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Abstract 

Defining characteristics of a problem domain continues to challenge developers of visualization 

software, even though it is essential for designing both tools and resulting visualizations. 

Additionally, effectiveness of a visualization software tool often depends on the context of systems 

and actors within the domain problem. The nested blocks and guidelines model is a useful template 

for informing design and evaluation criteria for visualization software development because it 

aligns design to need. [1] Characterizing the outermost block of the nested model—the domain 

problem—is challenging, mainly due to the nature of contemporary domain problems, which are 

dynamic and by definition difficult to problematize. We offer here our emerging conceptual model, 

based on the central question in our research study—what visualization works for whom and in 

which situation—to characterize the outermost block, the domain problem, of the nested model. 

[1] We apply examples from a three-year case study of visualization software design and 

development to demonstrate how the conceptual model might be used to create evaluation criteria 

affecting design and development of a visualization tool. 
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Introduction 

When we ask what visualizations work for whom and in which situations we are conducting a 

type of design evaluation. This social science question seeks to define general assumptions about 

the people and the problems that a visualization tool is meant to serve. In this paper, we overlay 

our own emerging high-level conceptual model for answering our social science question onto 

the nested blocks and guidelines model (NBGM). We then explain how we find it to be 

conceptually useful in our scientific visualization project where we are developing a software 

tool for domain scientists (ecologists), their research problems, and the potential audiences of 

visualization resulting from their data.1 The nested design model, originally developed for 

information visualization design, defines four levels for consideration in visualization design and 

evaluation, where assumptions from the outermost level cascade to affect design criteria at the 

innermost levels, ideally aligning the design of task abstractions to interaction techniques to 

algorithms.2 

The nested model uses the metaphor of ‘blocks’ and ‘guidelines’ to describe potential design 

outcomes (blocks) that are chosen and combined at each level (e.g., various interaction techniques) 

that result in making visualization more targeted. Guidelines are statements about the relationships 

between blocks and add detail to design criteria.  

In ecological research problems and related policy processes, domain problems are problematic 

for many reasons, especially those involving wicked problems.3 We asked the question what 

visualizations work for whom and in what situations during our visualization software design 



project (VISTAS---the VISualization of Terrestrial-Aquatic Systems). Our conceptual model for 

analyzing this question has produced general categories that might contribute to characterizing the 

domain problem in the NBGM, specifically how a visualization software tool and visual analytics 

might contribute to problem solving.  

In this paper we introduce the VISTAS project and VISTAS case study. We situate our case study 

with regards to recent history of the NBGM’s development, as well as other information 

visualization studies and frameworks for domain analysis relevant to our conceptual model. Then, 

we give an overview of the conceptual model characterizing the domain problem at a high level, 

describing the typologies and showing how other studies contribute to our understanding of those 

typologies. Finally, we overlay our conceptual model onto the NBGM and apply examples from 

case study analysis of the VISTAS development process. We hope that applying examples from 

the VISTAS case study might further demonstrate how others could use the conceptual model for 

developing design and evaluation criteria, especially for developers and designers who might want 

to understand a general overview of where to begin evaluating visualization design or visual 

analytics software products for problem solving in settings where complex models are presented 

for the purposes of decision-making.  

Characterizing the domain: The VISTAS (VISualization of Terrestrial and Aquatic Systems) 

Project 

We based our emerging conceptual model related to the NBGM on the field data from the VISTAS 

project. VISTAS’ environmental science research aims to visualize remote sensing data and 

models that simulate land use changes or the cycling and transport of water and nutrients as a first 

step towards achieving science goals—inquiries similar to other environmental science grand 



challenges.4 The target users of the VISTAS software tool are the ecologists who develop or use 

these models, specifically in the fields of biogeochemistry, micrometeorology, and environmental 

engineering. Visualization is used for understanding ecological processes across spatial and 

temporal scales, as well as across social and ecological systems. VISTAS scientists also use 

visualizations in their work with stakeholders and other scientists. With VISTAS, we are trying to 

understand how visualization and visual analytics might help overcome challenges such as 

exploring large volumes of data and communicating results. VISTAS’ development of visual 

analytics software answers calls by Thomas and others for innovative tools for creating hypotheses 

and confirming results.5 

The propositions central to the VISTAS project are that visualization tools will increase the 

ability of scientists to (1) analyze data at multiple spatial and temporal scales; (2) gain insight 

into more complex problems spanning coupled human and natural systems; and (3) deal with 

new challenges and opportunities presented by data. Reducing problems to a crisp set of tasks is 

a difficult but essential goal for achieving functioning software and automation of visualization 

techniques; however, we have found that it is also critical to take a holistic approach and a 

broader view provides insight into design effectiveness of both software tools and resulting 

visual output.6, 7, 8 The nested model suggests that the highest level—the domain level—should 

guide visualization design. Our project considers the domain level, and we found that taking this 

broad view of problems impacts the outcomes of our design work. 

