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Abstract: We consider inference for the parameters of a linear model when the
covariates are random and the relationship between response and covariates is pos-
sibly non-linear. Conventional inference methods such as z intervals perform poorly
in these cases. We propose a double bootstrap-based calibrated percentile method,
perc-cal, as a general-purpose Cl method which performs very well relative to
alternative methods in challenging situations such as these. The superior perfor-
mance of perc-cal is demonstrated by a thorough, full-factorial design synthetic
data study as well as a data example involving the length of criminal sentences.
We also provide theoretical justification for the perc-cal method under mild con-
ditions. The method is implemented in the R package ‘perccal’, available through
CRAN and coded primarily in C++, to make it easier for practitioners to use.
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1. Introduction

In many applied settings, practitioners would like to make interpretable
statements such as the expected average difference in a response variable, Y,
associated with a unit difference in a covariate of interest, X, controlling for all
other predictors. In situations like these, practitioners often run linear regres-
sions despite the fact that the true but unobservable relationship between Y and
Xj’s may be non-linear. Doing so may be sensible when the utility of being able
to make more interpretable statements such as the one above outweighs the cost
of possible model bias, which may hard to discern (particularly in multivariate
settings). An important challenge is how practitioners can produce valid infer-
ence upon their estimates of the true population-level best linear approximation
for the relationship between predictor and response in these settings. We denote
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the target of interest by B (for more detail, please see Section 2.4). Our aim
with this paper is to help practitioners perform better inference for 3 in these
situations.

Buja et al. (2015) call much-needed attention to this issue, showing that
when the relationship between response Y and covariates X = (1, X1,..., X))t
is truly non-linear with noise that is possibly heteroskedastic, and when X is itself
random, standard linear model theory standard errors are asymptotically invalid.
They show that the “sandwich estimator” of standard error does provide asymp-
totically correct inference for the population slopes, even when non-linearity and
heteroskedasticity are present, and X is random.

While the sandwich estimator may provide asymptotically valid inference,
practitioners will also be understandably interested in better understanding how
the finite sample performance of various methods of inference compare, as well
as the asymptotic properties of those methods. We will show that in our setting,
empirical coverage of population regression slopes deteriorates considerably for
all traditional confidence interval methods. The primary contribution of this
paper is to shine new light on these issues, proposing and studying an inference
method which is convincingly superior to the sandwich estimator, and making a
very fast implementation of this proposed method accessible to practitioners.

We propose a double bootstrap-based calibrated percentile method, perc-
cal. The seminal work of Peter Hall shows the advantages of double bootstrap
approach in classical settings involving population means. Population slopes as
defined here are a more complex, non-linear object. For example, Hall (1992)
studies univariate data without model misspecification. The methods he uses,
then, need to be augmented with additional material about Edgeworth expan-
sions that is adapted from Jensen (1989). For the first time, we prove in Section
3 and in the appendix that even when Y and X have a non-linear joint distribu-
tion, and X is random, that under relatively mild regularity conditions the rate
of coverage error of perc-cal for two-sided confidence intervals of the best linear
population slopes between a response variable Y and p-dimensional covariates X
is O(n=2). In contrast, conventional methods achieve a rate of coverage error of
O(n~'). We then show in a Monte Carlo study that perc-cal performs better
than traditional confidence interval methods, including the BCa method (Efron
(1987)), and other Sandwich-based estimators discussed in Cribari-Neto, Souza
and Vasconcellos (2007) and MacKinnon (2013). Our study is similar in struc-
ture to the simulation study that was performed in Gongalves and White (2005),
but modified to study a very wide variety of misspecified mean functions. We fol-
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low up this synthetic simulation study with a data example involving a criminal
sentencing dataset, and show that perc-cal once again performs satisfactorily.
We have released an R package, ‘perccal’ (McCarthy (2016)), available through
CRAN and coded primarily in C++, so that practitioners may benefit from a fast
implementation of perc-cal for their own analyses.

We argue that the combination of theoretical and empirical justification pre-
sented in this paper supports the claim that perc-cal is a reliable confidence
interval methodology that performs well in general, even in the presence of rel-
atively severe model misspecification. The remainder of the paper is organized
as follows. Section 2 provides a review of confidence interval methods. Section 3
presents the theoretical results. Section 4 compares the performance of perc-cal
with that of other often more commonly used confidence interval estimators in
synthetic and real data settings. Section 5 provides concluding remarks, and an
Appendix gives all of the proofs.

2. Literature Review
2.1. Review of bootstrap confidence intervals

There is a very wide variety of bootstrap methods that have been proposed
in the literature to compute (1 — «) confidence intervals. These methods in-
clude Efron’s percentile method (Efron (1981)), Hall’s percentile approach (Hall
(1992)), and Hall’s percentile-t method (Hall (1988)). Other forms of bootstrap
CIs include symmetric Cls (Hall (1992)) and short bootstrap confidence intervals
(Hall (1992)). In general, performance of these methods depends upon the prop-
erties of the data generating process and/or the sample size. We are primarily
interested in confidence interval methods that assume much less about the true
underlying data generating process, which is usually unknown and often not well
behaved in applications, making these methods less relevant to the work which
follows.

