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ABSTRACT

We consider the problem of political redistricting: given the
locations of people in a geographical area (e.g. a US state), the
goal is to decompose the area into subareas, called districts, so
that the populations of the districts are as close as possible and
the districts are “compact” and “contiguous,” to use the terms
referred to in most US state constitutions and/or US Supreme
Court rulings.

We study a method that outputs a solution in which each
district is the intersection of a convex polygon with the geo-
graphical area. The average number of sides per polygon is
less than six. The polygons tend to be quite compact. Every
two districts differ in population by at most one (so we call
the solution balanced).

In fact, the solution is a centroidal power diagram: each
polygon has an associated center in R® such that

e the projection of the center onto the plane z = 0 is
the centroid of the locations of people assigned to the
polygon, and

o for each person assigned to that polygon, the polygon’s
center is closest among all centers. The polygons are
convex because they are the intersections of 3D Voronoi
cells with the plane.

The solution is, in a well-defined sense, a locally optimal so-
lution to the problem of choosing centers in the plane and
choosing an assignment of people to those 2-d centers so as to
minimize the sum of squared distances subject to the assign-
ment being balanced.

A practical problem with this approach is that, in real-world
redistricting, exact locations of people are unknown. Instead,
the input consists of polygons (census blocks) and associated
populations. A real redistricting must not split census blocks.
We therefore propose a second phase that perturbs the solution
slightly so it does not split census blocks. In our experiments,
the second phase achieves this while preserving perfect popu-
lation balance. The district polygons are no longer convex at
the fine scale because their boundaries must follow the bound-
aries of census blocks, but at a coarse scale they preserve the
shape of the original polygons.
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1 INTRODUCTION
1.1 Redistricting

In the context of elections, redistricting refers to decomposing
a geographical area into subareas called districts. The districts
are supposed to satisfy three properties.

First, in order to honor the principle of equal representation,
the districts are supposed to have equal population to the
extent possible. Although the Supreme Court has declined to
name a specific percentage limit on how much populations of
districts can differ, “a 2002 Pennsylvania redistricting plan was
struck down because one district had 19 more people ...than
another.” [12, p. 499]

Second, districts are supposed to be contiguous to the extent
that is possible. “...Forty-nine [out of fifty] states require at
least one chamber’s state legislative districts to be contiguous
...the vast majority of congressional districts — perhaps every
one in the 2010 cycle — will be drawn to be contiguous” [18].
Contiguous can reasonably be interpreted to mean connected.

Third, is compactness. “Thirty-seven states require their
legislative districts to be reasonably compact; eighteen states
require congressional districts to be compact as well. Few
states define precisely what ‘compactness’ means, but a district
in which people generally live near each other is usually more
compact than one in which they do not.” [18]

There are other criteria considered by the states. Some
states require that district boundaries account in some way
for existing political boundaries such as county or city lines,
although there is flexibility in this rule.

In this paper, we focus on equal population, contiguity, and
compactness. Of these, compactness is the one that is not easy
to formalize. Some measures of compactness are based on
boundaries; a district is preferred if its boundaries are simpler
rather than contorted. Some measures are based on disper-
sion, “the degree to which the district spreads from a central
core” [18]. Idaho, for example, directs its redistricting commi-
sion to “avoid drawing districts that are oddly shaped.” Other
states loosely address the meaning of compactness: “Arizona
and Colorado focus on contorted boundaries; California, Michi-
gan, and Montana focus on dispersion; and Iowa embraces
both” [18].
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Figure 1: (left) The current Texas districting plan for the 114th Congress [19], designed to respect some county bound-
aries. (middle) A solution to the idealized redistricting problem for Texas. (right) A solution that respects census
blocks. The middle and right figures are perfectly population-balanced.

In the literature, we note that Fryer and Holden [12], two
economists, state three properties that they argue every in-
dex of compactness should satisfy, and formulated a measure
of compactness they call relative proximity index (RPI). They
showed that any compactness index satisfying their three prop-
erties ranks districting plans identically to the RPL. The RPI
is based on a quantity we will call the dispersion of a district-
ing plan: it is the sum, over all districts, of the sum, over all
pairs of residents in a district, of the squared distance between
the two residents. The RPI of a plan is the ratio of the plan’s
dispersion to the minimum dispersion achievable. Achieving
the minimum dispersion is NP-hard. Fryer and Holden use a
local-search heuristic to upper bound the optimum, so as to
estimate the RPI of existing districting plans.

