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Abstract

Defining characteristics of a problem domain continues to challenge developers of visualization
software, even though it is essential for designing both tools and resulting visualizations.
Additionally, effectiveness of a visualization software tool often depends on the context of systems
and actors within the domain problem. The nested blocks and guidelines model is a useful template
for informing design and evaluation criteria for visualization software development because it
aligns design to need. [1] Characterizing the outermost block of the nested model—the domain
problem—is challenging, mainly due to the nature of contemporary domain problems, which are
dynamic and by definition difficult to problematize. We offer here our emerging conceptual model,
based on the central question in our research study—what visualization works for whom and in
which situation—to characterize the outermost block, the domain problem, of the nested model.
[1] We apply examples from a three-year case study of visualization software design and
development to demonstrate how the conceptual model might be used to create evaluation criteria

affecting design and development of a visualization tool.
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Introduction

When we ask what visualizations work for whom and in which situations we are conducting a
type of design evaluation. This social science question seeks to define general assumptions about
the people and the problems that a visualization tool is meant to serve. In this paper, we overlay
our own emerging high-level conceptual model for answering our social science question onto
the nested blocks and guidelines model (NBGM). We then explain how we find it to be
conceptually useful in our scientific visualization project where we are developing a software
tool for domain scientists (ecologists), their research problems, and the potential audiences of
visualization resulting from their data.! The nested design model, originally developed for
information visualization design, defines four levels for consideration in visualization design and
evaluation, where assumptions from the outermost level cascade to affect design criteria at the
innermost levels, ideally aligning the design of task abstractions to interaction techniques to

algorithms.?

The nested model uses the metaphor of ‘blocks’ and ‘guidelines’ to describe potential design
outcomes (blocks) that are chosen and combined at each level (e.g., various interaction techniques)
that result in making visualization more targeted. Guidelines are statements about the relationships

between blocks and add detail to design criteria.

In ecological research problems and related policy processes, domain problems are problematic
for many reasons, especially those involving wicked problems.> We asked the question what

visualizations work for whom and in what situations during our visualization software design



project (VISTAS---the VISualization of Terrestrial-Aquatic Systems). Our conceptual model for
analyzing this question has produced general categories that might contribute to characterizing the
domain problem in the NBGM, specifically how a visualization software tool and visual analytics

might contribute to problem solving.

In this paper we introduce the VISTAS project and VISTAS case study. We situate our case study
with regards to recent history of the NBGM’s development, as well as other information
visualization studies and frameworks for domain analysis relevant to our conceptual model. Then,
we give an overview of the conceptual model characterizing the domain problem at a high level,
describing the typologies and showing how other studies contribute to our understanding of those
typologies. Finally, we overlay our conceptual model onto the NBGM and apply examples from
case study analysis of the VISTAS development process. We hope that applying examples from
the VISTAS case study might further demonstrate how others could use the conceptual model for
developing design and evaluation criteria, especially for developers and designers who might want
to understand a general overview of where to begin evaluating visualization design or visual
analytics software products for problem solving in settings where complex models are presented

for the purposes of decision-making.

Characterizing the domain: The VISTAS (VISualization of Terrestrial and Aquatic Systems)

Project

We based our emerging conceptual model related to the NBGM on the field data from the VISTAS
project. VISTAS’ environmental science research aims to visualize remote sensing data and
models that simulate land use changes or the cycling and transport of water and nutrients as a first

step towards achieving science goals—inquiries similar to other environmental science grand



challenges.* The target users of the VISTAS software tool are the ecologists who develop or use
these models, specifically in the fields of biogeochemistry, micrometeorology, and environmental
engineering. Visualization is used for understanding ecological processes across spatial and
temporal scales, as well as across social and ecological systems. VISTAS scientists also use
visualizations in their work with stakeholders and other scientists. With VISTAS, we are trying to
understand how visualization and visual analytics might help overcome challenges such as
exploring large volumes of data and communicating results. VISTAS’ development of visual
analytics software answers calls by Thomas and others for innovative tools for creating hypotheses

and confirming results.’

