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Abstract Compound extremes correspond to events with multiple concurrent or consecutive
drivers (e.g., ocean and fluvial flooding, drought, and heat waves) leading to substantial impacts such as
infrastructure failure. In many risk assessment and design applications, however, multihazard scenarios
of extremes and compound events are ignored. In this paper, we review the existing multivariate design
and hazard scenario concepts and introduce a novel copula-based weighted average threshold scenario
for an expected event with multiple drivers. The model can be used for obtaining multihazard design and
risk assessment scenarios and their corresponding likelihoods. The proposed model offers uncertainty
ranges of most likely compound hazards using Bayesian inference. We show that the uncertainty ranges of
design quantiles might be large and may differ significantly from one copula model to the other. We also
demonstrate that the choice of marginal and copula functions may profoundly impact the multihazard
design values. A robust analysis should account for these uncertainties within and between multivariate
models that translate into multihazard design quantiles.

Plain Language Summary Compound extremes correspond to events with multiple concurrent
or consecutive drivers, leading to substantial impacts such as infrastructure failure. Hurricane Harvey, with
more than 100 fatalities, is an example of concurrent hazards (extreme precipitation and storm surge); and
recent mudslide in California, with a death toll of 20 people in Montecito, CA, is an example of consecutive
hazards (significant precipitation a few weeks after the Thomas wildfire). In many risk assessment and design
applications, however, multihazard scenarios of extremes and compound events are ignored. In this paper,
we present a general framework for obtaining multihazard design and risk assessment scenarios and their
corresponding likelihoods. This framework also quantifies the underlying uncertainties of multihazard
scenarios and employs an ensemble of univariate and multivariate models for robust risk assessment.

1. Introduction

The interdependence between two or more hazard drivers, which may not necessarily be extreme events indi-
vidually, may trigger significant extreme impacts—a phenomenon known as a compound event (Leonard
et al., 2014; Mehran et al., 2017; Vahedifard et al., 2016; Wahl et al., 2015). Compound events (or impacts) may
occur as a result of one of the following situations (Field, 2012): (1) two or more simultaneous or successive
extreme events (e.g., simultaneous extreme precipitation and storm surge, Moftakhari et al. (2017)), (2) combi-
nations of extreme events with underlying conditions that amplify the impact (e.g., droughts and heat waves,
Mazdiyasni & AghaKouchak, 2015), or (3) combinations of events that are not themselves extreme but collec-
tively lead to an extreme event or impact (e.g., a moderate coastal flood occurring during above average tide,
Moftakhari et al., 2015).

Frequency and severity of compound events are expected to increase in the future (Field, 2012; Kopp et al.,
2017; Mechler & Bouwer, 2015), which in turn elevate their associated risks, as defined by combination of
threatening events (also known as hazards) and adverse consequences (e.g., exposure and vulnerability)
(Tessler et al., 2015). This necessitates a deeper understanding of compound extremes and their impacts. Reli-
able and accurate characterization of compound hazards, as one important element of risk, requires in-depth
research to advance the existing theoretical frameworks and tools (Leonard et al., 2014).

RESEARCH LETTER
10.1029/2018GL077317

Key Points:
• We present a framework for

multivariate analysis of natural
hazards driven by multiple forcings

• The choice of marginal probability
distribution and copula can
significantly influence design and
hazard scenarios

• Bayesian approach for parameter
estimation illuminates the
uncertainties of different multihazard
scenarios

Supporting Information:
• Supporting Information S1

Correspondence to:
A. AghaKouchak,
amir.a@uci.edu

Citation:
Sadegh, M., Moftakhari, H.,
Gupta, H. V., Ragno, E., Mazdiyasni,
O., Sanders, B., Matthew, R., &
AghaKouchak, A. (2018). Multihazard
scenarios for analysis of com-
pound extreme events. Geophysical
Research Letters, 45, 5470–5480.
https://doi.org/10.1029/2018GL077317

Received 26 JAN 2018

Accepted 2 MAY 2018

Accepted article online 11 MAY 2018

Published online 5 JUN 2018

©2018. American Geophysical Union.
All Rights Reserved.

