
Advances in Water Resources 130 (2019) 270–282 

Contents lists available at ScienceDirect 

Advances in Water Resources 

journal homepage: www.elsevier.com/locate/advwatres 

A generalized framework for process-informed nonstationary extreme 

value analysis 

Elisa Ragno 

a , ∗ , Amir AghaKouchak 

a , Linyin Cheng 

b , Mojtaba Sadegh 

c 

a Department of Civil and Environmental Engineering, University of California, Irvine, USA 
b Department of Geosciences, University of Arkansas, Fayetteville, AR 72701, USA 
c Department of Civil Engineering, Boise State University, ID, USA 

a r t i c l e i n f o 

Keywords: 

Process-informed nonstationary extreme value 

analysis 

Physical-based covariates/drivers 

Methods for nonstationary analysis 

a b s t r a c t 

Evolving climate conditions and anthropogenic factors, such as CO 2 emissions, urbanization and population 

growth, can cause changes in weather and climate extremes. Most current risk assessment models rely on the 

assumption of stationarity (i.e., no temporal change in statistics of extremes). Most nonstationary modeling stud- 

ies focus primarily on changes in extremes over time. Here, we present Process-informed Nonstationary Extreme 

Value Analysis (ProNEVA) as a generalized tool for incorporating different types of physical drivers (i.e., underly- 

ing processes), stationary and nonstationary concepts, and extreme value analysis methods (i.e., annual maxima, 

peak-over-threshold). ProNEVA builds upon a newly-developed hybrid evolution Markov Chain Monte Carlo 

(MCMC) approach for numerical parameters estimation and uncertainty assessment. This offers more robust un- 

certainty estimates of return periods of climatic extremes under both stationary and nonstationary assumptions. 

ProNEVA is designed as a generalized tool allowing using different types of data and nonstationarity concepts 

physically-based or purely statistical) into account. In this paper, we show a wide range of applications describ- 

ing changes in: annual maxima river discharge in response to urbanization, annual maxima sea levels over time, 

annual maxima temperatures in response to CO 2 emissions in the atmosphere, and precipitation with a peak- 

over-threshold approach. ProNEVA is freely available to the public and includes a user-friendly Graphical User 

Interface (GUI) to enhance its implementation. 
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. Introduction 

Natural hazards pose significant threats to public safety, infrastruc-
ure integrity, natural resources, and economic development around
he globe. In recent years, the frequency and impacts of extremes
ave increased substantially in many parts of the world (e.g., Melillo
t al., 2014; Coumou and Rahmstorf, 2012; Alexander et al., 2006;
azdiyasni et al., 2017; Mallakpour and Villarini, 2017; Hallegatte

t al., 2013; Wahl et al., 2015; Vahedifard et al., 2016; Jongman
t al., 2014; AghaKouchak et al., 2014 ). For this reason, there is
 great deal of interest in understanding how extreme events will
hange in the future. Historical observations are the main source of
nformation on extremes ( Kleme š , 1974; Koutsoyiannis and Monta-
ari, 2007 ) and statistical models are used to infer frequency and
ariability of extremes based on historical records (e.g., Katz et al.,
002 ). 

Statistical models used to study extremes can be broadly categorized
nto two groups: stationary and nonstationary (e.g., Salas and Pielke Sr,
003; Coles and Pericchi, 2003; Griffis and Stedinger, 2007; Obeysekera
nd Salas, 2013; Serinaldi and Kilsby, 2015; Madsen et al., 2013; Kout-
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oyiannis and Montanari, 2015 ). In a stationary model, the observations
re assumed to be drawn from a probability distribution function with
onstant parameters (i.e., statistics of extremes do not change over time
r with respect to another covariate). In a nonstationary model, how-
ver, the parameters of the underlying probability distribution function
hange over time or in response to a given covariate ( Sadegh et al.,
015 ). 

Water resources practices (e.g., flood and precipitation frequency
nalysis) have traditionally adopted stationary models. However, over
he past decades, increasing surface temperatures (e.g., Barnett et al.,
999; Villarini et al., 2010; Melillo et al., 2014; Diffenbaugh et al., 2015;
ischer and Knutti, 2015; Mazdiyasni and AghaKouchak, 2015 ), more
ntense rainfall events (e.g., Zhang et al., 2007; Villarini et al., 2010;
in et al., 2011; Marvel and Bonfils, 2013; Westra et al., 2013; Cheng

t al., 2014; Fischer and Knutti, 2016; Mallakpour and Villarini, 2017 ),
hanges in river discharge (e.g., Villarini et al., 2009a; 2009b; Hurk-
ans et al., 2009; Stahl et al., 2010 ), and sea level rise (e.g., Holgate,
007; Haigh et al., 2010; Wahl et al., 2011 ) have been observed and to a
reat extent attributed to anthropogenic activities (e.g., human-caused
limate change, urbanization). 
une 2019 
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Matalas (1997) argued that trend in hydrological records can-
ot firmly be established because of the variables intrinsic variabil-
ty and limited length of observations. In his reasoning, the ob-
erved trend might only be part of a slow oscillation. Consequently,
atalas (1997) defined hydrological trends as “real (physical) ” or “per-

eived (statistical) ”. Even though using statistical trend analysis tools
nevitably leads to detecting only statistical trends, it is important to
ake a distinction between a trend which has a physical explanation

e.g., increases in runoff in response to urbanization) and a trend which
annot be fully explained by our understanding of the underlying pro-
esses. Regardless of the type of observed hydrologic trends, i.e. in re-
ponse to a physical process or only perceived (statistical), these trends
hallenge the stationary assumption ( Milly et al., 2008 ). 

Several studies have promoted the idea of moving away from sta-
ionary models to ensure capturing the changing properties of extremes
 Milly et al., 2008 ). However, some have criticized this viewpoint par-
icularly because the assumption of nonstationarity implies adding a de-
erministic component in the stochastic process, which must be justified
y a well-understood process ( Koutsoyiannis, 2011; Matalas, 2012; Lins
nd Cohn, 2011; Koutsoyiannis and Montanari, 2015 ). Moreover, lim-
ted observations could affect the exploratory diagnostics used to justify
 nonstationary model ( Serinaldi and Kilsby, 2015 ). This can potentially
ead to higher uncertain in the results of extreme value analysis. A non-
tationary approach may also involve an assumption on the evolution of
he relevant process/variable in the future which would add to the over-
ll uncertainty ( Serinaldi and Kilsby, 2015 ). When it is not possible to
etermine a credible prediction of the future Koutsoyiannis and Monta-
ari (2015) or make a reasonable assumption, considering a stationary
odel may be a more appropriate solution. Luke et al. (2017) concluded

hat for prediction of river discharge, a stationary model should be pre-
erred to avoid over-extrapolation in the future. However, when infor-
ation about alterations occurred within a watershed is known, then

n updated stationary model which accounts for the detected changes
hould be adopted ( Luke et al., 2017 ). In the debate around model as-
umptions, Montanari and Koutsoyiannis (2014) noted that more efforts
hould focus on including relevant physical processes in stochastic mod-
ls, and suggested stochastic-process-based models as a way to bridge
he gap between physically-based models without statistics and statisti-
al models without physics. 