VISTAS case study 

A case study approach was used to evaluate the development process and primary users’ intentions 

for producing and using visualization (e.g., for what purposes, for which settings, and for which 



audiences).9 Over the course of three years with the members of the group (n=21 participants, with 

varied attendance at meetings over the course of the study), key informants (n=7 participants) were 

interviewed formally at least once. These key informants were the scientists (primary users) and 

computer scientists (primary developers) involved in the software design and development. In 

addition to the transcripts from interviews, field notes were produced via follow-up emails and 

informal conversations about the project and topic with members of the group. Data collected from 

VISTAS weekly meetings from 2011-2014, and field notes and transcriptions of audio recordings 

from these meetings and annual all-hands meetings, were used in the analysis. Meetings varied in 

subject matter and included both scientific discussions and technical details. Observation of 

secondary users of the visualization output is planned for future research, so the findings presented 

here are based on primary users’ experiences and perceptions, as well as their ideas for design 

requirements and development requests. While analysis of secondary users’ experiences with data 

visualization is an important part of evaluating visualization use and usefulness in multiple 

contexts, we note that incorporating the secondary user group is an emerging consideration to the 

VISTAS research rather than a central design focus. Additionally, the VISTAS research initiative 

was focused on giving domain scientists a tool; however, we discovered that along with the 

functionality of this tool it might be important to guide users in what visualization techniques 

would be best-suited for the many purposes for which they would be producing visualizations. In 

other words, the tool comes with the capability to produce a wide range of visualizations, but does 

not suggest which visualization is the best to use for which setting. Other studies have 

recommended ways to give the user ideas for how to best construct visualizations, but a thorough 

discussion on this topic is outside the scope of this paper.10 The contribution of this paper is to 

conceptualize the relationship between general categories of user types with regards to general 



features of the domain problem at a high level.  

Toward refining the design model for VISTAS 

First, we consider some history of the NBGM relevant to VISTAS design. One research inquiry 

that led to defining blocks and guidelines within the nested model is the QuestVis prototype 

study.11 The findings from the QuestVis process are particularly relevant to our own process of 

developing a conceptual model to understand what visualizations work for whom and in what 

situations. 

The QuestVis tool was designed to “promote environmental sustainability and behavior change 

via community engagement in environmental policy: (p. 255). QuestVis developers found that 

creating an all-in-one visualization tool for reaching such goals was difficult. In their reflections 

on this difficulty, they state that simply providing an information space for end-user exploration 

required additional facilitation, which was beyond the scope of the visualization’s ultimate intent 

and design. This finding is similar to the findings in Grammel et al.’s study on the way novices 

construct information visualizations in that the barriers to the process include “translating 

questions into data attributes, constructing visualizations that help answer these questions, and 

interpreting the visualizations,” which we view as requiring some sort of verbal explanation or 

articulation as support.10, 11 

Similar to the QuestVis (2011) and Grammel et al. (2010) research results, we found that 

visualization and visual analytics often must be supplemented with other processes such as 

education, experience, training and better hardware/software, depending on the problem and 

audience. For example, our domain experts continually referred to the need to create intuitive 

visuals for certain audiences and end-users. When analyzing transcripts and field notes, we found 



that—across participants—intuitive visuals were requested so that less expert audiences might 

understand complicated ecological processes during environmental planning and decision-making. 

We asked the question, ‘What are intuitive visuals?’ and found that intuition seems to be fast 

thinking.12 What makes a visualization lead to thinking fast, but also result in accurate thinking for 

complex problem solving? Can intuitiveness be a design guideline? If so, what makes a 

visualization intuitive? Features of the visualization itself, or something else?  

Determining what was behind this request for intuitive visualization also meant developing a 

systematic way to think about problems and the tools contributing to problem-solving: an exercise 

that might contribute to characterizing the domain problem in the NBGM. The term intuitive was 

used when participants discussed creating a visualization for a specific type of user. According to 

VISTAS case study participants, intuitive visuals often appeal to what they termed tough critics of 

their scientific findings. Intuitive visuals were desired, too, to simplify difficult concepts and data 

transformations. In order to address this desire for intuitive visuals and reasons behind it, our 

conceptual model attempts to capture and characterize the different users and viewers of VISTAS 

visualization. This attempt to distinguish between different types of users and their characteristics 

is similar to the way Pousman and Stasko distinguish between traditional users of InfoVis and a 

proposed category of the casual user.13 

We believe the outer domain problem level can be conceptualized in such a way to identify the 

extent to which visualization design contributes to problem solving and to use by a range of people. 