1.2 The idealized redistricting problem:
assuming known locations of residents

Here is one natural way to formulate redistricting as a compu-
tational problem: the input specifies the desired number k of
districts and a set of points (the locations of the residents). The
output is a decomposition of the state into polygons. Assum-
ing this formulation, a minimum-dispersion set of districts has
the following desirable properties:

(P1) Each district is the intersection of the state with a con-
vex polygon.

(P2) The average number of sides per polygon is less than
six.

(P3) The populations of the districts differ by at most one
(or zero if the total population is divisible by k).

Districts that are convex polygons with few sides on average
are arguably not “oddly shaped” and have boundaries that are
not “contorted” [18]. Section 2 discusses a practical method
(“Phase One”) that achieves properties P1-P3. The middle of
Figure 1 shows the output of Phase One for Texas. For contrast,
the left of the figure shows the actual current districts (for the
114th Congress).

It is worth emphasizing Property P3 — that populations of
districts differ by at most one (zero if the total state population
is divisible by k). We say a districting plan with this property
is (perfectly) balanced.

1.3 A more practical redistricting problem:
respecting census blocks

The problem formulation in Section 1.2 is idealized. In reality,
the exact locations of residents are unknown. The input con-
sists of polygons (census blocks) and associated populations.
Because the locations of the residents within each census
block are unknown, a real districting plan must not split cen-
sus blocks. Unfortunately, ideal districts that satisfy properties
P1-P3 will have polygonal boundaries that cut right through
census blocks. To what extent can we preserve properties P1-
P3 while also respecting (that is, not splitting) census blocks?

Adding this requirement to the three legal requirements
— population balance, contiguity, and compactness — makes
the problem considerably more difficult. As far as we know,
no previously published redistricting method both respects
census blocks and achieves contiguity and perfect population
balance. Hess et al. [16] report population differences ranging
between 6.8% and 9.5%.! Garfinkel and Nemhauser [13] tried to
respect larger geographical units (counties) and had a tradeoff
between compactness and population deviation; for one of
their more difficult instances (Washington state), they achieved
3.8% population deviation with a solution that was slightly
less compact than the existing redistricting plan. Helbig et
al. [15] report a 2.84% difference between largest and smallest.
Mehrotra et al. [21] report that their method generated a plan
whose maximum population deviation from exact balance
was 1.86% but that when they allowed greater deviation, they
obtained a more compact solution (with a better objective
value) with a deviation of 3.73% after postprocessing. Spann et
al. [24] limit the population deviation to at most 2%. Some of

IThis is the percentage by which the greatest district population exceeds the
least in a given plane.



these methods respect (or try to respect) larger geographical
units than census blocks (census tracts or counties), which
further impedes achieving population balance.

Our main contribution is a method that in all our experi-
ments succeeded in respecting census blocks while achieving
contiguity and perfect population balance. The method con-
sists of two phases:

o Phase One uses local search to find an idealized district-
ing plan satisfying properties P1-P3. For this phase,
the population of a census block is considered to be
located at the centroid of the block, but (if the center
is on a district boundary) this population may be split
and assigned to different districts.

Phase Two assigns each of the boundary census blocks
(the census blocks intersected by the boundaries of
the polygons) to one of the districts, then reassigns
the entire population of each such block to its district.
The assignment is guaranteed to respect census blocks
and preserve connectivity. It is chosen to minimize the
maximum population change induced on any district.

In each of our experiments, Phase Two exactly preserved the
population of each district, so the final districts both respect
census blocks and are all perfectly balanced.

Furthermore, since Phase Two only affects the boundary
census blocks, the resulting districts largely retain the virtues
of the Phase-One solution. The Phase-Two districts are no
longer convex polygons with few sides — the polygon bound-
aries become more complicated. But that complexity is in a
sense due to the complexity of the census-block boundaries.
At a large scale, the district boundaries still resemble those of
the Phase-One polygons. Moreover, since only boundary cen-
sus blocks are affected, Phase Two only slightly increases the
value of the dispersion measure. The right of Figure 1 shows
the output of Phase Two for Texas.

2 PHASE ONE: BALANCED CENTROIDAL
POWER DIAGRAMS

Proposals to use optimization for redistricting date as far
back as 1965 [13, 16] and continued to the present day [11].
See [1, 23] for additional references. In this section we focus
specifically on balanced centroidal power diagrams, which is
what the first phase of our algorithm computes. We start with
definitions and relevant history.