Here, we propose a generalized framework named Process-informed

onstationary Extreme Value Analysis (ProNEVA) in which the nonsta-
ionarity component is defined by a temporal or process-based depen-
ence of the observed extremes on an explanatory variable (i.e., a physi-
al driver). Here, Process-informed refers to the process of incorporating
 physical driver into a statistical analysis, when there is evidence that
he physical driver can alter the statistics of the extremes. Even though
he approach proposed is purely data-driven, it encourages and facili-
ates the implementation of informed statistical analysis in light of exter-
al knowledge of processes, especially for water resources management
nd risk assessment. For example, ProNEVA can be used for analyzing
hanges in extreme temperatures as a function of CO 2 emissions. It is
idely recognized that higher amount of CO 2 in the atmosphere results

n a warmer climate (e.g., Zwiers et al., 2011; Fischer and Knutti, 2015;
arnett et al., 1999 ). For this reason, CO 2 emissions can be considered
 physical covariate for explaining temperature extremes. Other exam-
les include temperature or large scale climatic circulations as covari-
tes for rainfall, and CO 2 concentration or temperature as covariates for
ea level rise. 

. Background and method 

.1. Nonstationarity extreme value analysis 

Extreme Value Theory (EVT) provides the bases for estimating the
agnitude and frequency of hazardous events (including natural and
on-natural extreme events) ( Coles, 2001 ). Most applications utilize ei-
271 
her the Generalized Extreme Value distribution (GEV) or the General-
zed Pareto distribution (GP) for describing the behavior of extremes.
he former is applied to the annual maxima of a variable (e.g., a time
eries consisting of the most extreme daily rainfall from each year of the
ecord), while the latter is used to describe extremes above a predefined
hreshold (e.g., all independent river flow values above the flood stage).
oth GEV and GP allow incorporating nonstationarity through varying
arameters. Several studies have investigated methodologies for testing
he assumptions of stationarity and nonstationarity in hydrology, clima-
ology, and earth system sciences (e.g., Katz et al., 2002; Sankarasubra-
anian and Lall, 2003; Cooley et al., 2007; Mailhot et al., 2007; Huard

t al., 2009; Villarini et al., 2009a; Towler et al., 2010; Villarini et al.,
010; Vogel et al., 2011; Salas et al., 2012; Zhu et al., 2012; Willems
t al., 2012; Katz, 2013; Obeysekera and Salas, 2013; Salas and Obey-
ekera, 2014; Rosner et al., 2014; Yilmaz and Perera, 2014; Mirhosseini
t al., 2014; Cheng and AghaKouchak, 2014; Steinschneider and Lall,
015; Volpi et al., 2015; Krishnaswamy et al., 2015; Read and Vogel,
015; Sadegh et al., 2015; Mirhosseini et al., 2015; Mondal and Mujum-
ar, 2015; Lima et al., 2015; 2016b; 2016a; Sarhadi and Soulis, 2017;
alas et al., 2018; Yan et al., 2018; Bracken et al., 2018; Ragno et al.,
018 ). 

A number of packages and software tools are currently available for
onstationary Extreme Value Analysis (EVA), including the R-package

smev ( Gilleland et al., 2013; Gilleland and Katz, 2016 ) where nonsta-
ionarity is modeled as a linear regression function of generic covariates
 Gilleland et al., 2013 ). extRemes offers EVA capability and evaluates
he underlying uncertainties with respect to parameters ( Gilleland and
atz, 2016 ). extRemes also allows tail-dependence analysis and a declus-

ering technique for peak over threshold analysis. The package climex-

Remes (available also in Python) builds upon extRemes and includes
n estimate of the risk ratio for event attribution analyses. R packages
gam and gamlss are available for modeling nonstationarity through gen-
ralized additive models (see for example Villarini et al. (2009a) ). The
ackage GEVcdn estimates the parameters of a nonstationary GEV dis-
ribution using a conditional density method ( Cannon, 2010 ). 

Cheng et al. (2014) developed a Bayesian-based framework, Non-

tationary Extreme Value Analysis (NEVA) toolbox that estimates the pa-
ameters of GEV and GP distributions and their associated uncertainty
or time-dependent extremes (available in Matlab). In the nonstation-
ry case, the parameters are modeled as a linear function of time.
EVA also includes return level curves based on the concept of ex-
ected waiting time ( Wigley, 2009; Olsen et al., 1998; Salas and Obey-
ekera, 2014 ) and effective return level ( Katz et al., 2002 ). The pack-
ge nonstationary Flood Frequency Analysis estimates the parameters of
he Log-Pearson Type III distribution as a linear function of time, based
n Bayesian inference approach ( Luke et al., 2017 ). The tsEVA toolbox
mplements the Transformed-Stationary (TS) methodology described in
entaschi et al. (2016) , which comprises of, first, a transformation of
 nonstationary time series into a stationary one, so that the stationary
VA theory can be applied, and then a reverse-transformation of the re-
ults to include the nonstationary components in the GEV and the GP
istributions. 

Despite significant advances, a comprehensive framework which in-
orporates the widely used EVA statistical models, namely GP, GEV, and
P3, under both stationary and nonstationary assumptions (parameters
s a function of time or a physical covariates) is not available. More-
ver, the implementation of newly proposed approaches for return pe-
iod estimation under the nonstationary assumption is still limited. To
ddress the above limitations, we present ProNEVA, which builds upon
EVA package ( Cheng et al., 2014 ) but expands to a general nonsta-

ionary extreme value analysis. Indeed, in addition to stationary EVA,
roNEVA allows nonstationary analyses using user-defined covariates,
hich could be time or a physical variable. Fig. 1 depicts the core struc-

ure of ProNEVA. The advantage of performing stationary analysis with
hysical-related covariates resides in the possibility of imposing physical
onstraints to a statistical model. Even though such a statistical model
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Fig. 1. Flowchart representing the core structure of the Matlab Toolbox 

ProNEVA. 
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nonstationary statistical model) is purely data-driven, it can be con-
trained using physical information to avoid unrealistic extrapolation. 

ProNEVA offers parameter estimation, uncertainty quantification,
nd a comprehensive assessment of the goodness of fit. The key fea-
ures of ProNEVA are described as follows: (a) the model includes the
ost common distribution functions used for extreme value analysis in-

luding the GEV, GP, and LP3 distributions; (b) for nonstationary anal-
sis, the users can select both the covariate and the choice of function
or describing change in parameters; (c) the covariate can be any user-
efined physical covariate; (d) the model also includes a default time-
ovariate (i.e., describing change over time without a physical covari-
te); (e) the function describing change in parameters with respect to
he covariate can be linear, exponential, or quadratic; (f) the users can
elect the GP distribution threshold (peak-over-threshold) as a constant
alue or as a linear quantile regression function of the choice covariate;
g) ProNEVA estimates the distribution parameters based on a Bayesian
nference approach; (h) the model allows using a wide range of priors
272 
or parameters including the uniform, normal, and gamma distributions;
i) ProNEVA samples the posterior distribution function of the param-
ters using a newly-developed hybrid evolution Markov Chain Monte
arlo (MCMC) approach, which is computationally more efficient than
raditional MCMC algorithms searching rugged response surfaces and
t provides a robust numerical parameter estimation and uncertainty
uantification ( Sadegh et al., 2017 ); (j) different model diagnostics and
odel selection indices (e.g., RMSE, AIC, BIC) are implemented to pro-

ide supporting information; (k) ProNEVA includes exploratory data
nalysis tools such as the Mann-Kendall test for monotonic trends and
he White test for homoscedasticity in time series; (l) in addition to the
ource code, a Graphical User Interface (GUI) for ProNEVA is also avail-
ble for easier implementation (see Supplementary Material); finally,
m) ProNEVA is intended for a broad audience and hence it is struc-
ured such that users can easily customize and modify it based on their
eeds. We acknowledge that there are other EVA methods, such as those
n Serago and Vogel (2018) and Gilleland and Katz (2016) , that we have
ot included in ProNEVA. 

