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ARTICLE INFO ABSTRACT

Keywords: Evolving climate conditions and anthropogenic factors, such as CO, emissions, urbanization and population
Process-informed nonstationary extreme value growth, can cause changes in weather and climate extremes. Most current risk assessment models rely on the
analysis

assumption of stationarity (i.e., no temporal change in statistics of extremes). Most nonstationary modeling stud-
ies focus primarily on changes in extremes over time. Here, we present Process-informed Nonstationary Extreme
Value Analysis (ProNEVA) as a generalized tool for incorporating different types of physical drivers (i.e., underly-
ing processes), stationary and nonstationary concepts, and extreme value analysis methods (i.e., annual maxima,
peak-over-threshold). ProNEVA builds upon a newly-developed hybrid evolution Markov Chain Monte Carlo
(MCMC) approach for numerical parameters estimation and uncertainty assessment. This offers more robust un-
certainty estimates of return periods of climatic extremes under both stationary and nonstationary assumptions.
ProNEVA is designed as a generalized tool allowing using different types of data and nonstationarity concepts
physically-based or purely statistical) into account. In this paper, we show a wide range of applications describ-
ing changes in: annual maxima river discharge in response to urbanization, annual maxima sea levels over time,
annual maxima temperatures in response to CO, emissions in the atmosphere, and precipitation with a peak-
over-threshold approach. ProNEVA is freely available to the public and includes a user-friendly Graphical User

Physical-based covariates/drivers
Methods for nonstationary analysis

Interface (GUI) to enhance its implementation.

1. Introduction

Natural hazards pose significant threats to public safety, infrastruc-
ture integrity, natural resources, and economic development around
the globe. In recent years, the frequency and impacts of extremes
have increased substantially in many parts of the world (e.g., Melillo
et al., 2014; Coumou and Rahmstorf, 2012; Alexander et al., 2006;
Mazdiyasni et al., 2017; Mallakpour and Villarini, 2017; Hallegatte
et al,, 2013; Wahl et al.,, 2015; Vahedifard et al., 2016; Jongman
et al., 2014; AghaKouchak et al., 2014). For this reason, there is
a great deal of interest in understanding how extreme events will
change in the future. Historical observations are the main source of
information on extremes (Klemes$, 1974; Koutsoyiannis and Monta-
nari, 2007) and statistical models are used to infer frequency and
variability of extremes based on historical records (e.g., Katz et al.,
2002).

Statistical models used to study extremes can be broadly categorized
into two groups: stationary and nonstationary (e.g., Salas and Pielke Sr,
2003; Coles and Pericchi, 2003; Griffis and Stedinger, 2007; Obeysekera
and Salas, 2013; Serinaldi and Kilsby, 2015; Madsen et al., 2013; Kout-
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soyiannis and Montanari, 2015). In a stationary model, the observations
are assumed to be drawn from a probability distribution function with
constant parameters (i.e., statistics of extremes do not change over time
or with respect to another covariate). In a nonstationary model, how-
ever, the parameters of the underlying probability distribution function
change over time or in response to a given covariate (Sadegh et al.,
2015).

Water resources practices (e.g., flood and precipitation frequency
analysis) have traditionally adopted stationary models. However, over
the past decades, increasing surface temperatures (e.g., Barnett et al.,
1999; Villarini et al., 2010; Melillo et al., 2014; Diffenbaugh et al., 2015;
Fischer and Knutti, 2015; Mazdiyasni and AghaKouchak, 2015), more
intense rainfall events (e.g., Zhang et al., 2007; Villarini et al., 2010;
Min et al., 2011; Marvel and Bonfils, 2013; Westra et al., 2013; Cheng
et al., 2014; Fischer and Knutti, 2016; Mallakpour and Villarini, 2017),
changes in river discharge (e.g., Villarini et al., 2009a; 2009b; Hurk-
mans et al., 2009; Stahl et al., 2010), and sea level rise (e.g., Holgate,
2007; Haigh et al., 2010; Wahl et al., 2011) have been observed and to a
great extent attributed to anthropogenic activities (e.g., human-caused
climate change, urbanization).
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Matalas (1997) argued that trend in hydrological records can-
not firmly be established because of the variables intrinsic variabil-
ity and limited length of observations. In his reasoning, the ob-
served trend might only be part of a slow oscillation. Consequently,
Matalas (1997) defined hydrological trends as “real (physical)” or “per-
ceived (statistical)”. Even though using statistical trend analysis tools
inevitably leads to detecting only statistical trends, it is important to
make a distinction between a trend which has a physical explanation
(e.g., increases in runoff in response to urbanization) and a trend which
cannot be fully explained by our understanding of the underlying pro-
cesses. Regardless of the type of observed hydrologic trends, i.e. in re-
sponse to a physical process or only perceived (statistical), these trends
challenge the stationary assumption (Milly et al., 2008).

Several studies have promoted the idea of moving away from sta-
tionary models to ensure capturing the changing properties of extremes
(Milly et al., 2008). However, some have criticized this viewpoint par-
ticularly because the assumption of nonstationarity implies adding a de-
terministic component in the stochastic process, which must be justified
by a well-understood process (Koutsoyiannis, 2011; Matalas, 2012; Lins
and Cohn, 2011; Koutsoyiannis and Montanari, 2015). Moreover, lim-
ited observations could affect the exploratory diagnostics used to justify
a nonstationary model (Serinaldi and Kilsby, 2015). This can potentially
lead to higher uncertain in the results of extreme value analysis. A non-
stationary approach may also involve an assumption on the evolution of
the relevant process/variable in the future which would add to the over-
all uncertainty (Serinaldi and Kilsby, 2015). When it is not possible to
determine a credible prediction of the future Koutsoyiannis and Monta-
nari (2015) or make a reasonable assumption, considering a stationary
model may be a more appropriate solution. Luke et al. (2017) concluded
that for prediction of river discharge, a stationary model should be pre-
ferred to avoid over-extrapolation in the future. However, when infor-
mation about alterations occurred within a watershed is known, then
an updated stationary model which accounts for the detected changes
should be adopted (Luke et al., 2017). In the debate around model as-
sumptions, Montanari and Koutsoyiannis (2014) noted that more efforts
should focus on including relevant physical processes in stochastic mod-
els, and suggested stochastic-process-based models as a way to bridge
the gap between physically-based models without statistics and statisti-
cal models without physics.

