .

The power cell Cx associated with x ∈ C consists of all

points whose weighted squared distance to x is no more than

the weighted squared distance to any other center in C . The

power diagram P(C,w) is the collection {Cx : x ∈ C} of

these power cells.
2
An assignment f : P → C is consistent

with P(C,w) if every resident assigned to center x belongs

to the corresponding cell Cx . (Residents in the interior of Cx
are necessarily assigned to x .) P(C,w, f) denotes the power
diagram P(C,w) augmented with a consistent assignment f .

Power diagrams are well-studied [2]. If the Euclidean space

is R2, it is known that each power cell Cx is necessarily a

(possibly unbounded) convex polygon.

If each weight wx is zero, the power diagram is the well-

known Voronoi diagram, and denotedV(C). LikewiseV(C, f)
denotes the Voronoi diagram extended with a consistent as-

signment f (which simply assigns each resident to a nearest

center).

A centroidal power diagram is an augmented power diagram

P(C,w, f) such that the assignment f is centroidal: each center
x ∈ C is the centroid (center of mass) of its assigned residents,

{y ∈ P : x = f (y)}. Compared to general power diagrams,

centroidal power diagrams are often preferred because their

cells tend to be more compact.

Centroidal Voronoi diagrams in particular have many appli-

cations [10]. A canonical application from graphics is down-

sampling a given image, by partitioning the image into cells,

then selecting a single pixel from each cell to represent the

cell. Lloyd’s method is a standard way to compute a centroidal

Voronoi diagramV(C, f), given (P,k) [10, § 5.2]. Starting with
a sequenceC ofk randomly chosen centers, themethod repeats

the following two steps just until Step (2) does not change C:

(1) Given C , let f be any assignment assigning each resi-

dent to a nearest center in C .
(2) Move each center x ∈ C to the centroid of the residents

that f assigns to x .

Recall that the cost is
∑
y∈P d

2(y, f (y)). Step (1) chooses

an f of minimum cost, given C . Step (2) moves the centers

to minimize the cost, given the assignment f . Each iteration

except the last produces a lower-cost assignment, so the algo-

rithm must terminate. At termination,V(C, f) is, as desired,
a centroidal Voronoi diagram, because Step (1) computes f
that is consistent with V(C), and (in the last iteration) Step

(2) does not change C .
At termination, (C, f) is a local minimum in the following

sense: by just moving the centers in C , or just changing f to

any other assignment, it is not possible to reduce the cost.
3

Miller [22] and Kleiner et al. [17] explore the use of cen-

troidal Voronoi diagrams specifically for redistricting. The re-
sulting districts (cells) are convex polygons, and tend to be

compact, but their populations can be far from balanced.

2
Subtracting the same number from all weights does not change the power

cells. By subtracting an appropriate number, one can ensure that all weights

are nonpositive. Interpret each weight as the negative of the square of the z-
coordinate of the center; then the weighted squared distance from a point y to

the center becomes the squared distance in 3-d from the point y (now lying in

the plane z = 0) to the center’s 3-d location. According to this interpretation,

each power cell is the intersection with the plane z = 0 of the 3-d Voronoi cell

of the center.

3
Indeed, this condition is necessary and sufficient for V(C , f) to be centroidal.

3

A balanced power diagram is an augmented power diagram

P(C,w, f) (not necessarily centroidal) such that the assign-

ment f is perfectly balanced as defined in the introduction —

for any two cells of P(C,w, f), the sizes of their populations
are the same, or differ by at most 1 if the total population is

not divisible by k .
Aurenhammer et al. [3, Theorem 1] give an algorithm that,

given (P,k) and C , computes a weight vectorw and an assign-

ment f such that P(C,w, f) is a balanced power diagram, and

f has minimum cost among all balanced assignments of P toC .
Their algorithm assumes a Euclidean metric and computes a

specific f . As observed by Spann et al. [24], a slightly stronger

result is possible: for any metric, given any (P,k,C) one can
compute a weight-vectorw such that P(C,w, f) is a balanced
power diagram for every minimum-cost balanced assignment

f .