Hall advocates the use of pivotal bootstrap statistics because they have
higher asymptotic accuracy when the limiting distributions are indeed pivotal
(Hall (1992, p. 83)). We emphasize that Hall’s preference for pivotal bootstrap
statistics, and much of the discussion regarding the relative merits of various
confidence interval methods, are based on the asymptotic properties of these
methods. When the sample size is small, these asymptotic considerations do
not necessarily reflect the empirical performance of these methods. For example,
Hall cautioned that “our criticism of the percentile method and our preference for
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percentile-¢ lose much of their force when a stable estimate of o2 is not available”
(Hall (1988)). Simulation studies that reinforce this include Scholz (2007).

Another class of confidence intervals may be formed by replacing the stan-
dard error estimator in the standard z or t interval with a so-called ‘Sandwich’
estimator (White (1980)), or one of the many extensions of the Sandwich esti-
mator (Cribari-Neto, Souza and Vasconcellos (2007)). A comprehensive review
of Sandwich estimators can be found in MacKinnon (2013), and we will compare
these methods with our proposed method in Section 4.

2.2. Review of iterative bootstrap confidence intervals

The idea of the iterative bootstrap (or double-bootstrap) was first introduced
in Efron (1983). The improvement on coverage probability of Cls was first ana-
lyzed in Hall (1986) and later discussed in more detail in Loh (1987), Hall and
Martin (1988), Hall, Martin and Schucany (1989) and Martin (1990a,b). A com-
prehensive review can be found in Section 3.11 in Hall (1992) (see also Efron and
Tibshirani (1994)). In general, the iterative bootstrap provides more accurate
coverage probability at the cost of more computing.

To fix ideas, in this section we shall introduce the proposed double-bootstrap
confidence interval method in a univariate case with generic notations. We will
extend this procedure to the regression setting in Section 2.4. We assume that we
observe Zi,..., 2, % 1 for some distribution . Let § = 0(1") be a parameter
of our interest. We will estimate 6 through the empirical distribution I:(z) =
(1/m) > 1(Z; < z). The estimator is denoted by 0 =001 = 0(Ly,..., %)
The construction of the confidence interval is illustrated in Figure 1 and is de-
scribed as follows.

1. For chosen bootstrap sample size By, obtain bootstrap samples (Z7,...,
Zp ). Each Z; consists of m iid. samples with replacement from I
For chosen bootstrap sample size Bs, obtain double bootstrap samples

corresponding to all bootstrap samples, (277, ..., 1By L2y by'g,,
Bo1s-- - LE p,) in the same manner as in the first-level bootstrap. De-

note the empirical distributions by F;"s7 j =1,...,B1, and Fj’i};’& j =
1,...,B1,k=1,..., By, respectively.

2. Obtain parameter estimates corresponding to the observed sample, 6 =
H(F)7 all bootstrap samples, (HA’{7 . .7921) with 07 = 0(F}) an all d(zuble
bootstrap samples corresponding to all bootstrap samples, (677, ... 01",
03 05 s 08, 1o 08 ) With 077 = 6(F7 ).
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3. Form Bj double-bootstrap histograms 67, ...,0} , where each histogram
0" is comprised of all By double bootstrap estimates (9;7*17 ey 9;’;52) corre-
b b

sponding to the jth bootstrap sample and estimate, Z; and 9}7 respectively,
Jje {1727...7B1}.

4. Find the largest A such that 1/2 < A < 1 and that 6 lies in the 1 — A
percentile and the A percentile of the histograms 1 — a proportion of the

time.

5. 0 lies between the (1- 5\75\) percentiles of the second-level bootstrap dis-
tributions 1 — « proportion of the time. Therefore our perc-cal (1 — )
interval for € is equal to the (1 — 5\7 5\) percentiles of the first-level bootstrap
distribution, [(92‘1_5\)7 02‘5\)].

For a (1 — a) left-sided perc-cal confidence interval for 0, the only change
in the procedure is in Step 4, where one uses the histograms to find the smallest

X such that 0 lies below the A percentile of the histograms 1 — o percent of

the time. In what follows, we shall refer the two-sided perc-cal interval as

Iy = [92‘1_5\)7 é*;\ | and the one-sided perc-cal interval as Z; = (oo, é*j\ .

A similar double-bootstrap confidence interval is the double-bootstrap-t method
which uses the second-level bootstrap to calibrate the coefficient of the bootstrap
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standard deviation estimate. In practice, both methods can be applied. Hall
commented in his book (Hall (1992)) that “either of the two percentile methods
could be used, although the ‘other percentile method’ seems to give better results
in simulations, for reasons that are not clear to us.” Here “the ‘other percentile
method’” refers to confidence intervals 7; and Z5. Our simulation studies in Sec-
tion 4 demonstrate the same phenomenon. We have observed through simulation
that the performance of double-bootstrap-t can be erratic at times due to the
instability which arises by relying upon a statistic which has a double bootstrap
estimated standard error in its denominator. Some samples will inevitably have
very small or even degenerate bootstrap standard errors, making this statistic
very large. This issue is particularly acute when sample sizes are small.

Research on optimizing the trade-off between the number of simulations, By
and By, in double-bootstrap and the CI accuracy can be found in Beran (1987,
1988), Booth and Hall (1994), Booth and Presnell (1998), Lee and Young (1999),
among many others. In particular, Lee and Young (1999) study the asymptotic
convergence rate of the coverage probability involving B; and Bg, and suggest
an adaptive method to optimize the choice of By as a function of B;. They note
that By should be to set to a larger number (for example, By = 1,000), and Bs
equal to a lesser value. In all simulations which follow, we set By = Bz = 2,000.
Since the computation of perc-cal is reasonably efficient as discussed in Section
5, we do not optimize the number of bootstrap samples further but note that
further performance gains for robust linear regression inference are a promising
area for future research (in particular, with respect to Ba).