Fix an input (P, k), where P, the population, is a set of m
residents (points in a Euclidean space), and k is the desired
number of districts. Given (P, k), phase one outputs a pair
(C, f), where C is a sequence of k centers (points in the Eu-
clidean space) and f : P — C is an assignment of residents to
centers. Let d(y, x) denote the distance from resident y € P to
a possible center x.

Given, along with centers C, a weight wy € R for each
center x € C, the power diagram of (C, w), denoted P(C, w), is
defined as follows. For any center x € C, the weighted squared
distance from any point y to x is d%(y, x) — wy.

The power cell Cx associated with x € C consists of all
points whose weighted squared distance to x is no more than
the weighted squared distance to any other center in C. The

power diagram P(C, w) is the collection {Cx : x € C} of
these power cells.? An assignment f : P — C is consistent
with P(C, w) if every resident assigned to center x belongs
to the corresponding cell Cy. (Residents in the interior of Cx
are necessarily assigned to x.) P(C, w, f) denotes the power
diagram P(C, w) augmented with a consistent assignment f.

Power diagrams are well-studied [2]. If the Euclidean space
is R?, it is known that each power cell Cy is necessarily a
(possibly unbounded) convex polygon.

If each weight wy is zero, the power diagram is the well-
known Voronoi diagram, and denoted V(C). Likewise V(C, f)
denotes the Voronoi diagram extended with a consistent as-
signment f (which simply assigns each resident to a nearest
center).

A centroidal power diagram is an augmented power diagram
P(C, w, f) such that the assignment f is centroidal: each center
x € C is the centroid (center of mass) of its assigned residents,
{y € P : x = f(y)}. Compared to general power diagrams,
centroidal power diagrams are often preferred because their
cells tend to be more compact.

Centroidal Voronoi diagrams in particular have many appli-
cations [10]. A canonical application from graphics is down-
sampling a given image, by partitioning the image into cells,
then selecting a single pixel from each cell to represent the
cell. Lloyd’s method is a standard way to compute a centroidal
Voronoi diagram V(C, f), given (P, k) [10, § 5.2]. Starting with
asequence C of k randomly chosen centers, the method repeats
the following two steps just until Step (2) does not change C:

(1) Given C, let f be any assignment assigning each resi-
dent to a nearest center in C.

(2) Move each center x € C to the centroid of the residents
that f assigns to x.

Recall that the cost is Y.yep d?(y, f(y)). Step (1) chooses
an f of minimum cost, given C. Step (2) moves the centers
to minimize the cost, given the assignment f. Each iteration
except the last produces a lower-cost assignment, so the algo-
rithm must terminate. At termination, V(C, f) is, as desired,
a centroidal Voronoi diagram, because Step (1) computes f
that is consistent with V(C), and (in the last iteration) Step
(2) does not change C.

At termination, (C, f) is a local minimum in the following
sense: by just moving the centers in C, or just changing f to
any other assignment, it is not possible to reduce the cost. 3

Miller [22] and Kleiner et al. [17] explore the use of cen-
troidal Voronoi diagrams specifically for redistricting. The re-
sulting districts (cells) are convex polygons, and tend to be
compact, but their populations can be far from balanced.

2Subtracting the same number from all weights does not change the power
cells. By subtracting an appropriate number, one can ensure that all weights
are nonpositive. Interpret each weight as the negative of the square of the z-
coordinate of the center; then the weighted squared distance from a point y to
the center becomes the squared distance in 3-d from the point y (now lying in
the plane z = 0) to the center’s 3-d location. According to this interpretation,
each power cell is the intersection with the plane z = 0 of the 3-d Voronoi cell
of the center.

3Indeed, this condition is necessary and sufficient for V(C, f) to be centroidal.



A balanced power diagram is an augmented power diagram
P(C,w, f) (not necessarily centroidal) such that the assign-
ment f is perfectly balanced as defined in the introduction —
for any two cells of P(C, w, f), the sizes of their populations
are the same, or differ by at most 1 if the total population is
not divisible by k.

Aurenhammer et al. [3, Theorem 1] give an algorithm that,
given (P, k) and C, computes a weight vector w and an assign-
ment f such that P(C, w, f) is a balanced power diagram, and
f has minimum cost among all balanced assignments of P to C.
Their algorithm assumes a Euclidean metric and computes a
specific f. As observed by Spann et al. [24], a slightly stronger
result is possible: for any metric, given any (P, k, C) one can
compute a weight-vector w such that P(C, w, f) is a balanced
power diagram for every minimum-cost balanced assignment

f.