Phase One: balanced centroidal power diagrams. Given (P,k),
Phase One of our algorithm computes a balanced centroidal

power diagram — an augmented power diagram P(C,w, f)
such that f is both balanced and centroidal. It does so using

the following capacitated variant of Lloyd’s method:

Starting with a sequence C of k randomly chosen centers,

repeat the following steps until Step (2) doesn’t change C:

(1) GivenC , compute aminimum-cost balanced assignment

f : P → C . (Recall that the cost is
∑
y∈P d

2(y, f (y)).)
(2) Move each center x ∈ C to the centroid of the residents

that f assigns to x .

As in the analysis of Lloyd’s method, each iteration except

the last produces a lower-cost assignment, so the algorithm

must terminate. The subproblem in Step (1) can be solved via

Aurenhammer et al.’s algorithm [3].

Instead, our implementation solves it by reducing it to

minimum-cost flow (see Section 4). This yields both the stip-

ulated f and (via the dual variables) weights w such that

P(C,w, f) is a balanced power diagram. In the final itera-

tion Step (2) does not change C , so f is also centroidal, and

P(C,w, f) is the desired balanced centroidal power diagram.

At termination, the pair (C, f) is a local minimum in the fol-

lowing sense: by just moving the centers inC , or just changing
f (while respecting the balance constraint), it is not possible

to reduce the cost.
4

Given (P,k), Phase One of our algorithm computes a bal-

anced centroidal power diagram P(C,w, f) using the above

method. The corresponding districts are the power cells of

P(C,w, f) (clipped to the underlying state or other geograph-

ical region).

Because P(C,w, f) is a power diagram, Property P1 holds —

each district is the intersection the state with a convex polygon.

Because the dual graph of these cells is planar, the average

number of sides per polygon is less than six — Property P2

holds. Because P(C,w, f) is a balanced power diagram, Prop-

erty P3 holds — the populations of the districts are balanced.

Because P(C,w, f) is centroidal, the districts tend to be com-

pact.

4
Indeed, this is a necessary and sufficient condition on (C , f) for (C , f) to
admit a balanced centroidal power diagram P(C ,w , f) (for somew).

Related algorithms sacrificing balance to respect census blocks.
Spann et al. [24] propose a variant of the algorithm in which,

in Step (1), the assignment f is constrained to fully respect

census blocks: for each census block, f must assign all resi-

dents within that block to the same center. As discussed earlier,

this is desirable but can make the balance condition harder

(or even impossible) to achieve. Spann et al. state that they

relax the perfect-balance requirement, initially allowing a 20%

deviation, and then reduce the allowed deviation with each

iteration. In principle, reducing the allowed deviation can in-

crease theminimum assignment cost, so some care is needed to

guarantee termination. The paper does not describe precisely

how this is done, or precisely how Step (1) is done. It states

that the algorithm terminates when the deviation is within 2%

of balanced. So, the resulting districts respect census blocks

but are not perfectly balanced, deviating by as much as 2%.

Hess et al. [16] (forty years before Spann et al.) propose an-

other variant that respects census blocks (then called “census

enumeration districts”). They also implemented their Step (1)

by solving a transportation (min-cost assignment), but with

some (apparently manual) adjustment to the assignment to

maintain connectivity of each district. They do not compute

power-diagram weight vectors nor otherwise mention power

diagrams. They report population differences of 6.8–9.5% be-

tween the resulting districts.

Helbig et al. [15] propose another variant that respects cen-

sus blocks (then called “population units”). But they use a

different cost function — the sum of distances, not the sum of

squared distances — so do not achieve a power diagram. The re-

sulting districts are not generally convex. Even noncontiguous

districts can result, although this was not observed in practice.

Their mathematical program constrains population balance

using an indirect heuristic, which interferes with convergence,

and they allow their algorithm to stop before reaching a true

local minimum. They report population differences of 2.84%

between districts.

Other related algorithms. Balzer et al. [4, 5] propose a variant
of the algorithm we describe above, differing in that it uses

a local-exchange heuristic (updating f by swapping pairs of

residents) to carry out Step (1). For some inputs, local-exchange

with pairwise swaps is not sufficient to reach a minimum-cost

assignment f . Consequently, for some inputs, their algorithm

outputs an assignment f that is not actually consistent with

any balanced power diagram.

Many other works on balanced centroidal power diagrams

address applications (e.g. in graphics) that have very large in-

stances, and for which it is not crucial that the power diagrams

be exactly centroidal or exactly balanced [4, 5, 8, 20, 25]. This

class of algorithms prioritize speed, and none are guaranteed

to find an assignment f so that (C, f) is a local minimum as

described above, or has a balanced centroidal power diagram.