SADEGH ET AL. 5470

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://orcid.org/0000-0003-1775-5445
http://orcid.org/0000-0003-3170-8653
http://orcid.org/0000-0001-9855-2839
http://orcid.org/0000-0003-1107-1384
http://orcid.org/0000-0002-6603-2502
http://orcid.org/0000-0003-4689-8357
http://dx.doi.org/10.1029/2018GL077317
http://dx.doi.org/10.1029/2018GL077317
https://doi.org/10.1029/2018GL077317


Geophysical Research Letters 10.1029/2018GL077317

In this study, we review the existing multivariate design and hazard scenario concepts and introduce a
new copula-based methodology that offers uncertainty ranges of the most likely compound hazards using
Bayesian inference. Copulas have been proven to be a valuable tool to describe and analyze the dependence
structure of multiple variables in hydrology and climatology (De Michele & Salvadori, 2003; De Michele et al.,
2005; Favre et al., 2004; Salvadori & De Michele, 2004a, 2004b) and have been employed as a vehicle to develop
multihazard design scenarios (Gräler et al., 2013; Salvadori et al., 2014; Volpi & Fiori, 2012). While uncertainty
analysis has received a lot of attention in different branches of hydrology and climate science (Sadegh and
Vrugt (2013, 2014); Sadegh et al. (2015, 2018), and references therein), it is not broadly explored in multihazard
design scenarios. This is specifically important given the relatively short length of our observations, which
may translate into large uncertainty in the design/hazard scenarios (Sadegh et al., 2017).

We also analyze the marginal and joint probability distributions of compound hazard events and depict the
importance of the choice of marginal distributions as well as copulas to model univariate and multivariate
probabilities of natural hazards and compound events. Moreover, we propose a multivariate approach
that estimates an expected hazard threshold level based on the weighted average of multiple critical
levels/thresholds.

2. Methodology
2.1. Critical Level for Hazard Assessment
In a typical hazard assessment problem, depending on the problem’s dimension, the probability space is
divided by an equal probability point, line, or surface, hereafter referred to as the critical layer. We define
critical layer as (Salvadori et al., 2011),

LP
q =

{
x ∈ Rd : P(x) = q

}
(1)

in which q is the critical probability level, x denotes a realization of the d-dimensional feasible space, and P is
a d-dimensional probability distribution. In a univariate study, P reduces to a marginal distribution, while in a
multivariate study, P is defined as a copula probability distribution that describes the correlation structure of
the driving variables. LP

q divides the feasible space into three subregions (Corbella & Stretch, 2012):

1. subcritical (nonhazardous) region (R<
q ) that includes events (realizations) with probability, P, lower than the

critical probability level (P < q);
2. critical layer (e.g., point, line, or surface), LP

q, on which events hold equal probability, q; and
3. supercritical (hazardous) region (R>

q ) where events with probability, P, higher than the critical probability
level, q, (P > q) fall.

Depending on the study goals, one might be interested in either subcritical or supercritical (nonhazardous or
hazardous) regions. This paper focuses on coastal flooding, and hence, we focus on supercritical (hazardous)
region, R>

q (i.e., high extreme values).

2.2. Marginal Distributions
Estimating the critical level or return period of an extreme event typically involves fitting distribution
functions. We use 17 different continuous marginal distribution functions to find a suitable model that opti-
mally fits the available data. Distribution functions include (1) Beta, (2) Birnbaum-Saunders, (3) exponential,
(4) extreme value, (5) Gamma, (6) generalized extreme value, (7) generalized Pareto, (8) inverse Gaussian,
(9) logistic, (10) log-logistic, (11) lognormal, (12) Nakagami, (13) normal, (14) Rayleigh, (15) Rician, (16) t loca-
tion scale, and (17) Weibull distributions (listed alphabetically). For a detailed description of these distributions
refer to Johnson et al. (1993, 1994), and Bowman and Azzalini (1997).