Phase One: balanced centroidal power diagrams. Given (P, k),
Phase One of our algorithm computes a balanced centroidal
power diagram — an augmented power diagram P(C, w, f)
such that f is both balanced and centroidal. It does so using
the following capacitated variant of Lloyd’s method:

Starting with a sequence C of k randomly chosen centers,
repeat the following steps until Step (2) doesn’t change C:

(1) Given C, compute a minimum-cost balanced assignment
f P — C. (Recall that the cost is 3 cp d*(y, f¥)).)

(2) Move each center x € C to the centroid of the residents
that f assigns to x.

As in the analysis of Lloyd’s method, each iteration except
the last produces a lower-cost assignment, so the algorithm
must terminate. The subproblem in Step (1) can be solved via
Aurenhammer et al.’s algorithm [3].

Instead, our implementation solves it by reducing it to
minimum-cost flow (see Section 4). This yields both the stip-
ulated f and (via the dual variables) weights w such that
P(C,w, f) is a balanced power diagram. In the final itera-
tion Step (2) does not change C, so f is also centroidal, and
P(C,w, f) is the desired balanced centroidal power diagram.

At termination, the pair (C, f) is a local minimum in the fol-
lowing sense: by just moving the centers in C, or just changing
f (while respecting the balance constraint), it is not possible
to reduce the cost. 4

Given (P, k), Phase One of our algorithm computes a bal-
anced centroidal power diagram P(C, w, f) using the above
method. The corresponding districts are the power cells of
P(C,w, f) (clipped to the underlying state or other geograph-
ical region).

Because P(C, w, f) is a power diagram, Property P1 holds —
each district is the intersection the state with a convex polygon.
Because the dual graph of these cells is planar, the average
number of sides per polygon is less than six — Property P2
holds. Because P(C, w, f) is a balanced power diagram, Prop-
erty P3 holds — the populations of the districts are balanced.
Because P(C, w, f) is centroidal, the districts tend to be com-
pact.

“Indeed, this is a necessary and sufficient condition on (C, f) for (C, f) to
admit a balanced centroidal power diagram P(C, w, f) (for some w).

Related algorithms sacrificing balance to respect census blocks.
Spann et al. [24] propose a variant of the algorithm in which,
in Step (1), the assignment f is constrained to fully respect
census blocks: for each census block, f must assign all resi-
dents within that block to the same center. As discussed earlier,
this is desirable but can make the balance condition harder
(or even impossible) to achieve. Spann et al. state that they
relax the perfect-balance requirement, initially allowing a 20%
deviation, and then reduce the allowed deviation with each
iteration. In principle, reducing the allowed deviation can in-
crease the minimum assignment cost, so some care is needed to
guarantee termination. The paper does not describe precisely
how this is done, or precisely how Step (1) is done. It states
that the algorithm terminates when the deviation is within 2%
of balanced. So, the resulting districts respect census blocks
but are not perfectly balanced, deviating by as much as 2%.

Hess et al. [16] (forty years before Spann et al.) propose an-
other variant that respects census blocks (then called “census
enumeration districts”). They also implemented their Step (1)
by solving a transportation (min-cost assignment), but with
some (apparently manual) adjustment to the assignment to
maintain connectivity of each district. They do not compute
power-diagram weight vectors nor otherwise mention power
diagrams. They report population differences of 6.8-9.5% be-
tween the resulting districts.

Helbig et al. [15] propose another variant that respects cen-
sus blocks (then called “population units”). But they use a
different cost function — the sum of distances, not the sum of
squared distances — so do not achieve a power diagram. The re-
sulting districts are not generally convex. Even noncontiguous
districts can result, although this was not observed in practice.
Their mathematical program constrains population balance
using an indirect heuristic, which interferes with convergence,
and they allow their algorithm to stop before reaching a true
local minimum. They report population differences of 2.84%
between districts.

Other related algorithms. Balzer et al. [4, 5] propose a variant
of the algorithm we describe above, differing in that it uses
a local-exchange heuristic (updating f by swapping pairs of
residents) to carry out Step (1). For some inputs, local-exchange
with pairwise swaps is not sufficient to reach a minimum-cost
assignment f. Consequently, for some inputs, their algorithm
outputs an assignment f that is not actually consistent with
any balanced power diagram.