Here, we propose a generalized framework named Process-informed
Nonstationary Extreme Value Analysis (ProNEVA) in which the nonsta-
tionarity component is defined by a temporal or process-based depen-
dence of the observed extremes on an explanatory variable (i.e., a physi-
cal driver). Here, Process-informed refers to the process of incorporating
a physical driver into a statistical analysis, when there is evidence that
the physical driver can alter the statistics of the extremes. Even though
the approach proposed is purely data-driven, it encourages and facili-
tates the implementation of informed statistical analysis in light of exter-
nal knowledge of processes, especially for water resources management
and risk assessment. For example, ProNEVA can be used for analyzing
changes in extreme temperatures as a function of CO, emissions. It is
widely recognized that higher amount of CO, in the atmosphere results
in a warmer climate (e.g., Zwiers et al., 2011; Fischer and Knutti, 2015;
Barnett et al., 1999). For this reason, CO, emissions can be considered
a physical covariate for explaining temperature extremes. Other exam-
ples include temperature or large scale climatic circulations as covari-
ates for rainfall, and CO, concentration or temperature as covariates for
sea level rise.

2. Background and method
2.1. Nonstationarity extreme value analysis
Extreme Value Theory (EVT) provides the bases for estimating the

magnitude and frequency of hazardous events (including natural and
non-natural extreme events) (Coles, 2001). Most applications utilize ei-
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ther the Generalized Extreme Value distribution (GEV) or the General-
ized Pareto distribution (GP) for describing the behavior of extremes.
The former is applied to the annual maxima of a variable (e.g., a time
series consisting of the most extreme daily rainfall from each year of the
record), while the latter is used to describe extremes above a predefined
threshold (e.g., all independent river flow values above the flood stage).
Both GEV and GP allow incorporating nonstationarity through varying
parameters. Several studies have investigated methodologies for testing
the assumptions of stationarity and nonstationarity in hydrology, clima-
tology, and earth system sciences (e.g., Katz et al., 2002; Sankarasubra-
manian and Lall, 2003; Cooley et al., 2007; Mailhot et al., 2007; Huard
et al., 2009; Villarini et al., 2009a; Towler et al., 2010; Villarini et al.,
2010; Vogel et al., 2011; Salas et al., 2012; Zhu et al., 2012; Willems
et al., 2012; Katz, 2013; Obeysekera and Salas, 2013; Salas and Obey-
sekera, 2014; Rosner et al., 2014; Yilmaz and Perera, 2014; Mirhosseini
et al., 2014; Cheng and AghaKouchak, 2014; Steinschneider and Lall,
2015; Volpi et al., 2015; Krishnaswamy et al., 2015; Read and Vogel,
2015; Sadegh et al., 2015; Mirhosseini et al., 2015; Mondal and Mujum-
dar, 2015; Lima et al., 2015; 2016b; 2016a; Sarhadi and Soulis, 2017;
Salas et al., 2018; Yan et al., 2018; Bracken et al., 2018; Ragno et al.,
2018).

A number of packages and software tools are currently available for
nonstationary Extreme Value Analysis (EVA), including the R-package
ismev (Gilleland et al., 2013; Gilleland and Katz, 2016) where nonsta-
tionarity is modeled as a linear regression function of generic covariates
(Gilleland et al., 2013). extRemes offers EVA capability and evaluates
the underlying uncertainties with respect to parameters (Gilleland and
Katz, 2016). extRemes also allows tail-dependence analysis and a declus-
tering technique for peak over threshold analysis. The package climex-
tRemes (available also in Python) builds upon extRemes and includes
an estimate of the risk ratio for event attribution analyses. R packages
vgam and gamlss are available for modeling nonstationarity through gen-
eralized additive models (see for example Villarini et al. (2009a)). The
package GEVcdn estimates the parameters of a nonstationary GEV dis-
tribution using a conditional density method (Cannon, 2010).

Cheng et al. (2014) developed a Bayesian-based framework, Non-
stationary Extreme Value Analysis (NEVA) toolbox that estimates the pa-
rameters of GEV and GP distributions and their associated uncertainty
for time-dependent extremes (available in Matlab). In the nonstation-
ary case, the parameters are modeled as a linear function of time.
NEVA also includes return level curves based on the concept of ex-
pected waiting time (Wigley, 2009; Olsen et al., 1998; Salas and Obey-
sekera, 2014) and effective return level (Katz et al., 2002). The pack-
age nonstationary Flood Frequency Analysis estimates the parameters of
the Log-Pearson Type III distribution as a linear function of time, based
on Bayesian inference approach (Luke et al., 2017). The tsEVA toolbox
implements the Transformed-Stationary (TS) methodology described in
Mentaschi et al. (2016), which comprises of, first, a transformation of
a nonstationary time series into a stationary one, so that the stationary
EVA theory can be applied, and then a reverse-transformation of the re-
sults to include the nonstationary components in the GEV and the GP
distributions.

Despite significant advances, a comprehensive framework which in-
corporates the widely used EVA statistical models, namely GP, GEV, and
LP3, under both stationary and nonstationary assumptions (parameters
as a function of time or a physical covariates) is not available. More-
over, the implementation of newly proposed approaches for return pe-
riod estimation under the nonstationary assumption is still limited. To
address the above limitations, we present ProNEVA, which builds upon
NEVA package (Cheng et al., 2014) but expands to a general nonsta-
tionary extreme value analysis. Indeed, in addition to stationary EVA,
ProNEVA allows nonstationary analyses using user-defined covariates,
which could be time or a physical variable. Fig. 1 depicts the core struc-
ture of ProNEVA. The advantage of performing stationary analysis with
physical-related covariates resides in the possibility of imposing physical
constraints to a statistical model. Even though such a statistical model
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Fig. 1. Flowchart representing the core structure of the Matlab Toolbox
ProNEVA.