Other frameworks that are domain driven identify how problem solving and information behavior 

occurs within a particular context, recognizing the various systems already in place and other 

factors such as the personal, social and organizational aspects.14 And related methods for 

development, such as domain driven theory, take this broad approach. Also, the fields of 



anthropology and sociology have a long history of using methods, such as ethnomethodology, to 

analyze the practices of scientists in their workspaces.15, 16 We situate our study as more narrowly 

related to visualization use and effectiveness than these broader domain problem studies in that we 

refer to concepts unique to viewers or visual analysts, and yet we acknowledge that other factors 

relevant to the work- or problem-solving activities might interact with visualization. Or, more 

importantly, we acknowledge and seek to understand the unique role visualization plays in 

problem solving at a high level.  

In the following section, we present our high-level conceptual model as a way to characterize the 

blocks of the domain problem level found in the NBGM. Visualization design and evaluation is 

domain specific, and the time and cost of robust and long-term research processes are essential to 

good design. In addition to past visualization studies focused on problem solving in the 

environmental science and policy domains, theories for understanding both how a tool-user and 

systems co-evolve, such as Domain Theory or Cognitive Work Analysis, inform the conceptual 

model presented here, especially with regards to acknowledging how visualization complements 

and/or supplants current tools and techniques within a problem-solving ecosystem of actors and 

problems.14, 16 

A high-level conceptual model 

In order to answer our social science question what visualizations work for whom and in which 

situations, we established two general typologies to help with visualization design and evaluation. 

These types include problem characteristics and humans as viewers, analysts, or tool-users (i.e., 

how humans approach a visualization experience). These types might be taken as building blocks 

in the domain problem level of the NBGM. One might argue the exact details of these typologies, 



but what is novel here is not each typology exactly as it is, but rather the relationships between the 

typologies in a design process, especially from a broader point of view.  

Typology of problems 

We characterize problems broadly by using a matrix of types of contemporary problems from the 

literature on planning and design. Although not necessarily novel, this matrix helps to define types 

of problems with reference to wicked problems.3 The concept of wicked problem applied to the 

problem domain of environmental science is defined as a problem where uncertainty is high and 

consensus is low, as seen in Table 1.  

Table 1: An overview of wicked problems.3 

Scientific/technical 

solution available?  

Consensus or general agreement about the problem? 

YES NO 

YES Tame Problem 

Isolated, agreement on solution 

Examples: fire suppression, 

municipal trash collection 

 

Mess or Complex Problem 

Science can provide solution but 

no agreement on how to proceed 

Examples: population control, 

traffic congestion 

NO Puzzle or Mystery 

Agreement on solution, but lack 

technical/scientific capacity  

Examples: disease treatments, 

flood control  

Wicked Problem 

No agreement on problem or 

solution, lack of 

technical/scientific capacity for 

full solution 

Examples: climate change, 

nuclear power waste clean-up 

 

 



 

This matrix highlights the importance of two aspects of contemporary problems. First, scientific 

and technical inquiries (the y-axis) are part of the domain problem. And, second, consensus (x-

axis) is also part of the domain problem. The presence of consensus implies a number of factors 

that affect the context of problems. For example, problems often include not only scientific and 

technological aspects, but also sociological and political aspects that affect problem framing and 

solution acceptability.   

Examples of domain problems similar to those found in environmental science are given in the 

matrix, including how to deal with diseases, traffic, and war. Many contemporary domain 

problems include agency and action. They demand: How do we proceed? And where earlier 

domain problems might have rarely considered irreversible destruction, contemporary domain 

problems—especially in environmental science—often need to weigh consequences of bad 

decisions as well as the inability of science and technology to find solutions to unique and 

emerging problems.  

We use the wicked problems matrix to show how domain problems are characterized by both the 

ability of science and technology to produce solutions, and the level of consensus when settling on 

the ‘best’ solution. By definition, wicked problems are difficult to problematize. This matrix of 

problems applies to our study, where the environmental domain problem is tightly coupled with 

the sociological and political domain. As Batie puts it: wicked problems, such as what to do about 

climate change, move beyond the ability of science to determine clear causal relationships, to 

predict the future, to control or overcome the unpredictable outcomes, or to establish exactly what 

the best outcome is.17 Such wicked problems are not only difficult to solve, but they are often 



controversial. We find wicked problems often manifest themselves during collaborative 

research—oftentimes with stakeholders who are not domain scientists. 