In the reminder of the paper, a detailed description of ProNEVA is
rovided. Four different example applications are presented with differ-
nt variables (e.g., precipitation, sea level, temperature, river discharge)
nd different covariates (time, CO 2 emissions in the atmosphere, ur-
anization). ProNEVA can be used for analyzing annual maxima (also
nown as block maxima) using the GEV and LP3 distributions, and peak
ver threshold (POT) or partial duration series using the GP distribu-
ion. In the following, we provide a brief overview of the extreme value
odels and their parameters. 

.2. Generalized Extreme Value (GEV) 

The GEV distribution function is used to model time series of
lock maxima. The National Oceanic and Atmospheric Administra-
ion (NOAA), for example, derives precipitation Intensity-Duration-
requency (IDF) curves based on the GEV distribution. This distribution
s also widely used in other fields including finance, seismology, and
eliability assessment (bridge performance assessment (e.g., Ming et al.,
009 )). The GEV cumulative distribution function is Coles (2001) : 

𝐺𝐸𝑉 ( 𝑥 ) = 𝑒𝑥𝑝 

{ 

− 

(
1 + 𝜉 ⋅

(
𝑥 − 𝜇

𝜎

))
− 1 

𝜉

} 

(1)

or 1 + 𝜉 ⋅ ( ( 𝑥 − 𝜇) ∕ 𝜎) > 0 . 𝜇, 𝜎, and 𝜉 are the parameters of the distribu-
ion: 𝜇 is the location parameter, 𝜎 > 0 is the scale parameter, and 𝜉 is
he shape parameter which defines the tail behavior of the distribution.

The stationary GEV model can be extended for dependent series by
etting the parameters of the distribution be a function of a general co-
ariate x c , i.e., 𝜇( x c ), 𝜎( x c ), 𝜉( x c ), ( Coles, 2001 ). Hence, the nonstation-
ry form of Eq. (1) is described as: 

𝐺𝐸𝑉 ( 𝑥 |𝑥 𝑐 ) = 𝑒𝑥𝑝 

{ 

− 

(
1 + 𝜉( 𝑥 𝑐 ) ⋅

(𝑥 − 𝜇( 𝑥 𝑐 ) 
𝜎( 𝑥 𝑐 ) 

))− 1 
𝜉( 𝑥 𝑐 ) 

} 

(2)

In ProNEVA, for each of the three parameters, the users can select
 function to describe the change in the parameters with respect to the
ovariate x c (Table S1 - Supplementary Material). The function selected
or each parameter does not constrain the functional relationship used
or the other parameters. To ensure the positivity of the scale parame-
er, 𝜎( x c ) is modeled in the log-scale ( Coles, 2001; Katz, 2013 ). Conse-
uently, the exponential function is not available for 𝜎( x c ). Moreover,
he shape parameter 𝜉( x c ) is known to be a difficult parameter to pre-
isely estimate even in the stationary case, ( Coles, 2001 ), especially for
hort time series, ( Papalexiou and Koutsoyiannis, 2013 ). For this reason,
nly the linear function is included for 𝜉( x c ). 

.3. Generalized Pareto (GP) 

The GP distribution is used for modeling time series sampled based
n the POT method. The GP distribution has been applied to pre-
ipitation (e.g., De Michele and Salvadori, 2003 ), earthquake data
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e.g., Pisarenko and Sornette, 2003 ), wind speed ( Holmes and Mori-
rty, 1999 ), and economic data (e.g., Gençay and Selçuk, 2004 ), among
thers. Given a sequence Y of independent and random variables, for
 large enough threshold u , the cumulative distribution function of the
xcesses 𝑌 𝑒 = 𝑌 − 𝑢, conditional on Y > u , is approximated by the GP dis-
ribution function, ( Coles, 2001 ): 

𝐺𝑃 ( 𝑦 𝑒 ) = 1 − 

(
1 + 𝜉 ⋅

( 𝑦 𝑒 
𝜎

))
− 1 

𝜉 (3)

In particular, if block maxima of Y follows a GEV distribution, then
he threshold excesses Y e have a GP distribution in which the parame-
er 𝜉 is equal to the parameter 𝜉 of the corresponding GEV distribution
 Coles, 2001 ). 

In the nonstationary model of the GP distribution, both the thresh-
ld value and the parameters of the distribution can be modeled as a
unction of the user-covariate x c , ( Coles, 2001 ). 

𝐺𝑃 ( 𝑦 𝑒 |𝑥 𝑐 ) = 1 − 

(
1 + 𝜉( 𝑥 𝑐 ) ⋅

( 𝑦 𝑒 ( 𝑥 𝑐 ) 
𝜎( 𝑥 𝑐 ) 

))− 1 
𝜉( 𝑥 𝑐 ) (4)

here 𝑌 𝑒 ( 𝑥 𝑐 ) = 𝑌 − 𝑢 ( 𝑥 𝑐 ) . Analogous to the GEV case, ProNEVA allows
ncorporating different functional forms for describing change in param-
ters over time or with respect to a covariate (Table S2). 

The same considerations for the GEV parameter functional forms are
pplied to GP distribution too. In addition, the users can specify the
ype of threshold u . Two quantile-based options are available: constant
r linear. In the case of a linear threshold, a linear regression quantile
odel is adopted. The 𝛼-regression quantile function is Koenker and
assett (1978) and Kyselý et al. (2010) 

̃
 = 𝐌 ⋅ 𝐔 ( 𝛼) + 𝐫 + − 𝐫 − , (5)

here 0 < 𝛼 < 1 is the quantile, 𝐘̃ is the column vector of n -observations,
 = [ 𝐗 𝐜 𝐈 𝐧 ] with X c being the column vector of covariance and I n the
 -identity vector, 𝐔 = [ 𝑢 1 𝑢 0 ] ′ is the vector of the regression coeffi-
ients, and 𝐫 + and 𝐫 − are respectively the positive and negative parts
f the residuals. Then, U( 𝜶) is calculated as the optimal solution to
q. (6) ( Koenker and Bassett, 1978; Kyselý et al., 2010 ). 

⋅ 𝐈 𝐧 ′ ⋅ 𝐫 + + (1 − 𝛼) ⋅ 𝐈 𝐧 ′ ⋅ 𝐫 − ∶= 𝑚𝑖𝑛 (6)

.4. Log-Pearson type III (LP3) 

The LP3 distribution has been widely used in hydrology for flood
requency analysis particularly after the release of the USGS Bulletin
7B ( U.S. Water Resources Council, 1982 ). However, it has been applied
o other studies, such as design magnitude of earthquakes ( Gupta and
eshpande, 1994 ) and evaluation of apple bud burst time and frost risk
 Farajzadeh et al., 2010 ). 

