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Abstract. Understanding and accurately predicting within-field spa-
tial variability of crop yield play a key role in site-specific management
of crop inputs such as irrigation water and fertilizer for optimized crop
production. However, such a task is challenged by the complex inter-
action between crop growth and environmental and managerial factors,
such as climate, soil conditions, tillage, and irrigation. In this paper,
we present a novel Spatial-temporal Multi-Task Learning algorithm for
within-field crop yield prediction in west Texas from 2001 to 2003. This
algorithm integrates multiple heterogeneous data sources to learn differ-
ent features simultaneously, and to aggregate spatial-temporal features
by introducing a weighted regularizer to the loss functions. Our com-
prehensive experimental results consistently outperform the results of
other conventional methods, and suggest a promising approach, which
improves the landscape of crop prediction research fields.

1 Introduction

Cotton is an important cash crop native to tropical and subtropical regions in
the world. Accurate yield prediction not only provides valuable information to
cotton producers for effective management of the crop for optimized production,
but also is important to policymakers, as well as consumers of agricultural prod-
ucts. However, cotton yield prediction is challenging due to complex interactions
between crop growth and weather factors, soil conditions, as well as management
factors, such as irrigation, tillage, rotation, etc. Moreover, simply applying other
crop yield prediction models on cotton may lead to nothing but disappointment:
a prediction model that works on other crops like wheat, rice, and sugarcane,
however, fails on predicting cotton yield [1].

The existing approaches estimate crop yield based either on the crop sown ar-
eas, crop-cutting experiments or market arrivals show wide variability because of
their inability to capture the indeterminate nature of the crop and its response to
environmental conditions [2]. One of the attempts is to apply Grey model [3] on
production prediction, utilizing short-term forecasting with exponential growth.
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Fig. 1. Data sources in our prediction model.

The regression-based method such as time series analysis can also be applied to
production prediction [4], but it suffers from great variation when the external
environment is under significant variation. Another frequently used method for
prediction is the differential equation model [5], which demands the system to
be stable and requires extra work to solve the equation.

Conventional yield prediction treats the field uniformly despite inherent vari-
ability. Uniform assumption may result in over- or under-application of resources
in specific locations within a field, which may have a negative impact on the envi-
ronment and profitability [6]. However, consistent and accurate within-field yield
prediction is challenging due to the high accuracy requirement under the com-
plex interactions between yield-influencing factors, such as soil, weather, water,
and spatial correlations.

With the introduction of the global positioning system (GPS), geographic
information systems (GIS), and yield monitors along with other new technolo-
gies, we can quantify spatial variability in soil properties and crop yield in small
areas of a field. As satellite and drone technologies develop, we are able to collect
remote sensing images at fine resolutions to support within-field yield forecast.
Within-field scale crop yield prediction provides valuable information for produc-
ers to site-specifically manages their crop, which can optimize crop production
for maximum profitability. In the within-field prediction procedure, we use a
30-m grid to represent a continuous surface.

The advancement of machine learning offers a different approach compared
with the traditional ways for yield forecasting. The rapid advances in sensing
technologies, the use of fully automated data recording, unmanned systems,
remote sensing through satellites or aircraft, and real-time non-invasive computer
vision, are additional boosts for enabling the new yield forecasting model. Due
to the capability of machine learning based systems to process a large number
of inputs and handle non-linear tasks, people have attempted to predict county-
level soybean yield in the United States [7]. However, using deep learning for
within-field cotton forecast remains as an untouched ground. In our work, the
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within-field forecasting is based on each grid for one field in West Texas area
across three years (2001, 2002, 2003) in order to predict the cotton yield before
harvest.