(nonstationary statistical model) is purely data-driven, it can be con-
strained using physical information to avoid unrealistic extrapolation.
ProNEVA offers parameter estimation, uncertainty quantification,
and a comprehensive assessment of the goodness of fit. The key fea-
tures of ProNEVA are described as follows: (a) the model includes the
most common distribution functions used for extreme value analysis in-
cluding the GEV, GP, and LP3 distributions; (b) for nonstationary anal-
ysis, the users can select both the covariate and the choice of function
for describing change in parameters; (c) the covariate can be any user-
defined physical covariate; (d) the model also includes a default time-
covariate (i.e., describing change over time without a physical covari-
ate); (e) the function describing change in parameters with respect to
the covariate can be linear, exponential, or quadratic; (f) the users can
select the GP distribution threshold (peak-over-threshold) as a constant
value or as a linear quantile regression function of the choice covariate;
(g) ProNEVA estimates the distribution parameters based on a Bayesian
inference approach; (h) the model allows using a wide range of priors
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for parameters including the uniform, normal, and gamma distributions;
(i) ProNEVA samples the posterior distribution function of the param-
eters using a newly-developed hybrid evolution Markov Chain Monte
Carlo (MCMC) approach, which is computationally more efficient than
traditional MCMC algorithms searching rugged response surfaces and
it provides a robust numerical parameter estimation and uncertainty
quantification (Sadegh et al., 2017); (j) different model diagnostics and
model selection indices (e.g., RMSE, AIC, BIC) are implemented to pro-
vide supporting information; (k) ProNEVA includes exploratory data
analysis tools such as the Mann-Kendall test for monotonic trends and
the White test for homoscedasticity in time series; (1) in addition to the
source code, a Graphical User Interface (GUI) for ProNEVA is also avail-
able for easier implementation (see Supplementary Material); finally,
(m) ProNEVA is intended for a broad audience and hence it is struc-
tured such that users can easily customize and modify it based on their
needs. We acknowledge that there are other EVA methods, such as those
in Serago and Vogel (2018) and Gilleland and Katz (2016), that we have
not included in ProNEVA.

In the reminder of the paper, a detailed description of ProNEVA is
provided. Four different example applications are presented with differ-
ent variables (e.g., precipitation, sea level, temperature, river discharge)
and different covariates (time, CO, emissions in the atmosphere, ur-
banization). ProNEVA can be used for analyzing annual maxima (also
known as block maxima) using the GEV and LP3 distributions, and peak
over threshold (POT) or partial duration series using the GP distribu-
tion. In the following, we provide a brief overview of the extreme value
models and their parameters.

2.2. Generalized Extreme Value (GEV)

The GEV distribution function is used to model time series of
block maxima. The National Oceanic and Atmospheric Administra-
tion (NOAA), for example, derives precipitation Intensity-Duration-
Frequency (IDF) curves based on the GEV distribution. This distribution
is also widely used in other fields including finance, seismology, and
reliability assessment (bridge performance assessment (e.g., Ming et al.,
2009)). The GEV cumulative distribution function is Coles (2001):

Yoy () =exp{ - (146 ( ))s}

for 1+ ¢&-((x—p)/o) > 0. u, 6, and ¢ are the parameters of the distribu-
tion: y is the location parameter, ¢ > 0 is the scale parameter, and ¢ is
the shape parameter which defines the tail behavior of the distribution.

The stationary GEV model can be extended for dependent series by
letting the parameters of the distribution be a function of a general co-
variate x., i.e., u(x.), o(x.), &(x.), (Coles, 2001). Hence, the nonstation-
ary form of Eq. (1) is described as:

X)) )

o(x.)

In ProNEVA, for each of the three parameters, the users can select
a function to describe the change in the parameters with respect to the
covariate x, (Table S1 - Supplementary Material). The function selected
for each parameter does not constrain the functional relationship used
for the other parameters. To ensure the positivity of the scale parame-
ter, o(x,) is modeled in the log-scale (Coles, 2001; Katz, 2013). Conse-
quently, the exponential function is not available for o(x.). Moreover,
the shape parameter &(x.) is known to be a difficult parameter to pre-
cisely estimate even in the stationary case, (Coles, 2001), especially for
short time series, (Papalexiou and Koutsoyiannis, 2013). For this reason,
only the linear function is included for &(x,).

X—p

(€]

Wy (xlx,) = exp{ - (1 +ECx,) - ( @)

2.3. Generalized Pareto (GP)

The GP distribution is used for modeling time series sampled based
on the POT method. The GP distribution has been applied to pre-
cipitation (e.g., De Michele and Salvadori, 2003), earthquake data
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(e.g., Pisarenko and Sornette, 2003), wind speed (Holmes and Mori-
arty, 1999), and economic data (e.g., Gencay and Selcuk, 2004), among
others. Given a sequence Y of independent and random variables, for
a large enough threshold u, the cumulative distribution function of the
excesses Y, = Y — u, conditional on Y > u, is approximated by the GP dis-
tribution function, (Coles, 2001):

1

Yoptro=1-(1+¢- (%))

In particular, if block maxima of Y follows a GEV distribution, then
the threshold excesses Y, have a GP distribution in which the parame-
ter ¢ is equal to the parameter ¢ of the corresponding GEV distribution
(Coles, 2001).

In the nonstationary model of the GP distribution, both the thresh-
old value and the parameters of the distribution can be modeled as a
function of the user-covariate x., (Coles, 2001).