The propositions central to the VISTAS project are that visualization tools will increase the
ability of scientists to (1) analyze data at multiple spatial and temporal scales; (2) gain insight
into more complex problems spanning coupled human and natural systems; and (3) deal with
new challenges and opportunities presented by data. Reducing problems to a crisp set of tasks is
a difficult but essential goal for achieving functioning software and automation of visualization
techniques; however, we have found that it is also critical to take a holistic approach and a
broader view provides insight into design effectiveness of both software tools and resulting
visual output.® "8 The nested model suggests that the highest level—the domain level—should
guide visualization design. Our project considers the domain level, and we found that taking this

broad view of problems impacts the outcomes of our design work.
VISTAS case study

A case study approach was used to evaluate the development process and primary users’ intentions

for producing and using visualization (e.g., for what purposes, for which settings, and for which



audiences).’ Over the course of three years with the members of the group (n=21 participants, with
varied attendance at meetings over the course of the study), key informants (n=7 participants) were
interviewed formally at least once. These key informants were the scientists (primary users) and
computer scientists (primary developers) involved in the software design and development. In
addition to the transcripts from interviews, field notes were produced via follow-up emails and
informal conversations about the project and topic with members of the group. Data collected from
VISTAS weekly meetings from 2011-2014, and field notes and transcriptions of audio recordings
from these meetings and annual all-hands meetings, were used in the analysis. Meetings varied in
subject matter and included both scientific discussions and technical details. Observation of
secondary users of the visualization output is planned for future research, so the findings presented
here are based on primary users’ experiences and perceptions, as well as their ideas for design
requirements and development requests. While analysis of secondary users’ experiences with data
visualization is an important part of evaluating visualization use and usefulness in multiple
contexts, we note that incorporating the secondary user group is an emerging consideration to the
VISTAS research rather than a central design focus. Additionally, the VISTAS research initiative
was focused on giving domain scientists a tool; however, we discovered that along with the
functionality of this tool it might be important to guide users in what visualization techniques
would be best-suited for the many purposes for which they would be producing visualizations. In
other words, the tool comes with the capability to produce a wide range of visualizations, but does
not suggest which visualization is the best to use for which setting. Other studies have
recommended ways to give the user ideas for how to best construct visualizations, but a thorough
discussion on this topic is outside the scope of this paper.'® The contribution of this paper is to

conceptualize the relationship between general categories of user types with regards to general



features of the domain problem at a high level.
Toward refining the design model for VISTAS

First, we consider some history of the NBGM relevant to VISTAS design. One research inquiry
that led to defining blocks and guidelines within the nested model is the QuestVis prototype
study.!! The findings from the QuestVis process are particularly relevant to our own process of
developing a conceptual model to understand what visualizations work for whom and in what

situations.

The QuestVis tool was designed to “promote environmental sustainability and behavior change
via community engagement in environmental policy: (p. 255). QuestVis developers found that
creating an all-in-one visualization tool for reaching such goals was difficult. In their reflections
on this difficulty, they state that simply providing an information space for end-user exploration
required additional facilitation, which was beyond the scope of the visualization’s ultimate intent
and design. This finding is similar to the findings in Grammel et al.’s study on the way novices
construct information visualizations in that the barriers to the process include “translating
questions into data attributes, constructing visualizations that help answer these questions, and
interpreting the visualizations,” which we view as requiring some sort of verbal explanation or

articulation as support.'® 1!

Similar to the QuestVis (2011) and Grammel et al. (2010) research results, we found that
visualization and visual analytics often must be supplemented with other processes such as
education, experience, training and better hardware/software, depending on the problem and
audience. For example, our domain experts continually referred to the need to create intuitive

visuals for certain audiences and end-users. When analyzing transcripts and field notes, we found



that—across participants—intuitive visuals were requested so that less expert audiences might
understand complicated ecological processes during environmental planning and decision-making.
We asked the question, ‘What are intuitive visuals?’ and found that intuition seems to be fast
thinking.!> What makes a visualization lead to thinking fast, but also result in accurate thinking for
complex problem solving? Can intuitiveness be a design guideline? If so, what makes a

visualization intuitive? Features of the visualization itself, or something else?

Determining what was behind this request for intuitive visualization also meant developing a
systematic way to think about problems and the tools contributing to problem-solving: an exercise
that might contribute to characterizing the domain problem in the NBGM. The term intuitive was
used when participants discussed creating a visualization for a specific type of user. According to
VISTAS case study participants, intuitive visuals often appeal to what they termed tough critics of
their scientific findings. Intuitive visuals were desired, too, to simplify difficult concepts and data
transformations. In order to address this desire for intuitive visuals and reasons behind it, our
conceptual model attempts to capture and characterize the different users and viewers of VISTAS
visualization. This attempt to distinguish between different types of users and their characteristics
is similar to the way Pousman and Stasko distinguish between traditional users of InfoVis and a

proposed category of the casual user."