The best marginal distribution is selected based on the Bayesian information criterion (BIC). The parameters
of the marginal distributions are estimated through a maximum likelihood algorithm that minimizes the dis-
tance between empirical probability values and their modeled counterparts. A chi-square goodness-of-fit test
is then employed to statistically examine whether or not data is sampled from the fitted distribution at 5% sig-
nificance level (Lewis & Burke, 1949). Visual comparison of the fitted distribution versus empirical probability
values, as well as QQ plotting, is also used to verify the acceptability of the distribution fit.

In many studies only one (or a few) marginal distribution(s) is used (Zheng et al., 2015). We argue that using a
wide range of distributions is essential to minimize prior assumptions on the distributions of data by selecting
the best fitted function. Any distribution holds some underlying assumptions, but our flexible approach
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strives to identify those closest to that of the underlying empirical distribution of data. We, however, share a
common assumption with the literature that the underlying marginal distribution does not change over time
(Salvadori et al., 2014).

2.3. From Univariate to Multivariate Multihazard Analysis
Return period is a statistical measure of the expected recurrence interval of a hazard, such as flood, over an
extended period of time. This statistical concept is frequently used for risk analysis and infrastructure design
purposes. Univariate return period is defined as

RP1
q = 𝜇

Pr
(

x ∈ R>
q

) = 𝜇

1 − P1
q

, (2)

in which RP1
q represents the univariate return period, P1

q signifies the marginal probability at the criti-
cal probability level, q, and 𝜇 is defined as average interarrival time of observed events (Salvadori et al.,
2011, 2014).

The univariate return period concept can be extended to higher dimensions for multihazard analysis. How-
ever, in a multihazard case, it is important to consider the dependence between hazard drivers. Copulas have
been widely used for modeling the dependence structure of two (or more) time-independent random vari-
ables, regardless of their marginal distributions (De Michele & Salvadori, 2003; Favre et al., 2004; Grimaldi et al.,
2016; Joe, 2014; Nelsen, 2007; Salvadori et al., 2007, 2014).

Nelsen (2003) informally defines 2-D copulas as a mapping tool from I2(I × I) space to I, in which I ∈ [0, 1].
F1(x1) = Pr(X1 ≤ x1) and F2(x2) = Pr (X2 ≤ x2) describe marginal distributions of continuous random variables
X1 and X2, respectively, and H(x1, x2) = Pr (X1 ≤ x1, X2 ≤ x2) explains their joint probability distribution.
Hence, [F1(x1), F2(x2),H(x1, x2)] is a point in a 3-D space I3. According to Sklar’s theorem (Sklar, 1959), there
exists a copula function, C, for which H(x1, x2) = C

[
F1(x1), F2(x2)

]
. If marginal distributions, F1 and F2, are

continuous, copula C is unique. Similarly, a copula can be constructed from a joint cumulative distribution,
H, as C(u1, u2) = H

[
F−1

1 (u1), F−1
2 (u2)

]
given [u1, u2] =

[
F1(x1), F2(x2)

]
. The definition of copula can similarly

extend to d-variables

C(u) = H
[

F−1
1 (u1), F−1

2 (u2), · · · , F−1
d (ud)

]
, (3)

where u = [u1, u2, · · · , ud].

We use the 26 bivariate copulas built into the Multivariate Copula Analysis Toolbox (MvCAT; Sadegh et al.,
2017), which includes models with one to three degrees of freedom, namely (1) Gaussian, (2) t, (3) Clayton,
(4) Frank, (5) Gumbel, (6) independence, (7) Ali-Mikhail-Haq, (8) Joe, (9) Farlie-Gumbel-Morgenstern, (10)
Gumbel-Barnett, (11) Plackett, (12) Cuadras-Auge, (13) Raftery, (14) Shih-Louis, (15) linear-Spearman, (16)
Cubic, (17) Burr, (18) Nelsen, (19) Galambos, (20) Marshall-Olkin, (21) Fischer-Hinzmann, (22) Roch-Alegre, (23)
Fischer-Kock, (24) BB1, (25) BB5, and (26) Tawn copulas. The equations of these copulas are available in Table
1 of Sadegh et al. (2017).