The LP3 distribution characterizes the random variable 𝑄 = exp ( 𝑋) ,
iven that X follows a Pearson type III (P3) distribution ( Griffis et al.,
007 ). Hereafter, the natural logarithm is used, however any base can
e implemented, such as base-10 as in Bulletin 17B ( Griffis et al., 2007 ).
he P3 probability density function is 

 𝑃 3 ( 𝑥 ) = 

1 |𝛽| ⋅ Γ( 𝛼) ⋅ (𝑥 − 𝜏

𝛽

)
𝛼−1 ⋅ exp 

(
− 

𝑥 − 𝜏

𝛽

)
(7)

efined for 𝛼 > 0, ( 𝑥 − 𝜏)∕ 𝛽 > 0 , and Γ( 𝛼) being a complete gamma func-
ion ( Griffis et al., 2007 ). The parameters 𝛼, 𝛽, and 𝜏 are functions of
he first three moments, 𝜇X , 𝜎X , 𝛾X , ( Griffis et al., 2007 ): 

= 4∕ 𝛾2 
𝑋 

(8)

= ( 𝜎𝑋 ⋅ 𝛾𝑋 )∕2 (9)

= 𝜇𝑋 − 2 ⋅ ( 𝜎𝑋 ∕ 𝛾𝑋 ) (10)

n the case of nonstationary analysis, the first three moments are mod-
led as a function of the user-defined covariate x (Table S3). The GEV
c 

273 
nd GP considerations mentioned above hold for the functions to de-
cribe change in parameters. 

 𝑃 3 ( 𝑥 |𝑥 𝑐 ) = 

1 |𝛽( 𝑥 𝑐 ) | ⋅ Γ( 𝛼( 𝑥 𝑐 )) ⋅
(𝑥 − 𝜏( 𝑥 𝑐 ) 

𝛽( 𝑥 𝑐 ) 

)
𝛼( 𝑥 𝑐 )−1 ⋅ exp 

(
− 

𝑥 − 𝜏( 𝑥 𝑐 ) 
𝛽( 𝑥 𝑐 ) 

)
(11) 

. Parameter estimation: Bayesian analysis and Markov chain 

onte carlo sampling 

ProNEVA estimates the parameters of the selected (non)stationary
VA distribution using a Bayesian approach, which provides a robust
haracterization of the underlying uncertainty derived from both in-
ut errors and model selection. Bayesian analysis has been widely im-
lemented for parameter inference and uncertainty quantification (e.g.
hiemann et al., 2001; Gupta et al., 2008; Cheng et al., 2014; Kwon and
all, 2016; Sarhadi et al., 2016; Sadegh et al., 2017; Luke et al., 2017;
adegh et al., 2018 ). 

Let 𝜃 be the parameter of a given distribution and let 𝐘̃ = { ̃𝑦 1 , … , ̃𝑦 𝑛 }
e the set of n observations. Following Bayes theorem, the probability of
given 𝐘̃ (posterior) is proportional to the product of the probability of 𝜃

prior) and the probability of 𝐘̃ given 𝜃 (likelihood function). Assuming
ndependence between the observations: 

 ( 𝜃|𝐘̃ ) ∝
𝑛 ∏
𝑖 =1 

𝑝 ( 𝜃) ⋅ 𝑝 ( ̃𝑦 𝑖 |𝜃) (12)

The prior brings a priori information, which does not depend on the
bserved data, into the parameter estimation process. The choice of the
rior distribution, then, is subjective, and it is based on prior beliefs
bout the system of interest ( Sadegh et al., 2018 ). The available prior
ptions in ProNEVA include the uniform, normal, and gamma distribu-
ions, providing a variety of possibilities. ProNEVA assumes indepen-
ence of parameters and hence, each parameter requires its own prior. 

In the case of a nonstationary analysis, the vector of parameters 𝜽
ncludes a higher number of elements than in the stationary case, de-
ending on the functional form selected for each of the distribution’s
arameters. 

The posterior distribution is then delineated using a hybrid-evolution
CMC approach proposed by Sadegh et al. (2017) . The MCMC simula-

ion searches for the region of interest with multiple chains running
n parallel, which share information on the fly. Moreover, the hybrid-
volution MCMC benefits from an intelligent starting point selection
 Duan et al., 1993 ) and employs Adaptive Metropolis (AM) ( Roberts and
ahu, 1997; Haario et al., 1999; 2001; Roberts and Rosenthal, 2009 ),
ifferential evolution (DE) ( Storn and Price, 1997; Ter Braak and Vrugt,
008; Vrugt et al., 2009 ), and snooker update ( Gilks et al., 1994; Ter
raak and Vrugt, 2008; Sadegh and Vrugt, 2014 ) algorithms to search
he feasible space. The Metropolis ratio is selected to accept/reject the
roposed sample, and the Gelman-Rubin 𝑅̂ ( Gelman and Rubin, 1992 ) is
elected to monitor the convergence of the chains, which should remain
elow the critical threshold of 1.2. For a more detailed description of
he algorithm, the reader is referred to Sadegh et al. (2017) . 

. Model diagnostics and selection 

The purpose of fitting a statistical model, whether it is station-
ry or nonstationary, is to characterize the population from which the
ata was drawn for further analysis/inference ( Coles, 2001 ). Hence,
t is necessary to check the performance of the fitted model to the
ata ( Coles, 2001 ). We implemented different metrics in the ProNEVA
or goodness of fit (GOF) assessment and model selection including:
uantile and probability plots for a graphical assessment (see Supple-
entary Material), two-sample Kolmogorov-Smirnov (KS) test, Akaike

nformation Criterion (AIC), Bayesian Information Criterion (BIC),
aximum Likelihood (ML), Root Mean Square Error (RMSE), and
ash-Sutcliff Efficiency (NSE) coefficient. The hybrid-evolution MCMC
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pproach ( Sadegh et al., 2017 ) within the Bayesian framework provides
n ensemble of solutions for the (non)stationary statistical model fitted
o the data. ProNEVA uses the best set of parameters, 𝛉̂, which maxi-
izes the posterior distribution. Marginal posteriors will then provide
ncertainty estimates of the estimated parameters. 

.1. Standard transformation 

When applied to nonstationary applications, the lack of homogene-
ty in the distributional assumption requires an adjustment to the tradi-
ional GOF techniques ( Coles, 2001 ). Consequently, ProNEVA standard-
zes the observations based on the underlying distribution family such
hat the GOF tests can be performed. Table S4 provides information on
he transformation methods in ProNEVA. However, it is worth noting
hat the choice of the reference distribution is arbitrary ( Coles, 2001 ).
ere, we selected those transformations that are widely accepted in the

iterature ( Coles, 2001; Koutrouvelis and Canavos, 1999 ). In the case
f a LP3 distribution, the transformation can only be applied when the
arameter 𝛼 is constant ( Koutrouvelis and Canavos, 1999 ). Based on
q. (8) , this implies that the transformation can be performed only in
he case of constant skewness 𝛾X . 