As far as we know, ours is the first published work to re-

port on an implementation that computes perfectly balanced

centroidal power diagrams.

4

3 PHASE TWO: REAASSIGNING
BOUNDARY BLOCKS

Given input (P,k), Phase One solves the idealized redistricting
problem (without census blocks), computing a perfectly bal-

anced centroidal diagramP(C,w, f). The resulting power cells
form idealized, relatively compact districts with the desired

properties P1–P3 as described above.

Phase Two, described next, modifies the assignment f so as

to meet the practical requirement that districts must respect

(not split) census blocks. To do so, it first identifies interior cen-
sus blocks — census blocks b that lie strictly within any power

cellCx . The assignment f (being consistent withP(c,w)) must

assign the entire population of b to the center x . Phase Two
doesn’t change this — it also assigns the entire population of

b to x .
Phase Two handles the remaining census blocks, called

boundary blocks, as follows.
5
For each boundary census block

b, Phase Two reassigns the population of b (which f may split)

to some centerд(b) ∈ C , whereд is an assignment of boundary

census blocks to centers inC that assigns each boundary block

b to the center x = д(b) ∈ C of a power cell Cx that overlaps

with b. The assignment д is chosen by solving an optimization

problem described below. The optimization chooses д with

constraints that enforce connectivity of the resulting districts,

with the objective of minimizing the maximum population

change that Phase Two induces on any district. As mentioned

previously, since Phase Two only reassigns boundary census

blocks, the resulting districts largely retain the virtues of the

Phase-One solution.

3.1 Preserving connectivity with
dependency constraints

An arbitrary assignment д of boundary blocks to centers of

overlapping power cells can result in disconnected districts.

This is because, for example, there can be boundary blocks

whose neighboring blocks are all also boundary blocks. (That

can happen even if the census blocks are convex polygons, and

many census blocks are not even convex.) To avoid this, Phase

Two constrains the assignment д by introducing dependency
constraints, as follows.

It first constructs the census-block graph, where each census

block is a vertex, and two vertices are adjacent if their census

blocks share a boundary. For each cellCx , Stage Two computes

the subgraph of the census-block graph induced by blocks that

overlap (or are contained in) Cx . For each boundary block b
that overlaps Cx , it computes a minimum-hop path in this

subgraph from b to any interior block in Cx . (Recall that any
interior block will remain assigned to cell Cx .) The algorithm
designates the neighbor b ′ of b on this path as the dependee of
b with respect to Cx . In the case that b ′ is not internal to Cx ,
the algorithm adds the following dependency constraint on д:
if д assigns b to Cx , then д must also assign b ′ to Cx .

The dependency contraints ensure that, if д assigns any

boundary block b to any cell Cx , then, for some path to a

boundary block internal to Cx , each block on the path is also

5
The case when a block contains an entire district does not occur, as blocks are

much smaller than districts.

assigned to Cx . Assuming that the subset of interior blocks

in Cx is itself connected, the set of all blocks that Phase Two

assigns to each Cx will thus be connected. (This assumption

has been valid in our experiments, however, in the event that it

does not hold — if some boundary blocks separate the interior

blocks in Cx into multiple components — one workaround is

to constrain those boundary blocks to be assigned to Cx .)
To summarize, the optimization problem that Phase Two

solves is to find an assignment д that assigns each boundary

block b to the center x ∈ C of an overlapping cell Cx , while
respecting the dependency constraints described above, with

the objective of minimizing the maximum population change

that results for any district.

3.2 Finding an assignment with integer
linear programming

In our experiments, Phase Two solved this optimization prob-

lem by formulating it as an integer linear program (ILP) in a

standard way, then solved the ILP using the commercial ILP

solver, Gurobi. The ILP’s are not small. For example, the ILP for

California has about 15k constraints, 19k binary variables, and

32k non-zeros in the constraint matrix. Nonetheless, Gurobi

solved all the ILPs in a fraction of a second on a standard

laptop computer.

We speculate that the ILP has a relatively easy combinatorial

structure, perhaps having to do with the structure described

in the next section, which describes an alternative, dynamic-

programming, approach to solving the problem.

3.3 Introduction to the dynamic program
We will now show that the Phase Two problem has special

structure that enables it to be solved by a dynamic program.

