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Abstract— We devised and evaluated a multi-modal machine
learning-based system to analyze videos of school classrooms for
“positive climate” and ‘“‘negative climate’, which are two dimen-
sions of the Classroom Assessment Scoring System (CLASS)
[1]. School classrooms are highly cluttered audiovisual scenes
containing many overlapping faces and voices. Due to the
difficulty of labeling them (reliable coding requires weeks of
training) and their sensitive nature (students and teachers may
be in stressful or potentially embarrassing situations), CLASS-
labeled classroom video datasets are scarce, and their labels
are sparse (just a few labels per 15-minute video clip). Thus,
the overarching challenge was how to harness modern deep
perceptual architectures despite the paucity of labeled data.
Through training low-level CNN-based facial attribute detectors
(facial expression & adult/child) as well as a direct audio-to-
climate regressor, and by integrating low-level information over
time using a Bi-LSTM, we constructed automated detectors
of positive and negative classroom climate with accuracy (10-
fold cross-validation Pearson correlation on 241 CLASS-labeled
videos) of 0.40 and 0.51, respectively. These numbers are
superior to what we obtained using shallower architectures.
This work represents the first automated system designed to
detect specific dimensions of the CLASS.

I. INTRODUCTION

One of the most important variables of school classrooms
that predict students’ learning is the nature and quality of
interactions between teachers and their students. Numerous
correlational [2], [3], [4], [5], [6]) and some large-scale
causal [7], [8] studies have demonstrated the link between
emotional and instructional support in the classroom and
children’s cognitive, social, and emotional skills.

In order to characterize classroom interactions precisely,
educational researchers have developed a variety of class-
room observation protocols. One of the most widely used
protocols is the Classroom Assessment Scoring System [1]
(CLASS). The CLASS measures the quality of teacher-
student interactions within ten different dimensions, includ-
ing (1) positive climate, which measures the “warmth, re-
spect, and enjoyment communicated by verbal and nonverbal
interactions” between students and teachers; and (2) negative
climate, which measures the “overall level of expressed
negativity in the classroom” [1].

A typical CLASS coding session requires human coders —
who could be teachers, educational researchers, or school ad-
ministrators — to examine specific characteristics of the states,
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actions, and interactions among the classroom participants
(children and teachers) during the class session. Classroom
interactions can be scored either during live observation or
by watching recorded videos. CLASS coders assign a single
score (1-7 scale) for each dimension to each 15-minute chunk
of video; hence, CLASS codes are very sparse.

The official CLASS manual provides guidelines for how to
summarize the discrete observations into an aggregate score
(see Table I). Each judgment is based on the relative presence
or absence of behavioral markers that belong to a specific
indicator of a particular CLASS dimension; in this sense,
CLASS is organized hierarchically. The behavioral markers
can span auditory, visual, linguistic, and pedagogical dimen-
sions. For example, when assessing positive climate, CLASS
coders are instructed to consider how frequently smiles are
exhibited by classroom participants; whether the teacher calls
his/her children by name and looks them in the eye; whether
the emotions between teachers and students are congruent;
etc. Negative climate can be signified when a teacher raises
his/her voice in anger at a student; makes threats to punish
them if they do not behave; etc. Table I shows a small subset
of the behavioral markers to which CLASS coders should
attend for positive and negative climate.

Classroom observation protocols such as the CLASS are
invaluable for providing feedback to teachers on what went
well in their teaching and what could be improved. However,
manual classroom observation has important limitations (1)
Cost: Careful coding of videos is very laborious and can
take many person-hours and cost hundreds of dollars per
day. (2) Reliability: Scores often vary significantly across
coders, and multiple codes per video must be collected to
obtain a reliable estimate. Coders are also prone to form
early judgments based on just a few minutes of video
(primacy effects [9]) and may be reluctant to change their
minds [10]. (3) Temporal resolution: classroom observation
videos are typically scored in relatively long (15-20 minute)
chunks, partially due to the high cost of coding, which
may not be ideal for giving teachers specific feedback on
how to improve their teaching. These limitations, along with
dramatic advances in machine learning and deep learning
during the past 5 years, raise the question: Could machine
perception be harnessed to enable more precise, efficient,
reliable, and fine-grained feedback to teachers? The goal
of this paper is to take some steps toward answering this
question by developing a machine learning architecture to
recognize CLASS positive climate and negative climate.