We believe the outer domain problem level can be conceptualized in such a way to identify the
extent to which visualization design contributes to problem solving and to use by a range of people.
Other frameworks that are domain driven identify how problem solving and information behavior
occurs within a particular context, recognizing the various systems already in place and other
factors such as the personal, social and organizational aspects.'* And related methods for

development, such as domain driven theory, take this broad approach. Also, the fields of



anthropology and sociology have a long history of using methods, such as ethnomethodology, to
analyze the practices of scientists in their workspaces.!> 1® We situate our study as more narrowly
related to visualization use and effectiveness than these broader domain problem studies in that we
refer to concepts unique to viewers or visual analysts, and yet we acknowledge that other factors
relevant to the work- or problem-solving activities might interact with visualization. Or, more
importantly, we acknowledge and seek to understand the unique role visualization plays in

problem solving at a high level.

In the following section, we present our high-level conceptual model as a way to characterize the
blocks of the domain problem level found in the NBGM. Visualization design and evaluation is
domain specific, and the time and cost of robust and long-term research processes are essential to
good design. In addition to past visualization studies focused on problem solving in the
environmental science and policy domains, theories for understanding both how a tool-user and
systems co-evolve, such as Domain Theory or Cognitive Work Analysis, inform the conceptual
model presented here, especially with regards to acknowledging how visualization complements
and/or supplants current tools and techniques within a problem-solving ecosystem of actors and

problems. !4 16

A high-level conceptual model

In order to answer our social science question what visualizations work for whom and in which
situations, we established two general typologies to help with visualization design and evaluation.
These types include problem characteristics and humans as viewers, analysts, or tool-users (i.e.,
how humans approach a visualization experience). These types might be taken as building blocks

in the domain problem level of the NBGM. One might argue the exact details of these typologies,



but what is novel here is not each typology exactly as it is, but rather the relationships between the

typologies in a design process, especially from a broader point of view.
Typology of problems

We characterize problems broadly by using a matrix of types of contemporary problems from the
literature on planning and design. Although not necessarily novel, this matrix helps to define types
of problems with reference to wicked problems.®> The concept of wicked problem applied to the
problem domain of environmental science is defined as a problem where uncertainty is high and

consensus is low, as seen in Table 1.

Table 1: An overview of wicked problems.’

Scientific/technical Consensus or general agreement about the problem?
solution available?
YES NO
YES Tame Problem Mess or Complex Problem

Isolated, agreement on solution | Science can provide solution but

] no agreement on how to proceed
Examples: fire suppression,

municipal trash collection Examples: population control,
traffic congestion

NO Puzzle or Mystery Wicked Problem
Agreement on solution, but lack | No agreement on problem or
technical/scientific capacity solution, lack of
) technical/scientific capacity for
Examples: disease treatments, full solution

flood control
Examples: climate change,
nuclear power waste clean-up




This matrix highlights the importance of two aspects of contemporary problems. First, scientific
and technical inquiries (the y-axis) are part of the domain problem. And, second, consensus (x-
axis) is also part of the domain problem. The presence of consensus implies a number of factors
that affect the context of problems. For example, problems often include not only scientific and
technological aspects, but also sociological and political aspects that affect problem framing and

solution acceptability.

Examples of domain problems similar to those found in environmental science are given in the
matrix, including how to deal with diseases, traffic, and war. Many contemporary domain
problems include agency and action. They demand: How do we proceed? And where earlier
domain problems might have rarely considered irreversible destruction, contemporary domain
problems—especially in environmental science—often need to weigh consequences of bad
decisions as well as the inability of science and technology to find solutions to unique and

emerging problems.

We use the wicked problems matrix to show how domain problems are characterized by both the
ability of science and technology to produce solutions, and the level of consensus when settling on
the ‘best’ solution. By definition, wicked problems are difficult to problematize. This matrix of
problems applies to our study, where the environmental domain problem is tightly coupled with
the sociological and political domain. As Batie puts it: wicked problems, such as what to do about
climate change, move beyond the ability of science to determine clear causal relationships, to
predict the future, to control or overcome the unpredictable outcomes, or to establish exactly what

the best outcome is.!” Such wicked problems are not only difficult to solve, but they are often



controversial. We find wicked problems often manifest themselves during collaborative

research—oftentimes with stakeholders who are not domain scientists.