When dealing with certain types of problems—such as wicked ones-the role of science must also 

range, and this potentially affects how visualizations might be designed and used. For example, 

four roles for contemporary scientific research inquiry show how information can either limit 

choices or expand choices within the current problem domain. Briefly, one way to label roles for 

science might include (1) the pure scientist; (2) the science arbiter; (3) the issue advocate; and (4) 

the honest broker of policy alternatives.18 In situations where the scientist is an honest broker of 

policy alternatives, scientific expertise offers diverse decision alternatives, rather than the one right 

solution. This way of seeing the scientist’s expertise helps balance the distinguishing features of 

the problem: increasing consensus and scientific/technological discovery, and provides a means 

for addressing wicked problems. One can see how asking which visualizations are most effective 

for whom and in what situation becomes more complicated here. At times, one wants to generate 

a variety of visualizations with which to explore —say to present decision alternative; at other 

times, one wants to converge on the best visualization for communicating a solution or a finding. 

Responsibility for the design of visualization, here, is jointly shared by the computer scientist, who 

designs the software tool, and the domain scientist, who might create a visualization using the 

software tool or as a result of a visual analytics process.  

We acknowledge the importance of understanding how visualization design fits within a greater 

problem-solving process, where scientists and stakeholders are currently using other systems and 

tools, and function within an environment or organizational structure where there are barriers 

between stakeholders and the scientists, who are trained in a particular discipline and charged with 

a particular role in analyzing problems.14 We use the wicked problems matrix as a frame for 



characterizing current problem-solving processes and systems relevant to those involved in 

environmental science and policy, suggesting that both scientific and technical considerations and 

consensus building affect design and evaluation criteria.  

The human in the problem domain 

When we think systematically about design and evaluation criteria from the social science 

perspective, we find that problems and problem-solvers are tightly coupled, so that both must be 

considered when evaluating for visualization effectiveness. During our initial planning meetings, 

we set out with the mindset that visualization effectiveness can be determined only with regards 

to the problems and people being served, hence the inclusion of our domain experts from the 

beginning of the design process.16 Our conceptual model incorporates the human user, 

acknowledging and combining the concepts developed by studies that distinguish and define 

experts and novices, or analysts and casual users.10, 13, 19, 20 

Three labels related to prior work on the differences between users of visualizations and actors 

solving problems have been used here for the purposes of creating a typology of humans using 

visualization. We believe that characteristics of humans who are using visualization must be 

considered within or in relationship to the domain problem. This view helped us to delineate for 

whom we are evaluating and designing visualization effectiveness, and what the limitations to 

visualization design might be within a system and with regards to particular actors involved in 

problem solving.  

Typology of humans in the domain problem 

How do we systematically distinguish among the various ways people use and interpret images? 

We know that there is a temporal aspect to visualization use;13 so, different individuals may 



experience the same visualization differently, or the same individual’s visualization experiences 

may vary over time. Additionally, studies in visual culture, as well as other fields dealing with 

individual sight, interpretation, perception, and cognition, have established patterns in how 

individuals approach visualization, make meaning, and use and interpret images. 21, 22, 23, 24 

In conceptualizing a typology of humans or actors, we start by broadly characterizing motivation 

when someone is using visualization or conducting visual analytics.25 For example, the individual 

might be characterized, at times, as the viewer of output; at other timesas an analyst of data being 

visualized; and also, potentially, as a user of a visualization tool. While distinctions exist between 

these types, the borders between the types are blurry: it matters little the exact point at which a 

viewer becomes an analyst, and whether an analyst becomes user—just that each type has 

importantly different traits, and that different disciplines, such as psychophysics, cognitive science, 

and social science, provide insight into these traits.  

It should be noted that we refer only briefly to the various studies defining and analyzing human 

characteristics in this position paper. Critics might find lacking our cursory description of relevant 

research studies that apply to humans as viewers, analysts, and tool-users; however, to do so would 

be beyond the scope of this paper, which is to present a high-level conceptual model. 

Human-as-Viewer. Humans are, at first, viewers. Viewing is a sensory experience. Viewers can 

vary depending on their ability to sense. Work in psychophysics analyzes the relationship 

between sight and perception, and pre-attentive vision—or the ability of the low-level human 

visual system to rapidly identify certain basic visual properties.26 Through simple visual 

sensation, the viewer perceives patterns. And we can use Gestalt principles, for example, to 

create effective visualizations based on what we know about viewers’ tendencies during low-



level, pre-attentive vision. Some viewers vary in their abilities, such as with color blindness, or 

myopia. Additionally, the human-as-viewer often lacks agency, and pre-attentive sensations may 

lead to unexamined conclusions. 