Structural challenges: Two inter-related challenges posed
by this task are data privacy and data scarcity: Classroom
observation videos are sensitive — they show adults and
children in sometimes emotionally distressed situations. For
example, especially in preschool classrooms (as we analyze
in this study), a child may start crying or screaming, or a
teacher may occasionally become visibly frustrated in front
of his/her classroom. Moreover, careful coding of classroom
observation videos — whether with the CLASS or another
protocol (e.g., Framework for Teaching [11], UTeach [12])
— is highly laborious and requires coders to undergo many
weeks of training or more. Both these factors mean that the
available video datasets for training and testing are typically
modest in size (a few hundred videos), and that researchers
are very hesitant to share them with others. One of the over-
arching research questions we tackled in this study was how
to harness modern deep learning perceptual architectures, via
a combination of transfer learning from public datasets and
fine-tuning on a modest-sized classroom video dataset, to
predict CLASS positive and negative climate accurately.

II. RELATED WORK

There has been substantial prior work [13], [14], [15],
[16], [17], [18], [19], [20], [21] on using machine learning
to analyze learners’ affective states, from either video of
students’ faces (e.g., [13], [15], [14], [16]) or log files of
students’ interactions (e.g., [19], [20], [21]). Much of this
work has focused on intelligent tutoring systems (ITS), in
which each student mostly interacts with the computer alone,
without much interaction with others.

More recently, researchers in multi-modal machine learn-
ing and educational data mining have investigated how to
characterize the dynamics of an entire classroom. D’Mello,
Donnelly, and colleagues [22], [23], for example, have re-
cently explored how to segment and recognize students’ and
teachers’ speech in unconstrained classrooms based on differ-
ent configurations of Kinect cameras. Wang and colleagues
[24] obtained high accuracy in segmenting teachers’ speech
by deploying small wearable recording devices in math class-
rooms. For the specific application of automated classroom
observation scoring, we are only aware of one prior work:
Qiao and Beling [25] developed a computer vision system,
optimized within a multiple-instance learning framework, to
estimate which 3-minute snippets of classroom videos were
most relevant for CLASS coders to code manually. However,
in contrast to our study, however, their algorithm did not
actually predict the CLASS scores themselves.

ITII. HIGH-LEVEL APPROACH

In our study we focus on automatically estimating the
positive climate and negative climate dimensions of the
CLASS (see Table I). Unlike simpler labeling tasks such
as smile, anger, crying, etc., the CLASS dimensions are
high-level semantic states that are evaluated holistically by
watching an entire 15-minute video segment and making an
overall judgment. In our exploratory work — in fact, to the
best of our knowledge ours is the first study to attempt to
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Fig. 1: Ensemble of visual and audio-based models to better
predict CLASS climate. The left side of the ensemble shows
the architecture which predicts CLASS climate scores using
an LSTM network on top of facial expression scores (smile,
sadness, anger). The right side of the ensemble shows the
architecture that predicts CLASS climate scores using a
convolutional neural network on top of MFCC and Chroma
features extracted from audio. In the left part of the figure,
St=student, Te=teacher.

Positive Climate

Indicators Behavioral Markers
Relationships Physical proximity, matched affect
Positive Affect Smiling, laughter
Respect Eye contact, warm voice
Negative Climate
Indicators Behavioral Markers

Negative Affect
Punitive Control
Teacher Negativity
Child Negativity

Trritability, harsh voice, anger
Yelling, threats

Sarcastic voice, humiliation
Victimization, bullying

TABLE I: Positive and negative climate dimensions of the
Classroom Assessment Scoring System (CLASS) [1]. Each
dimension is sub-defined in terms of indicators, each of
which has multiple behavioral markers.

measure CLASS dimensions automatically using computer
vision and computer audition — we used a hierarchical, multi-
modal machine learning approach consisting of two broad
classes of features (see Figure 1 for an overview):