.2. Kolmogorov-Smirnov test 

The two-sample Kolmogorov-Smirnov (KS) test is a non-parametric
ypothesis testing technique which compares two samples, Z (1) and Z (2) ,
o assess whether they belong to the same population ( Massey, 1951 ).
eing 𝐹 𝑍 (1) ( 𝑧 ) and 𝐹 𝑍 (2) ( 𝑧 ) the (unknown) statistical distributions of
 

(1) and Z (2) respectively, the null-hypothesis H 0 is 𝐹 𝑍 (1) ( 𝑧 ) = 𝐹 𝑍 (2) ( 𝑧 ) ,
gainst alternatives. The KS test statistic D 

∗ is: 

 

∗ = max 
𝑧 

( |𝐹 𝑍 (1) ( 𝑧 )) − 𝐹 𝑍 (2) ( 𝑧 ) |) (13)

 0 is rejected when the 𝑝 𝑣𝑎𝑙𝑢𝑒 of the test is equal to or exceeds the se-
ected 𝛼-level of significance, e.g., 5%. We implemented the KS test in
roNEVA as one of the methods to test the goodness-of-fit of the model.
pecifically, ProNEVA generates 1000 random samples from the fitted
tatistical distribution or, in the case of a nonstationary analysis, from
he reference distribution. Then, the KS test is performed between the
andom samples and the input (original or transformed) data. Finally,
he rejection rate (RR), Eq. (14) , is provided as a GOF index. 

𝑅 = 

∑
( 𝐻 0 𝑟𝑒𝑗 𝑒𝑐𝑡𝑒𝑑 ) 

1000 
(14)

.3. Model selection based on model complexity 

A model showing desirable level of performance efficiency with the
inimum number of parameters, i.e., a parsimonious model ( Serago and
ogel, 2018 ), is usually preferred over a model with similar performance
ut more parameters - e.g, a nonstationary model with more parameters
elative to a simpler stationary model ( Serinaldi and Kilsby, 2015; Luke
t al., 2017 ). Consequently, ProNEVA evaluates different GOF metrics
i.e., AIC, BIC), which account for the number of parameters within the
umerical model. 

The Akaike Information Criterion (AIC) ( Akaike, 1974; 1998; Aho
t al., 2014 ) is formulated as follows 

𝐼𝐶 = 2 ⋅ ( 𝐷 − 𝐿̂ ) , (15)

here D is the number of parameters of the statistical model and 𝐿̂ is
he log-likelihood function evaluated at 𝛉̂. The model associated with a
ower AIC is considered a better fit. 

The Bayesian Information Criterion (BIC) ( Schwarz, 1978 ) is defined
s 

𝐼 𝐶 = 𝐷 ⋅ 𝑙𝑛 ( 𝑁 ) − 2 ⋅ 𝐿̂ , (16)

here N is the length of records. Similar to AIC, the model with lower
IC results a better fit. 
274 
.4. Model selection based on minimum residual 

Root Mean Square Error (RMSE) and Nash-Sutcliff Efficiency (NSE)
oefficient are two metrics widely used in hydrology and climatology
s GOF measurements ( Sadegh et al., 2018 ). The focus of both is to
inimize the residuals. The vector of residual is defined as 

𝐄𝐒 = 

((
𝐹 −1 

( 1 
𝑛 + 1 

)
− 𝑧 (1) 

)
, … , 

(
𝐹 −1 

(
𝑖 

𝑛 + 1 

)
− 𝑧 ( 𝑖 ) 

)
, … , (

𝐹 −1 
(

𝑛 

𝑛 + 1 

)
− 𝑧 ( 𝑛 ) 

))
; (17) 

ollowing the same notation used for defining the quantile plot. Hence,

𝑀𝑆 𝐸 = 

√ ∑𝑛 

𝑖 =1 𝑅𝐸𝑆 

2 
𝑖 

𝑛 
(18)

𝑆 𝐸 = 1 − 

∑𝑛 

𝑖 =1 𝑅𝐸𝑆 

2 
𝑖 ∑𝑛 

𝑖 =1 ( 𝑧 ( 𝑖 ) − 𝑚𝑒𝑎𝑛 ( 𝑧 )) 2 
(19)

 perfect fit is associated with RMSE = 0 and NSE = 1, given RMSE ∈
0 , inf ) and NSE ∈ [− inf , 1) . 

. Predictive distribution 

The primary objective of a statistical inference is to predict unob-
erved events ( Renard et al., 2013 ). EVA, for example, provides the ba-
is for estimating loads for infrastructure design and risk assessment
f natural hazards (e.g., floods, extreme rainfall events). Considering
 Bayesian viewpoint, the predictive distribution can be written as
 Renard et al., 2013 ): 

( 𝐳|𝐘̃ ) = ∫ 𝑓 ( 𝐳, 𝜃|𝐘̃ ) ⋅ 𝑑𝜃 = ∫ 𝑓 ( 𝐳|𝜃) ⋅ 𝑓 ( 𝜃|𝐘̃ ) ⋅ 𝑑𝜃 (20)

here 𝐘̃ is the observed data, z is a grid at which 𝑓 ( 𝐳|𝐘̃ ) will be evalu-
ted, 𝜽 is the vector of parameters, f ( z | 𝜽) is the probability density func-
ion (pdf) of the selected distribution (i.e., GEV, GP, LP3), and 𝑓 ( 𝜃|𝐘̃ ) is
he posterior distribution function. The predictive distribution function
elies on the fitted distribution function over the parameter space, and
ses the posterior distribution for uncertainty estimation ( Renard et al.,
013 ). In practice, Eq. (20) often cannot be derived analytically. There-
ore, Renard et al. (2013) suggest to numerically evaluate it using the
CMC-derived ensemble of solutions sampled from the posterior dis-

ribution. The probability density of the k th -element of the vector z is:

 ̂( 𝑧 𝑘 |𝐘̃ ) = 

1 
𝑁 𝑠𝑖𝑚 

⋅
𝑁 𝑠𝑖𝑚 ∑
𝑖 =1 

𝑓 ( 𝑧 𝑘 |𝜃𝑖 ) (21)

n the nonstationary case, the predictive pdf is a function of the covari-
te, since the distribution parameters depend on the covariates. For this
eason, ProNEVA provides the predictive pdf for a number of predefined
alues of the covariates. 

. Return level curves under nonstationarity 

Given a time series of annual maxima, the Return Level (RL) is de-
ned as the quantile Q i for which the probability of an annual maximum
xceeding the selected quantile is q i ( Cooley, 2013 ). For example, let’s
ssume that annual maxima of precipitation intensities 𝑃 = 𝑝 1 , … , 𝑝 𝑛 
ave probability distribution F P . The quantile Q i is the value of pre-
ipitation intensity such that 𝑃 𝑟 ( 𝑃 ≥ 𝑄 𝑖 ) = 1 − 𝐹 𝑃 ( 𝑄 𝑖 ) = 𝑞 𝑖 . Under the
tationary assumption, the characteristics of the statistical model are
onstant over time, meaning that the probability q i of the quantile Q i 

oes not change on a yearly basis. In this context, the concept of Re-
urn Period (RP) of the quantile Q i is defined as the inverse of its ex-
eedance probability, 𝑇 𝑖 = 1∕ 𝑞 𝑖 in years. Referring back to the example
f annual maxima of precipitation intensities P , let’s assume that Q is
i 
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he precipitation intensity quantile such that the probability of being ex-
eeded in each given year is 𝑃 𝑟 ( 𝑃 ≥ 𝑄 𝑖 ) = 1 − 𝐹 𝑃 ( 𝑄 𝑖 ) = 0 . 01 . Then, the
P of Q i (or RL) is 𝑇 𝑖 = 1∕ 𝑞 𝑖 = 1∕0 . 01 = 100 in years. Under the station-
ry assumption, there is a one-to-one relationship between RL and RP
 Cooley, 2013 ). Therefore, the RL curves are defined by the following
oints: 

( 𝑇 𝑖 ; 𝑄 𝑖 ) , 𝑇 𝑖 > 1 𝑦𝑟, 𝑖 = 1 , …) (22)

L curves are traditionally used for defining extreme design loads for
nfrastructure design and risk assessment of natural hazards. However,
n a nonstationary context both RP and RL terms become ambigu-
us ( Cooley, 2013 ) and numerous studies have attempted to address
he issue. For nonstationary analysis, ProNEVA integrates two differ-
nt proposed concepts: the expected waiting time ( Salas and Obeysek-
ra, 2014 ), for default time-covariate only, and the effective RL curves
 Katz et al., 2002 ). 