Many other works on balanced centroidal power diagrams
address applications (e.g. in graphics) that have very large in-
stances, and for which it is not crucial that the power diagrams
be exactly centroidal or exactly balanced [4, 5, 8, 20, 25]. This
class of algorithms prioritize speed, and none are guaranteed
to find an assignment f so that (C, f) is a local minimum as
described above, or has a balanced centroidal power diagram.

As far as we know, ours is the first published work to re-
port on an implementation that computes perfectly balanced
centroidal power diagrams.



3 PHASE TWO: REAASSIGNING
BOUNDARY BLOCKS

Given input (P, k), Phase One solves the idealized redistricting
problem (without census blocks), computing a perfectly bal-
anced centroidal diagram P (C, w, ). The resulting power cells
form idealized, relatively compact districts with the desired
properties P1-P3 as described above.

Phase Two, described next, modifies the assignment f so as
to meet the practical requirement that districts must respect
(not split) census blocks. To do so, it first identifies interior cen-
sus blocks — census blocks b that lie strictly within any power
cell Cx. The assignment f (being consistent with (¢, w)) must
assign the entire population of b to the center x. Phase Two
doesn’t change this — it also assigns the entire population of
b to x.

Phase Two handles the remaining census blocks, called
boundary blocks, as follows.? For each boundary census block
b, Phase Two reassigns the population of b (which f may split)
to some center g(b) € C, where g is an assignment of boundary
census blocks to centers in C that assigns each boundary block
b to the center x = g(b) € C of a power cell Cyx that overlaps
with b. The assignment g is chosen by solving an optimization
problem described below. The optimization chooses g with
constraints that enforce connectivity of the resulting districts,
with the objective of minimizing the maximum population
change that Phase Two induces on any district. As mentioned
previously, since Phase Two only reassigns boundary census
blocks, the resulting districts largely retain the virtues of the
Phase-One solution.

3.1 Preserving connectivity with
dependency constraints

An arbitrary assignment g of boundary blocks to centers of
overlapping power cells can result in disconnected districts.
This is because, for example, there can be boundary blocks
whose neighboring blocks are all also boundary blocks. (That
can happen even if the census blocks are convex polygons, and
many census blocks are not even convex.) To avoid this, Phase
Two constrains the assignment g by introducing dependency
constraints, as follows.

It first constructs the census-block graph, where each census
block is a vertex, and two vertices are adjacent if their census
blocks share a boundary. For each cell Cy, Stage Two computes
the subgraph of the census-block graph induced by blocks that
overlap (or are contained in) Cy. For each boundary block b
that overlaps Cy, it computes a minimum-hop path in this
subgraph from b to any interior block in Cx. (Recall that any
interior block will remain assigned to cell Cy.) The algorithm
designates the neighbor b’ of b on this path as the dependee of
b with respect to Cx. In the case that b’ is not internal to Cy,
the algorithm adds the following dependency constraint on g:
if g assigns b to Cy, then g must also assign b’ to Cy.

The dependency contraints ensure that, if g assigns any
boundary block b to any cell Cx, then, for some path to a
boundary block internal to Cy, each block on the path is also

5The case when a block contains an entire district does not occur, as blocks are
much smaller than districts.

assigned to Cx. Assuming that the subset of interior blocks
in Cy is itself connected, the set of all blocks that Phase Two
assigns to each Cx will thus be connected. (This assumption
has been valid in our experiments, however, in the event that it
does not hold — if some boundary blocks separate the interior
blocks in Cy into multiple components — one workaround is
to constrain those boundary blocks to be assigned to Cy.)

To summarize, the optimization problem that Phase Two
solves is to find an assignment g that assigns each boundary
block b to the center x € C of an overlapping cell Cy, while
respecting the dependency constraints described above, with
the objective of minimizing the maximum population change
that results for any district.

3.2 Finding an assignment with integer
linear programming

In our experiments, Phase Two solved this optimization prob-
lem by formulating it as an integer linear program (ILP) in a
standard way, then solved the ILP using the commercial ILP
solver, Gurobi. The ILP’s are not small. For example, the ILP for
California has about 15k constraints, 19k binary variables, and
32k non-zeros in the constraint matrix. Nonetheless, Gurobi
solved all the ILPs in a fraction of a second on a standard
laptop computer.

We speculate that the ILP has a relatively easy combinatorial
structure, perhaps having to do with the structure described
in the next section, which describes an alternative, dynamic-
programming, approach to solving the problem.