Visual features: There are a variety of visual behavioral
markers that suggest positive climate. For instance, positive
affect is signaled (in part) by smiling and laughter, and
positive relationships are associated with congruent facial
expression between the teacher and her/his students, i.e., the
teacher shows positive emotion when the students show posi-
tive emotion. Similarly, overt displays of anger, frustration, or
sarcasm indicate negative climate. Although automatic facial
expression recognition is a mature field, the vast majority of
available systems (e.g., Amazon Rekognition, or OpenFace
[26]) are trained mostly on adult faces. In contrast, our
population consists of very young (2-3 years old) children.
Both due to the demographics of the target population and
to data privacy constraints (which precludes the use of a
cloud-based facial expression recognition service trained on
millions of faces), we decided to train custom CNN-based



Fig. 2: Three representative images for the “unclear” label
for smile/non-smile annotation task.

binary detectors of facial expression (smile, sadness, and
anger), as well as child/adult (useful for determining who is
the teacher in a classroom based just on the face). We then
integrate the facial expression estimates — in particular, the
average (within each video frame) smile, sadness, and anger
scores of all the adults, as well as the average expression
scores of all the children — over time using (Bi-)LSTM neural
networks.

Auditory features: Low-level audio features can capture
paralinguistic and prosodic features such as sarcasm, laugh-
ter, yelling, screaming, crying, etc.; see Table I. In this work
we focus on how low-level auditory features can directly
predict CLASS positive and negative climate scores of the
classroom videos.

Ensemble: To estimate CLASS climate scores, we com-
pute the unweighted average of the visual and auditory
predictors of each dimension. (In pilot experimentation we
found that weighting resulted in almost no improvement.)
Note that, while multi-task learning (MTL) could be used to
predict positive and negative climate jointly, we purposely
avoided this approach because, according to the CLASS
definition, absence of positive climate is not evidence of
negative climate — they are independent dimensions.

IV. DATASETS

To train our system, we used (1) a private dataset of
CLASS-labeled classroom videos; (2) YouTube videos of
school classrooms; and (3) the AffectNet dataset [27].

A. CLASS-labeled classroom videos

The first data source is from the University of Virginia
(UVA) and consists of videos of toddler classrooms (children
under 3 years old), each of which is 45 — 60 minutes long.
Each video is split into 15-minute chunks, and each chunk is
labeled for the 10 dimensions of the CLASS-Toddler coding
protocol. In total we have 241 labeled 15-minute videos
distributed across the 7 classes as shown in table II.

Score

Dimension 1 [2]3]4]5]67]7
Positive Climate 0 6 16 | 67 | 68 | 78 | 6
Negative Climate | 196 | 36 | 7 2 0 0|0

TABLE II: # labeled video segments for each CLASS score.

Preprocessing: All videos were split into frames by sam-
pling at a rate of 3 frames per second. To enable automated
face analysis, the frames were then processed by the state-of-
the-art CNN-based face detector (Faster RCNN, [28]), which
is highly robust to non-frontal faces. The image frames and

Fig. 3: Classroom video from our YouTube dataset (Sec. IV);
https://youtu.be/cjNv2dQCFEk.

associated face coordinates constitute the CLASS-Images
dataset.

In addition, from each of the UVA videos, we also
extracted two sets of audio-based features: (1) the Mel-
Frequency Cepstral Coefficients (MFCC), which represents
the coefficients of the highest energy frequencies present in
the audio; and (2) Chroma features, which convert the audio
frequency into the 12 musical octaves bins. These features
constitute our second dataset, which we call CLASS-Audio,
and are used to train the audio-based CNNs that directly
predicts CLASS positive and negative climate scores.

B. YouTube classroom videos

Modern deep perceptual architectures typically need a
large amount of training data. For this reason, we collected an
additional dataset to train the smile/non-smile and child/adult
detectors, both of which were trained specifically to perform
well in cluttered classroom environments with highly non-
frontal faces. In particular, we harvested 70 publicly avail-
able classroom observation videos of young children from
YouTube. The videos were split into frames at 3 frames
per second, and each frame was processed with the face
detector to obtain the location of all the faces. In total, 1.5
million cropped faces images were collected from these 70
videos with around 600 unique people in total. From these
1.5 million face images, 15000 images were sub-sampled
randomly while maintaining an equal number of images from
each video (to ensure a high number of unique faces).