.1. Effective return level 

Katz et al. (2002) proposed the concept of effective design value (or
ffective return level), which is defined as q -quantile, Q , varying as a
unction of a given covariate (i.e, time or physical). Therefore, for a con-
tant value of 𝑅𝑃 = 1∕ 𝑞, where q is the yearly exceedance probability,
he effective RL curves is defined by the points 

( 𝑥 𝑐 , 𝑄 𝑞 ( 𝑥 𝑐 )) , 𝑞 ∈ [0 , 1]) (23)

here x c is the covariate, and Q q ( x c ) is the q -quantile. 

.2. Expected waiting time 

Wigley (2009) first introduced the concept of waiting time, i.e., the
xpected waiting time until an event of magnitude Q i is exceeded, in
hich the probability of exceedance in each year, q i , changes over time.
lsen et al. (1998) and, later, Salas and Obeysekera (2014) provided a
omprehensive mathematical description of the suggested concept. 

The event 𝑄 𝑞 0 
is defined as the event with the exceedance probability

t time 𝑡 = 0 equal to q 0 . Under nonstationary conditions, at time 𝑡 = 1
he probability of exceedance of 𝑄 𝑞 0 

will be q 1 , at time 𝑡 = 2 , it will be
 2 , and so on. Given the selected statistical model F Q with characteristics

t , 𝑞 𝑡 = 1 − 𝐹 𝑄 ( 𝑄 𝑞 0 
, 𝜃𝑡 ) . Hence, the probability of the event to exceed 𝑄 𝑞 0 

t time m is given by Salas and Obeysekera (2014) : 

( 𝑚 ) = 𝑞 𝑚 ⋅
𝑚 −1 ∏
𝑡 =1 

(1 − 𝑞 𝑡 ) , (24)

here 𝑓 (1) = 𝑞 1 . The cumulative distribution function (cdf) of a geomet-
ical distribution ( Eq. (24) ) is: 

 𝑋 ( 𝑥 ) = 

𝑥 ∑
𝑖 =1 

𝑓 ( 𝑖 ) = 

𝑥 ∑
𝑖 =1 

𝑞 𝑖 ⋅
𝑖 −1 ∏
𝑡 =1 

(1 − 𝑞 𝑡 ) = 1 − 

𝑥 ∏
𝑡 =1 

(1 − 𝑞 𝑡 ) (25)

here x is the time at which the event occurs, 𝑥 = 1 , … , 𝑥 max , 𝐹 𝑋 (1) = 𝑞 1 ,

nd 𝐹 𝑋 ( 𝑥 max ) = 1 . Therefore, the expected waiting time (or RP) in which
or the first time the occurring event exceeds 𝑄 𝑞 0 

can be derived as 

 = 𝐸 ( 𝑋 ) = 

𝑥 max ∑
𝑥 =1 

𝑥 ⋅ 𝑓 ( 𝑥 ) = 

𝑥 max ∑
𝑥 =1 

𝑥 ⋅ 𝑞 𝑥 

𝑥 −1 ∏
𝑡 =1 

(1 − 𝑞 𝑡 ) (26)

ooley (2013) simplifies Eq. (26 ) as: 

 = 𝐸 ( 𝑋 ) = 1 + 

𝑥 𝑚𝑎𝑥 ∑
𝑥 =1 

𝑥 ∏
𝑡 =1 

(1 − 𝑞 𝑡 ) (27)

hich gives the return period under nonstationary conditions, and it is
onsistent with the definition of RP in the stationary case ( Salas and
beysekera, 2014 ). 
275 
. Explanatory analysis: Mann-Kendall and white tests 

With the intention of providing explanatory data analysis, ProNEVA
ncludes two different tests: the Mann-Kendall (MK) monotonic trend
est and the White Test (WT) for evaluating homoscedasticity in the
ecords. These tests can be used to decide whether to incorporate a trend
unction in one or more of the model parameters or not (i.e., deciding
hether to use a stationary or nonstationary model). However, these

ests are optional and are not an integral part of ProNEVA. The selection
f a stationary versus a nonstationary analysis is untied from the tests
esults, but it is left to the users. For more details about the MK and WT,
he readers is referred to the Supplementary Material and the references
herein. 

. ProNEVA Graphical User Interface (GUI) 

The framework here presented has also a Graphical User Interface
GUI), Fig. 2 , which we believe can promote and facilitate the applica-
ion of ProNEVA. The User Manual included in the package will provide
he user with all the instructions needed. 

. Results 

As previously discussed, the changes in extremes observed over the
ast years can stem from changes in different physical processes. In or-
er to account for the observed changes, we need statistical tools that
re able to incorporate those variables causing variability, which can be
epresented as time-covariate or a physical-based covariate. In the fol-
owing, we show example applications of ProNEVA under both stationay
nd nonstationary assumptions including modeling changes induced by
ifferent types of covariates (both temporal and process-based changes).
t is important to point out that for statistical analyses, under both the
tationary and nonstationary assumptions, the quality of information
i.e., length of record, representativeness of observations), is fundamen-
al. Generally, the more information is available, the more confident we
an be about our inferences (and also whether or not a model is repre-
entative for the application in hand). However, often observations of
xtremes are limited. The issue of data quality and availability of covari-
tes is also as important for nonstationary analysis. For all application,
epresentativeness of the choice of model should be rigorously tested
sing different goodness-of-test methods. 

In the first application, we analyze discharge data from Ferson Creek
St. Charles, IL), which has experienced intense urban development over
he years. Urbanization has a direct effect on the amount of water dis-
harged at the catchment outlet, since it increases impervious surfaces.
or this reason, we use a process-informed nonstationary LP3 model for
tting discharge data, in which the covariate is represented by percent
f urbanized catchment area. The second application involves temper-
ture maxima data averaged over the Contiguous United States. Many
tudies have shown that the amount of CO 2 in the atmosphere causes
emperatures to increase. For this reason, we fit a nonstationary GEV
odel to temperature data, in which the covariate is represented by CO 2 

missions in the atmosphere to include the underlying physical relation-
hip. In the third application, we investigate sea level annual maxima
n the city of Trieste (Italy), which has increased over the years. In this
ase, we adopted a temporal nonstationary GEV model. The last appli-
ation involves precipitation data for New Orleans, Louisiana, in which
e fit a stationary GP model, given that there is no evidence of change

n statistics of extremes. 