When dealing with certain types of problems—such as wicked ones-the role of science must also
range, and this potentially affects how visualizations might be designed and used. For example,
four roles for contemporary scientific research inquiry show how information can either limit
choices or expand choices within the current problem domain. Briefly, one way to label roles for
science might include (1) the pure scientist; (2) the science arbiter; (3) the issue advocate; and (4)
the honest broker of policy alternatives.!® In situations where the scientist is an honest broker of
policy alternatives, scientific expertise offers diverse decision alternatives, rather than the one right
solution. This way of seeing the scientist’s expertise helps balance the distinguishing features of
the problem: increasing consensus and scientific/technological discovery, and provides a means
for addressing wicked problems. One can see how asking which visualizations are most effective
for whom and in what situation becomes more complicated here. At times, one wants to generate
a variety of visualizations with which to explore —say to present decision alternative; at other
times, one wants to converge on the best visualization for communicating a solution or a finding.
Responsibility for the design of visualization, here, is jointly shared by the computer scientist, who
designs the software tool, and the domain scientist, who might create a visualization using the

software tool or as a result of a visual analytics process.

We acknowledge the importance of understanding how visualization design fits within a greater
problem-solving process, where scientists and stakeholders are currently using other systems and
tools, and function within an environment or organizational structure where there are barriers
between stakeholders and the scientists, who are trained in a particular discipline and charged with

a particular role in analyzing problems.!* We use the wicked problems matrix as a frame for



characterizing current problem-solving processes and systems relevant to those involved in
environmental science and policy, suggesting that both scientific and technical considerations and

consensus building affect design and evaluation criteria.
The human in the problem domain

When we think systematically about design and evaluation criteria from the social science
perspective, we find that problems and problem-solvers are tightly coupled, so that both must be
considered when evaluating for visualization effectiveness. During our initial planning meetings,
we set out with the mindset that visualization effectiveness can be determined only with regards
to the problems and people being served, hence the inclusion of our domain experts from the
beginning of the design process.!® Our conceptual model incorporates the human user,
acknowledging and combining the concepts developed by studies that distinguish and define

experts and novices, or analysts and casual users.!% 13- 1%-20

Three labels related to prior work on the differences between users of visualizations and actors
solving problems have been used here for the purposes of creating a typology of humans using
visualization. We believe that characteristics of humans who are using visualization must be
considered within or in relationship to the domain problem. This view helped us to delineate for
whom we are evaluating and designing visualization effectiveness, and what the limitations to
visualization design might be within a system and with regards to particular actors involved in

problem solving.
Typology of humans in the domain problem

How do we systematically distinguish among the various ways people use and interpret images?

3

We know that there is a temporal aspect to visualization use;!® so, different individuals may



experience the same visualization differently, or the same individual’s visualization experiences
may vary over time. Additionally, studies in visual culture, as well as other fields dealing with
individual sight, interpretation, perception, and cognition, have established patterns in how

individuals approach visualization, make meaning, and use and interpret images. 2222324

In conceptualizing a typology of humans or actors, we start by broadly characterizing motivation
when someone is using visualization or conducting visual analytics.?® For example, the individual
might be characterized, at times, as the viewer of output; at other timesas an analyst of data being
visualized; and also, potentially, as a user of a visualization tool. While distinctions exist between
these types, the borders between the types are blurry: it matters little the exact point at which a
viewer becomes an analyst, and whether an analyst becomes user—just that each type has
importantly different traits, and that different disciplines, such as psychophysics, cognitive science,

and social science, provide insight into these traits.

It should be noted that we refer only briefly to the various studies defining and analyzing human
characteristics in this position paper. Critics might find lacking our cursory description of relevant
research studies that apply to humans as viewers, analysts, and tool-users; however, to do so would

be beyond the scope of this paper, which is to present a high-level conceptual model.

Human-as-Viewer. Humans are, at first, viewers. Viewing is a sensory experience. Viewers can
vary depending on their ability to sense. Work in psychophysics analyzes the relationship
between sight and perception, and pre-attentive vision—or the ability of the low-level human
visual system to rapidly identify certain basic visual properties.’® Through simple visual
sensation, the viewer perceives patterns. And we can use Gestalt principles, for example, to

create effective visualizations based on what we know about viewers’ tendencies during low-



level, pre-attentive vision. Some viewers vary in their abilities, such as with color blindness, or
myopia. Additionally, the human-as-viewer often lacks agency, and pre-attentive sensations may

lead to unexamined conclusions.