On this account, we propose a Multi-Task learning model to predict within-
field cotton yield. As shown in Figure 1, this model ingests many sources of data
which contain features for different learning tasks, including soil topographic at-
tributes (elevation, slope, curvature, etc.), spectral data (Blue, Green, Red, and
NIR bands denoted as BAND1, BAND2, BAND3, and BAND4, respectively),
normalized difference vegetation index (NDVI) during the crop seasons; and
weather (temperature, rainfall, etc.) data. These multiple data sources are ag-
gregated in the shared layer before transferring to task-specific layers. This type
of design in a Multi-Task learning model makes it capable of enhancing specific
learning task by utilizing all sources of information of other related tasks. In
other words, this allows us to take various factors and variables into considera-
tion to achieve a more accurate yield prediction. On the other hand, crop yield
within a field is typically autocorrelated, meaning yield values close together
are likely more similar than those farther apart. Hence, to incorporate the spa-
tial relationship, we propose a spatial regularization term to minimize the yield
difference between one region and the weighted average of neighboring regions.
Therefore, we termed this technique as Spatial-temporal Multi-Task Learning.
The main contributions of this paper are summarized as below:

— We design an innovative multi-task learning approach to predict within-
field cotton yield across several years. Different from other machine learning
models, to predict the cotton yield for a specific year is one of the tasks in
our model; each task is enhanced through its access to all available data from
prior years.

— This work provides an entirely new vision for grid-scale crop yield prediction.
To the best of our knowledge, this is among the first attempts to predict fine-
grain cotton yield with the Multi-Task Learning approach, as existing work
focus more on county-level or country level.

— We introduce a spatial weight regularizer to overcome the effects of geo-
graphical distance on yield prediction. Each grid is trained to minimize not
only the difference between the prediction and the actual value, but also the
difference between its yield and its neighbors.

— We perform a comprehensive set of experiments using the real-world dataset
that produced results consistently outperformed other competitive methods,
which could provide guidance for achieving higher crop production.

2 Related Work

Crop Yield Prediction. Crop yield prediction is challenging. Many studies
have been conducted based on NDVI derived from the new moderate resolution
imaging spectroradiometer (MODIS) sensor [8], MODIS two-band Enhanced
Vegetation Index [9], even future weather variables [10]. Various methodolo-
gies are employed, such as statistical models [11], fuzzy systems and Artificial
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Neural Networks [12], deep long short-term memory model [7] and deep neural
network [13]. You et al. [14] provided an end to end soybean yield prediction
using remote sensing images as input. Ji et al. [15] investigated the effectiveness
of machine learning methods and found, unfortunately, most of the academic
endeavors centered on Artificial Neural Networks with one or a few data sources
undermine their predict performance. Most previous studies assume that the
crop yield uniformly distributed over space ignoring the spatial variations.

Multi-Task Learning. Multi-Task learning (MTL) is implemented to predict
spatial events due to its competence to exploit dynamic features and scalabil-
ity [16]. Through learning multiple related tasks simultaneously and treating
prediction at each time point as a single task, MTL captures the progression
trend of Alzheimer’s Disease better [17]. MTL also has outstanding performance
in event forecasting across cities [16] and fine-grain sentiment analysis [18], as
well as in distance speech recognition [19]. Lu et al. [20] proposed a principled
approach for designing compact MTL architecture by starting with a thin net-
work and dynamically widening it in a greedy manner. Xu et al. [21] designed
an online learning framework that can be used to solve online multi-task regres-
sion problems, although it is not a memory-efficient solution for data intensive
application. To the best of our knowledge, usage of MTL in crop yield forecast
in within-field practice is untouched. We propose a Multi-Task Learning model
which targets at predicting each grid in the field for a crop season as an individ-
ual task. Meanwhile, we incorporate the spatial correlations as a regularization
term to minimize the prediction errors.

3 Proposed Model

3.1 Overview

Figure 2 presents the framework of our prediction model. The cotton field is split
into 475 grids for fine-grain prediction. We utilized the Dense and Dropout layers
in the network. A shared Dense layer is used to extract latent features from all
data dimensions, which are aggregated and fed into multiple sub-networks. Each
sub-network represents the architecture of forecasting task in one year for all
the grids. In other words, cotton yield prediction for all grids of each year are
achieved in parallel via the separated sub-networks.

This aggregation is shared among all task-specific sub-networks. Therefore,
it helps the task-specific sub-network to learn features from other tasks and to
enhance its own prediction performance. Dense layer helps receive input from all
the neurons in the previous layer with the intuition that all factors contribute
each layer output neurons. Mathematically, the latent feature p' learned after a
fully connected layer is computed as:

N
ﬁtZU(in*wH—b) (1)

, where N is the number of neurons in a layer, z; represents input feature, w;
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Fig. 2. The cotton yield prediction framework.

is a weight element, b is a bias and o is the activation function. In our setting,
o(x) is a Sigmoid function defined as o(x) = 1/(14e~%). Moreover, the dropout
layer or dropout regularization is also used to randomly exclude some neurons
(20% in ours) to avoid over-fitting.