Our goal here is not to engage in cognitive science or psychophysics research, but rather to take a 

high-level view of someone approaching a visualization event. We are most concerned with level 

of attentiveness and the level of motivation and purpose of the individual using visualization as 

part of a problem-solving process. On the continuum of humans approaching a visualization event, 

the viewer has the least agency and attentiveness. In terms of previous research, we might find that 

viewers are similar to casual users.13, 25 

Human-as-Analyst. We label the individual who perceives patterns and makes sense of them 

according to a purpose as the analyst of the visualization. Analysts use a visualization to increase 

action-ability based on their particular purpose.2 Analysts vary in their visualization experiences. 

For example, a single analyst may return to the same visualization, but with a different purpose, 

at a later time. A characteristic of the analyst is his or her purpose or agency when approaching 

the visualization. An analyst is more attentive than a viewer, using reasoning (slower thinking), 

and perhaps a method for evaluating meaning in the visualization.12 

Consider the example of a visualization of landscape data. A private landowner determining 

whether to purchase an adjacent lot for grazing cattle has a different purpose than a transportation 

official determining the route of a new road on that same landscape. An analyst has unique traits 

dependent on purpose. Also, an analyst’s visualization experience might be characterized by the 

use of logic or application of statistics, or a combination of these two.12, 21  If the analyst’s purpose 

does not match the purpose of the visualization, we might find that the visualization is not effective 



for that analyst. 

Human-as-Tool-User. A third approach is the tool-user. The tool-user is already a viewer and 

analyst, and more. The tool-user wields a tool to complete a task and interacts with one or more 

visualizations, depending on purpose. Understanding the traits of human-as-tool-user requires 

considering the visual perception of the viewer, the cognitive and social factors influencing the 

analyst, as well as a more active approach to visualization. With regards to the Cognitive Work 

Analysis framework, we might say that the task of the tool-user is to interact with a visualization 

tool to conduct visual analytics.14 

Tool-users, like analysts, are characterized by both their motivation and purpose when they show 

up to the visualization event. Tool-users may interact with hardware and software in order to 

manipulate a view for analysis so that they can change the visualization as purpose changes and 

reasoning dictates. Again, the level of a tool-user’s agency and attentiveness during a visualization 

event is less important than the fact that the tool-user has higher levels of agency and attentiveness 

than the viewer or the analyst. We view the tool-user as part of design considerations—but in a 

more social and political way than a cognitive scientist or HCI researcher might. For example, we 

might consider design and evaluation criteria with regards to scientific visualization used in a 

policy-making process with a group of stakeholders.  

We need to test how other factors such as levels of expertise compromise our typology. For 

example, we wonder whether expertise as a result of treatments such as education, training, and 

experience may interact secondarily with the effectiveness of the visualization.10 One might argue 

that expertise can be held in both the use of the tool and domain of the problem, so that it is beyond 

the scope of our initial design focus on levels of attentiveness and agency. These arguments aside, 



our types are place-holders suggesting how human characteristics might be defined as 

considerations for characterizing blocks in the domain problem.  

Design considerations: Example of VISTAS case study application 

Visualization is not a new method for exploring problems or communicating results. The software 

that facilitates visual analytics acts like any other tool, extending human capacity to understand—

and sometimes simply perceive—complex and dynamic data; this is described as allowing for true 

discourse with data.5 Initial analysis of transcripts produced obvious results that confirmed what 

the literature says: big data are challenging—both in research and in communication;27, 28 domain 

scientists are using visualization in both their personal research and in collaborative groups;29, 30 

and scalability is a central problem to both analyzing data and presenting results.27, 31  Additionally, 

over the course of the project, we found that like other studies, visualization often plays a 

complementary rather than central role in data analysis and communication.32 

How can we evaluate visualization to tell whether design is aligning to needs? Below we overlay 

our conceptual model using VISTAS case study examples onto the NBGM to see where it might 

lead. 

Applying a Conceptual Model for Characterizing Domain Problem Blocks 

We have characterized domain problems as situated in political and sociological contexts—

pointing out how uncertainty and lack of consensus have increased the need for collaboration 

among scientists and with stakeholders. We have discussed ways that humans can vary in their 

engagement with visualization. What follows are some initial findings from our social science 

inquiry that might demonstrate the model’s usefulness. 



It should be noted that our empirical work was designed to focus on the experiences of software 

users who are both conducting visual analytics and engaging others using software output. In 

contrast to a similar development project associated with the Vismon tool, which was developed 

to help managers conduct data analysis, we did not set out to evaluate visualization for secondary 

users, such as managers.19 The managers in the Vismon project are characterized as having a 

particular set of knowledge, but not as having expertise in statistical analysis and simulation 

software as our primary users do. One goal of the Vismon project was to enable managers to do 

data analysis. Results of analysis were used for communication of complicated scientific models 

with policy makers for decision-making. Similarly, our work and conceptual model highlight how 

visualization tools such as Vismon and our own VISTAS visualizer can connect scientists and 

stakeholders; however, the VISTAS case study set out to evaluate effectiveness from the point of 

view of our primary tool-users—expert scientists—who will be creating visualizations of varying 

effectiveness, rather than evaluating visualization effectiveness by directly observing interactions 

with and experiences of secondary users.  