Our goal here is not to engage in cognitive science or psychophysics research, but rather to take a
high-level view of someone approaching a visualization event. We are most concerned with level
of attentiveness and the level of motivation and purpose of the individual using visualization as
part of a problem-solving process. On the continuum of humans approaching a visualization event,
the viewer has the least agency and attentiveness. In terms of previous research, we might find that

viewers are similar to casual users.'? %

Human-as-Analyst. We label the individual who perceives patterns and makes sense of them
according to a purpose as the analyst of the visualization. Analysts use a visualization to increase
action-ability based on their particular purpose.> Analysts vary in their visualization experiences.
For example, a single analyst may return to the same visualization, but with a different purpose,
at a later time. A characteristic of the analyst is his or her purpose or agency when approaching
the visualization. An analyst is more attentive than a viewer, using reasoning (slower thinking),

and perhaps a method for evaluating meaning in the visualization.'?

Consider the example of a visualization of landscape data. A private landowner determining
whether to purchase an adjacent lot for grazing cattle has a different purpose than a transportation
official determining the route of a new road on that same landscape. An analyst has unique traits
dependent on purpose. Also, an analyst’s visualization experience might be characterized by the
use of logic or application of statistics, or a combination of these two.!>2! If the analyst’s purpose

does not match the purpose of the visualization, we might find that the visualization is not effective



for that analyst.

Human-as-Tool-User. A third approach is the tool-user. The tool-user is already a viewer and
analyst, and more. The tool-user wields a tool to complete a task and interacts with one or more
visualizations, depending on purpose. Understanding the traits of human-as-tool-user requires
considering the visual perception of the viewer, the cognitive and social factors influencing the
analyst, as well as a more active approach to visualization. With regards to the Cognitive Work
Analysis framework, we might say that the task of the tool-user is to interact with a visualization

tool to conduct visual analytics.'*

Tool-users, like analysts, are characterized by both their motivation and purpose when they show
up to the visualization event. Tool-users may interact with hardware and software in order to
manipulate a view for analysis so that they can change the visualization as purpose changes and
reasoning dictates. Again, the level of a tool-user’s agency and attentiveness during a visualization
event is less important than the fact that the tool-user has higher levels of agency and attentiveness
than the viewer or the analyst. We view the tool-user as part of design considerations—but in a
more social and political way than a cognitive scientist or HCI researcher might. For example, we
might consider design and evaluation criteria with regards to scientific visualization used in a

policy-making process with a group of stakeholders.

We need to test how other factors such as levels of expertise compromise our typology. For
example, we wonder whether expertise as a result of treatments such as education, training, and
experience may interact secondarily with the effectiveness of the visualization.!® One might argue
that expertise can be held in both the use of the tool and domain of the problem, so that it is beyond

the scope of our initial design focus on levels of attentiveness and agency. These arguments aside,



our types are place-holders suggesting how human characteristics might be defined as

considerations for characterizing blocks in the domain problem.
Design considerations: Example of VISTAS case study application

Visualization is not a new method for exploring problems or communicating results. The software
that facilitates visual analytics acts like any other tool, extending human capacity to understand—
and sometimes simply perceive—complex and dynamic data; this is described as allowing for true
discourse with data.’ Initial analysis of transcripts produced obvious results that confirmed what
the literature says: big data are challenging—both in research and in communication;?”-?® domain
scientists are using visualization in both their personal research and in collaborative groups;>* 3°
and scalability is a central problem to both analyzing data and presenting results.?’-3! Additionally,
over the course of the project, we found that like other studies, visualization often plays a

complementary rather than central role in data analysis and communication.?

How can we evaluate visualization to tell whether design is aligning to needs? Below we overlay
our conceptual model using VISTAS case study examples onto the NBGM to see where it might

lead.
Applying a Conceptual Model for Characterizing Domain Problem Blocks

We have characterized domain problems as situated in political and sociological contexts—
pointing out how uncertainty and lack of consensus have increased the need for collaboration
among scientists and with stakeholders. We have discussed ways that humans can vary in their
engagement with visualization. What follows are some initial findings from our social science

inquiry that might demonstrate the model’s usefulness.



It should be noted that our empirical work was designed to focus on the experiences of software
users who are both conducting visual analytics and engaging others using software output. In
contrast to a similar development project associated with the Vismon tool, which was developed
to help managers conduct data analysis, we did not set out to evaluate visualization for secondary
users, such as managers.'” The managers in the Vismon project are characterized as having a
particular set of knowledge, but not as having expertise in statistical analysis and simulation
software as our primary users do. One goal of the Vismon project was to enable managers to do
data analysis. Results of analysis were used for communication of complicated scientific models
with policy makers for decision-making. Similarly, our work and conceptual model highlight how
visualization tools such as Vismon and our own VISTAS visualizer can connect scientists and
stakeholders; however, the VISTAS case study set out to evaluate effectiveness from the point of
view of our primary tool-users—expert scientists—who will be creating visualizations of varying
effectiveness, rather than evaluating visualization effectiveness by directly observing interactions

with and experiences of secondary users.