2.3. Review of bootstrap applications in conventional linear models

Bootstrap in linear models is studied in Section 4.3 in Hall (1992). Hall
refers the fixed design case the “regression model” and the random design case
the “correlation model.” Bootstrap estimation and confidence intervals for the
slopes, as well as simultaneous confidence bands, are described.

Since the seminal paper of Freedman (1981), the bootstrap has been widely
used in regression models because of its robustness to the sample distributions.
A review of bootstrap methods in economics can be found in MacKinnon (2006).
Gongalves and White (2005) consider bootstrapping the sandwich estimator for
the standard error when the observations are dependent and heterogeneous.
Bootstrap applications under other types of model misspecifications are recently
considered in Kline and Santos (2012) and Spokoiny and Zhilova (2014). In this
paper, we focus on a different case when observations of (Y, X) are i.i.d. but the
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joint distribution is assumption-lean — we elaborate upon this further in the next
section.

2.4. The assumption-lean framework and double-bootstrap applica-
tions

Conventional linear models assume E(Y|X) = X3 for some (p+ 1)-vector 8
as regression coefficients, so that Y depends on X only through a linear function.
While this is commonly assumed in the bootstrap literature, we may not want to
require it when performing inference in data settings because the true relation-
ship may not be linear. Moreover, as first noted in White (1980), a non-linear
relationship between Y and X and randomness in X can lead to serious bias in
the estimation of standard errors. Buja et al. (2015) reviewed this problem, and
proposed an “assumption-lean” framework for inference in regressions. In this
framework, no assumption is made regarding the relationship between Y and
X. The only assumptions are on the existence of certain moments of the joint
distribution of V = (X1,...,X,,Y)L. This consideration makes the model very
general and thus widely applicable. Readers are referred to Buja et al. (2015) for
more details.

Even though a linear relationship between E(Y|X) and X is not assumed
in an assumption-lean framework, the slope coefficients that are estimated are
always well-defined through a population least-squares consideration: the pop-
ulation least-squares coefficients 3 minimize squared error risk over all possible
linear combinations of X:

B = argminpB|Y = b"X|3 = EXXT)'E(YX). (2.1)

This definition of coefficients 8 is meaningful in addition to being well defined
under minimal assumptions: @ provides us with the best linear approximation
from X to Y , Whether or not X and Y are linearly related to one another. This
setup allows for situations including random )i non-Normality, non-linearity
and heteroskedasticity and we show later that the proposed perc-cal method
provides better empirical coverage of the true population least-squares coefficients
3 on average over a wide variety of data generating processes, even if those
data generating processes involve random X, non-linearity in E(Y|X) and/or
heteroskedasticity. In contrast, previous research on the double bootstrap has
studied functions that are linear or approximately linear.

To estimate 3, denote the i.i.d. observations of \Y, by \717 e 7\7n and de-
note the n x (p + 1) matrix with rows Vi,...,V, by V. Denote the dis-
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tribution of V by G. The multivariate empirical distribution of V is then
G(V) = Gz1,..,apy) = (Un) 7 I(X1; < @1y, Xps < 2, Vs < y). The
least squares estimate for 3 defined in (2.1) is

8= (XTX)"'X"Y, (2.2)

where X is the n x (p+ 1) matrix and Y is the n X 1 vector containing the i.i.d.
observations of X and Y respectively. Note that each estimate Bj of B; can be
written as a function of G, Bj =B (é)

The perc-cal confidence intervals for each of the slopes 5; in 3 are con-
structed similarly as described in Section 2.2. We use the pairs bootstrap first
proposed by Freedman (1981) and create By i.i.d. bootstrap samples, V., where
each matrix Vj, consists n i.i.d. samples with replacement from G. From these
samples, one can create the empirical distribution G}; To find the proper calibra-
tion of Z; or 7y (as defined in Section 2.2), we sample Bj i.i.d. pairs bootstraps

ko, With empirical distributions G};*h The other steps in the construction are
identical to those in Section 2.2 with 6(-) replaced by §;(-) with respective empir-
ical distributions as arguments. We note here that although confidence intervals
can be built through empirical process theory van der Vaart (1998), the accuracy
is usually not as good as the proposed perc-cal method, as will be discussed
in the next section. While Delaigle, Hall and Jamshidi (2015) studies bootstrap
confidence bands under a nonparametric regression setting, we are unaware of
any existing general bootstrap theory that yields general results for iterated boot-
strap confidence intervals for a non-linear function of expectations of non-linear
functions.

3. Asymptotic Theory

In this section, we discuss the theoretical properties of perc-cal. The fol-
lowing theorem describes the accuracy on the coverage probability of perc-cal
confidence intervals.

Theorem 1. Consider n i.i.d. observations of the (p+ 1)-dimensional random
vector V. = (Xq,.. .7Xp7Y)T. Denote the vector of Y and the continuous X;’s
by Vo and that of the discrete X;’s by Vp. Suppose that

1. 3 Cpy > 0, such that the minimal eigenvalue of the covariance matriz Var(\?)
is larger than Cy.

2. The moment generating function of the random variable ||\7||2 exists for all
t eR: ElellViz] < 0o for all t € R.



DOUBLE BOOSTRAP CIS FOR REGRESSION 2573

3. Conditional on every single value of \7L), the joint distribution of Ve is
absolutely continuous with respect to the Lebesgue measure.