The YouTube face images and associated labels (see next
section) constitute the YouTube dataset. We note that, the
YouTube dataset, in contrast to the CLASS-Images and
CLASS-Audio, is publicly available, which enabled us to
use Mechanical Turk for efficient annotation.

C. AffectNet [27]

While the YouTube dataset we collected was useful for
collecting smiles, it contained relatively few negative expres-
sions. Hence, we also used the emotion-labeled AffectNet
dataset to train detectors of anger and sadness.

V. DATA ANNOTATION

Positive and negative climate depend (in part) on the
emotional state of the students and teacher(s), as well as
on the interaction between them. We thus trained binary face
classifiers of smile, sadness, anger, and child/adult (to distin-
guish students from teachers) that were specifically tailored



to highly cluttered classroom environments with toddlers
(< 3 years old) and highly non-frontal faces (sometimes even
exceeding 90°).

Smile: We designed a crowdsourcing task to label the
face data of the YouTube dataset and designed an annotation
protocol with which we annotated the 15000 cropped face
images from the YouTube videos on Amazon Mechanical
Turk. Each face image was labeled by 3 different annotators.
We asked annotators to assign each face image to one of four
categories using the following instructions:

« Smile if the face subjectively looks joyful with evidence

of lip-corner pull (i.e., AU 12 of FACS [29]).

o Non-Smile if there is no evidence of joy. The mouth

might still be open.

o Unclear if it is hard to tell as smile or non-Smile.

o Invalid if there is no face in the image; if there are

multiple faces in the same image; or if the face is not
a human face (e.g., cartoon).
The final label for each face image was decided by majority
vote across the 3 labelers. In total we had 1644 faces labeled
as smile, 5578 as non-smile, 3704 images as unclear, and the
rest as invalid.

Child/Adult: We asked annotators to label each face
image of the YouTube dataset as “child” or “adult”. Similar
to the smile labeling task above, labelers could also respond
with “unclear” or “invalid”. After performing majority vote,
we had 8769 images labeled as child 2329 as adult, 3522 as
unclear, and the rest as invalid.

VI. TRAINING THE FACE CLASSIFIERS
A. Smile and child/adult detectors

For training, validation, and testing, we first removed
all images from the YouTube dataset that were labeled as
“invalid”. We explored two particular approaches: (1) multi-
task learning (MTL) to train a classifier for both tasks
simultaneously, and (2) supervised pre-training on ImageNet.

Architecture: All networks we investigated take cropped
RGB face images of size 100 x 100 x 3 as inputs. We
explored around 30 different network designs; in the end we
settled on VGG16 [30]. We compared training the network
from scratch to pre-training on ImageNet [31]. For the latter
approach, we replaced the final fully connected (“dense”)
layers of the pre-trained VGG16 with 2 dense layers trained
from scratch on YouTube. In the end, the network outputs
the probability of smile/non-smile and of child/adult.

“Unclear” images: Some of the face images (Figure 2)
that were cropped from the YouTube dataset were labeled as
“unclear”. We compared two approaches: (1) removing the
unclear images from the dataset, and (2) setting the target
label (smile/non-smile, or child/adult) to 0.5.

Data partition: The 70 videos from the YouTube dataset
were partitioned using an 80-20 split on a video level
between training and testing. This ensured that no video
used for training or validation was used for testing. For
hyperparameter selection, we further split the training data
using an 80-20 split on an image level for a validation
dataset. See Table III for details.

[ Face Type [ Train | Valid [ Test |
Smile, Child 803 201 125
Smile, Adult 270 68 52
Non-smile, Child 2746 687 629
Non-smile, Adult 583 146 172
Unclear 725 140 238

TABLE III: The number of face images of each class within
each subset (train, validation, test) of the YouTube dataset.

Hyperparameters: The model was trained using Adam,
with default parameters suggested in [32], for 100 epochs.
The learning rate is annealed by a factor of 0.1 with a
patience of 3 on the validation loss.