3.3 Introduction to the dynamic program

We will now show that the Phase Two problem has special
structure that enables it to be solved by a dynamic program.
For for the sake of simplicity, we will ignore dependency rela-
tionships. We will also assume that the intersection of each
census block with each power-cell boundary segment is a sin-
gle subsegment. It is not hard to adapt the dynamic program to
take into account dependency relationships and handle census
blocks with more complicated intersections, as long as these
are in a sense well-behaved.

Under these simplifying assumptions, the running time of
the dynamic program is n°@Dm where n is the per-district
target population, m is the number of census blocks, and d is
the breadth-first-search depth of the planar dual of the power
diagram. We explain the depth d in greater detail below. For
now, suffice it to note that it tends to be small in the context
of power diagrams for redistricting. For our most complicated
state, California, the depth is three.

3.4 Sphere-cut-like decomposition

Here we describe in greater detail the structure of the Phase-
Two problem that enables solution by dynamic program.

See Figure 2. The power-diagram graph Gp is a graph in
which each edge represents a maximal line segment that bound-
ing a power cell. Consider one such line segment L. Let Ly, .. ., Ly
be the subsegments that are the intersections of census blocks
with L, in the order in which they appear on L, not including in-
tersections that include the endpoints of L. Subdivide the edge



Figure 2: Top left: In bold black the edges of the sub-
divided power diagram graph. The green vertices are
the vertices of the power diagram graph. The blue ver-
tices result from the subdivision of the edges of Gp. The
blue vertices (and likely the green vertices) correspond
to boundary census blocks. Green and blue vertices to-
gether with the bold lines form Gp.

Top Right: Red lines together with red squares respec-
tively define edges and vertices of the dual of Gp. Bold
red lines show a breadth-first-search tree T of this graph
rooted at the infinite face.

Bottom Left: Blue lines show the interdigitating tree of
6; associated with T.

Bottom Right: Pink lines show a fundamental cycle in

the dual of Gp. This cycle is associated with the edge of
T* that it intersects.

In particular, let T be a breadth-first search tree of the dual.
We define the breadth-first search depth d to be the maximum
number of edges on any root-to-leaf path. Then any fundamen-
tal cycle with respect to T passes through at most 2d vertices
that correspond to districts.

Let T* be the set of edges of Gp that do not correspond to
edges of T. A basic result in planar graph theory states that
the edges of T* form a spanning tree of Gp. For each edge uv
of T*, let e be the corresponding edge of Gp, and let C be the
fundamental cycle of e with respect to T. Orient uv from the
vertex enclosed by C towards the vertex not enclosed by C. In
this way, T* becomes a rooted spanning tree of Gp, where the
root is a vertex with only one incident edge of T*. For each
vertex u of T*, let T*(u) be the set of descendants of u in T*.
For each nonroot vertex u, the parent edge uv corresponds to
a cycle C(u) in the dual such that C(u) separates the vertices
of T*(u) from the vertices of Gp not in T* (u). Let D(u) denote
the set of districts (power cells) corresponding to the vertices
on C(u).

Thus we obtain a recursive binary decomposition of the
vertices of 55.6

3.5 Dynamic program

Fix a threshold A. The dynamic program will determine whether
there is an assignment of census blocks to districts so that the
maximum discrepancy is at most A.

Let u be a nonroot vertex of T*. Consider an assignment
of the census blocks in T*(u) to power cells they intersect.
Making this assignment (without otherwise changing the pop-
ulation assigned to power cells) induces a change A(c;) in the
population assigned to power cell c;. We say that this assign-
ment is feasible with respect to u if, for every power cell not in
D(u), the absolute value of the change is no more than A. Each
feasible assignment induces a labeling of the power cells in
D(u); namely, cell ¢; is labeled with A(c;). We call this labeling
a feasible labeling with respect to u. The number of feasible
labelings with respect to u is at most nPI which is in turn

at most nZd.

e corresponding to L, replacing it with a path voegvie1vz . . . Upep+1Up+1 The dynamic program finds, for each nonroot vertex u,

where vg and vp+; are the original endpoints of e. Each vertex
v; (fori=1,...,pand possibly also for i = 0 and/ori = p+1)
corresponds to a subsegment of L, and thus to a census block
that intersects L. This is called the subdivided power-diagram
graph. We denote it by Gp and give an example in the top left
of Figure 2. Note that it is a planar graph.