Consider the population least squares parameter defined in (2.1) whose estimate
is the sample least squares defined in (2.2). Then for each 1 < j < p, the (1 — )
perc-cal CI for f; described in Section 2.2 and Section 2.4 have the coverage
probabilities

P(B;eTi) =1—a+0(n™), (3.1)
P(B; elr) =1—a+0(n?). (3.2)

The proof of Theorem 1 is in Section A in the Appendix. It uses techniques
of the Edgeworth expansion as in Section 3.11.3 of Hall (1992), with a focus
on the assumption-lean regression model setting where the dependence between
Y and X;’s are not necessarily linear. We are not aware of prior investigation
of the performance of the double bootstrap confidence intervals under this sit-
uation. Moreover, the results in Martin (1990a) and Hall (1992) accommodate
only X;’s satisfying Cramer’s condition, which excludes distributions such as the
Poisson distribution. Discrete distributions for X; are often encountered in mod-
els involving categorical predictors, and the data example we study in Section 4
involves such covariates. Through a conditioning argument in Jensen (1989), we
are able to show that the same performance is enjoyed by a wider class of mixed
discrete and continuous X;’s.

Our results show that the coverage probability is 1 — a + O(n™?). Note
that for other construction approaches of confidence intervals such as from the
sandwich estimator or from the empirical process theory, the resulting one-sided
confidence intervals often have a coverage probability of 1 — o + O(n~'/?), and
two-sided ones often have a coverage probability of 1 —a + O(n~ 1) (see Section
3.5.4 and Section 3.5.5 in Hall (1992)). Thus, the double bootstrap method
provides better coverage.

4. Numerical Studies

In this section, we study the performance of perc-cal compared to alter-
native (often more common) methods for forming confidence intervals, including
other double bootstrap methods. We first compare perc-cal to these other
methods using simulated data under a very wide variety of true data generating
processes. We then illustrate our approach in a data example. We will see that
perc-cal performs very satisfactorily in general.
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4.1. Synthetic simulation study
4.1.1. Design: synthetic simulation

We compared the performance of perc-cal with ten other methods that are
commonly used for constructing confidence intervals:

1. Standard normal interval: z (Efron and Tibshirani (1994)).

2-6. Five sandwich variants: sand1, sand2, sand3, sand4 and sand5 (MacKin-
non (2013) provides a review of these methods, denoted there by H1, H2,
H3, HC4 and HC5).

7. Hall’s Studentized interval: stud (Hall (1988)).
8. Hall’s “bootstrap-t” method: boot-t (Efron and Tibshirani (1994)).
9. Efron’s BCa interval: BCa (Efron (1987)).

10. Single percentile method: perc (Efron and Tibshirani (1994)).

We considered a very wide range of underlying true data generating models,
to obtain a more general understanding for how these confidence interval methods
compare against one another in a wide variety of data settings, for large sample
sizes as well as small. The data generating models represent a full factorial
design of the following 48 factors, after excluding non-denerate combinations
(i.e., combinations for which the conditional mean is not finite):

e Simple regression - one predictor, Y = Gy + 51 X + .

Sample size n = 32, 64, 128, 256.

Relationships between Y and X: (1) ¥ = X +e¢; (2) Y = exp(X) +¢; (3)
Y = X3+e.

e Distribution of X: (1) X ~ AN (0,1), (2) X ~ exp(N(0,1)).
e Noise: ¢ ~ (1)N(0,1); (2) | X|*N(0,1); (3) exp(N(0,1)).

In each of the above cases, we used 2,000 first and second-level bootstrap
samples for all bootstrap methods (B; = By = 2,000). We obtained empirical
coverage figures for the slope coefficient in the regression, 51. Results were aver-
aged over 500 replications to reduce the empirical standard error of the resulting
intervals to below 1.5% on average across scenarios and methods. We present
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Empirical Coverage of True Slope Coefficient, 90% Target Coverage
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Figure 2. Scatterplot of empirical coverage proportion of methods by scenario number —
90% target coverage.

the results for a target coverage of 90%, without loss of generality (results for a
target coverage of 95% are qualitatively the same).

4.1.2. Results

To more easily visualize the performance of many methods under many dif-
ferent scenarios, we begin with a coverage scatterplot in Figure 2. We rank sort
the 48 scenarios by the empirical coverage proportion of perc-cal, in ascending
order. This ordered list determines the scenario number associated with each
scenario (i.e., scenario number 1 represents the scenario in which perc-cal’s
empirical coverage was the smallest, while scenario number 48 represents the
scenario in which perc-cal’s empirical coverage was the largest). On the x-axis,
we provide the scenario number. On the y-axis, we provide the empirical cover-
age proportion of 81 using all methods. We exclude sandl, sand2, sand3, and
sand4 but include sand5, because sand5 has a better empirical coverage propor-
tion than the other sandwich estimators. We add a horizontal line to the graph
at the desired target coverage level of 90%.

In general, none of the methods was “perfect” in the sense of always provid-
ing coverage at or above the target level of coverage. All noticeably undercover in
particular cases and in these cases, perc-cal’s relative performance is generally
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noticeably strong. Specifically, perc-cal achieves coverage less than target in 31
of the 48 scenarios. In 27 of those 31 below-target scenarios, perc-cal achieved
a higher empirical coverage than all other alternative methods. In the remaining
4 of the 31 below-target scenarios where perc-cal was not the best-performing
method, its absolute performance was close to target, averaging to 88.7%, and
only one scenario with under 88% coverage. While perc-cal also had the high-
est empirical average coverage across all scenarios, we believe this robustness to
challenging scenarios is more important to practitioners, who may take comfort
in the fact that when perc-cal undercovers it almost always outperforms al-
ternative methods, and in all other scenarios, it achieves or exceeds the desired
coverage.