Comparison to Amazon Rekognition: Rather than col-
lect emotion-labeled face images and train a neural network,
one might consider using off-the-shelf software such as
OpenFace [26] or even a cloud-based facial expression recog-
nition platform such as Amazon Rekognition. Rekognition
has presumably been trained on a very large dataset of
images, but not specifically for classroom environments. In
contrast, our MTL pre-trained network was optimized specif-
ically for young children (and their teachers) in cluttered
classrooms. In pilot experimentation, we found OpenFace to
be less accurate on the YouTube face images than Rekogni-
tion and thus abandoned the approach.

In addition to recognizing smile/non-smile, Rekognition
also estimates the age (an integer value) of each face.
We compared the accuracy of our custom-trained neural
networks with Rekognition. Our accuracy metric is the Area
Under the ROC Curve (AUC). Since Rekognition outputs
an integer value for the estimated age of the face, and
since AUC is invariant to monotonic transformations of
the predictions, we can use the age values directly as the
likelihood of “adult”. Also, since Rekognition uses a different
face detector, we first matched the set of detected faces from
Rekognition with those with our face detector [28] using the
Intersection over Union (IOU). For any faces not detected by
Rekognition, we took the mean prediction (over all faces in
the test set) as the estimate. We then compared the accuracy
on the test set of smile/non-smile and child/adult.

A h Child/ Smile/
pproac Adult Non-smile
MTL .(prc‘:‘tramed gn ImageNet, 0.942 0.879
with “unclear” images)

MTL (pretl;amed 02 hnageNet, 0.957 0.889
without “unclear” images)

‘MTL ‘(‘no pretr’:‘u.nmg, 0.931 0.822
without “unclear” images)

Ind1v1dya1 neaworks (Eq pretraining, 0.863 0.755
without “unclear” images)

Amazon Rekognition 0.935 0.837

TABLE IV: Accuracy (AUC) of the different neural networks
we compared for child/adult and for smile/non-smile classi-
fication. MTL is a single network trained using multi-task
learning for both tasks jointly.

Results on YouTube images: Accuracy results (measured



as AUC) are shown in Table IV. There are several interesting
trends: (1) The magnitude of the smile AUC scores — about
89% for the MTL-based NN trained without unclear images —
is lower compared to the accuracy levels (typically mid/high
90%) found on more conventional frontal datasets of adults
(e.g., [33]). This underlines the difficulty of the recognition
task, which is likely due to the highly cluttered and non-
frontal nature of classroom faces. (2) Corroborating many
other works [34], pre-training on ImageNet significantly
boosted recognition accuracy of the neural networks. (3)
Training custom face classifiers, tuned specifically to class-
room environments on modest-sized datasets, can result in
higher accuracy than a commercial-grade system (such as
Amazon Rekognition) trained on millions of images. (4)
Multi-task learning significantly enhanced the accuracy of
the classifiers for both tasks. (5) Training with “unclear”
images (whose labels were set to 0.5) lowered the test accu-
racy of the child/adult and smile/non-smile CNNs slightly.
However, we discovered that it actually increased (compared
to using a CNN trained without unclear images) the accuracy
of the overall CLASS estimates from the ensemble network
(see next paragraph).

“Unclear” images: Without adding “unclear” faces to
the training data, our MTL-trained model tended to assign
a low probability of “smile” too images that were labeled
by humans as “unclear”: the mean estimated smile prob-
ability was 0.096 (s.d. 0.180). But this may be a mis-
characterization of “unclear” faces, whose facial expression
is, by definition, uncertain and thus might be more aptly
represented by a probability of 0.5. After adding “unclear”
images (with target probability of 0.5) to the training set,
the new detector gives a mean probability of 0.476 (s.d.
0.112) for smile/non-smile, and of 0.519 (s.d. 0.113) for
child/adult, to the “unclear” images in the test set. This could
be important for environments — such as ours (see Table III)
— in which “unclear” face images commonly occur.