MvCAT infers the copula parameters by tuning them to optimally fit the estimated joint probabilities to
the associated empirical joint probabilities. This is a nonparametric approach for fitting copulas that uses
pseudo-observations to find copula parameters. MvCAT includes two optimization and uncertainty analysis
frameworks, namely, a gradient-based local optimization and a hybrid-evolution Markov Chain Monte Carlo
(MCMC) simulation (Sadegh et al., 2017). The local optimization option uses an “interior-point” algorithm (Byrd
et al., 2000; Waltz et al., 2006) and performs a quick search of the feasible space at the expense of a small
likelihood of getting trapped in local optima (Sadegh et al., 2017). MCMC, on the contrary, warrants finding
an estimate of the global optimum at a small computational expense. The employed state-of-the-art MCMC
algorithm numerically solves the Bayes’ equation

p(𝜽|D̃) =
p(𝜽)p(D̃|𝜽)

p(D̃)
∝ p(𝜽)p(D̃|𝜽) (4)

to estimate posterior distribution of copula parameters p(𝜽|D̃). In equation (4), D̃ denotes the empirical joint
probability vector, p(𝜽) represents the prior distribution of copula parameters (uniform in our case), p(D̃)
is the evidence, and p(D̃|𝜽) denotes the likelihood function. If we conveniently assume the error residuals
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(divergence between copula modeled, di(𝜃) , and empirical joint probability values, d̃i) are uncorrelated, Gaus-
sian distributed with a zero mean and a constant variance (homoscedastic), the likelihood function could be
defined as

p(D̃|𝜽) ≅ (𝜽|D̃) =
n∏

i=1

1√
2𝜋𝜎̃2

exp
{
−1

2
𝜎̃−2

[
d̃i − di(𝜽)

]2
}
, (5)

where 𝜎̃ is an estimate of the standard deviation of measurement error, which can be estimated on-the-fly in
the MCMC simulation. Each of the posterior copula parameters can be used to derive the multihazard design
scenarios. However, if uncertainty analysis is not desired, mode of the posterior distribution can be used for
design purposes.

3. Multivariate Hazard Scenarios

Return period in a multivariate space, as an intuitive extension of its univariate case, is defined as
(Vandenberghe et al., 2011)

RP2+
q = 𝜇

Pr
(

x ∈ R>
q

) = 1
1 − C(uq)

. (6)

in which uq = F(xq), and xq ∈ LP
q. This approach follows the “OR” definition of the joint return period in section

3.3 of Gräler et al. (2013). Also see Salvadori et al. (2016).

In this setting, an event with a prespecified critical layer or joint return period can be selected for design
purposes and/or hazard assessment. However, there are numerous combinations of x on the return period
curve (associated with the critical layer) in a 2+-dimensional problem, RP2+

q , with equal probability (Salvadori
et al., 2011; Volpi & Fiori, 2012). For example, there are infinite combinations of water level and fluvial discharge
leading to statistically similar 100-year events, while their impacts can be drastically different. An intuitive
approach to select among plausible pairs of x is to assign weights to them based on their associated copula
density values (Corbella & Stretch, 2012; Gräler et al., 2013; Salvadori et al., 2011, 2014; Zheng et al., 2015). The
copula probability density function is defined as (Volpi & Fiori, 2012),

h(x) = 𝜕dH(x)
𝜕x1𝜕x2 · · · 𝜕xd

. (7)

We seek to offer an approach to select the desired points on the critical return period level, RP2+
q , based on the

copula density values and the underlying uncertainties. The critical return period level, RP2+
q , is associated with

the critical layer, LP
q. In the following, we review the literature on this topic and introduce two novel concepts: (i)

uncertainty ranges of the most likely design scenario and (ii) an expected scenario derived from the weighted
ensemble average of the most likely design scenarios.