Next, we give examples from VISTAS case study analysis using the language of the NBGM with 

regards to our conceptual model, which includes the ability of science and technology to solve a 

problem, levels of consensus, and the levels of attentiveness and agency of the humans involved 

in the domain problem inquiry. 

Consensus-building  

Participants in the VISTAS case study present their scientific models to stakeholders and 

community leaders in decision-making processes where consensus may be low, and agency and 

attentiveness both high among most visualization users. In such a setting, one design guideline 



would be for visualization to build consensus among group members with varying levels of 

attentiveness and agency, , through presenting a variety of scenarios for discussion and providing 

a live visual analytics process for exploring a technically challenging problem to convince of 

findings. Visualization can contribute to consensus building, where visualization might be used as 

a way to make complicated scientific models more accessible, as exhibited in this statement 

characteristic of VISTAS participants’ experiences: 

 [My audience] is more results-oriented. They ask: How will these management decisions affect my 

livelihood? In the case of our forest simulations: How will forest harvest over a 50 or 100 year period affect 

the flow of timber into the mills and how does that affect jobs? How does it affect the water supply? 

People’s interests might be different as you talk to different groups, of course, but you want to be able to 

address all those things in a very clear way. I think it would be rare to get the question: How did you create 

that visualization? (Scientist 1, 2011 Interview) 

One desirable feature of visualization is to build consensus through engaging viewers in a live 

analytics event. And consensus building might also occur among different stakeholders in the 

room, in addition to between stakeholders and scientists as exhibited in this statement 

characteristic of VISTAS participants:  

But once you get into this visualization scenario mode, someone else [not the scientist] is articulating 

scenarios, and some of the burden is off of us at that point, because the deniers are part of the process. 

(Engineer 2, All-hands meeting, November 2013) 

These examples of visualization used in settings with multiple types of viewers and analysts 

highlight the need to (1) make scientific findings accessible and (2) provide a means to engage 

highly attentive viewers with potentially low consensus through visual analytics. To be sure, 

visualization is just one aspect of the problem solving process, so that understanding how 

visualization works to build consensus also helps us identify how other factors outside of 



visualization, such as cultural values and level of scientific expertise, might interact with the 

visualization if consensus is seen as a barrier to problem solving. The demand for creating intuitive 

visuals, as often mentioned in interviews and meetings over the course of the VISTAS case study, 

is related to the process of visualization for appealing to non-scientist audiences, where terms such 

as uncertainty and variability may be perceived differently. By identifying and characterizing types 

of actors, their characteristics, and levels of consensus, the domain problem takes into account 

political and sociological features of problem solving, which might also help define guidelines for 

visualization design effectiveness and software tool development.  

For example, levels of consensus might determine design guidelines. Consensus denotes 

agreement and accord. Low consensus can occur for any number of reasons. When a collaborative 

group comes together, if humans-as-analysts have high levels of agency, but also vary in what that 

agency is (i.e., the direction of their various purposes), consensus will likely be low. If individuals 

have low attentiveness, consensus might occur simply because those in the group may not care or 

feel as strongly about their competing interests. Levels of agency and attentiveness affect 

consensus, despite the complexity of the problem, and may affect guidelines for how data might 

be best abstracted into a fitting visualization, such as through showing audiences a familiar 

landscape and projecting data-driven visual changes onto that landscape based on different land-

use decisions.  

Exploration of Complex Problems 

In VISTAS, researchers are looking outside their normal, discipline-oriented boundaries to 

understand how their particular model, process or system might interact with other models. The 

domain problem often includes one scientist’s model in relation to other systems and other 



problems. In this case, the ability of technology and science to address the problem becomes the 

central focus for design criteria.  

One technical challenge described by all the scientists in the study was the ability to integrate 

models producing big data; and one design guideline the VISTAS group was testing was the ability 

of visualization to integrate the research of the VISTAS scientists, who work at multiple temporal 

and spatial scales. In this example, the participants all have high agency and attentiveness, and the 

focus is on tackling a technical and scientific problem with high systems uncertainty, such as 

understanding the interaction between processes of different scales that might occur on the same 

landscape.  

Over the course of the VISTAS case study, discussion about exploration and discovery within the 

domain problem was focused on one hypothesis of the VISTAS project articulated at the first 

meeting: Can visualization help these scientists integrate their research and make new discoveries 

or hypotheses by doing so? As a result, suggestions for how to integrate research were mentioned 

during meetings, such as certain features of data that might be common across scientific domains. 