3.2 Cotton Yield Prediction

Our feature set is enriched by concatenating the latent features and feeding the
output into a shared Dense layer. Suppose p't, p'2, p'® and p’t are features from
our sources, the joint feature vy, is the concatenation (denote as &) of those
features [22]: ¢ = @ gt b pls b plt, @)
Stacked on the top of the shared Dense layer are three separate sub-networks,
and each is used for one yearly cotton yield forecasting task, as shown in Figure
2. After this lajyer, the latent feature is learned at time j following the equation:
hj = o(W; * vjc + b). Because cotton is usually planted by the end of May and
harvest at the end of September or early October, we cut cotton’s life cycle into
several pieces, and each piece represents 2 weeks. Instead of taking it as time
series data, we treat it as a couple of separate temporal features and utilize fully
connected Dense layers and Dropout layers behind the shared Dense layer. We
define the regression function for task t as:

Q; = O‘(W; * h;’- + b;) (3)
, where W} and b’ are learnable parameters, A’ is the output of the last hidden
layer, and o is a linear activation function. The model output lies in the interval

[0, 1] after value normalization. We will recover them to the original values when
doing performance evaluation.

3.3 Spatial Feature in the Loss Function

A loss function is defined as the mean square error between the observation and
the prediction:
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N
£0) =" (g — in)? (4)
k=1
, where # means all learnable parameters, N is the number of regions in the field,
yr represents actual yield value, and g5 represents the predicted yield value. To
train # by minimizing the loss function may introduce overfitting. Therefore,
for the grid-scale crop forecasting within a field, the spatial correlations depend
heavily on the factor of distance. This drives us to define the spatial influence
via a regularization term that the yield difference between the predicting region
and the weighted average yield of the neighboring regions should be minimized.
In particular, suppose G(k) is the set of neighbors of region k (determined by
all regions whose distance to region k less than a threshold), and w(k, j) is the
inverse distance weight between region k£ and region j, the loss function now
becomes:

> N2 w(k,j) . 2
LO)= [k — )+ X Y GOk * |0k — y;1°] (5)

k=1 JEG(K) )

, where ) is the hyper parameter, d(k, j) is the Euclidean distance between these
regions k # j. The spatial weight w(k, j) is computed as:

) 1
I = w3

(6)
, where p is the power parameter (which equals to 2 in our experiment).

4 Experiments

4.1 Dataset and Feature Extraction

Our dataset includes weather data, soil properties, spectral data, and NDVI.
Spectral data and NDVI are extracted from Lantsat 5 and Landsat 7 remote
sensing images. The multi-spectral images were collected from 2001 to 2003
of a cotton field in west Texas. The total area is approximately 48 ha. The
sensed images spatial resolution is 30 m. Hence, there are 475 grid cells under
investigation. Figure 3 shows the distribution of some features over the field.

Weather data. Weather data includes the daily temperature and rainfall level.
For simplicity, we use the average of every two weeks’ weather data as features
to match the sensed images.

Soil properties. Topographic variation is a common characteristic of large agri-
cultural fields that has effects on spatial variability of soil water and ultimately
on crop yield [23]. Besides, soil electrical conductivity (ECa) is also a reliable
measurement of field variability. The relationship between ECa and crop yield
depends on climate, crop type and other specific field conditions [24]. The vari-
ables that are considered in this paper include elevation, slope, curvature, the
average electrical conductivity of soil, etc.
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Fig. 3. (a) to (d) Within-field feature value distributions. Darker colors in-
dicate higher values. Each feature value is normalized into [0,1].
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Fig. 4. Performance comparison in each year measured in RMSE, using
whole dataset until September.

Field spectral data before planting. Field spectrum before planting may
influence the entire crop yield. This data has four spectral bands extracted from
the sensed images with 30-metre spatial resolution. Band1l, Band2, Band3, and
Band4 represent blue, green, red and near infrared value, respectively.