Ye(x,)

o(x,) ))75(%[)

Where Y,(x,) =Y —u(x,). Analogous to the GEV case, ProNEVA allows
incorporating different functional forms for describing change in param-
eters over time or with respect to a covariate (Table S2).

The same considerations for the GEV parameter functional forms are
applied to GP distribution too. In addition, the users can specify the
type of threshold u. Two quantile-based options are available: constant
or linear. In the case of a linear threshold, a linear regression quantile
model is adopted. The a-regression quantile function is Koenker and
Bassett (1978) and Kysely et al. (2010)

3

WapOelo) = 1= (1+ 60 - ( @

Y=M -U@a)+r*-r", 5)

where 0 < a <1 is the quantile, Y is the column vector of n-observations,
M =[X, I,]withX, being the column vector of covariance and I, the
n-identity vector, U= [u; u,] is the vector of the regression coeffi-
cients, and r* and r~ are respectively the positive and negative parts
of the residuals. Then, U(a) is calculated as the optimal solution to
Eq. (6) (Koenker and Bassett, 1978; Kysely et al., 2010).

a- L) rt+(1-a)- L/ r 6)

I=min
2.4. Log-Pearson type III (LP3)

The LP3 distribution has been widely used in hydrology for flood
frequency analysis particularly after the release of the USGS Bulletin
17B (U.S. Water Resources Council, 1982). However, it has been applied
to other studies, such as design magnitude of earthquakes (Gupta and
Deshpande, 1994) and evaluation of apple bud burst time and frost risk
(Farajzadeh et al., 2010).

The LP3 distribution characterizes the random variable Q = exp(X),
given that X follows a Pearson type III (P3) distribution (Griffis et al.,
2007). Hereafter, the natural logarithm is used, however any base can
be implemented, such as base-10 as in Bulletin 17B (Griffis et al., 2007).
The P3 probability density function is

X—T X—T )

e

defined for a >0, (x — 7)/8 > 0, and I'(a) being a complete gamma func-
tion (Griffis et al., 2007). The parameters «, f, and r are functions of
the first three moments, uy, oy, yx, (Griffis et al., 2007):

wp3(x) = 7

1
1pl T (

a=4/ry ®)
B=(ox-rx)/2 O]
T:Hx—z'(l"x/}’x) (10)

In the case of nonstationary analysis, the first three moments are mod-
eled as a function of the user-defined covariate x, (Table S3). The GEV
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and GP considerations mentioned above hold for the functions to de-
scribe change in parameters.
)a(xa—l “exp ( _

x —7(x,)

B(x.)

x —7(x,) )
B(x.)
(11)

wps(x]x,) =

1 . (
|BGx)] - Tlalx,))

3. Parameter estimation: Bayesian analysis and Markov chain
monte carlo sampling

ProNEVA estimates the parameters of the selected (non)stationary
EVA distribution using a Bayesian approach, which provides a robust
characterization of the underlying uncertainty derived from both in-
put errors and model selection. Bayesian analysis has been widely im-
plemented for parameter inference and uncertainty quantification (e.g.
Thiemann et al., 2001; Gupta et al., 2008; Cheng et al., 2014; Kwon and
Lall, 2016; Sarhadi et al., 2016; Sadegh et al., 2017; Luke et al., 2017;
Sadegh et al., 2018).

Let 0 be the parameter of a given distribution and let Y = {j,, ..., ,}
be the set of n observations. Following Bayes theorem, the probability of
6 given Y (posterior) is proportional to the product of the probability of 8
(prior) and the probability of Y given ¢ (likelihood function). Assuming
independence between the observations:

pO1Y) <[] p® - p:10)

i=1

12

The prior brings a priori information, which does not depend on the
observed data, into the parameter estimation process. The choice of the
prior distribution, then, is subjective, and it is based on prior beliefs
about the system of interest (Sadegh et al., 2018). The available prior
options in ProNEVA include the uniform, normal, and gamma distribu-
tions, providing a variety of possibilities. ProNEVA assumes indepen-
dence of parameters and hence, each parameter requires its own prior.

In the case of a nonstationary analysis, the vector of parameters 6
includes a higher number of elements than in the stationary case, de-
pending on the functional form selected for each of the distribution’s
parameters.

The posterior distribution is then delineated using a hybrid-evolution
MCMC approach proposed by Sadegh et al. (2017). The MCMC simula-
tion searches for the region of interest with multiple chains running
in parallel, which share information on the fly. Moreover, the hybrid-
evolution MCMC benefits from an intelligent starting point selection
(Duan et al., 1993) and employs Adaptive Metropolis (AM) (Roberts and
Sahu, 1997; Haario et al., 1999; 2001; Roberts and Rosenthal, 2009),
differential evolution (DE) (Storn and Price, 1997; Ter Braak and Vrugt,
2008; Vrugt et al., 2009), and snooker update (Gilks et al., 1994; Ter
Braak and Vrugt, 2008; Sadegh and Vrugt, 2014) algorithms to search
the feasible space. The Metropolis ratio is selected to accept/reject the
proposed sample, and the Gelman-Rubin R (Gelman and Rubin, 1992) is
selected to monitor the convergence of the chains, which should remain
below the critical threshold of 1.2. For a more detailed description of
the algorithm, the reader is referred to Sadegh et al. (2017).

4. Model diagnostics and selection

The purpose of fitting a statistical model, whether it is station-
ary or nonstationary, is to characterize the population from which the
data was drawn for further analysis/inference (Coles, 2001). Hence,
it is necessary to check the performance of the fitted model to the
data (Coles, 2001). We implemented different metrics in the ProNEVA
for goodness of fit (GOF) assessment and model selection including:
quantile and probability plots for a graphical assessment (see Supple-
mentary Material), two-sample Kolmogorov-Smirnov (KS) test, Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC),
Maximum Likelihood (ML), Root Mean Square Error (RMSE), and
Nash-Sutcliff Efficiency (NSE) coefficient. The hybrid-evolution MCMC
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approach (Sadegh et al., 2017) within the Bayesian framework provides
an ensemble of solutions for the (non)stationary statistical model fitted
to the data. ProNEVA uses the best set of parameters, §, which maxi-
mizes the posterior distribution. Marginal posteriors will then provide
uncertainty estimates of the estimated parameters.