Next, we give examples from VISTAS case study analysis using the language of the NBGM with
regards to our conceptual model, which includes the ability of science and technology to solve a
problem, levels of consensus, and the levels of attentiveness and agency of the humans involved

in the domain problem inquiry.
Consensus-building

Participants in the VISTAS case study present their scientific models to stakeholders and
community leaders in decision-making processes where consensus may be low, and agency and

attentiveness both high among most visualization users. In such a setting, one design guideline



would be for visualization to build consensus among group members with varying levels of
attentiveness and agency, , through presenting a variety of scenarios for discussion and providing
a live visual analytics process for exploring a technically challenging problem to convince of
findings. Visualization can contribute to consensus building, where visualization might be used as
a way to make complicated scientific models more accessible, as exhibited in this statement

characteristic of VISTAS participants’ experiences:

[My audience] is more results-oriented. They ask: How will these management decisions affect my
livelihood? In the case of our forest simulations: How will forest harvest over a 50 or 100 year period affect
the flow of timber into the mills and how does that affect jobs? How does it affect the water supply?
People’s interests might be different as you talk to different groups, of course, but you want to be able to
address all those things in a very clear way. I think it would be rare to get the question: How did you create

that visualization? (Scientist 1, 2011 Interview)

One desirable feature of visualization is to build consensus through engaging viewers in a live
analytics event. And consensus building might also occur among different stakeholders in the
room, in addition to between stakeholders and scientists as exhibited in this statement

characteristic of VISTAS participants:

But once you get into this visualization scenario mode, someone else [not the scientist] is articulating
scenarios, and some of the burden is off of us at that point, because the deniers are part of the process.

(Engineer 2, All-hands meeting, November 2013)

These examples of visualization used in settings with multiple types of viewers and analysts
highlight the need to (1) make scientific findings accessible and (2) provide a means to engage
highly attentive viewers with potentially low consensus through visual analytics. To be sure,
visualization is just one aspect of the problem solving process, so that understanding how

visualization works to build consensus also helps us identify how other factors outside of



visualization, such as cultural values and level of scientific expertise, might interact with the
visualization if consensus is seen as a barrier to problem solving. The demand for creating intuitive
visuals, as often mentioned in interviews and meetings over the course of the VISTAS case study,
is related to the process of visualization for appealing to non-scientist audiences, where terms such
as uncertainty and variability may be perceived differently. By identifying and characterizing types
of actors, their characteristics, and levels of consensus, the domain problem takes into account
political and sociological features of problem solving, which might also help define guidelines for

visualization design effectiveness and software tool development.

For example, levels of consensus might determine design guidelines. Consensus denotes
agreement and accord. Low consensus can occur for any number of reasons. When a collaborative
group comes together, if humans-as-analysts have high levels of agency, but also vary in what that
agency is (i.e., the direction of their various purposes), consensus will likely be low. If individuals
have low attentiveness, consensus might occur simply because those in the group may not care or
feel as strongly about their competing interests. Levels of agency and attentiveness affect
consensus, despite the complexity of the problem, and may affect guidelines for how data might
be best abstracted into a fitting visualization, such as through showing audiences a familiar
landscape and projecting data-driven visual changes onto that landscape based on different land-

use decisions.

Exploration of Complex Problems

In VISTAS, researchers are looking outside their normal, discipline-oriented boundaries to
understand how their particular model, process or system might interact with other models. The

domain problem often includes one scientist’s model in relation to other systems and other



problems. In this case, the ability of technology and science to address the problem becomes the

central focus for design criteria.

One technical challenge described by all the scientists in the study was the ability to integrate
models producing big data; and one design guideline the VISTAS group was testing was the ability
of visualization to integrate the research of the VISTAS scientists, who work at multiple temporal
and spatial scales. In this example, the participants all have high agency and attentiveness, and the
focus is on tackling a technical and scientific problem with high systems uncertainty, such as
understanding the interaction between processes of different scales that might occur on the same

landscape.