3.1. Most Likely Scenario
The most common approach in selecting one design/hazard scenario, among feasible combinations with
equal return periods, is to analyze the system under the most likely compound event. The most likely scenario
coincides with the combination of hazards on the critical layer, LP

q, (also known as critical joint return period,
RP2+

q ), with highest joint density level (Salvadori et al., 2014) defined as

xq = argmax h(x), x ∈ LP
q. (8)

This most likely compound event, however, may not be the most severe among the possibilities in terms
of impact. So, we further explore other possibilities to sample from the critical level and evaluate their
hazardousness.

3.2. Multiple Samples on the Critical Layer, LP
q

To obtain a distribution of potentially hazardous combination of drivers, rather than one-single combination
as in section 3.1, we draw weighted random samples of compound events from the critical layer, LP

q. The sam-
pling approach uses the copula probability density function, h(x), as weight (Gräler et al., 2013). The samples
with higher joint probability density values have a higher chance of selection, but this method allows for per-
turbing a level of stochasticity into design scenarios and hazard assessment, consistent with the stochastic
nature of hazard drivers. The output will be a set of forcing that can be used to run a numerical or conceptual
model (e.g., hydrodynamic model of an estuary).
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3.3. Uncertainty Analysis of Most Likely Scenario
The approach proposed in this paper helps describing uncertainties associated with statistical model struc-
ture by finding the copula family that best describes the correlation structure between two (or more) variables.
It also helps quantifying uncertainties associated with parameter estimation procedure. This framework
attributes modeling uncertainties to copula parameters, 𝜽 (Vrugt & Sadegh, 2013), and estimates the most
likely scenarios for each posterior copula parameter set (as opposed to the one scenario from best copula
parameter; section 3.1). This approach is mathematically defined as

∀𝜃i ∈ 𝜽 xq
i = argmax h(x), xi ∈ LP

q(𝜃i). (9)

We treat each sample of the posterior distribution with equal weight; however, the most likely region of
the posterior distribution inherently encompasses more samples. This method quantifies the uncertainties
associated with the estimated most likely scenario and analyzes the sensitivity of system to variation of
this scenario.

Copula model parameters are prone to measurement and model structural errors. These errors preclude find-
ing a “unique” parameter combination that is significantly better than others (Vrugt et al., 2003). Indeed, some
parameters might be equally good according to a goodness-of-fit measure (the problem of “equifinality”;
Beven & Binley, 1992). Moreover, one parameter combination might be superior to others according to one
goodness-of-fit index and inferior based on another. Copula parameters also depend on the period of obser-
vation. It is hence suggested that a cohort of samples that are all acceptable provides more information about
the system behavior as opposed to a best parameter combination, which is to be accepted as “true” represen-
tation of the system. Selecting best parameter may underestimate the uncertainties of the system (Sadegh &
Vrugt, 2014). See supporting information, for more detail.

3.4. Expected Scenario
For design and risk assessment purposes, it is also useful to estimate an expected event that represents the
nonextreme dynamics of the system. This reference scenario represents the situation that should be expected
in any given year. This approach relaxes the need for defining a critical return period level, RP2+

q . Following
the concept of Cumulative Hazard proposed by Moftakhari et al. (2017), a weighted average of most likely
scenarios with return periods of 2, 10, 25, 50, and 100 years is calculated. Weights are then assigned according
to the return period levels, and the approach is formulated as

xex =

(
5∑

i=1

1

RP2+
qi

argmax h(x), x ∈ LP
qi

)
∕

(
5∑

i=1

1

RP2+
qi

)
,

RP2+
q = [2, 10, 25, 50, 100].

(10)

This is a nonextreme threshold scenario and is not meant to replace extreme design scenarios. Weights used
in equation (10) are selected based on the most widely used return period levels. These weights are assigned
as reciprocal of RP level, which are associated with their occurrence probability. Events with lower probability
of occurrence (more extreme) yield higher design levels but get lower weights, and vice versa. We will now
show how this approach can be implemented in a coastal flooding problem with two dependent flood drivers.