For example, at the initial meeting participants discussed the possibility of connecting across 

different disciplines by analyzing carbon dioxide (CO2), a major research focus in environmental 

science. One scientist suggested intersecting their work through visualizing different processes,  

You know, having the biogeochemical model (scientist #1’s data) in the background to atmospheric 

data (scientist #2’s data) adds value to this by showing where the air flows and how it flows, or how 

it’s trapped, and being able to explain some of the variability that you cannot explain with variability 

in temperature or stream or so forth. (Project PI, All-hands Meeting, 2013) 

 



As described in the statement above, the development team was encouraged to take risks 

with technically sophisticated visualization. Another example includes integrating cross-

scale visualizations, which is important for understanding how various phenomena interact 

or how systems are coupled.33 Project data confirmed the importance of integrating science 

across scales and potential design features developed for visualizing these interactions; 

however, designing a visualization and visual analytics process for conducting cross-scale, 

interdisciplinary analysis continued to be a challenge. That said, the use of visualization in 

this discovery-based activity is noticeably different than the example where consensus was 

the primary goal. We found that collaboration and data integration occurring early in the 

data pipeline was necessary to using visualization for developing insights.  

In this discovery-based example from the VISTAS case study, guidelines are less 

concerned with communication between scientists and non-scientists. Additionally, 

scientific consensus is systematic, and while challenging at times, methods for establishing 

consensus are relatively consistent across scientific disciplines. Guidelines for designing 

for consensus-building in this example differ from building consensus with stakeholders. 

Instead, the ability of scientists to set parameters for technically sophisticated visualization 

and boosting collaboration, exploration and discovery would guide design. The ability to 

create a visualization that externalizes a complicated thought experiment for others to 

consider might also constitute a guideline in this example.20 In contrast to using 

visualization for consensus-building among public stakeholder groups, visualizations 

needed in this type of collaboration or process are more often for the purpose of exploration 

of problems by various sophisticated tool-users with similar institutional status and 

disciplinary training, rather than for communicating complicated findings to non-scientists.  



 

The nested model’s value 

Standardizing a design format to respond to such context-dependent needs for visualization might 

seem difficult.34 That said, characterizing visualization users by considering the unique aspects of 

visualization from a cognitive science and psychophysics point of view, then considering the 

degree to which visualization users care and are directed by a purpose, seem like good first steps. 

Then, one might consider how the various types of actors (tool-users, analysts, and viewers) might 

plug into the problem domain, including the relationships between the number of actors involved 

in the various stages of problem solving and the levels of systems uncertainty and consensus. These 

design considerations take into account both the level of technical and scientific complexity and 

the potential political and cultural aspects related to the problem context. The nested model can be 

useful for then talking about the necessary guidelines in the other levels of design—such as which 

interaction techniques work best for whom or which data abstraction might be most appropriate 

for integrating models.  

In addition, a domain-driven study might acknowledge how tool design affords tool-users a full 

array of visualization options based on initial design. This array of options allows primary users 

to choose which story or narrative to present to others, depending on the problem context, in 

addition to an array of techniques for using visualization for exploration. As Danziger highlights, 

data narratives using visual and verbal elements are more likely to appeal to non-scientists (or non-

expert users) than the statistical transformations behind the data story.34 One related finding from 

our case study is the distinction between design for software users as analysts and design for 

software users as tool-users creating artifacts to be used in other settings. While we were limited 



in having the resources to observe our primary users interacting with various audiences, we find 

the limitation useful in that it helps us conceptualize evaluation phases that are separate and may 

have different criteria for effectiveness at the different levels of the nested model, and may even 

be conducted by different evaluators (e.g., by a specialist in visualization who is developing a 

software tool, or by a future tool-user on a case-by-case basis with regards to the many settings in 

which visualization is presented, as a ‘poly-centric’ evaluation practice). This finding confirms 

past work that identifies two strains of visualization research—one that is grounded in design for 

visual communication and one that is grounded in design for human users.34 Visualization 

evaluation and design criteria may be affected by the use of techniques, other tools, and language 

to build data narratives. The data, visual, and verbal displays all work together in the act of 

perceiving and processing information.21 This finding complicates the software design and 

development process. Our high-level conceptual model attempts to elucidate these complications 

by presenting a system for understanding the relationships between the types of humans and 

problems that might affect problem solving, with specific reference to visualization use.  