For for the sake of simplicity, we will ignore dependency rela-

tionships. We will also assume that the intersection of each

census block with each power-cell boundary segment is a sin-

gle subsegment. It is not hard to adapt the dynamic program to

take into account dependency relationships and handle census

blocks with more complicated intersections, as long as these

are in a sense well-behaved.

Under these simplifying assumptions, the running time of

the dynamic program is nO (d)m where n is the per-district

target population,m is the number of census blocks, and d is

the breadth-first-search depth of the planar dual of the power

diagram. We explain the depth d in greater detail below. For

now, suffice it to note that it tends to be small in the context

of power diagrams for redistricting. For our most complicated

state, California, the depth is three.

3.4 Sphere-cut-like decomposition
Here we describe in greater detail the structure of the Phase-

Two problem that enables solution by dynamic program.

See Figure 2. The power-diagram graph GD is a graph in

which each edge represents amaximal line segment that bound-

ing a power cell. Consider one such line segmentL. LetL1, . . . , Lp
be the subsegments that are the intersections of census blocks

with L, in the order in which they appear on L, not including in-
tersections that include the endpoints of L. Subdivide the edge

5

Figure 2: Top left: In bold black the edges of the sub-
divided power diagram graph. The green vertices are
the vertices of the power diagram graph. The blue ver-
tices result from the subdivision of the edges ofGD . The
blue vertices (and likely the green vertices) correspond
to boundary census blocks. Green and blue vertices to-
gether with the bold lines form G̃D .
Top Right: Red lines together with red squares respec-
tively define edges and vertices of the dual of G̃D . Bold
red lines showa breadth-first-search treeT of this graph
rooted at the infinite face.
Bottom Left: Blue lines show the interdigitating tree of
G̃D associated with T .
Bottom Right: Pink lines show a fundamental cycle in
the dual of G̃D . This cycle is associated with the edge of
T ∗ that it intersects.

e corresponding toL, replacing it with a pathv0e0v1e1v2 . . .vpep+1vp+1
wherev0 and vp+1 are the original endpoints of e . Each vertex

vi (for i = 1, . . . ,p and possibly also for i = 0 and/or i = p + 1)
corresponds to a subsegment of L, and thus to a census block

that intersects L. This is called the subdivided power-diagram
graph. We denote it by G̃D and give an example in the top left

of Figure 2. Note that it is a planar graph.

Next, consider the planar dual of G̃D . The planar dual has a

vertex for each face of G̃D (including the infinite face), and, for

each edge e of G̃D , a dual edge that crosses e at approximately

a right angle. The subdivisions in G̃D give rise to parallel edges

in the dual, as shown in the top right of Figure 2.

LetT be any spanning tree of the dual of G̃D . Each edge xy
of the dual that is not part of T defines a simple cycle in the

dual; the cycle consists of xy together with the simple x-to-y
path inT . This cycle is called the fundamental cycle of xy with

respect to T . It passes through some vertices, of which all but

at most one (the infinite face) correspond to power cells and

thus to districts.

In particular, let T be a breadth-first search tree of the dual.

We define the breadth-first search depth d to be the maximum

number of edges on any root-to-leaf path. Then any fundamen-

tal cycle with respect to T passes through at most 2d vertices

that correspond to districts.

Let T ∗
be the set of edges of G̃D that do not correspond to

edges of T . A basic result in planar graph theory states that

the edges of T ∗
form a spanning tree of G̃D . For each edge uv

of T ∗
, let e be the corresponding edge of G̃D , and let C be the

fundamental cycle of e with respect to T . Orient uv from the

vertex enclosed by C towards the vertex not enclosed by C . In

this way,T ∗
becomes a rooted spanning tree of G̃D , where the

root is a vertex with only one incident edge of T ∗
. For each

vertex u of T ∗
, let T ∗(u) be the set of descendants of u in T ∗

.

For each nonroot vertex u, the parent edge uv corresponds to

a cycle C(u) in the dual such that C(u) separates the vertices

ofT ∗(u) from the vertices of G̃D not inT ∗(u). Let D(u) denote
the set of districts (power cells) corresponding to the vertices

on C(u).
Thus we obtain a recursive binary decomposition of the

vertices of G̃D .
6

3.5 Dynamic program
Fix a threshold λ. The dynamic programwill determinewhether

there is an assignment of census blocks to districts so that the

maximum discrepancy is at most λ.
Let u be a nonroot vertex of T ∗

. Consider an assignment

of the census blocks in T ∗(u) to power cells they intersect.