Next, consider the planar dual of Gp. The planar dual has a
vertex for each face of 65 (including the infinite face), and, for
each edge e of Gp, a dual edge that crosses e at approximately
aright angle. The subdivisions in Gp give rise to parallel edges
in the dual, as shown in the top right of Figure 2.

Let T be any spanning tree of the dual of Gp. Each edge xy
of the dual that is not part of T defines a simple cycle in the
dual; the cycle consists of xy together with the simple x-to-y
path in T. This cycle is called the fundamental cycle of xy with
respect to T. It passes through some vertices, of which all but
at most one (the infinite face) correspond to power cells and
thus to districts.

the set of all feasible labelings with respect to u. To do this,
the dynamic program works up T* from leaves to root. For
each vertex u, the feasible labelings of u can be derived by
considering the feasible labelings of each of its children and the
different cells that u itself can be assigned to. For each vertex
u, the time to compute the feasible labelings with respect to
u is proportional to the product of the number of feasible
labelings of each of its children. Since each vertex has at most
two children in T* and each child has at most n?? feasible
labelings, the time for each vertex is n0@, Similarly, from
the sets of feasible labelings of the root’s children, it can be
determined whether there is any assignment of census blocks
to power cells for which the maximum discrepancy is at most
. The total time is @ m.

®This decomposition resembles a structure called a sphere-cut decomposition [9].



4 STEP (1) OF PHASE ONE

Aurenhammer et al. [3] provide an algorithm that, given the set
P of locations of residents and the sequence C of centers, and
given a target population for each center (where the targets
sum to the total population), finds a minimum-cost assignment
f of residents to centers subject to the constraint that the
number of residents assigned to each center equals the center’s
target population. Their algorithm also outputs weights w for
the centers such that the assignment f is consistent with
P(C, w). Their algorithm can be used to find a minimum-cost
balanced assignment by using appropriate targets.

In the implementation here, we take a different approach
to computing the minimum-cost balanced assignment: we
use an algorithm for minimum-cost flow. Aurenhammer et
al. [3] acknowledge that a minimum-cost flow algorithm can
be used but argue that their method is more computationally
efficient. As we observe below, the necessary weights w can
be computed from the values of the variables of the linear-
programming dual to minimum-cost flow.

The goal is to find a balanced assignment f : P — C of
minimum cost, 3., cp d%(y, p(y)). Let uy € {|m/k], [m/k]} be
the number of residents that f must assign to center x € C.

Consider the following linear program and dual:

minimize, Zyep’xec dz(y, x) ayx

subject to Yyep Ayx = fx (xe0)
ercayle (yeP)
ayx 20 (xeC,yeP)

maximizew,z YxecC fx Wx + Lyep Zy

subject to zy < dz(y, x)—wxy (xeCyeP)

This linear program models the standard transshipment
problem. As the capacities iy are integers with ), pux = |P|,
it is well-known that the basic feasible solutions to the linear
program are 0/1 solutions (ayx € {0, 1}), and that the (opti-
mal) solutions a correspond to the (minimum-cost) balanced
assignments f : C — P such that ayx = 1if f(y) = x and
ayx = 0 otherwise. The implementation here solves the linear
program and dual by using Goldberg’s minimum-cost flow
solver [14] to obtain a minimum-cost balanced assignment
f* and an optimal dual solution (w*, z*). For any minimum-
cost balanced assignment f (such as f*) the resulting weight
vector w* gives a balanced power diagram P (C, w*, f):

LEMMA 4.1 (SEE ALSO [24]). Let (w*,z*) b any optimal solu-
tion to the dual linear program above. Let f be any balanced
assignment. Then P(C, w*, f) is a balanced power diagram if
and only if f is a minimum-cost balanced assignment.

Proor. Let a be the linear-program solution corresponding
to f.
(If.) Assume that f has minimum cost among balanced as-
signments. Consider any resident y € P. By complimentary
slackness, for x” = f*(y), the dual constraint for (x’, y) is tight,
that is, zj, = d?(y, f(y)) - w;<y). Combining this with the dual

constraint for y and any other x € C gives
dz(y7 f(y)) - W;r(y) = ZZ < dZ(y, X) - W;

That is, from y, the weighted squared distance to f(y) is no
more than the weighted squared distance to any other center
x € C. So, y is in the power region C(y) of its assigned center
f(y). Hence, f is consistent with P(C, w)*, and P(C, w*, f) is
a balanced power diagram.