Across scenarios, while perc-cal provided the most consistent empirical
coverage, sandb was itself generally superior to the other alternative methods,
including BCa, which has favorable asymptotic properties. perc-cal achieved
a mean absolute deviation from target coverage of only 3.8 percentage points,
versus 5.8 and 8.9 percentage points for sand5 and BCa, respectively. Restricting
our attention to just the scenarios in which perc-cal achieved empirical coverage
below 90%, the corresponding mean absolute deviation statistics were 5, 7.7, and
10.4, respectively. While it is perhaps no surprise that traditional methods such
at the z interval fare so poorly because they typically assume a fixed-X setting,
the relative performance of these methods which do not make such assumptions
is more interesting.

perc-cal’s improved coverage came at the cost of modestly longer interval
lengths — across these 48 scenarios, perc-cal had an average interval length of
1.39, at the upper end (but not the top) of other methods — excluding the poor
performance of z and boot-t, these other methods had interval lengths between
0.99 and 1.49, averaging to 1.16. While these other methods have interval lengths
that are approximately 16% smaller on average, it would not be acceptable to
a practitioner for this shortness to come at the expense of falling below desired
target coverage. Only when target coverage is achieved do considerations like
average interval length become a primary concern, and 16% longer intervals seems
like a reasonable price for the “insurance” provided by perc-cal.

4.2. Data example: criminal sentencing dataset
4.2.1. Design: data example

We turn now to an example of how well perc-cal performs in practice, on
data. In this section, we compare perc-cal to other methods on a criminal
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sentencing dataset. This dataset contains information regarding criminal sen-
tencings in a large state from January 1st 2002 to December 31st 2007. There
are a total of 119,983 offenses in the dataset, stemming from a variety of crimes —
murder (899 cases), violent crime (80,402 cases), sex-related crime (7,496 cases),
property-related crime (92,743 cases), firearm-related crime (15,326 cases) and
drug crime (93,506 cases). An individual offense can involve multiple types of
crime, and an offender’s case can involve multiple charges of each type of crime.

Our modeling objective is to form marginal confidence intervals for the slope
coefficients of a linear regression. The response variable of our regression is the
number of days of jail time an offender must serve (log-transformed), which we
predict with the following 8 covariates:

1. race: Binary variable for the race of the offender (1 if white, 0 if non-white).

2. seriousness: A numerical variable scaled to lie between 0 and 10 indicating
the severity of the crime. A larger number denotes a more serious crime.

3. age: Age of offender at the time of the offense.

4. race: The percent of the neighborhood that is not of Caucasian ethnicity
in the offender’s home zip code.

5. in-state: Binary variable for whether the offender committed the crime
in his/her home state (1 if in offenders home state, 0 otherwise).

6. juvenile: Binary variable for whether the offender had at any point com-
mitted a crime as a juvenile (1 if yes, 0 otherwise). 18% of all offenses
involved offenders who had committed a crime as a child.

7. prior-jaildays: Number of days of jail time the offender had previously
served.

8. age-firstcrime: The age of the offender when the offender was charged
with his/her first crime as an adult.

This is truly a random X setting because the predictors themselves are
stochastic, coming to us from an unknown distribution. X is stochastic, the
relationship between X and Y is unknown and possible non-linear, and error
may have heteroskedastic variance. These results are not meant to be a com-
plete study of the issue, but rather are presented to illustrate the potential of
our methodology.
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We first ran a linear regression upon the full dataset containing all 119,983
offenses. We treated the coefficients as if this were a population-level regression.
We then proceeded as if we did not have the full dataset and instead only had
the ability to observe random subsets of the dataset of size 500 — large, but not
so large that all coefficient estimates are over-powered. We studied the empirical
coverage performance of confidence intervals formed using the methods in the
simulation exercise over repeated realizations which are obtained through random
subsamples of size 500.

4.2.2. Results: data example

Linear regression across the full dataset has an K2 of 16.9% with 6 of the 8
predictors coming up as significant. We then took repeated random subsamples
of size 500 from this population of offenses and treated these subsamples as if
they were the observed dataset. Presupposing that each crime represents an iid
draw, this framework allows us to compare and contrast the empirical coverage
performance of confidence interval methods.

In Figure 3, we present the empirical coverage for each of our predictors when
we form 90% confidence intervals. The y-axis of the plot below represents the
empirical coverage over 10,000 realizations for each of the methods in question
(i.e., 90% empirical coverage for a particular method implies that 9,000 of the
10,000 realizations had confidence intervals for that method which contained the
true but unknown population-level parameters). Along the x-axis, we have the
predictors listed above. We include a bold horizontal line at the target level
of empirical coverage of 90%. The standard error associated with the coverages
presented below average to 0.002 across scenarios, predictors and methods.

There are a number of inferences that we can draw from the above chart:

o All methods generally perform as expected, with empirical coverage pro-
portions generally falling between 85% and 92%.

e perc-cal is the only method that consistently achieves empirical coverage
over 90%. All other methods, including sand5, where unable to do so.

e prior-jaildays appears to be the predictor with the most disappointing
empirical coverage. All methods except for perc-cal do not achieve 90%
empirical coverage. The average empirical coverage of prior-jaildays for
all non-perc-cal methods was 87.0%.

o There is also considerable disparity in the ability of various methods to
cover the coefficients associated with the intercept term and the in-state
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Empirical Coverage by CI Method: 90% Target Coverage
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Figure 3. Scatterplot of coverage proportion of methods — 90% Target Coverage.

covariate. Although the BCa method has near-90% empirical coverage of
the in-state super-population coefficient, its coverage is less satisfactory
for the seriousness and prior-jaildays covariates.