Over the course of the VISTAS case study, discussion about exploration and discovery within the
domain problem was focused on one hypothesis of the VISTAS project articulated at the first
meeting: Can visualization help these scientists integrate their research and make new discoveries
or hypotheses by doing so? As a result, suggestions for how to integrate research were mentioned
during meetings, such as certain features of data that might be common across scientific domains.
For example, at the initial meeting participants discussed the possibility of connecting across
different disciplines by analyzing carbon dioxide (CO2), a major research focus in environmental

science. One scientist suggested intersecting their work through visualizing different processes,

You know, having the biogeochemical model (scientist #1’s data) in the background to atmospheric
data (scientist #2’s data) adds value to this by showing where the air flows and how it flows, or how
it’s trapped, and being able to explain some of the variability that you cannot explain with variability

in temperature or stream or so forth. (Project PI, All-hands Meeting, 2013)



As described in the statement above, the development team was encouraged to take risks
with technically sophisticated visualization. Another example includes integrating cross-
scale visualizations, which is important for understanding how various phenomena interact
or how systems are coupled.®® Project data confirmed the importance of integrating science
across scales and potential design features developed for visualizing these interactions;
however, designing a visualization and visual analytics process for conducting cross-scale,
interdisciplinary analysis continued to be a challenge. That said, the use of visualization in
this discovery-based activity is noticeably different than the example where consensus was
the primary goal. We found that collaboration and data integration occurring early in the

data pipeline was necessary to using visualization for developing insights.

In this discovery-based example from the VISTAS case study, guidelines are less
concerned with communication between scientists and non-scientists. Additionally,
scientific consensus is systematic, and while challenging at times, methods for establishing
consensus are relatively consistent across scientific disciplines. Guidelines for designing
for consensus-building in this example differ from building consensus with stakeholders.
Instead, the ability of scientists to set parameters for technically sophisticated visualization
and boosting collaboration, exploration and discovery would guide design. The ability to
create a visualization that externalizes a complicated thought experiment for others to
consider might also constitute a guideline in this example.’ In contrast to using
visualization for consensus-building among public stakeholder groups, visualizations
needed in this type of collaboration or process are more often for the purpose of exploration
of problems by various sophisticated tool-users with similar institutional status and

disciplinary training, rather than for communicating complicated findings to non-scientists.



The nested model’s value

Standardizing a design format to respond to such context-dependent needs for visualization might

seem difficult.’*

That said, characterizing visualization users by considering the unique aspects of
visualization from a cognitive science and psychophysics point of view, then considering the
degree to which visualization users care and are directed by a purpose, seem like good first steps.
Then, one might consider how the various types of actors (tool-users, analysts, and viewers) might
plug into the problem domain, including the relationships between the number of actors involved
in the various stages of problem solving and the levels of systems uncertainty and consensus. These
design considerations take into account both the level of technical and scientific complexity and
the potential political and cultural aspects related to the problem context. The nested model can be
useful for then talking about the necessary guidelines in the other levels of design—such as which

interaction techniques work best for whom or which data abstraction might be most appropriate

for integrating models.

In addition, a domain-driven study might acknowledge how tool design affords tool-users a full
array of visualization options based on initial design. This array of options allows primary users
to choose which story or narrative to present to others, depending on the problem context, in
addition to an array of techniques for using visualization for exploration. As Danziger highlights,
data narratives using visual and verbal elements are more likely to appeal to non-scientists (or non-
expert users) than the statistical transformations behind the data story.** One related finding from
our case study is the distinction between design for software users as analysts and design for

software users as tool-users creating artifacts to be used in other settings. While we were limited



in having the resources to observe our primary users interacting with various audiences, we find
the limitation useful in that it helps us conceptualize evaluation phases that are separate and may
have different criteria for effectiveness at the different levels of the nested model, and may even
be conducted by different evaluators (e.g., by a specialist in visualization who is developing a
software tool, or by a future tool-user on a case-by-case basis with regards to the many settings in
which visualization is presented, as a ‘poly-centric’ evaluation practice). This finding confirms
past work that identifies two strains of visualization research—one that is grounded in design for
visual communication and one that is grounded in design for human users.** Visualization
evaluation and design criteria may be affected by the use of techniques, other tools, and language
to build data narratives. The data, visual, and verbal displays all work together in the act of
perceiving and processing information.?! This finding complicates the software design and
development process. Our high-level conceptual model attempts to elucidate these complications
by presenting a system for understanding the relationships between the types of humans and

problems that might affect problem solving, with specific reference to visualization use.
Limitations