4.1. Standard transformation

When applied to nonstationary applications, the lack of homogene-
ity in the distributional assumption requires an adjustment to the tradi-
tional GOF techniques (Coles, 2001). Consequently, ProNEVA standard-
izes the observations based on the underlying distribution family such
that the GOF tests can be performed. Table S4 provides information on
the transformation methods in ProNEVA. However, it is worth noting
that the choice of the reference distribution is arbitrary (Coles, 2001).
Here, we selected those transformations that are widely accepted in the
literature (Coles, 2001; Koutrouvelis and Canavos, 1999). In the case
of a LP3 distribution, the transformation can only be applied when the
parameter a is constant (Koutrouvelis and Canavos, 1999). Based on
Eq. (8), this implies that the transformation can be performed only in
the case of constant skewness yx.

4.2. Kolmogorov-Smirnov test

The two-sample Kolmogorov-Smirnov (KS) test is a non-parametric
hypothesis testing technique which compares two samples, Z1) and Z®,
to assess whether they belong to the same population (Massey, 1951).
Being F,u)(z) and F ) (z) the (unknown) statistical distributions of
ZM and Z® respectively, the null-hypothesis Hy is F,a)(z) = F0(2),
against alternatives. The KS test statistic D* is:

D" = max(|Fzm (2) = Fza (2)]) 3)

H, is rejected when the p,,,, of the test is equal to or exceeds the se-
lected a-level of significance, e.g., 5%. We implemented the KS test in
ProNEVA as one of the methods to test the goodness-of-fit of the model.
Specifically, ProNEVA generates 1000 random samples from the fitted
statistical distribution or, in the case of a nonstationary analysis, from
the reference distribution. Then, the KS test is performed between the
random samples and the input (original or transformed) data. Finally,
the rejection rate (RR), Eq. (14), is provided as a GOF index.

_ X(Hy rejected)

RR 1000

(14)
4.3. Model selection based on model complexity

A model showing desirable level of performance efficiency with the
minimum number of parameters, i.e., a parsimonious model (Serago and
Vogel, 2018), is usually preferred over a model with similar performance
but more parameters - e.g, a nonstationary model with more parameters
relative to a simpler stationary model (Serinaldi and Kilsby, 2015; Luke
et al., 2017). Consequently, ProNEVA evaluates different GOF metrics
(i.e., AIC, BIC), which account for the number of parameters within the
numerical model.

The Akaike Information Criterion (AIC) (Akaike, 1974; 1998; Aho
et al., 2014) is formulated as follows

AIC=2-(D-1), (15)

where D is the number of parameters of the statistical model and L is
the log-likelihood function evaluated at §. The model associated with a
lower AIC is considered a better fit.

The Bayesian Information Criterion (BIC) (Schwarz, 1978) is defined

as
BIC=D-In(N)-2-1, (16)

where N is the length of records. Similar to AIC, the model with lower
BIC results a better fit.
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4.4. Model selection based on minimum residual

Root Mean Square Error (RMSE) and Nash-Sutcliff Efficiency (NSE)
coefficient are two metrics widely used in hydrology and climatology
as GOF measurements (Sadegh et al., 2018). The focus of both is to
minimize the residuals. The vector of residual is defined as

RES = (A (=) = 20 ) (P () =20 )

(F_l( n+1

)=z)):

following the same notation used for defining the quantile plot. Hence,

| RES?
RMSE = || Zio RES,
n

2
S, RES
Y1 (2 — mean(z))?

A perfect fit is associated with RMSE = 0 and NSE = 1, given RMSE €
[0,inf) and NSE € [—inf,1).

n+1

n+1 an

(18

NSE=1- (19)

5. Predictive distribution

The primary objective of a statistical inference is to predict unob-
served events (Renard et al., 2013). EVA, for example, provides the ba-
sis for estimating loads for infrastructure design and risk assessment
of natural hazards (e.g., floods, extreme rainfall events). Considering
a Bayesian viewpoint, the predictive distribution can be written as
(Renard et al., 2013):

f@Y) = / f@0Y)-do = / /(o). f61Y)-do (20)
where Y is the observed data, z is a grid at which f(z|Y) will be evalu-
ated, 0 is the vector of parameters, f(z|0) is the probability density func-
tion (pdf) of the selected distribution (i.e., GEV, GP, LP3), and f ©)Y) is
the posterior distribution function. The predictive distribution function
relies on the fitted distribution function over the parameter space, and
uses the posterior distribution for uncertainty estimation (Renard et al.,
2013). In practice, Eq. (20) often cannot be derived analytically. There-
fore, Renard et al. (2013) suggest to numerically evaluate it using the
MCMC-derived ensemble of solutions sampled from the posterior dis-
tribution. The probability density of the k,,-element of the vector z is:

1 lem
(z¢16)
N =1

Fz V) = @

sim
In the nonstationary case, the predictive pdf is a function of the covari-
ate, since the distribution parameters depend on the covariates. For this
reason, ProNEVA provides the predictive pdf for a number of predefined
values of the covariates.