Limitations 

There are a number of potential limitations to application of our conceptual model to the problem 

domain of the nested blocks and guidelines model. First, one might say that our conceptual model 

for categorizing the domain problem is too coarse or vague, and that it overlooks fine-grained 

technical considerations that might be supplied by sharing more study-specific findings, such as 

in Kang & Stasko.20 Additionally, other studies have tested or summarized visualization evaluation 

in a more particularly focused way than what we offer here. For example, a recent state of the art 

report from 2014 compiles and analyzes the myriad studies on dynamic graphs, and summarizes 

the types of evaluation conducted such as task evaluation, user-study driven evaluation, and 



algorithmic evaluation.35 This report is very useful and complete in its taxonomy of dynamic graph 

types, among other topics; however, it summarizes evaluation as dealing with different topics such 

as the importance of mental maps or the innermost part of design—algorithms—according to the 

nested blocks and guidelines model, rather than offering a broader and higher level position on 

evaluation, as we do here. Conversely, one might say that our model is too domain-specific, and 

that this conceptual model actually constitutes the beginnings of a specific domain model rather 

than considerations for blocks and guidelines that might be transferred or generalized to other 

design and evaluation processes, or that it does not accurately represent what the NBGM intends 

as characterizations of the problem domain. Or perhaps our question of which visualizations work 

for whom and in what situations may not be a valid inquiry for creating a conceptual model that 

applies outside of a social science domain. Finally, terms like levels of attentiveness and levels of 

agency imply the ability to somehow quantify these concepts. More research into how to 

operationalize quantification—or whether quantification is even necessary or desirable—might 

help test the usefulness and refine our conceptual model.  

Recommendations 

Applying the NBGM to our project as we characterized the domain problem helped us derive a 

conceptual model for design considerations. Based on this exercise, we recommend identifying 

and including both primary and secondary users in design making. For example, the results of 

VISTAS data led us to distinguish between primary users of the visualization tool and the 

secondary users to whom scientific results would be presented. Understanding how VISTAS 

scientists as tool users perceived their audiences and their role in presenting findings in various 

settings helped us specify design requirements. One recommendation we can make using our 

conceptual model is to identify differences in how tool-users, analysts, and viewers interact with 



visualization and how they might be affected by other types of users during exploration and 

communication events. This distinction between types of users might be compared to the consume 

and produce tasks in Brehmer and Munzner’s Multi-Level Typology of Abstract Visualization 

Tasks.36 The Multi-Level Typology was built through extensive meta-analysis of previous studies 

and focuses more specifically on the mechanics of visualization tasks than our typology does. In 

comparison, we see similarities between the two schemes where high-level visualization tasks of 

consumption in Brehmer and Munzner’s work include presenting, discovering, and enjoying. Our 

tool-user type would potentially present, discover and enjoy visualization more than those 

visualization consumers with less agency or attentiveness.  

Additionally, as a problem-driven study, we recommend articulating how visualization might be 

applied to different types of problems. For example, when VISTAS scientists present visualization 

to groups of decision makers, the visualization serves to engage viewers in a process, rather than 

to jointly? tackle a technical scientific analysis. The visualization is used to build consensus and 

engage different types of users, in addition to solving a puzzle. Such an analysis of the problem 

domain offers insight into the standard metrics for evaluating visualization effectiveness (such as 

the typical time-to-task or error-reduction evaluation), and offers the benefits and limitations of 

taking a holistic view of effectiveness in design versus a purely reductionistic view.37 The holistic 

view we propose might prove helpful in addition to technical design of visualization when solving 

puzzles or exploring novel problems; however, we believe that evaluating design for wicked 

problems requires different indicators of success than typical time-to-task and error-reduction 

evaluations. 



Conclusion 

We presented an extension of considerations for characterizing domain problems with regards to 

the nested blocks and guidelines model (NBGM) based on our social science inquiry during a 

visualization software development project, uniting the aims of various past studies into a birds-

eye view of characterizing the problem domain. We find that the problem domain must take into 

account not only scientific and technological considerations, as described by the wicked problems 

matrix, but also political and sociological considerations, so that typifying how actors approach 

visualization events in relation to the domain problem becomes an important design-evaluation 

consideration.  

We highlight the importance of human agency in the domain problem, incorporating and 

aggregating characterizations of users from some previous studies. Additionally, we discuss the 

importance of identifying human factors in a visualization event—such as levels of agency and 

attentiveness—in order to better understand how factors such as education, training, and 

experience interact with visualization, and craft design criteria accordingly. We use the language 

of the NBGM with regards to the typologies developed in our project, and believe this is an 

enlightening exercise for not only software development, but for ‘poly-centric’ evaluation of 

design effectiveness by tool-users, suggesting that effectiveness depends on not only on the actor 

or system, but also on who is evaluating effectiveness. Finally, our contribution to shaping 

visualization design and evaluation theory is to present relationships between general categories 

for analyzing what visualizations work for whom and in what situations, especially with regards 

to the domain problem level in the NBGM. 
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