4. Results

In this study, we analyze compound flooding hazard (i.e., combined ocean and terrestrial flooding) in
Washington, DC, United States. This area has a considerable number of infrastructure exposed to flooding in
the Potomac River channel (Ayyub et al., 2012; Moftakhari et al., 2017). The dynamics of flooding is strongly
determined by the nonlinear interactions between freshwater inflows and estuary water level (Hoitink & Jay,
2016) (see supporting information for detailed physical description of this interdependence). Thus, modeling
the correlation structure between flood drivers is crucial for appropriate characterization of flooding dynam-
ics. In fact, previous studies have shown that ignoring the interactions between ocean and terrestrial flooding
can lead to biased risk estimates (Moftakhari et al., 2017).

Here we consider the daily freshwater inflow estimates by the U. S. Geological Surveys (gauge num-
ber 01646500) and hourly water level observations provided by National Oceanic and Atmospheric
Administration (gauge number 8594900) as major flood drivers. The pair of interest for any given year is set
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Figure 1. Marginal cumulative distributions of (a) water level and (e) river discharge, and their (c and f) associated univariate return periods (y axis presented in
log scale). Joint probability isolines derived from Joe copula are displayed in Figure 1b, and associated return period isolines are depicted in Figure 1d. Both joint
probability and multivariate return period isolines are color coded with joint density levels with blue representing lower densities and red denoting higher
densities. Joint probability density values are renormalized to [0,1] range for visualization proposes. Blue dots are observed pairs of river discharge annual
maxima and associated water levels.

to be the largest annual freshwater inflow to the estuary and the corresponding largest observed hourly
water level within ±1 day. We first investigate the interdependency of these two natural hazards in an
83-year record (hence 83 pairs of drivers) through different correlation coefficients, namely, Kendall’s rank
(r = 0.5274, pvalue = 0.0000), Spearman’s rank correlation (r = 0.7041, pvalue = 0.0000), and Pearson cor-
relation coefficient (r = 0.9125, pvalue = 0.0000), all of which display significant dependence between the
two variables. Hence, we have used our proposed model to describe flood hazard considering both (terrestrial
and ocean) drivers and their interdependencies.

We first select the best fitted marginal distributions, F1 and F2, to the observed flood drivers (section 2.2) based
on the BIC goodness-of-fit metric. Figures S2A and S2C (supporting information) show the fitted distributions
(red line) compared to the observed (blue dots) river discharge and water level. Figures S2B and S2D display
the QQ plots to visually examine the goodness-of-fit of the distributions to the observed data. In our study, a
log-logistic distribution is selected to fit both variables (Table S1). The chi-square test for both drivers at 5%
significance level also confirms our visual inspection that fitted distributions are acceptable.

Then, we evaluate 26 bivariate models using MvCAT toolbox (Sadegh et al., 2017). The copula parameters
and their posterior distributions are inferred using MCMC simulation within a Bayesian framework. In this
study, the Fischer-Hinzmann copula is selected as the best model to describe the dependence structure
among the studied variables, based consistently on all goodness-of-fit criteria (Akaike information criterion,
BIC, Likelihood, Nash-Sutcliffe efficiency, and root-mean-square error). However, this copula does not have a
closed-form joint probability density function due to the “min” operator in its joint cumulative distribution
function, which leaves the derivative undefined at X1 = X2 (when the two inputs to copula are equal). This
impedes finding the most likely scenario (section 3.1) of compound hazard effects, among others. Hence, we
select the Joe copula (second best model) for the rest of this study. Figure 1 shows the joint probability isolines
(b) and return period levels (b) based on the Joe copula.