Making this assignment (without otherwise changing the pop-

ulation assigned to power cells) induces a change ∆(ci) in the

population assigned to power cell ci . We say that this assign-

ment is feasible with respect to u if, for every power cell not in

D(u), the absolute value of the change is no more than λ. Each
feasible assignment induces a labeling of the power cells in

D(u); namely, cell ci is labeled with ∆(ci). We call this labeling

a feasible labeling with respect to u. The number of feasible

labelings with respect to u is at most n |D(u) |
, which is in turn

at most n2d .
The dynamic program finds, for each nonroot vertex u,

the set of all feasible labelings with respect to u. To do this,

the dynamic program works up T ∗
from leaves to root. For

each vertex u, the feasible labelings of u can be derived by

considering the feasible labelings of each of its children and the

different cells that u itself can be assigned to. For each vertex

u, the time to compute the feasible labelings with respect to

u is proportional to the product of the number of feasible

labelings of each of its children. Since each vertex has at most

two children in T ∗
and each child has at most n2d feasible

labelings, the time for each vertex is nO (d)
. Similarly, from

the sets of feasible labelings of the root’s children, it can be

determined whether there is any assignment of census blocks

to power cells for which the maximum discrepancy is at most

λ. The total time is nO (d)m.

6
This decomposition resembles a structure called a sphere-cut decomposition [9].

6

4 STEP (1) OF PHASE ONE
Aurenhammer et al. [3] provide an algorithm that, given the set

P of locations of residents and the sequence C of centers, and

given a target population for each center (where the targets

sum to the total population), finds a minimum-cost assignment

f of residents to centers subject to the constraint that the

number of residents assigned to each center equals the center’s

target population. Their algorithm also outputs weightsw for

the centers such that the assignment f is consistent with

P(C,w). Their algorithm can be used to find a minimum-cost

balanced assignment by using appropriate targets.

In the implementation here, we take a different approach

to computing the minimum-cost balanced assignment: we

use an algorithm for minimum-cost flow. Aurenhammer et

al. [3] acknowledge that a minimum-cost flow algorithm can

be used but argue that their method is more computationally

efficient. As we observe below, the necessary weightsw can

be computed from the values of the variables of the linear-

programming dual to minimum-cost flow.

The goal is to find a balanced assignment f : P → C of

minimum cost,

∑
y∈P d

2(y,p(y)). Let ux ∈ {⌊m/k⌋, ⌈m/k⌉} be
the number of residents that f must assign to center x ∈ C .

Consider the following linear program and dual:

minimizea
∑
y∈P ,x ∈C d2(y, x)ayx

subject to

∑
y∈P ayx = µx (x ∈ C)∑
x ∈C ayx = 1 (y ∈ P)

ayx ≥ 0 (x ∈ C,y ∈ P)

maximizew ,z
∑
x ∈C µx wx +

∑
y∈P zy

subject to zy ≤ d2(y, x) −wx (x ∈ C,y ∈ P)

This linear program models the standard transshipment
problem. As the capacities µx are integers with

∑
x µx = |P |,

it is well-known that the basic feasible solutions to the linear

program are 0/1 solutions (ayx ∈ {0, 1}), and that the (opti-

mal) solutions a correspond to the (minimum-cost) balanced

assignments f : C → P such that ayx = 1 if f (y) = x and

ayx = 0 otherwise. The implementation here solves the linear

program and dual by using Goldberg’s minimum-cost flow

solver [14] to obtain a minimum-cost balanced assignment

f ∗ and an optimal dual solution (w∗, z∗). For any minimum-

cost balanced assignment f (such as f ∗) the resulting weight

vectorw∗
gives a balanced power diagram P(C,w∗, f):

Lemma 4.1 (see also [24]). Let (w∗, z∗) b any optimal solu-
tion to the dual linear program above. Let f be any balanced
assignment. Then P(C,w∗, f) is a balanced power diagram if
and only if f is a minimum-cost balanced assignment.

Proof. Let a be the linear-program solution corresponding

to f .