(Only if.) Assume that f is consistent with £(C, w*). That is,
the weighted squared distance from y to f(y) is no more than
the weighted squared distance to any other center x € C. That

is, defining zj, = d*(y, f(y)) - iy

zy = &y, f(y) —wy < d*(y, %) - wy.

Thus, (w*,z’) is a feasible dual solution. Furthermore, the
complimentary slackness conditions hold for a and (w*, z’).
Thatis,ay; >0 = f(y) =x = z;, = d?(y,x) — wi.
Hence, a and (w*, z’) are optimal. Since a is optimal, f has
minimum cost. O

5 EXPERIMENTS

We ran the implementation on the following US states: Al-
abama, California, Florida, Illinois, New York, Rhode Island,
and Texas. Note that this list of states contains the biggest
states in terms of population and number of representatives.

For each of these states, we used the following data pro-
vided by the US Census Bureau [7]: for each census block, we
used the geometric description of the census block, and the
population from the 2010 census. In the very rare case where
a census block consisted of several polygons, we made the
assumption (usually but not always correct) that the census
block’s population was zero.

For each state, for the number of districts we used the num-
ber of representatives the state sends to the US House of Rep-
resentatives.

l State ‘ Number of representatives | Population
Alabama 7 4779736
California 53 37253956
Florida 27 18801310
Ilinois 18 12830632
New York 27 19378102
Rhode Island 2 10520940
Texas 36 25145561

Table 1: The states considered in our experiments to-
gether with the number of clusters (i.e.: number of rep-
resentatives) and number of residents (i.e. population
of the state).

The results are depicted in Figure 1 and Figures 3 through 8.
We note that in all cases the Phase One algorithm converged
to a local optimum, and the Phase Two found a solution that
preserved connectivity (aside from bodies of water) and perfect
population balance.



5.1 Technical details and implementation

The implementation is available at https://github.com/pnklein/
district. It is written in C++ and Python3. Our implementa-
tion makes use of a slightly adapted version of a min-cost
flow implementation, cs2 due to Andrew Goldberg and Boris
Cherkassky and described in [14]. The copyright on cs2 is
owned by IG Systems, Inc., who grant permission to use for
evaluation purposes provided that proper acknowledgments
are given. If there is interest, we will write a min-cost flow
implementation that is unencumbered.

We also provide Python-3 scripts for reading census-block
data, reading state boundary data, finding the geometry of
the power cells (by computing the 3-d Voronoi diagram and
intersecting the Voronoi cells with the plane z = 0 as we
described when defining power cells), and generating gnuplot
files to produce the figures shown in the paper. These figures
superimposed the boundaries of the power regions and the
boundaries of states (obtained from [6]).

For our experiments, the programs were compiled using
g++ version 7.

6 CONCLUDING REMARKS

We have focused in this paper on the Euclidean plane. This en-
sures that each district is the intersection of the geographical
region (e.g. state) with a polygon. However, in view of the fact
that the method explored here might generate a district that
includes residents separated by water, mountains, etc., one
might want to consider a different metric, e.g. to take travel
time into account (as is done in [11]). Suppose, for example,
the metric is that of an undirected graph with edge-lengths.
One can use essentially the same algorithm for finding a bal-
anced centroidal power diagram. Computing a minimum-cost
balanced assignment (Step 1) and the associated weights can
still be done using an algorithm for minimum-cost flow as
described in Section 4. In Step 2, the algorithm must move
each center to the location that minimizes the sum of squared
distances from the assigned residents to the new center loca-
tion. In a graph, we limit the candidate locations to the vertices
and possibly locations along the edges. Under such a limit, it
is not hard to compute the best locations.

One might want to incorporate the goal of avoiding split-
ting larger geographical units such as counties. It would be
interesting to explore incorporating into the dynamic program
or integer linear program costs for splitting such units.
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Figure 3: Alabama, idealized districting plan (left) and plan that preserves census blocks (right)

Figure 4: California, idealized districting plan (left) and plan that preserves census blocks (right)
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Figure 5: Florida, idealized districting plan (left) and plan that preserves census blocks (right)
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Figure 6: Illinois, idealized districting plan (left) and plan that preserves census blocks (right)
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Figure 7: New York, idealized districting plan (left) and plan that preserves census blocks (right)

Figure 8: Rhode Island, idealized districting plan (left) and plan that preserves census blocks (right)
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