We then use the Joe copula model to derive design quantiles and analyze the associated compounding haz-
ards. Figure 2 shows the river discharge—water level fluctuation design pairs associated with a compound
event with joint return period of 50 years based on the different approaches described in section 3. The design
values of river discharge and water level, based on the most likely design scenario are 9820.50 m3/s and 2.48 m,
respectively. These are larger than the design values derived through univariate analysis (river discharge of
9202.01 m3/s and water level of 2.39 m). This clearly highlights that ignoring the interactions between flood
drivers can lead to underestimation of the hazard.
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Figure 2. Multivariate design quantiles based on different approaches. Univariate return period curves for (a) water level and (d) river discharge. Y axis for these
two plots is in log scale. Figure 2b shows a joint 50-year return period curve, color coded with the joint density levels. Light gray arrows display the univariate
design quantiles, whereas dark gray arrows depict the most likely scenario design quantiles. (c) Multiple samples, in black dots, on the joint 50-year return period
level randomly drawn with density levels as weight. In this plot, red dots show uncertainty space of most likely scenario design quantiles for posterior samples
of the Joe copula model.

To provide a broader range of multivariate design scenarios, Figure 2c shows 100 samples (black dots) ran-
domly drawn from the RP2

0.98 (50-year event) curve based on the weights assigned by the copula density
values (section 3.2). Design quantiles for this approach using the Joe copula range between 9202.00 and
12632.37 m3/s for river discharge (a range that equals to 97% of the mean annual maximum river discharge)
and 2.39 and 3.58 m for water level (a range that is as wide as 86% of average water level). The main limitation
of this approach is that the ranges of discharge and water level are very wide and cover most of the entire dis-
tribution. Figure 2c also displays the uncertainty space of design quantiles based on the most likely scenario
(section 3.3). Each red dot represents the most likely scenario for one parameter set from the posterior distri-
bution of the Joe copula, derived using MCMC simulation within a Bayesian framework. Each of these design
levels could be acceptable given the available information in the observed data, which depicts the importance
of taking uncertainty quantification into consideration for an informed design and management practice.

Thus far, we have focused on the design quantiles and the associated hazards based on a predefined return
period. Here we propose a multivariate expected event regardless of return period level (see the theory in
section 3.4). Table S4 shows the expected events’ boundary conditions for different copula families. In other
words, the threshold levels of Table S4 represent the compound hazards of the system at any given year with
the highest likelihood. For the Joe copula, an expected event is defined by a river discharge of 4492.23 m3/s
and a water level of 1.58 m. A closer look at Table S4 shows that the threshold quantiles of an expected
event given different copula models are fairly constrained and fall within the interval of [4490.77 m3/s–
5042.82 m3/s] for river discharge (a range that equals 16% of the mean annual maximum discharge) and
[1.58–1.72 m] for water level (a range that equals 10% of the mean water level). Note that expected scenario
quantiles refer to a nonextreme event that is most likely to occur in any given year and are significantly smaller
than the extreme multihazard scenarios. Nonextreme scenarios show lower uncertainty ranges, compared to
extremes; however, we design systems to withstand the extreme scenarios, and we should be wary of the
uncertainties in our design and hence probability of failure.

One key question is that to what extent the choice of multivariate model (here choice of copula) affects the
estimated hazard. Figure 3 plots 100 weighted random samples on the RP2

0.98 (50-year) curve (black dots)
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Figure 3. Multivariate design quantiles based on 100 weighted random samples on the critical layer (50-year joint return period curve) displayed with black dots,
and uncertainty ranges of most likely scenario depicted with red dots for a set of six randomly chosen copulas, namely (a) Gaussian, (b) Clayton, (c) Gumbel,
(d) Joe, (e) Nelsen, and (f ) Tawn.

and uncertainty ranges of the most likely scenario based on the posterior distribution of copula parameters
(red dots) for a group of six randomly selected representative copulas (also see supporting information). This
figure shows that choice of copula model and underlying uncertainty of copula parameters can potentially
translate into large ranges of design (or critical layer) quantiles. The weighted random samples (black dots)
on the RP2

0.98 curve, for all the copulas, cover a relatively large interval as wide as 246% of the mean annual
maximum discharge and 159% of the average water level. More importantly, the uncertainty ranges of the
most likely scenario significantly differ from one copula model to another (Figure 3). For example, the uncer-
tainty ranges of the most likely design quantile for the Joe copula model are as wide as 6% of the mean annual
maximum discharge and 3% of the mean water level, respectively, while these ranges significantly expand for
the Gaussian copula to 337% of the mean annual maximum discharge and 97% of the average water level,
respectively.