(If.) Assume that f has minimum cost among balanced as-

signments. Consider any resident y ∈ P . By complimentary

slackness, for x ′ = f ∗(y), the dual constraint for (x ′,y) is tight,
that is, z∗y = d

2(y, f (y)) −w∗
f (y). Combining this with the dual

constraint for y and any other x ∈ C gives

d2(y, f (y)) −w∗
f (y) = z∗y ≤ d2(y, x) −w∗

x .

That is, from y, the weighted squared distance to f (y) is no
more than the weighted squared distance to any other center

x ∈ C . So, y is in the power regionCf (y) of its assigned center

f (y). Hence, f is consistent with P(C,w)∗, and P(C,w∗, f) is
a balanced power diagram.

(Only if.) Assume that f is consistent with P(C,w∗). That is,

the weighted squared distance from y to f (y) is no more than

the weighted squared distance to any other center x ∈ C . That
is, defining z′y = d

2(y, f (y)) −w∗
f (y),

z′y = d2(y, f (y)) −w∗
x ≤ d2(y, x) −w∗

x .

Thus, (w∗, z′) is a feasible dual solution. Furthermore, the

complimentary slackness conditions hold for a and (w∗, z′).
That is, ayz > 0 =⇒ f (y) = x =⇒ z′y = d2(y, x) − w∗

x .

Hence, a and (w∗, z′) are optimal. Since a is optimal, f has

minimum cost. □

5 EXPERIMENTS
We ran the implementation on the following US states: Al-

abama, California, Florida, Illinois, New York, Rhode Island,

and Texas. Note that this list of states contains the biggest

states in terms of population and number of representatives.

For each of these states, we used the following data pro-

vided by the US Census Bureau [7]: for each census block, we

used the geometric description of the census block, and the

population from the 2010 census. In the very rare case where

a census block consisted of several polygons, we made the

assumption (usually but not always correct) that the census

block’s population was zero.

For each state, for the number of districts we used the num-

ber of representatives the state sends to the US House of Rep-

resentatives.

State Number of representatives Population

Alabama 7 4779736

California 53 37253956

Florida 27 18801310

Illinois 18 12830632

New York 27 19378102

Rhode Island 2 10520940

Texas 36 25145561

Table 1: The states considered in our experiments to-
gether with the number of clusters (i.e.: number of rep-
resentatives) and number of residents (i.e. population
of the state).

The results are depicted in Figure 1 and Figures 3 through 8.

We note that in all cases the Phase One algorithm converged

to a local optimum, and the Phase Two found a solution that

preserved connectivity (aside from bodies of water) and perfect

population balance.

7

5.1 Technical details and implementation
The implementation is available at https://github.com/pnklein/

district. It is written in C++ and Python3. Our implementa-

tion makes use of a slightly adapted version of a min-cost

flow implementation, cs2 due to Andrew Goldberg and Boris

Cherkassky and described in [14]. The copyright on cs2 is

owned by IG Systems, Inc., who grant permission to use for

evaluation purposes provided that proper acknowledgments

are given. If there is interest, we will write a min-cost flow

implementation that is unencumbered.

We also provide Python-3 scripts for reading census-block

data, reading state boundary data, finding the geometry of

the power cells (by computing the 3-d Voronoi diagram and

intersecting the Voronoi cells with the plane z = 0 as we

described when defining power cells), and generating gnuplot
files to produce the figures shown in the paper. These figures

superimposed the boundaries of the power regions and the

boundaries of states (obtained from [6]).

For our experiments, the programs were compiled using

g++ version 7.

6 CONCLUDING REMARKS
We have focused in this paper on the Euclidean plane. This en-

sures that each district is the intersection of the geographical

region (e.g. state) with a polygon. However, in view of the fact

that the method explored here might generate a district that

includes residents separated by water, mountains, etc., one

might want to consider a different metric, e.g. to take travel

time into account (as is done in [11]). Suppose, for example,

the metric is that of an undirected graph with edge-lengths.

One can use essentially the same algorithm for finding a bal-

anced centroidal power diagram. Computing a minimum-cost

balanced assignment (Step 1) and the associated weights can

still be done using an algorithm for minimum-cost flow as

described in Section 4. In Step 2, the algorithm must move

each center to the location that minimizes the sum of squared

distances from the assigned residents to the new center loca-

tion. In a graph, we limit the candidate locations to the vertices

and possibly locations along the edges. Under such a limit, it

is not hard to compute the best locations.