B. Sadness and anger detectors

Using the AffectNet dataset and the same neural net-
work architecture as for smile detection, we trained binary
detectors of sadness and anger (jointly using MTL); their
accuracies (AUC) on the test set were 0.872 and 0.884,
respectively.

VII. PREDICTING CLASS SCORES FROM VISUAL CUES

Given the trained face classifiers of smile, sadness, anger,
and child/adult, we created predictors of the CLASS positive
and negative climate scores by applying the classifiers to
every detected face in each frame of the CLASS-Image
dataset, and integrating the results over each 15-minute
CLASS-labeled video. Since the sadness and anger detectors
were trained later in the course of the project, most of the
architectures we compare use only the smile detector. In
Section IX we show how the two additional detectors boost
the overall accuracy.

We considered two temporal integration approaches: sim-
ple average, and a recurrent neural network. For both ap-

proaches, we applied 10-fold cross-validation to the CLASS-
Images dataset subject to the following stratification con-
straints: (1) Whenever possible, all climate levels (1-7) must
be represented in each fold; and (2) No two folds contain a
video clip from the same classroom observation video.

1) Simple average: Since the frequency of facial expres-
sion in classroom videos is one of the behavioral indicators
associated with positive climate [1], it seemed plausible that
the average expression, across all participants and all frames
of the video, might be predictive. To explore this, we trained
a decision tree-based regressor (using the CART algorithm
[35]) that took as input the average smile and predicted the
CLASS score. In contrast to simple linear regression, the
decision tree can capture non-linear relationships.

2) Recurrent neural networks: Based on the intuition that
the sequence of facial expression events could be important
for estimating CLASS climate scores, we explored several
temporal integration models. The general approach was to
compute the average smile scores within each video frame,
and then pass these scores to an LSTM recurrent neural
network with one hidden layer containing 100 units. The
number of recurrent steps was 2700 (900sec for a 15-min
video chunk at 3 frames/second). At the end of the time
series, a single output is predicted which is the CLASS score.
See the architecture in the left half of Figure 1.

We explored several input representations: (1) The average
smile (within each frame) of all participants (both teachers
and students); (2) the average smile of just the students
(i.e., we use the smile scores of only those faces that
are considered “child” by the child/adult detector); (3) the
average smile of just the teachers; (4) the average smile
of students and teachers separately (i.e., as two different
input features). Moreover, since there is no constraint to code
CLASS climate in a causal manner, we also tried using a bi-
directional LSTM. A Bi-LSTM utilizes the knowledge of the
future events to understand the context of current events.

Results: The average (over 10 folds) Pearson correlations
(r) for the different approaches for predicting positive and
negative climate, along with their p-values (for the null-
hypothesis that the true correlation is 0), are shown in
Table V. The accuracy of the simple average approach
(shown in the first row) was very low, and the results were
not statistically significant.

The LSTM-based predictor of climate delivered higher ac-
curacy than the decision tree-based predictor (which simply
analyzed the average smile of the whole video). Moreover,
analyzing students’ and teachers’ smiles separately using the
LSTM was even more (and statistically signficantly so) ac-
curate. Analyzing the video from both directions using a Bi-
LSTM gave yet another small accuracy boost. This suggests
that the facial expression dynamics are more important than
their mean values for predicting CLASS scores.

Hyperparameters of the Bi-LSTM: Optimizer=Adam,
Ir=0.001 (annealed by factor of 0.1 with a patience of 15
by monitoring the validation loss), epochs=500, with early
stopping patience of 25 epochs by monitoring training loss.

Class imbalance: To address the class imbalance, we tried



oversampling the stratified folds using SMOTE (Synthetic
Minority Oversampling Technique) [36] and then retrained
our models. But by doing this we saw a drop in performance;
see Table V.

VIII. TRAINING THE AUDIO-TO-CLIMATE CLASSIFIERS

We trained a CNN that analyzes the audio of each class-
room observation to predict positive and negative climate. In
particular, we applied 10-fold cross-validation to the CLASS-
Audio dataset and extracted both MFCC and Chroma fea-
tures using the Librosa package [37]. From the two feature
sets we took the top 100 most significant coefficients to form
two feature vectors of 100 features in each. By treating the
spectrograms features obtained as images, we can use a CNN
to look for patterns that are predictive of CLASS scores.