.1. Application 1: Modeling discharge with urbanization as the physical 

river 

Since 1980, Ferson Creek (St. Charles, IL) basin has experienced land
se land cover changes due to urbanization. The percent of urban areas
ithin the catchment has increased from 20% of the total basin’s area in
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Fig. 2. ProNEVA Graphical User Inter- 

face (GUI). (1) Interface for uploading 

data and selecting the choice of distribu- 

tion (GEV/GP/LP3) and model (station- 

ary/nonstationary) type; (2) Interface specific 

to the choice of distribution for selecting 

priors and nonstationarity model; (3) Interface 

for selecting MCMC information and addi- 

tional operations (e.g., additional exploratory 

analyses, saving results, plotting options). 

Fig. 3. Application 1: Modeling discharge in Ferson Creek with urbanization as the physical driver of change. (a) Discharge data and percent of urbanization in the 

basin; (b) Discharge data as a function of urbanization. 

1  

u  

d  

p  

t  

o  

n  

u
 

U  

i  

W  

o  

u  

t  

i  

(  

W  

a  

n  

s
 

w  

s  

c  

t  

v  

a  

o  

t  

c  

c  

w  

o  

s  

m  

r  

u  

s

9

c

 

s  

e  

a  

a  

a  

a  

p  

i  

r  
980 to almost 65% in 2010. River discharge highly depends on the land
se and land cover of the basin as it determines the ratio of infiltration to
irect runoff ( Fig. 3 ). Here, urbanization can be considered as a known
hysical process that has altered the runoff in the basin. To incorporate
he known physical process, we investigate annual maxima discharge
f the Ferson Creek (station USGS 05551200) using a process-informed
onstationary LP3 model, in which the covariate, x c , is the percent of
rbanized area. 

LP3 is widely used for modeling discharge data (Bulletin 17B,
.S. Water Resources Council (1982) ). We select a nonstationary model

n which the parameter 𝜇 is an exponential function of the covariate x c .
e adopt normal priors for the LP3 parameters. Fig. 4 b shows the results

f the process-informed nonstationary analysis for an arbitrary value of
rbanized area, here 37%. For the sake of comparison, Fig. 4 a displays
he results when a stationary model is implemented. It is worth not-
ng that the nonstationary model ( Fig. 4 b) fits extreme discharge values
high values of return period) better than the stationary model ( Fig. 4 a).
hile based on the AIC and BIC diagnostic tests, the stationary model

nd the nonstationary model perform rather similarly, the RMSE of the
onstationary model (25.06 m 

3 /s) is considerably lower than that of the
tationary model (77.58 m 

3 /s). 
Urbanization alters the runoff in the basin by reducing the amount of

ater that infiltrates and increasing the amount of direct runoff. Fig. 4 c
hows the ability of the statistical model to incorporate this physical pro-
ess. As anticipated, the expected (ensemble median) nonstationary re-
urn level curve associated with a 62% of urbanized area returns higher
alues of discharge than the one associated with a 37% of urbanized
276 
rea. For example, under the nonstationary assumption, the magnitude
f a 50-year event is 62.47 m 

3 /s for 37% of urbanized area, similar to
he stationary case. However, the magnitude of the 50-year event in-
reases to 78.11 m 

3 /s (25% more) for 62% of urbanized area. On the
ontrary, the stationary analysis estimates a 50-year event as an event
ith magnitude 63.74 m 

3 /s, independent of the level of urbanization
f the catchment. The result demonstrates that a combination between
tatistical concepts and physical processes is required for correctly esti-
ating the expected magnitude of an event. Fig. 4 d displays the effective

eturn level curves ( Katz et al., 2002 ) which summarize the impact of
rbanization on discharge by describing return levels as functions of the
elected covariate (x-axis). 

.2. Application 2: Modeling temperature with CO 2 as the physical 

ovariate 

Over the past decades, many studies have reported increasing
urface temperature (e.g.: Zhang et al., 2006; Stott et al., 2010; Melillo
t al., 2014; Zwiers et al., 2011 ), mainly due to anthropogenic activities
s a consequence of increase in greenhouse gasses concentration in the
tmosphere. Therefore, we investigate annual maxima surface temper-
ture for the Contiguous United States available from NOAA (NCDC
rchive - https://www.ncdc.noaa.gov/cag/national/time-series ) using a
rocess-informed nonstationary GEV model in which the user-covariate
s represented by CO 2 emissions over the US ( Fig. 5 a). Territo-
ial fossil fuel CO emissions data are available on Global Carbon
2 

https://www.ncdc.noaa.gov/cag/national/time-series
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Fig. 4. ProNEVA results for Application 1: Modeling discharge in Ferson Creek with urbanization as the physical driver of change. (a) Return Level curves based on 

a stationary model; (b) Return Level base on a nonstationary model considering an urbanization area equal to 37% of the catchment area; (c) Expected return level 

curves, i.e. ensemble medians, under stationary and nonstationary assumption; (d) Effective return period, i.e. return period as a function of the percent of urbanized 

area. 

Fig. 5. Application 2: Modeling temper- 

ature maxima with CO 2 emissions as the 

physical covariate. (a) Temperature and 

CO 2 time series; (b) Annual temperature 

maxima as a function of CO 2 emissions in 

the atmosphere. 
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tlas http://www.globalcarbonatlas.org/en/CO2-emissions ( Boden
t al., 2017; BP, 2017; UNFCCC, 2017 ). 

To incorporate the observed relationship between temperature and
O 2 in the statistical model ( Fig. 5 b), we select a model in which the

ocation and the scale parameters of the GEV distribution are linear func-
ions of the covariate, while the shape parameter is constant. We assume
ormal priors. Fig. 6 b shows the results of the nonstationary model for
 value of CO 2 equal to 4.9 GtCO 2 . For comparison, we also plot the
esults when a stationary model is selected in Fig. 6 a. One can see that
he nonstationary model better captures the observed extreme events,
articularly events associated with higher values of CO 2 . Moreover, the
iagnostics tests confirm that the nonstationary model is a better fit. For
he nonstationary model, the AIC and the BIC are 93.91 and 104.13, re-
pectively. When the stationary model is considered, both the AIC and
IC increase to 104.98 and 111.11, respectively. Lower values of AIC
nd BIC indicate a superior model performance. The advantage of the
IC and BIC for model selection is their ability to account for the number
f model parameters: models with more parameters are penalized. 
277 
Figure S1 shows the effective return level as a function of CO 2 emis-
ions. The results show how temperature extremes change in response
o the increasing CO 2 emissions (here, the physical covariate). For ex-
mple, looking at the expected magnitude of a 50-year event, the tem-
erature increases of about 4%, from 18.79 ∘C to 19.5 ∘C, when the CO 2 

missions increase from 4.49 GtCO 2 to 5.51 GtCO 2 . The results are con-
istent with the expectation that higher CO 2 leads to a warmer climate,
ndicating that the statistical nonstationary model is able to model the
bserved physical relationship between temperature and CO 2 . 