6. Return level curves under nonstationarity

Given a time series of annual maxima, the Return Level (RL) is de-
fined as the quantile Q; for which the probability of an annual maximum
exceeding the selected quantile is g; (Cooley, 2013). For example, let’s
assume that annual maxima of precipitation intensities P = py,...,p,
have probability distribution Fp. The quantile Q; is the value of pre-
cipitation intensity such that Pr(P > Q;) =1 - Fp(Q;) = ¢;- Under the
stationary assumption, the characteristics of the statistical model are
constant over time, meaning that the probability g; of the quantile Q;
does not change on a yearly basis. In this context, the concept of Re-
turn Period (RP) of the quantile Q; is defined as the inverse of its ex-
ceedance probability, T; = 1/¢; in years. Referring back to the example
of annual maxima of precipitation intensities P, let’s assume that Q; is
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the precipitation intensity quantile such that the probability of being ex-
ceeded in each given year is Pr(P > Q;) = 1 — Fp(Q;) = 0.01. Then, the
RP of Q; (or RL) is T; = 1/¢; = 1/0.01 = 100 in years. Under the station-
ary assumption, there is a one-to-one relationship between RL and RP
(Cooley, 2013). Therefore, the RL curves are defined by the following
points:

(T;0), Ti>1 yr, i=1,.) (22)

RL curves are traditionally used for defining extreme design loads for
infrastructure design and risk assessment of natural hazards. However,
in a nonstationary context both RP and RL terms become ambigu-
ous (Cooley, 2013) and numerous studies have attempted to address
the issue. For nonstationary analysis, ProNEVA integrates two differ-
ent proposed concepts: the expected waiting time (Salas and Obeysek-
era, 2014), for default time-covariate only, and the effective RL curves
(Katz et al., 2002).

6.1. Effective return level

Katz et al. (2002) proposed the concept of effective design value (or
effective return level), which is defined as g-quantile, Q, varying as a
function of a given covariate (i.e, time or physical). Therefore, for a con-
stant value of RP = 1/q, where q is the yearly exceedance probability,
the effective RL curves is defined by the points

(%, Qq(xc)), g €10,1D) (23)

where x, is the covariate, and Qq(xc) is the g-quantile.

6.2. Expected waiting time

Wigley (2009) first introduced the concept of waiting time, i.e., the
expected waiting time until an event of magnitude Q; is exceeded, in
which the probability of exceedance in each year, g;, changes over time.
Olsen et al. (1998) and, later, Salas and Obeysekera (2014) provided a
comprehensive mathematical description of the suggested concept.

The event Q, is defined as the event with the exceedance probability
at time 7 = 0 equal to g,. Under nonstationary conditions, at time 7 = 1
the probability of exceedance of Q, will be gy, at time ¢ = 2, it will be
g2, and so on. Given the selected statistical model F,, with characteristics
0 g, = 1 — Fp(Qg,, 0,). Hence, the probability of the event to exceed 04
at time m is given by Salas and Obeysekera (2014):

m—1

fm =g, [Ja-a.

t=1

(24)

where f(1) = ¢,;. The cumulative distribution function (cdf) of a geomet-
rical distribution (Eq. (24)) is:

x x i—1 x
Fx) =Y fo=Yq -[[a-a=1-[]a-a)
i=1 i=1 1=1 t=1

where x is the time at which the event occurs, x = 1, ..., x., Fx(1) = gy,
and Fy(xp,¢) = 1. Therefore, the expected waiting time (or RP) in which
for the first time the occurring event exceeds qu can be derived as

(25)

Xmax Xmax x—1

T=EX)= Y x-fx)= Y x-q[[0-a) (26)
x=1 x=1 t=1

Cooley (2013) simplifies Eq. (26) as:

T=Ex) =1+ [[a-a @7

x=1 t=1

which gives the return period under nonstationary conditions, and it is
consistent with the definition of RP in the stationary case (Salas and
Obeysekera, 2014).
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7. Explanatory analysis: Mann-Kendall and white tests

With the intention of providing explanatory data analysis, ProNEVA
includes two different tests: the Mann-Kendall (MK) monotonic trend
test and the White Test (WT) for evaluating homoscedasticity in the
records. These tests can be used to decide whether to incorporate a trend
function in one or more of the model parameters or not (i.e., deciding
whether to use a stationary or nonstationary model). However, these
tests are optional and are not an integral part of ProNEVA. The selection
of a stationary versus a nonstationary analysis is untied from the tests
results, but it is left to the users. For more details about the MK and WT,
the readers is referred to the Supplementary Material and the references
therein.

8. ProNEVA Graphical User Interface (GUI)

The framework here presented has also a Graphical User Interface
(GUI), Fig. 2, which we believe can promote and facilitate the applica-
tion of ProNEVA. The User Manual included in the package will provide
the user with all the instructions needed.

9. Results

As previously discussed, the changes in extremes observed over the
past years can stem from changes in different physical processes. In or-
der to account for the observed changes, we need statistical tools that
are able to incorporate those variables causing variability, which can be
represented as time-covariate or a physical-based covariate. In the fol-
lowing, we show example applications of ProNEVA under both stationay
and nonstationary assumptions including modeling changes induced by
different types of covariates (both temporal and process-based changes).
It is important to point out that for statistical analyses, under both the
stationary and nonstationary assumptions, the quality of information
(i.e., length of record, representativeness of observations), is fundamen-
tal. Generally, the more information is available, the more confident we
can be about our inferences (and also whether or not a model is repre-
sentative for the application in hand). However, often observations of
extremes are limited. The issue of data quality and availability of covari-
ates is also as important for nonstationary analysis. For all application,
representativeness of the choice of model should be rigorously tested
using different goodness-of-test methods.

In the first application, we analyze discharge data from Ferson Creek
(St. Charles, IL), which has experienced intense urban development over
the years. Urbanization has a direct effect on the amount of water dis-
charged at the catchment outlet, since it increases impervious surfaces.
For this reason, we use a process-informed nonstationary LP3 model for
fitting discharge data, in which the covariate is represented by percent
of urbanized catchment area. The second application involves temper-
ature maxima data averaged over the Contiguous United States. Many
studies have shown that the amount of CO, in the atmosphere causes
temperatures to increase. For this reason, we fit a nonstationary GEV
model to temperature data, in which the covariate is represented by CO,
emissions in the atmosphere to include the underlying physical relation-
ship. In the third application, we investigate sea level annual maxima
in the city of Trieste (Italy), which has increased over the years. In this
case, we adopted a temporal nonstationary GEV model. The last appli-
cation involves precipitation data for New Orleans, Louisiana, in which
we fit a stationary GP model, given that there is no evidence of change
in statistics of extremes.