Results are shown in the fourth-to-last row of Table V: the
correlation of the predicted scores with the ground-truth pos-
itive and negative climate were 0.308 and 0.29, respectively,
and were statistically significant. These provide evidence that
low-level audio features, even without downstream speech
recognition or NLP, can be useful for CLASS prediction.

We also tried two alternative approaches for using audio-
based features: (1) Similar to how we trained face classifiers
by pre-training a VGG16 network on ImageNet, we can pre-
train an audio-to-climate network on a large audio dataset
such as Audioset [38]. In practice, we were unsuccessful with
this approach, and the predictive accuracy was barely above
chance. A plausible explanation is that the expected input
to the Vggish network [39] a 5-second audio clip sampled
randomly from a given video. It might be conceivable that 5-
seconds of classroom audio would be very hard to classify for
a particular climate and was the result for the low accuracy
we had got. (2) We trained auditory emotion classifiers
from datasets such as RAVDESS [40], SAVEE [41], and
UMSSED [42] datasets. We then used the resulting detector
as mid-level features to predict CLASS scores. However, this
approach also resulted in low accuracy — possibly due to the
quite different environments in which the audio was collected
compared to school classrooms — and we abandoned it.

Hyperparameters: Optimizer was Adam, Ir=0.0001,
epochs=500, with early stopping patience of 25 epochs by
monitoring the training loss.

Class imbalance: Similar to the previous section, we also
tried using SMOTE to handle class imbalance but found it
negatively impacted accuracy.

IX. ENSEMBLE MODEL: EXPRESSION + AUDIO

Given the Bi-LSTM that examined the smile dynamics of
children and adults separately, as well as the audio-to-climate
regressor that examined low-level audio features, we created
two ensemble networks (one each for positive and negative
climate; see Figure 1) that simply outputs the average of
its two inputs as the CLASS score. Combining the audio
and visual channels yielded an improve accuracy over either
one. See Table V. Finally, we also tried training a visual
detector of negative climate using not just smile, but also
sadness and anger as facial expression inputs (see Section

VI-B). We found that including these new features boosted
the accuracy of the negative climate significantly.

Results: The best ensemble model predicted the ground-
truth CLASS positive and negative climate scores with a
Pearson correlation of 0.40 and 0.51, respectively, both
of which were statistically significantly better than chance.
Table VI shows the confusion matrices obtained over the
10-fold cross validation for positive and negative climate
respectively on the UVA CLASS-labeled video dataset. Fi-
nally, Figure 4 shows the trajectory of smiles, separately for
teachers and students, on one of the UVA toddler classroom
videos. Each dot represents one smile estimate for one face
detected at a particular video frame. The solid line represents
the smoothed smile trajectory over time.

Positive Negative
Model Climate Climate
r p r p
DT (Avg Smile) 0.08 0.178 | 0.02 0.360
RandomForest (Audio) 0.28 0.004 | 0.22 0.007
HMM (States:13; Smile:St, Te) 0.15 0.092 | 0.14 0.101
LSTM (Smile: All) 0.13  0.102 | 0.15 0.091
LSTM (Smile: St) 0.12  0.108 | 0.13 0.045
LSTM (Smile: Te) 0.11  0.137 | 0.13 0.032
LSTM (Smile: St, Te) 0.15 0.097 | 0.20 0.009
Bi-LSTM No Unclear
(Smile: St, Te) 0.15 0.092 | 0.22 0.007
Bi-LSTM (Smile: St, Te) 0.17 0.052 | 0.24 0.006
SMOTE-Bi-LSTM (Smile: St, Te) | 0.14 0.098 | 0.21  0.007
CNN (Audio) 0.31 0.002 | 0.29 0.003
SMOTE-CNN (Audio) 0.29  0.004 | 0.26  0.006
Ensemble: Bi-LSTM
+ CNN (Audio) 0.38 0.002 | 045 0.001
Ensemble: Bi-LSTM
(Smile,Anger,Sadness)
+ CNN (Audio) 040 0.001 | 0.51 0.001

TABLE V: CLASS climate prediction: average 10-fold
Pearson () correlations and associated two-tailed p-values.
DT=decision tree-based regressor, St=student, Te=teacher.