When we plot the relationship of jail length (log transformed) against prior
total jail length in Figure 4, adjusted for all of the other covariates in the super-
population, we see an almost bi-modal relationship.

It is clear from the plot in Figure 4 that the highly misspecified relationship
between Y and X is likely to be driving the large disparity (and general dete-
rioration) in coverage performance across the various non-perc-cal confidence
interval methods. Overall, these results support the notion that perc-cal is a
good all-purpose confidence interval method, and that all other methods, while
performing well for some of the covariates, do not perform well for all of the
covariates as was the case for perc-cal. The results assuming target coverage
of 95% are qualitatively the same as the results presented above.

5. Discussion and Concluding Remarks

If perc-cal performs so well relative to alternative more popular CI meth-
ods, why is it not used more in practice? We believe the use of double bootstrap
methods in general have not been widely adopted primarily because of their com-
putational cost. Although it is true that double bootstrap methods in general
and perc-cal in particular require more computation, the computational burden
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Jail length (days, log transformed) versus previous total jail length,
adjusted for other predictors

Jail Length (days, log transformed), adjusted for
other predictors

T T T T T
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Previous total jail Length, adjusted for other predictors

Figure 4. Jail length (log transformed) versus previous total jail length, adjusted for
other predictors.

of these procedures is far less problematic than in the past because of current
computational advances. For example, the rise of grid computing has greatly
facilitated parallel computation. Because perc-cal is trivially parallelizable, it
is relatively straightforward to compute all second-level bootstrap calculations
in parallel, allowing researchers to compute perc-cal at a computational “cost”
that is on the order of a single bootstrap. Furthermore, the perceived computa-
tional cost of double bootstrap methods may be inflated due to the inefficiency
with which the calculations are carried out in popular statistical programming
languages, most notably R — the very same calculations are orders of magnitude
faster in lower level languages, such as C++. The rising popularity and adoption
of packages integrating R with C++ (Eddelbuettel et al. (2011)) can greatly reduce
the cost of double bootstrap methods for practitioners performing data analysis
in R who do not know C++. In the spirit of this, the R package we have created
allows users to compute perc-cal intervals in R efficiently using C++ code via
Rcpp. We are optimistic that the use of double bootstrap methods will only
increase further as the cost of computing declines further over the next 10 years.
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We have restricted our attention to equal-tailed intervals for all methods
considered here. It is natural and certainly possible to extend our approach to
compute the shortest unequaltailed interval, even if other methods cannot or
would not, because of the symmetry of the asymptotic distribution underlying
those alternative methods. At the same time, this advantage should not be over-
stated — for example, one may be forced so far into the tails of the bootstrap
distribution that a considerably larger number of first and second-level bootstrap
samples are required. Because this is not the focus of our paper, we do not pursue
it further here.

The asymptotic theory we developed, examined, and compared the more tra-
ditional percentile and “bootstrap-t” methods to their double bootstrap analogs
in our “assumption lean” setting. We did not study the asymptotic properties
of alternative confidence interval methods in our setting. Although it would be
interesting to do so, there are a very wide range of methods in the literature,
making systematic theoretical study impractical.

In summary, randomness in )i non-linearity in the relationship between Y
and )i and heteroskedasticity “conspire” against classical inference in a regres-
sion setting (Buja et al. (2015)), particularly when the sample size is small. We
have shown that, in theory, the percentile-calibrated method perc-cal provides
very satisfactory empirical coverage — the asymptotic rate of coverage error under
mild regularity conditions for a two-sided confidence interval of the best linear ap-
proximation between ¥ and X is O(1/n2). Furthermore, perc-cal performs very
well in practice, both in synthetic and data settings. We believe that perc-cal
is a good general-purpose CI method and merits consideration when confidence
intervals are needed in applied settings by practitioners.
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Appendix
A. Proof of Theorem 1

The proof consists of two parts. The first part shows the existence of the
Edgeworth expansion of the pivoting quantity. The second part derives the
asymptotic order of the error term by using the first terms in this expansion
and the Cornish-Fisher expansion, which can be regarded as the inverse of the
Edgeworth expansion.

Part I: Existence of Edgeworth Fxpansion.

Under three assumptions on the joint distribution in which part of the variables
can be discrete, the validity of the Edgeworth expansion was shown in Jensen
(1989) through a conditioning argument. In this section, we shall show the
existence of the Edgeworth expansion of the pivoting quantity for the confidence
intervals by checking these three assumptions.

We note first that by (2.1), B(+1)»1 can be written as a smooth function of
the moments E(X;Y)’s and E(X]].?)(jk;)’s7 where 1 < 4, < p, 1 < j1 < 72 < p,
ki,ka > 0, and k1 + k2 < 2. Moreover, by the Central Limit Theorem, the
asymptotic distribution of the least square estimate ,é in (2.2) is given by

Vi (8- 8) - N (0, BXX) By - XTBPXXTB(XX) ) (A1)

Starting with the general case when p > 4, we note that the (p+1) x1 vector of the
asymptotic variances of each \/E(Bj —Bj), 1 < j <p,is again a smooth function
of the moments E(X XXX ys BXP X XY )s, and B(XPX5Y2)s,
where 1 < jy < jo <js <ja <p, 1 <js <Jjs <jr<p 1 <jsg<jo<p
ki,koy... ko 2 0, k1 + ko + ks + kg <4, ks + ke + kr < 3, and kg + kg < 2.
These moments for the asymptotic mean and variance of B can all be consistently
estimated by their corresponding sample moments.