NDVI data. NDVI represents Normalized Difference Vegetation Index. It is
typically related to amount or density of vegetation, which is calculated as the
difference between the reflectance in near-infrared (which vegetation strongly re-
flects) and red wavelengths divided by the sum of these two. NDVTI is computed
as: NDVI = NIE_RED "where NIR represents the spectral reflectance in near-

NIR+RED
infrared wavelength and RED is the spectral reflectance in the red wavelength.

4.2 Competing Approaches and Comparison Metrics

Competing Approaches In our experiment, a list of classical forecasting mod-
els are used for comparison and analysis:

Linear Regression This is a traditional linear regression model. Its standard
formula is: y = Z?zl a;x; + € where y is the response variable, x; is the feature
and e is the deviation.
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Fig. 5. Model performance in each month of 2003 measured in RMSE.

Random Forest This model tries to fit a number of regression trees on various
sub-samples of the dataset and uses averaging to improve the predictive accuracy
and control overfitting. Each leaf of the tree contains a distribution for the
continuous output variable.

Support Vector Regression (SVR) SVR is a nonparametric technique that
aims to find a function f(x) that produces output deviated from observed re-
sponse values y, by a value no greater than e for each training point z, and
meanwhile, as flat as possible.

XGBoost This is an extension of gradient boosting machine (GBM) algorithm
that tries to divide the optimization problem into two parts by first determining
the direction of the step and then optimizing the step length.

Deep Neural Network (DNN) A fully connected deep neural network com-
posed of three Dense layers, connecting to a Dropout and followed by another
Dense layer is developed and used as another baseline for comparison.

Evaluation Metrics Let NV be the number of grids under forecast. We denote
A; as the actual crop yield and F; is the forecast yield for grid i. A set of classical
metrics such as Mean square error (MSE), Root mean square error (RMSE),
Mean absolute error (MAE), Mean absolute percentage error (MAPE) and Max
error (ME) are used to elaborate the performance. These measures are computed
as: MSE = £ SV (A, — F;)%, RMSE = VMSE, MAE = LN |4, — |,
MAPE = 109% 52V WAeBl and ME = max(|A; — F|) where i =1,... | N.

4.3 Experimental Results

Average Performance Figure 4 shows the performance of our proposed model
compared with other baselines in term of RMSE metric. The Multi-Task learning
and our proposed Spatial-Temporal Multi-Task learning model have the least
error in all three years. Figure 6 and Table 1 take yield prediction performance of
2003 as an example. The Multi-Task Learning and our Spatial-Temporal Multi-
Task learning methods show significant superiority than all the other approaches.



ST. MTL. for Within-field Cotton Yield Prediction 9

T
| T i
. B T H ‘
. Emam 7‘H—‘ L - % N ‘I,, I
B ¥ il
B G ot 3in 3 3 ‘
o mme ) H | o HH
BT | T 1 1 s | ¢ T
msme ! e H HH
T 1] T
Linear Regression Random Forest Support Vector XGBoost
Regression
| g 4 T )
! T i = I Cotton Yield
} o 0 i - o om | (kg/ha)
o f E] H 3 wHERE o aEmmzEna B EEmesel YLDO3
I 15| SE S L]
5 ‘% g B I /70 - 600
inn| I i
5 T \i‘ T i I 1 I I} _ 601-800
R EmEERRE R SE: | ] [SEEE wlun®loccmnElcr \ | 801-1000
= EESEEEEE o I L T [ | | 1001 - 1200
o iRt a g I 1201 - 1400
Deep Neural Network Multi-Task Learning Spatial-Temporal Ground Truth

Multi-Task Learning

Fig. 6. Within-field cotton yield prediction on different algorithms versus
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Fig. 7. Impact of neighborhood size on model performance

With the whole data package, our model achieves the smallest error metrics
(MSE, RMSE, MAE, MAPE, ME) which are 7,013.5, 83.7, 63.6, 7.55 and 254.4,
respectively. The overall performance of Multi-Task Learning is second and close
to our proposed approach, while Support Vector Regression shows the worst
performance.