One might want to incorporate the goal of avoiding split-

ting larger geographical units such as counties. It would be

interesting to explore incorporating into the dynamic program

or integer linear program costs for splitting such units.

7 ACKNOWLEDGEMENTS
Thanks to Warren D. Smith for informing us of references [23,

24].

REFERENCES
[1] Micah Altman and Michael McDonald. The promise and perils of comput-

ers in redistricting. Duke J. Const. L. & Pub. Pol’y, 5:69, 2010.
[2] Franz Aurenhammer. Power diagrams: Properties, algorithms and applica-

tions. SIAM Journal on Computing, 16(1):78–96, February 1987.

[3] Franz Aurenhammer, Friedrich Hoffmann, and Boris Aronov. Minkowski-

type theorems and least-squares clustering. Algorithmica, 20(1):61–76,
1998.

[4] Michael Balzer and Daniel Heck. Capacity-constrained Voronoi diagrams

in finite spaces. In Proceedings of the 5th Annual International Symposium

on Voronoi Diagrams in Science and Engineering, Kiev, Ukraine, September

2008. 00014.

[5] Michael Balzer, Thomas Schlömer, and Oliver Deussen. Capacity-

constrained point distributions: A variant of Lloyd’s method. Proceedings
of ACM SIGGRAPH 2009, 28(3), August 2009.

[6] United States Census Bureau. Cartographic boundary shapefiles –states.

https://www.census.gov/geo/maps-data/data/cbf/cbf_state.html. accessed

September 2017.

[7] United States Census Bureau. Tiger/line with selected demographic and

economic data; population % housing unit counts — blocks. https://www.

census.gov/geo/maps-data/data/tiger-data.html. accessed September 2017.

[8] Fernando De Goes, Katherine Breeden, Victor Ostromoukhov, and Mathieu

Desbrun. Blue noise through optimal transport. ACM Transactions on
Graphics (TOG), 31(6):171, 2012.

[9] Frederic Dorn, Eelko Penninkx, Hans L Bodlaender, and Fedor V Fomin.

Efficient exact algorithms on planar graphs: Exploiting sphere cut decom-

positions. Algorithmica, 58(3):790–810, 2010.
[10] Qiang Du, Vance Faber, and Max Gunzburger. Centroidal Voronoi tessella-

tions: Applications and algorithms. SIAM review, 41(4):637–676, 1999.
[11] David Eppstein, Michael Goodrich, Doruk Korkmaz, and Nil Mamano.

Defining equitable geographic districts in road networks via stable match-

ing. arXiv preprint arXiv:1706.09593, 2017.
[12] Roland G Fryer Jr and Richard Holden. Measuring the compactness of

political districting plans. The Journal of Law and Economics, 54(3):493–535,
2011.

[13] R. S. Garfinkel and G. L. Nemhauser. Optimal political districting by

implicit enumeration techniques. Management Science, 16(8):B–495, April
1970.

[14] Andrew V. Goldberg. An efficient implementation of a scaling minimum-

cost flow algorithm. J. Algorithms, 22(1):1–29, 1997.
[15] Robert EHelbig, Patrick KOrr, and Robert R Roediger. Political redistricting

by computer. Communications of the ACM, 15(8):735–741, 1972.

[16] S. W. Hess, J. B. Weaver, H. J. Siegfeldt, J. N. Whelan, and P. A. Zitlau. Non-

partisan political redistricting by computer. Operations Research, 13(6):998–
1006, 1965.

[17] Evan Kleiner and Albert Schueller. A political redistricting tool for the rest

of us — other approaches to redistricting. Convergence (MAA), November

2013.

[18] Justin Levitt. All about redistricting: Professor Justin Levitt’s guide to

drawing the electoral lines. http://redistricting.lls.edu/. accessed September

2017.

[19] Jeffrey B. Lewis, Brandon DeVine, Lincoln Pitcher, and Kenneth C. Martis.

Digital boundary definitions of United States Congressional districts, 1789-

2012, 2013. Retrieved from http://cdmaps.polisci.ucla.edu on June 12, 2018.

[20] Hongwei Li, Diego Nehab, Li-Yi Wei, Pedro V. Sander, and Chi-Wing Fu.