We now collect all related monomials of X; and Y into a random vector W,
such that

W, = (XD XXX (XX XY} (XX Y2 )T (A.2)
where 1 < ji <jo <js <ja <p, 1 <js <jo <jr<p 1<js<jo<op,
ki,koy... ko >0, k1 + ko + ks + ks <4, ks + ks + k7 <3, and kg + kg < 2. For
p > 4, the dimension of W, is

d, = (Z) (i) + (g) (g) + (g) (;1) - %p(p —1)(35p% — 135p + 166).

For 1 < p < 3, we can take a similar approach to write out W,,.
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L Forp=1, Wi = ({XF} {XFy} {(XFy2 ) where 0 < k) <4, 0 < ky <
3, and 0 < k3 < 2. The dimension of W is d; = 12.

2. For p =2, Wy = ({XF1 xhey [ xke xBayy (X XEoy 21T where Ky + ko
4, ks + k4 < 3, and ks + kg < 2. The dimension of Wy is dy = 31.

IN

3. For p = 3, Wy = ({XP' X5 XP} {XPXPXEY) (X XPY2HT where
1 §.77 <j8 §37 k17k27"'7k9 207 k1+k2+k3 §47 k4+k5+k6 §37 and
k7 + ks < 2. The dimension of W3 is d3 = 73.

With W, defined, we can write B(,41)..1 = B(E(W))). We can also write
the vector of the asymptotic variances of \/ﬁ(BAj —6;), 1 <j<p,as U(2p+1)xl =
a?(E(W,)). From the n ii.d. samples of V = (Xy,.. 5 Xp, Y we can form
the W,’s as W, 1,..., W,,,,. The estimates of @ and o2 can thus be written as
B = B(W,) and 62 = 02(W,,), respectively, where W, = (1/n) Yo Wy

To check the three assumptions in Jensen (1989), we first denote the random
vector of discrete variables in W, by W, with dimension d;) and the random
vector of the rest of the variables in W, by W with dimension dc. We shall use
the same subscripts D and C for other related quantities to distinguish discrete
variables from others. Note that in W, some variables are products of discrete
and continuous variables. The distributions of these product variables may not
be absolutely continuous with respect to the Lebesgue measure. Nonetheless,
the characteristic function of W ¢ still exists, and the proof in Jensen (1989) still
holds with this relaxation. Thus, we continue to check these three conditions.

Assumptions 1(i), 1(i7), 1(ii), 3(¢), and 3(é¢) pertain to the cumulants of W,
Under the existence of the moment generating function of \77 these assumptions
are satisfied.

To check Assumptions 2(7) and 2(ii), note that the pivoting quantity for the
confidence intervals for 3 is (B — B) 0 6°=1| where o denotes the Hadamard
product. Let W, = W, — E(W,) be the centered version of W,. The function
g(-) in Jensen (1989) for regression can be written as

9(Wp) = (B(W,, + E(W,)) — B(E(W,))} 0 o (B(W,))*"1. (A.3)

It is easy to see that g(0) = 0. Furthermore, it can be shown that, since the

distribution of V is non-degenerate, the derivatives of g with respect to W¢

exist, are continuous in a neighborhood of 0, and the d¢ % (p+ 1) matrix of the
derivatives has full rank.

To check Assumptions 1(iv) and 1(v), we first note that the derivatives

of the characteristic functions are bounded by appropriate moments, which all
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exist under the assumptions of Theorem 1. Therefore, we only need to show that
the characteristic function of W, is bounded away from 1. To show this, we
decompose this characteristic function by conditioning on Wp,
B We) = 3 Vo E(e W |[W)) = w)), (A4)
Wp

where the dimensions of t, tp, and to are dy, dp, and dc respectively. To
verify Assumptions 1(iv) and 1(v), it now suffices to show that |[E[e®t¢We|W ) =
wpl| < 1 for each wy. This proof is patterned after the arguments in Section
2.4 of Hall (1992).

Denote the joint density of V¢ condition on wy by fu, (Xc,y) : RP° — R,
We first approximate this density through simple functions. Given ¢ > 0, let
fi(xc,y) = Z%zl el ((xc,y) € Sp), where ¢,,’s are appropriate constants,
S,.’s are appropriate rectangular prisms, and 1 < m < M for some appropriate
M > 0 such that [g,. |fuo(Xc,y) — f1(xc,y)|dxcdy < e. We can then focus on
showing that limj. |, |me g'teweo dxcdy| — 0 for each m.