There are a number of potential limitations to application of our conceptual model to the problem
domain of the nested blocks and guidelines model. First, one might say that our conceptual model
for categorizing the domain problem is too coarse or vague, and that it overlooks fine-grained
technical considerations that might be supplied by sharing more study-specific findings, such as
in Kang & Stasko.?’ Additionally, other studies have tested or summarized visualization evaluation
in a more particularly focused way than what we offer here. For example, a recent state of the art
report from 2014 compiles and analyzes the myriad studies on dynamic graphs, and summarizes

the types of evaluation conducted such as task evaluation, user-study driven evaluation, and



algorithmic evaluation.®> This report is very useful and complete in its taxonomy of dynamic graph
types, among other topics; however, it summarizes evaluation as dealing with different topics such
as the importance of mental maps or the innermost part of design—algorithms—according to the
nested blocks and guidelines model, rather than offering a broader and higher level position on
evaluation, as we do here. Conversely, one might say that our model is too domain-specific, and
that this conceptual model actually constitutes the beginnings of a specific domain model rather
than considerations for blocks and guidelines that might be transferred or generalized to other
design and evaluation processes, or that it does not accurately represent what the NBGM intends
as characterizations of the problem domain. Or perhaps our question of which visualizations work
for whom and in what situations may not be a valid inquiry for creating a conceptual model that
applies outside of a social science domain. Finally, terms like levels of attentiveness and levels of
agency imply the ability to somehow quantify these concepts. More research into how to
operationalize quantification—or whether quantification is even necessary or desirable—might

help test the usefulness and refine our conceptual model.
Recommendations

Applying the NBGM to our project as we characterized the domain problem helped us derive a
conceptual model for design considerations. Based on this exercise, we recommend identifying
and including both primary and secondary users in design making. For example, the results of
VISTAS data led us to distinguish between primary users of the visualization tool and the
secondary users to whom scientific results would be presented. Understanding how VISTAS
scientists as tool users perceived their audiences and their role in presenting findings in various
settings helped us specify design requirements. One recommendation we can make using our

conceptual model is to identify differences in how tool-users, analysts, and viewers interact with



visualization and how they might be affected by other types of users during exploration and
communication events. This distinction between types of users might be compared to the consume
and produce tasks in Brehmer and Munzner’s Multi-Level Typology of Abstract Visualization
Tasks.*® The Multi-Level Typology was built through extensive meta-analysis of previous studies
and focuses more specifically on the mechanics of visualization tasks than our typology does. In
comparison, we see similarities between the two schemes where high-level visualization tasks of
consumption in Brehmer and Munzner’s work include presenting, discovering, and enjoying. Our
tool-user type would potentially present, discover and enjoy visualization more than those

visualization consumers with less agency or attentiveness.

Additionally, as a problem-driven study, we recommend articulating how visualization might be
applied to different types of problems. For example, when VISTAS scientists present visualization
to groups of decision makers, the visualization serves to engage viewers in a process, rather than
to jointly? tackle a technical scientific analysis. The visualization is used to build consensus and
engage different types of users, in addition to solving a puzzle. Such an analysis of the problem
domain offers insight into the standard metrics for evaluating visualization effectiveness (such as
the typical time-to-task or error-reduction evaluation), and offers the benefits and limitations of
taking a holistic view of effectiveness in design versus a purely reductionistic view.?’ The holistic
view we propose might prove helpful in addition to technical design of visualization when solving
puzzles or exploring novel problems; however, we believe that evaluating design for wicked
problems requires different indicators of success than typical time-to-task and error-reduction

evaluations.



Conclusion

We presented an extension of considerations for characterizing domain problems with regards to
the nested blocks and guidelines model (NBGM) based on our social science inquiry during a
visualization software development project, uniting the aims of various past studies into a birds-
eye view of characterizing the problem domain. We find that the problem domain must take into
account not only scientific and technological considerations, as described by the wicked problems
matrix, but also political and sociological considerations, so that typifying how actors approach
visualization events in relation to the domain problem becomes an important design-evaluation

consideration.

We highlight the importance of human agency in the domain problem, incorporating and
aggregating characterizations of users from some previous studies. Additionally, we discuss the
importance of identifying human factors in a visualization event—such as levels of agency and
attentiveness—in order to better understand how factors such as education, training, and
experience interact with visualization, and craft design criteria accordingly. We use the language
of the NBGM with regards to the typologies developed in our project, and believe this is an
enlightening exercise for not only software development, but for ‘poly-centric’ evaluation of
design effectiveness by tool-users, suggesting that effectiveness depends on not only on the actor
or system, but also on who is evaluating effectiveness. Finally, our contribution to shaping
visualization design and evaluation theory is to present relationships between general categories
for analyzing what visualizations work for whom and in what situations, especially with regards

to the domain problem level in the NBGM.
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