9.1. Application 1: Modeling discharge with urbanization as the physical
driver

Since 1980, Ferson Creek (St. Charles, IL) basin has experienced land
use land cover changes due to urbanization. The percent of urban areas
within the catchment has increased from 20% of the total basin’s area in
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Fig. 3. Application 1: Modeling discharge in Ferson Creek with urbanization as the physical driver of change. (a) Discharge data and percent of urbanization in the

basin; (b) Discharge data as a function of urbanization.

1980 to almost 65% in 2010. River discharge highly depends on the land
use and land cover of the basin as it determines the ratio of infiltration to
direct runoff (Fig. 3). Here, urbanization can be considered as a known
physical process that has altered the runoff in the basin. To incorporate
the known physical process, we investigate annual maxima discharge
of the Ferson Creek (station USGS 05551200) using a process-informed
nonstationary LP3 model, in which the covariate, x,, is the percent of
urbanized area.

LP3 is widely used for modeling discharge data (Bulletin 17B,
U.S. Water Resources Council (1982)). We select a nonstationary model
in which the parameter yx is an exponential function of the covariate x,.
We adopt normal priors for the LP3 parameters. Fig. 4b shows the results
of the process-informed nonstationary analysis for an arbitrary value of
urbanized area, here 37%. For the sake of comparison, Fig. 4a displays
the results when a stationary model is implemented. It is worth not-
ing that the nonstationary model (Fig. 4b) fits extreme discharge values
(high values of return period) better than the stationary model (Fig. 4a).
While based on the AIC and BIC diagnostic tests, the stationary model
and the nonstationary model perform rather similarly, the RMSE of the
nonstationary model (25.06 m3/s) is considerably lower than that of the
stationary model (77.58 m3/s).

Urbanization alters the runoff in the basin by reducing the amount of
water that infiltrates and increasing the amount of direct runoff. Fig. 4c
shows the ability of the statistical model to incorporate this physical pro-
cess. As anticipated, the expected (ensemble median) nonstationary re-
turn level curve associated with a 62% of urbanized area returns higher
values of discharge than the one associated with a 37% of urbanized
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area. For example, under the nonstationary assumption, the magnitude
of a 50-year event is 62.47 m3/s for 37% of urbanized area, similar to
the stationary case. However, the magnitude of the 50-year event in-
creases to 78.11 m3/s (25% more) for 62% of urbanized area. On the
contrary, the stationary analysis estimates a 50-year event as an event
with magnitude 63.74 m3/s, independent of the level of urbanization
of the catchment. The result demonstrates that a combination between
statistical concepts and physical processes is required for correctly esti-
mating the expected magnitude of an event. Fig. 4d displays the effective
return level curves (Katz et al., 2002) which summarize the impact of
urbanization on discharge by describing return levels as functions of the
selected covariate (x-axis).

9.2. Application 2: Modeling temperature with CO, as the physical
covariate

Over the past decades, many studies have reported increasing
surface temperature (e.g.: Zhang et al., 2006; Stott et al., 2010; Melillo
et al., 2014; Zwiers et al., 2011), mainly due to anthropogenic activities
as a consequence of increase in greenhouse gasses concentration in the
atmosphere. Therefore, we investigate annual maxima surface temper-
ature for the Contiguous United States available from NOAA (NCDC
archive - https://www.ncdc.noaa.gov/cag/national/time-series) using a
process-informed nonstationary GEV model in which the user-covariate
is represented by CO, emissions over the US (Fig. 5a). Territo-
rial fossil fuel CO, emissions data are available on Global Carbon
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Fig. 4. ProNEVA results for Application 1: Modeling discharge in Ferson Creek with urbanization as the physical driver of change. (a) Return Level curves based on
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To incorporate the observed relationship between temperature and
CO, in the statistical model (Fig. 5b), we select a model in which the
location and the scale parameters of the GEV distribution are linear func-
tions of the covariate, while the shape parameter is constant. We assume
normal priors. Fig. 6b shows the results of the nonstationary model for
a value of CO, equal to 4.9 GtCO,. For comparison, we also plot the
results when a stationary model is selected in Fig. 6a. One can see that
the nonstationary model better captures the observed extreme events,
particularly events associated with higher values of CO,. Moreover, the
diagnostics tests confirm that the nonstationary model is a better fit. For
the nonstationary model, the AIC and the BIC are 93.91 and 104.13, re-
spectively. When the stationary model is considered, both the AIC and
BIC increase to 104.98 and 111.11, respectively. Lower values of AIC
and BIC indicate a superior model performance. The advantage of the
AIC and BIC for model selection is their ability to account for the number
of model parameters: models with more parameters are penalized.
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sions. The results show how temperature extremes change in response
to the increasing CO, emissions (here, the physical covariate). For ex-
ample, looking at the expected magnitude of a 50-year event, the tem-
perature increases of about 4%, from 18.79°C to 19.5°C, when the CO,
emissions increase from 4.49 GtCO,, to 5.51 GtCO,. The results are con-
sistent with the expectation that higher CO, leads to a warmer climate,
indicating that the statistical nonstationary model is able to model the
observed physical relationship between temperature and CO,.

9.3. Application 3: Modeling sea level rise with time as the covariate

The coastal city of Trieste (Italy) has been experiencing increasing
sea level height over the years (Fig. S2). Given the observed trend, we
investigate annual maxima sea level data from the Permanent Service
for Mean Sea Level (PSMSL - station ID 154) by adopting a temporal
nonstationary GEV model. The purpose of this example is to show that
ProNEVA can also be used for temporal nonstationary analysis. The
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location and scale parameters of the GEV distribution are modeled as
linear functions of the time-covarite. The shape parameter is kept con-
stant and we use normal priors for parameter estimation.