.3. Application 3: Modeling sea level rise with time as the covariate 

The coastal city of Trieste (Italy) has been experiencing increasing
ea level height over the years (Fig. S2). Given the observed trend, we
nvestigate annual maxima sea level data from the Permanent Service
or Mean Sea Level (PSMSL - station ID 154) by adopting a temporal
onstationary GEV model. The purpose of this example is to show that
roNEVA can also be used for temporal nonstationary analysis. The

http://www.globalcarbonatlas.org/en/CO2-emissions
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Fig. 6. ProNEVA results for Application 2: 

Modeling temperature maxima with CO 2 

emissions as the physical covariate. (a) Re- 

turn Level curves based on a stationary 

model; (b) Return Level base on a nonsta- 

tionary model considering CO 2 emissions 

equal to 4.9 GtCO 2 . 

Fig. 7. ProNEVA results for Application 3: 

Modeling sea level rise with time as the co- 

variate. (a) Return Level curves based on a 

stationary model; (b) Return Level base on 

a nonstationary model considering equal 

to 45 years from the first observation; (c) 

Expected return level curves, i.e. ensemble 

medians, under stationary and nonstation- 

ary assumption; (d) Effective return period, 

i.e. return period as a function of the co- 

variate, here time. 
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1  
ocation and scale parameters of the GEV distribution are modeled as
inear functions of the time-covarite. The shape parameter is kept con-
tant and we use normal priors for parameter estimation. 

Fig. 7 b shows the return level curves for a fixed value of the time-
ovariate equal to 45 years from the first observation (i.e., 45 years into
he future from the beginning of the data). The nonstationary analysis in
ig. 7 b provides better performance that the stationary model in Fig. 7 a.
oth the AIC and the BIC values confirm that the nonstationary model is
he best choice to represent sea level observations in a changing climate.
he AIC for the nonstationary model is 976.69, while it is 992.74 for
he stationary model. Similarly, the BIC for the temporal nonstationary
odel is 989.08, while it is 1000 for the stationary model. Lower values

or AIC and BIC indicates a superior model. 
The value of the temporal covariate should be regarded as the time at

hich we estimate expected values of, as in this specific case, sea level.
he expected (ensemble median) nonstationary return level curves in
ig. 7 c refer to three different time at which we evaluate sea level: 45,
5, and 133 years from the first observation. Here, 133 years from the
rst observation is beyond the period of observations (88 years) mean-
278 
ng that we project into the future the observed trend and we infer from
here. The observed increasing trend in the sea level records results in
ncreasing values of sea level for higher value of the temporal covariate
 Fig. 7 c). For example, a 50 year event is equal to 7296.3 mm for time
qual to 45 years from the first observation, 7349.3 mm for 85 years, and
410.4 mm for 133 years. We register about 2% increase in sea level
hen the time of the first observation changes from 45 to 133 years,

onfirming the ability of the nonstationary model to reproduce the in-
reasing trend in observations. On the contrary, the stationary analysis
eturns a 50-year sea level equal to 7314.3 mm regardless of the first ob-
ervation. Fig. 7 d shows the effective return level curves, which capture
he variability over time (here, the covariate) in the observed data. In the
ase of a nonstationary model with a temporal covariate, it is possible
o evaluate the expected waiting time ( Wigley, 2009; Olsen et al., 1998;
alas and Obeysekera, 2014 ), which incorporates the observed changes
n the sea level over time in the estimation of return periods. Fig. S3
hows that the current return periods (lower x-axis) will change con-
idering the observed nonstationarity (upper x-asis). For example, the
00-year sea level estimated at t (beginning of the simulation) turns
0 
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Fig. 8. ProNEVA results for Application 4: 

Modeling precipitation under a stationary 

assumption. (a) Return Level curves un- 

der the stationary assumption; (b) Return 

Level curves under the temporal nonsta- 

tionary assumption for a value of the co- 

variate within the period of observation. 
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nto a 40-year event when the observed trend over time in sea level
alues is taken into account. 

.4. Application 4: Modeling precipitation under a stationary assumption 

This application focuses on the Generalized Pareto (GP) distribu-
ion for peak-over-threshold extreme value analysis. We investigate
 time series of precipitation from New Orleans, Lousiana, that does
ot exhibit changes in statistics of extremes. We obtain daily pre-
ipitation from the National Climatic Data Center (NCDC) archive
 https://www.ncdc.noaa.gov/cdo-web/ ) for the city of New Orleans,
tation GHCND:USW00012930. Given that we are interested in heavy
recipitation events, we use a GP distribution to focus on values above
 high threshold (i.e., avoid including non-extreme values). We extract
recipitation excesses considering a constant threshold of the 98th-
ercentile of daily precipitation values (Fig. S4). 

For this application we select a stationary GP model, given that we
o not have physical evidence to justify a more complex model. How-
ver, for the sake of comparison, we perform a nonstationary analysis
onsidering the scale parameter as a linear function of time. Fig. 8 a rep-
esents the return level curves based on a stationary model, while Fig. 8 b
epicts return level curves for a value of the covariate (here time) equal
o half of the period of observation. From a comparison between the two
odels, the stationary model performs better. The stationary model re-

urns values of the AIC and BIC equal to 713.3 and 721.14, respectively.
or the nonstationary model the values of the AIC and BIC are slightly
igher (715.02 and 726.79, respectively). The results of this example ap-
lication suggests that when no evidence of changes due to a physical
rocess can be identified, ProNEVA favors the simplest form of model
hat represents the historical observations. 

0. Conclusion 

The ability to reliably estimate the expected magnitude and fre-
uency of extreme events is fundamental for improving design concepts
nd risk assessment methods. This is particularly important for extreme
vents that have significant impacts on society, infrastructure and hu-
an lives, such as extreme precipitation events causing flooding and

andslides. 
The observed increase in extreme events and their impacts reported

rom around the world have motivated moving away from the so-called
tationary approach to ensure capturing the changing properties of ex-
remes ( Milly et al., 2008 ). However, there are opposing opinions and
erspective on the need and also form of suitable nonstationary models
or extreme value analysis. Most of the existing tools for implement-
ng extreme value analysis under the nonstationary assumption have
 number of limitations including lack of a generalized framework for
ncorporating physically based covariates and estimating parameters,
hich depend on a generic physical covariate. To address these limi-
279 
ations, we propose a generalized framework entitled Process-informed

onstationary Extreme Value Analysis (ProNEVA) in which the nonsta-
ionarity component is defined by a temporal or physical-based depen-
ence of the observed extremes on a physical driver (e.g., change in
unoff in response to urbanization, or change in extreme temperatures
n response to CO 2 emissions). ProNEVA offers stationary and temporal
nd process-informed nonstationary extreme value analysis, parameter
stimation, uncertainty quantification, and a comprehensive assessment
f the goodness of fit. 

Here we applied ProNEVA to four different types of applications de-
cribing change in: extreme river discharge in response to urbanization,
xtreme sea levels over time, extreme temperatures in response to CO 2 

missions in the atmosphere. We have also demonstrated a peak-over-
hreshold approach using precipitation data. The results indicate that
roNEVA offers reliable estimates when considering a physical-process
r time as a covriate. 

The source code of ProNEVA is freely available to the scientific com-
unity. A graphical user inter face (GUI) version of the model, Fig. 2 , is

lso available to facilitate its applications (see Supporting Information).
e hope that ProNEVA motivates more process-informed nonstationary

nalysis of extreme events. 
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