Real-time Prediction Throughout the Year Considering the life cycle of
cotton in the U.S., we train the model using partially available input features and
predict the cotton yield in each month in an online manner. Figure 5 shows the
performance when we try to make a prediction in May, June, July, August and
September, using only the data available up to that point. As more information
is available, most of the models improve. The improvement during the first three
months is less than that of later two months. All models perform better in August
and reach the best in September.

Spatial Correlations: We also vary the neighborhood distance of each region
from 1 to 5 to verify the impact of spatial correlation among regions under
prediction. As shown in Figure 7, MSE, RMSE and MAE gradually decrease



10 L. Nguyen et al.

Table 1. Cotton yield prediction performance comparison of year 2003 while
combining all data sources. Bold values represent the best results.

MSE | RMSE | MAE | MAPE | Max Error

Linear Regression 17,875.6 | 133.7 | 109.0 | 10.96 | 276.7
Random Forest 19,295.3 | 1389 | 112.0 | 10.68 | 321.7
Support Vector Regression 33,588.5 | 183.3 | 142.2 | 13.35 | 475.4
XGBoost 19,498.4 | 139.6 | 111.4 | 10.05 | 353.0
Deep Neural Network 9,504.8 | 975 | 77.8| 9.96 | 269.4
Multi-Task Learning 8,267.5 | 90.9| 705| 8.08 | 256.2
Spatial-Temporal M.T.L. ~ 7,013.5 | 83.7 | 63.6 | 7.55 | 254.4

Table 2. Performance of the spatial-temporal Multi-task Learning model
using individual source of data.

Input Source ‘ MSE | RMSE | MAE | MAPE ‘ Max Error
Soil Properties | 15,791.9 | 1257 | 982 | 12.04 | 372.7
Spectral Data | 21,2925 | 1459 | 1144 | 13.62 | 450.1
NDVI | 15,134.5 | 123.0 | 94.7 | 11.80 | 470.4

when the distance increases. This trend stops when neighborhood size equals
to 4. The performance becomes more stable afterwards. Even though we see
a random value in MAPE and ME metrics with respect to the neighborhood
distance, there is also a decreasing trend on MAPE and ME when neighborhood
size increases. Therefore, in our experiment, we set the neighbor distance as 5.

Understanding the Importance of the Features: Since weather data is
shared in all regions under prediction, we do not evaluate its impact. Instead,
we explore the impacts of soil properties, spectral conditions before planting
and NDVTI on the cotton yield prediction. We split the data by dimensions and
conduct two experiments: in Table 2, we use one data source at a time to compare
the importance of this single source, in Table 3 we remove one data source and
use the rest input each time to compare the performance.

Table 2 shows that NDVI data contributes most significantly to better pre-
cision. It gets MSE and RMSE values at 15,134.5 and 123.0 while the spectral
data produces the worst results, whose MSE and RMSE are 21,292.5 and 145.9,
respectively. Table 3 indicates that if we ignore the spectral feature, the model
achieves the best results compared with ignoring the soil properties or NDVI
features. These results demonstrate that the NDVI impacts the prediction the
most, then soil properties, while spectral data before planting has the minimal
impact.
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Table 3. Discover the importance of sources of data by removing one source
at a time.

Removed Source ‘ MSE | RMSE | MAE | MAPE ‘ Max Error
Soil Properties | 13,383.0 | 1157 | 88.8 | 10.79 | 481.6
Spectral Data | 13,189.6 | 114.8 | 93.0 | 1154 | 276.5
NDVI | 15,6420 | 1251 | 1003 | 12.39 | 330.0

5 Conclusion

This paper proposes a novel Multi-task Learning framework for within-field scale
cotton yield prediction, which ingests multiple heterogeneous data sources, such
as soil type, weather, topographic, and remote sensing, and is capable of pre-
dicting within-field cotton yield throughout the growing season. By aggregating
these multiple data sources in the shared layer before transferring to task-specific
layers, this creative strategy is able to enhance specific learning task by utilizing
sources from other related tasks. To minimize the spatial errors in prediction,
this work introduces a spatial regularization to measure the correlations between
a certain grid and its neighboring grids. The experimental results show the pro-
posed approach consistently outperforms other competing approaches, and has
a promising future in the crop yield prediction research field.
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