Uncertainties in the most likely scenario (and other scenarios) stem from multiple sources, including the
goodness-of-fit of the models (both marginal and multivariate model), model structural errors, posterior dis-
tributions of the copula model parameters, and even the observed joint probability errors. The observations
to which the univariate and multivariate models are fitted to are often not long enough to sufficiently con-
strain the model parameters, specifically for multidimensional models (Sadegh et al., 2017). The length of
record is also a constraining factor in terms of evaluating out-of-range return periods, requiring extrapolation
that exponentially increases the design uncertainties. Currently, most publications in hydrology and climate
journals consider very few multivariate models in their analysis, which may lead to large biases and errors in
estimated joint return periods, critical levels, etc. Such errors can be minimized through a rigorous copula and
marginal fitting, chosen from a wide range of options. This ensures that the selected copulas and marginals
are good representatives of the understudy system. We also note that some copula families with rather similar
performance metrics may show significantly different forms of probability isolines (see Sadegh et al. (2017)).
This raises the question of which model should be trusted to single handedly provide the design quantiles. We
demonstrate that a multimodel analysis provides more robust design quantiles and hence should be adopted
by the community (Figure S1).

Finally, uncertainty estimates (as in Figure 3) should be transparently communicated to those responsible for
infrastructure design and risk assessment, as well as to the public (Adger et al., 2013; Buchecker et al., 2013;
Covello et al., 1986; Faulkner et al., 2007). Neglecting uncertainties in the characterization of hazardous events
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can potentially lead to adopting inefficient or over-designed mitigation strategies (Keller et al., 2008; Moser &
Ekstrom, 2010; Pielke et al., 2007). Traditional approaches in multivariate analysis literature do not fully address
the sources of uncertainties. We argue that the proposed approach in this paper offers an avenue to account
for the underlying uncertainties in multihazard assessment.

5. Conclusions

It is important to consider the compounding effects of multiple interdependent extremes or drivers to accu-
rately characterize the underlying hazard. In this paper, we discuss multiple design scenarios and hazard
assessment frameworks associated with compound events, and their uncertainties based on a multivariate
framework. Here we summarize our conclusions.

1. The choice of copula is crucially decisive for multivariate hazard assessment and design quantile estimation
(Figure 3), which has not received the attention it deserves in the literature. In most hydrology and climate
studies, only few models (typically a handful) are tested for fitting and multivariate analysis. In our coastal
flooding example, the most likely compound extreme scenario varies in a range that equal to 56% of the
mean annual maximum river discharge and 178% of the average water level, for different copula models.
We recommend using a wide range of models with different characteristics to ensure the fitted multivariate
model is representative.

2. Translation of modeling uncertainties into multivariate design quantiles is a critical aspect of multivariate
analyses. While some copula models show a relatively confined level of uncertainty (e.g., Joe copula with
the most likely design quantiles’ ranges equal to 6% and 3% of the mean annual maximum river discharge
and the mean water level, respectively), others display a large range of uncertainty in their design quantiles
(e.g., Gaussian copula with the most likely design quantiles’ ranges equal to 337% and 97% of the mean
annual maximum river discharge and the mean water level, respectively). For different case studies and data
sets, the best choice of model with response to uncertainty bounds may change.

3. We also note that the choice of marginal distribution plays an important role in determining the design
quantiles. Figure S2 (supporting information) shows significant divergence between different marginal dis-
tributions representing river discharge (a) and water level (b). But this issue is not limited to multivariate
analysis and the same applies to univariate applications.

Moreover, in this paper we introduce the concept of a multihazard expected event, with threshold quan-
tiles derived based on the notion of weighted average of possible events. This multivariate event shows less
sensitivity to the choice of copula. In our coastal flooding case study, for example, such threshold scenario
ranges between [4490.77–5042.82 m3/s] for annual maximum river discharge and [1.58–1.72 m] for water
level, extents of which equal to 16% and 10% of the mean annual maximum river discharge and the mean
water level, respectively.
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