Fast capacity constrained Voronoi tessellation. In Proceedings of the 2010
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D
’10, pages 13:1–13:1, New York, NY, USA, 2010. ACM.

[21] Anuj Mehrotra, Ellis L. Johnson, and George L. Nemhauser. An opti-

mization based heuristic for political districting. Management Science,
44(8):1100–1114, August 1998.

[22] Stacy Miller. The problem of redistricting: The use of centroidal Voronoi

diagrams to build unbiased congressional districts. Senior project, Whitman
College, 2007.

[23] Brian Olson and Warren D. Smith. RangeVoting.org - Theoretical Issues

in Districting Algorithms. http://rangevoting.org/TheorDistrict.html, ac-

cessed 2017-12-08.

[24] Andrew Spann, Daniel Kane, and Dan Gulotta. Electoral redistricting with

moment of inertia and diminishing halves models. The UMAP Journal,
28(3):281–299, 2007.

[25] Shi-Qing Xin, Bruno Lévy, Zhonggui Chen, Lei Chu, Yaohui Yu, Changhe

Tu, and Wenping Wang. Centroidal power diagrams with capacity con-

straints: Computation, applications, and extension. ACM Transactions on
Graphics, 35(6):1–12, November 2016.

8

https://github.com/pnklein/district
https://github.com/pnklein/district
https://www.census.gov/geo/maps-data/data/cbf/cbf_state.html
https://www.census.gov/geo/maps-data/data/tiger-data.html
https://www.census.gov/geo/maps-data/data/tiger-data.html
http://redistricting.lls.edu/
http://rangevoting.org/TheorDistrict.html

 30

 31

 32

 33

 34

 35

-88.5 -88 -87.5 -87 -86.5 -86 -85.5 -85

 30

 31

 32

 33

 34

 35

-88.5 -88 -87.5 -87 -86.5 -86 -85.5 -85

Figure 3: Alabama, idealized districting plan (left) and plan that preserves census blocks (right)

 32

 34

 36

 38

 40

 42

-124 -122 -120 -118 -116 -114

 32

 34

 36

 38

 40

 42

-124 -122 -120 -118 -116 -114

Figure 4: California, idealized districting plan (left) and plan that preserves census blocks (right)

 24

 25

 26

 27

 28

 29

 30

 31

-88 -87 -86 -85 -84 -83 -82 -81 -80

 24

 25

 26

 27

 28

 29

 30

 31

-88 -87 -86 -85 -84 -83 -82 -81 -80

Figure 5: Florida, idealized districting plan (left) and plan that preserves census blocks (right)

9

 37

 38

 39

 40

 41

 42

 43

-91.5 -91 -90.5 -90 -89.5 -89 -88.5 -88 -87.5

 37

 38

 39

 40

 41

 42

 43

-91.5 -91 -90.5 -90 -89.5 -89 -88.5 -88 -87.5

Figure 6: Illinois, idealized districting plan (left) and plan that preserves census blocks (right)

 41

 42

 43

 44

 45

-80 -79 -78 -77 -76 -75 -74 -73 -72

 41

 42

 43

 44

 45

-80 -79 -78 -77 -76 -75 -74 -73 -72

Figure 7: New York, idealized districting plan (left) and plan that preserves census blocks (right)

 41.2

 41.4

 41.6

 41.8

 42

-71.9 -71.8 -71.7 -71.6 -71.5 -71.4 -71.3 -71.2 -71.1

 41.2

 41.4

 41.6

 41.8

 42

-71.9 -71.8 -71.7 -71.6 -71.5 -71.4 -71.3 -71.2 -71.1

Figure 8: Rhode Island, idealized districting plan (left) and plan that preserves census blocks (right)

10

	Abstract
	1 Introduction
	1.1 Redistricting
	1.2 The idealized redistricting problem: assuming known locations of residents
	1.3 A more practical redistricting problem: respecting census blocks

	2 Phase One: balanced centroidal power diagrams
	3 Phase Two: reaassigning boundary blocks
	3.1 Preserving connectivity with dependency constraints
	3.2 Finding an assignment with integer linear programming
	3.3 Introduction to the dynamic program
	3.4 Sphere-cut-like decomposition
	3.5 Dynamic program

	4 Step (1) of Phase One
	5 Experiments
	5.1 Technical details and implementation

	6 Concluding remarks
	7 Acknowledgements
	References