Positive Climate Negative Climate

[ L[2]3]4[5]6]7] (I 1]2]3]4]5]6]7]
T[[0[0[0][0]0]0]0 T[[139]54]2[0]0]0]0
2([0[0[3[1[2]0]0 2[[ 12 [22[1[1[0]0]0
3[[0[2[3[4[6][1]0 3[4 [2][1]0[0[0]0
4[[0[0[23[19[20][5 [0 4]0 [2]0[0[0[0]0
5[[0]0] 1 [14]29[23]1 5[0 [0]0[0[0[0]0
6[0[4] 4 [18[2328]1 6/ 0 [0]0[0[0[0]0
7[[0[0[0 [T [3[1]0 7] 0 [0]0[0[0[0]0

TABLE VI: Confusion matrices of CLASS predictions. Rows
are ground-truth; columns are the (rounded) predictions.

X. COMPARISON TO SHALLOW ARCHITECTURES

To validate the need for a deep learning approach we
performed experiments with 2 commonly used shallow ar-
chitectures: (1) Random Forest to analyze audio features. (2)
Hidden Markov Model to analyze the facial expressions. For
the auditory features we applied a Random Forest model on
the MFCC+Chroma features. We optimized the number trees
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Fig. 4: The smoothed average student and the teacher smile vectors (red and blue lines) along with the individual smile values
(dots) over the 2700 frames for one representative video. This vector is given as input to our Bi-LSTM model to predict for
Positive and Negative Climate. For this particular video we obtained a Positive Climate score of 4.59 and Negative Climate
score of 1.78. The ground-truth scores, as obtained from human CLASS experts, were 5 and 2, respectively.

and depth of the trees using 10 fold double cross validation
to give it the best chance of success. For the facial expression
features we trained a separate HMM for each CLASS score
(1, 2, ..., 7) and each dimension (Positive, Negative). For
prediction, we passed each sequence to all the HMMs and
then attributed the sequence to the model that gave the
highest probability. The trend observed is that the shallow
architectures did not perform as well as the deeper models,
particularly the Bi-LSTM (Smile: St, Te) (see Table V).

XI. CONCLUSIONS

We devised a multi-modal neural network-based system to
detect automatically the levels (1-7) of positive and negative
climate of the CLASS protocol for classroom observation.
Such a system could, with further development, be used to
provide teachers with more specific and frequent feedback
about the quality of their classroom interactions. From a
machine learning perspective, the chief challenge was how to
harness modern deep perceptual architectures, which are very
data-hungry, for an application domain in which the data are
sensitive and scarce; difficult to label (requiring significant
training); and sparsely labeled (only a few numbers per 15-
minute video clip).

Lessons learned: (1) Automatic estimates of individual
participants’ facial expression, as well as low-level audio
features, provided enough signal to predict CLASS positive
and negative climate well above chance — even though these
constitute just a few of the behavioral markers associated
with classroom climate. Moreover, the dynamics of facial
expression were important — the average “smile” value alone

had very little predictive power. (2) Corroborating many prior
works on image recognition, we found that transfer learning
via pre-training a VGG16 classifier on ImageNet was highly
effective at creating a domain-specific face classifier of
smile/non-smile and of child/adult. The resulting system
outperformed a state-of-the-art cloud-based facial expression
recognition service (Amazon Rekognition). This is likely due
to the characteristics of classrooms which involve less frontal
faces, faces that are mostly of children whose face features
and emotion response is different compared to adults, as well
as high clutter in the background. For audio-based CLASS
prediction, however, we did not observe any advantage in
pre-training on standard audio datsets. (3) Despite the modest
size of our training datasets, we found that — by using a
combination of multi-task learning, supervised pre-training,
and augmentation with supplementary data — modern deep
perceptual architectures of both visual and auditory informa-
tion delivered higher accuracy than commonly used shallow
models.

Future work: It may be useful to track the expression
trajectories of individual people in the classroom over time,
rather than just treating each frame as a “bag” of expressions.
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