Fig. 7b shows the return level curves for a fixed value of the time-
covariate equal to 45 years from the first observation (i.e., 45 years into
the future from the beginning of the data). The nonstationary analysis in
Fig. 7b provides better performance that the stationary model in Fig. 7a.
Both the AIC and the BIC values confirm that the nonstationary model is
the best choice to represent sea level observations in a changing climate.
The AIC for the nonstationary model is 976.69, while it is 992.74 for
the stationary model. Similarly, the BIC for the temporal nonstationary
model is 989.08, while it is 1000 for the stationary model. Lower values
for AIC and BIC indicates a superior model.

The value of the temporal covariate should be regarded as the time at
which we estimate expected values of, as in this specific case, sea level.
The expected (ensemble median) nonstationary return level curves in
Fig. 7c refer to three different time at which we evaluate sea level: 45,
85, and 133 years from the first observation. Here, 133 years from the
first observation is beyond the period of observations (88 years) mean-

ing that we project into the future the observed trend and we infer from
there. The observed increasing trend in the sea level records results in
increasing values of sea level for higher value of the temporal covariate
(Fig. 7c). For example, a 50 year event is equal to 7296.3 mm for time
equal to 45 years from the first observation, 7349.3 mm for 85 years, and
7410.4mm for 133 years. We register about 2% increase in sea level
when the time of the first observation changes from 45 to 133 years,
confirming the ability of the nonstationary model to reproduce the in-
creasing trend in observations. On the contrary, the stationary analysis
returns a 50-year sea level equal to 7314.3 mm regardless of the first ob-
servation. Fig. 7d shows the effective return level curves, which capture
the variability over time (here, the covariate) in the observed data. In the
case of a nonstationary model with a temporal covariate, it is possible
to evaluate the expected waiting time (Wigley, 2009; Olsen et al., 1998;
Salas and Obeysekera, 2014), which incorporates the observed changes
in the sea level over time in the estimation of return periods. Fig. S3
shows that the current return periods (lower x-axis) will change con-
sidering the observed nonstationarity (upper x-asis). For example, the
100-year sea level estimated at t, (beginning of the simulation) turns
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into a 40-year event when the observed trend over time in sea level
values is taken into account.

9.4. Application 4: Modeling precipitation under a stationary assumption

This application focuses on the Generalized Pareto (GP) distribu-
tion for peak-over-threshold extreme value analysis. We investigate
a time series of precipitation from New Orleans, Lousiana, that does
not exhibit changes in statistics of extremes. We obtain daily pre-
cipitation from the National Climatic Data Center (NCDC) archive
(https://www.ncdc.noaa.gov/cdo-web/) for the city of New Orleans,
station GHCND:USW00012930. Given that we are interested in heavy
precipitation events, we use a GP distribution to focus on values above
a high threshold (i.e., avoid including non-extreme values). We extract
precipitation excesses considering a constant threshold of the 98th-
percentile of daily precipitation values (Fig. S4).

For this application we select a stationary GP model, given that we
do not have physical evidence to justify a more complex model. How-
ever, for the sake of comparison, we perform a nonstationary analysis
considering the scale parameter as a linear function of time. Fig. 8a rep-
resents the return level curves based on a stationary model, while Fig. 8b
depicts return level curves for a value of the covariate (here time) equal
to half of the period of observation. From a comparison between the two
models, the stationary model performs better. The stationary model re-
turns values of the AIC and BIC equal to 713.3 and 721.14, respectively.
For the nonstationary model the values of the AIC and BIC are slightly
higher (715.02 and 726.79, respectively). The results of this example ap-
plication suggests that when no evidence of changes due to a physical
process can be identified, ProNEVA favors the simplest form of model
that represents the historical observations.

10. Conclusion

The ability to reliably estimate the expected magnitude and fre-
quency of extreme events is fundamental for improving design concepts
and risk assessment methods. This is particularly important for extreme
events that have significant impacts on society, infrastructure and hu-
man lives, such as extreme precipitation events causing flooding and
landslides.

The observed increase in extreme events and their impacts reported
from around the world have motivated moving away from the so-called
stationary approach to ensure capturing the changing properties of ex-
tremes (Milly et al., 2008). However, there are opposing opinions and
perspective on the need and also form of suitable nonstationary models
for extreme value analysis. Most of the existing tools for implement-
ing extreme value analysis under the nonstationary assumption have
a number of limitations including lack of a generalized framework for
incorporating physically based covariates and estimating parameters,
which depend on a generic physical covariate. To address these limi-
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tations, we propose a generalized framework entitled Process-informed
Nonstationary Extreme Value Analysis (ProNEVA) in which the nonsta-
tionarity component is defined by a temporal or physical-based depen-
dence of the observed extremes on a physical driver (e.g., change in
runoff in response to urbanization, or change in extreme temperatures
in response to CO, emissions). ProNEVA offers stationary and temporal
and process-informed nonstationary extreme value analysis, parameter
estimation, uncertainty quantification, and a comprehensive assessment
of the goodness of fit.

Here we applied ProNEVA to four different types of applications de-
scribing change in: extreme river discharge in response to urbanization,
extreme sea levels over time, extreme temperatures in response to CO,
emissions in the atmosphere. We have also demonstrated a peak-over-
threshold approach using precipitation data. The results indicate that
ProNEVA offers reliable estimates when considering a physical-process
or time as a covriate.

The source code of ProNEVA is freely available to the scientific com-
munity. A graphical user inter face (GUI) version of the model, Fig. 2, is
also available to facilitate its applications (see Supporting Information).
We hope that ProNEVA motivates more process-informed nonstationary
analysis of extreme events.
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