Let t¢ = tc(u), where u is an index that diverges to infinity. Through
a subsequence argument, we can assume without loss of generality that for
some 1 < h < do, and with s(h, h,u) = t; (u)/tr(u), the limit s(h, h) =
lim sup,, ... s(h, h, u) exists for 1 < h < de, and |s(h,h)| < 1. We now can
take s = {s(h, h,u)} and write the real part of the integral Is.. eteve dxody as
me cos(tps”we)dxdy. Note that each entry in w is a monomial of ;’s and y.
Thus, s”w¢ is a polynomial of z;’s and y. We can now take transformations
of variables to show that me cos(tps’ we)dxdy = O(t;'). Similarly, the imagi-
nary part of the integral can be shown to be O(t,;l). These facts entail that the
magnitude of the conditional characteristic function is strictly less than 1 when
|tc |2 is large, which completes the proof.
Part II: The Asymptotic Accuracy of Double Bootstrap Cls
With the existence of the Edgeworth expansion, we develop the asymptotic accu-
racy of the two-sided double-bootstrap CI for regression. In this section, we use
6o to denote a generic 3; and use 0 to denote the corresponding Bj. We show here
only the proof for the two-sided perc-cal confidence intervals Z;. The one-sided
case for Z; is proved in a similar (and easier) manner. The techniques used in this
proof are patterned after those in Section 3.11 in Hall (1992) but are reorganized
for readability and included so that our analysis is self-contained.

Consider the distribution of A(W*) = (0* — ) /&, where W* is the bootstrap
version of W,,. For any 0 < v < 1, the quantile estimate 9., satisfies
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0" —0

g

< Uy

p (m

Due to the existence of the Edgeworth expansion as described in Part I, we

Woi,..., me) = . (A.5)

can write 0, in the standard normal quantile 2z, through the Cornish-Fisher
expansion:
Oy = 2y + 072 h1(2) + 0T pa(z,) + Op(n7?) (A.6)

where p1 and pg are polynomials whose coefficients are sample estimates of those
of p1 and po, and the coefficients of p; and py depend only on the moments of
W,,. Given the condition that all moments of \Y4 exist, all of these estimates are
root-n consistent.

Now consider the quantile @y in the bootstrap distribution of #* such that

P(0" <wn[Wp1,...,W,,) =\ (A7)
By comparing (A.7) and (A.5) with v = A, we see
Wy = 0+n" 2605 = 040~ 26 {402 p1 (za)Hn " pa(z)+0,(n"?)} (A8)
Thus, by Proposition 3.1 in Hall (1992), we have
P (6 € (—o0,wy))
POy <0+ n 26 {znt 0 Ppu(an) 40 ha() + Op(n YR (A9)
=M+ 072 (2)6(2n) + 07 ra(zn)d(20) + O(n ™)
where ¢ is the density of the standard normal distribution, and r; and ry are even
and odd polynomials whose coefficients can be root-n consistently estimated.
Let £ =2(1 —a/2—X)and A =1 —a/2+ /2. To find a proper A for the
perc-cal interval Zy is now to find £ such that
P(0y € (w1-x,wn)) = P(by € (Wa/2—¢/2, Wi—ajate/2)) = 1 — a. (A.10)
Note that the coverage probability of a two-sided CI can be written as
P (6 € (wi—x,wx))
=Py < wy) —P(by < (w01-1))
=2\ — 1+ 207 a2 é(zn) + O(n™2).
= 1=+ &+ 20 r2(21a/are/2)(21_ajaiesa) T O7)

The cancellation of the O(n‘l/Q) term due to that —z;_) = 2, and that r1 is an

(A.11)

even polynomial is crucial for the improvement in double-bootstrap. To achieve
the accuracy of the coverage in Theorem 1, we would like to choose £ such that

£ = =2n7"r9(21 ajate/2)0(21—asaiesa) T O(n7?) (A.12)
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Now consider the second-level bootstrap, in which we calibrate f for A =
1 — /2 4 £/2 in the perc-cal intervals. Through a similar argument for the
first-level bootstrap, we see that the calibrated £ satisfies that

5 — _2n_1f2(zl—a/2+é/2)¢(zl—a/2+é/2) + Op(n_Q) (A.13)
so that
E=E=0y(n7"?). (A.14)
Finally, consider the coverage probability of the double-bootstrap CI (w,, o€
wl_a/2+é/2). By (A.8), the Taylor expansion
Zyte = 2yt Gﬁb(z'y)_l + 0(62)7 (A.15)
and the derivations for (3.36) in Hall (1992), we have

P(Ho c (_Oo7w1—a/2+é/2))
B D . iy A CTENP Y YRl CCTRN SRR

+)

_0—0 R 1 ; _
=P (\/n 5 Ty L T CZ Ay 5 (€= d(21-as2) !

i aCereaarer) O
B 0 — _ _o—1j2 RS A
=P({vn P > —Z_ajatefa — N p1(2’17a/2+5/2) n p2(2’17a/2+5/2)

4o %(é — §)¢(z1_a/2)_1) + O(H_Q)

=Py <wi_qjaqe/2) + n_3/252’17a/2¢(2’17a/2) +0(n™?) (A.16)
where the constant b is defined through
-0 =
E(\/n . On3/2£2£) = b+ 0O(nt). (A.17)
G

The O(n™!) term is derived as in equation (3.35) in Hall (1992). Similarly,

P (0 € (—00,1, 3¢ 13)) = P00 € (—00, o 2) =1~ bza o (zaj2) +O(n ™)
(A.18)
Now

P00 € (W, /5 g/2:W1_ay218/2))
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= P(Ho c (_Oo7w1—a/2+é/2)) — P(Ho c (—Oo7lf}a/2_é/2))

- P(HO € (_007 wl—a/2+f/2)) + n_g/szl—a/2¢(z1—a/2) + O(n_Q) (Alg)
— (P (0 € (=00, 1a2-¢/2)) — N~ *bz0/26(20/2) + O(n™2))

=1—-a+0n?),

which concludes our proof.
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