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Abstract—Data privacy arises as one of the most important
concerns, facing the pervasive commoditization of big data
statistic analysis in Internet of Things (IoT). Current solutions
are incapable to thoroughly solve the privacy issues on data
pricing and guarantee the utility of statistic outputs. Therefore,
this paper studies the problem of trading private statistic results
for IoT data, by considering three factors. Specifically, a novel
framework for trading range counting results is proposed. The
framework applies a sampling-based method to generate approx-
imated counting results, which are further perturbed for privacy
concerns and then released. The results are theoretically proved
to achieve unbiasedness, bounded variance, and strengthened
privacy guarantee under differential privacy. Moreover, a pricing
approach is proposed for the traded results, which is proved to be
immune against arbitrage attacks. The framework is evaluated
by estimating the air pollution levels with different ranges on
2014 CityPulse Smart City datasets. The analysis and evaluation
results demonstrate that our framework greatly reduces the error
of range counting approximation; and the optimal perturbation
approach enables that the private counting satisfies the specified
approximation degree while providing strong privacy guarantee.

Index Terms—Differential Privacy, Range counting, Pricing

I. INTRODUCTION

The Internet of Things (IoT) has been regarded as a new

paradigm of big data platform. For example, smart city ap-

plications have been deployed to timely monitor, analyze and

response upon volumes of physical data. As a fundamental

data analyzing operation, range counting aggregation acts as

a critical component for these applications. For instance, data

analyzers compute range counting over massive particulate

matter level, traffic volume or weather data to monitor pol-

lution levels. These aggregates are not only valuable to data

owners, but also attractive to other communities with business

purposes. However, data in IoT are collected in a distributed

manner and strongly correlated with users’ sensitive status,

aggravating the cost and privacy concerns for data analyzing

operations. Therefore, this paper proposes a novel framework

for range counting aggregation, which jointly considers utility,

cost, privacy preservation, and charging for derived answers.

Actually, many information platforms have emerged to

facilitate such data circulation from raw data to data consumers

(i.e., service requesters). In particular, these platforms usually

prefer to trade statistics of raw data, like the range counting

aggregation results, to data requesters. As shown in an FTC’s

survey on several data brokers [1], Acxiom, as an essential

broker, collects personal information from more than 700

million users, and sells aggregation statistical information to

big companies such as Oracle, Microsoft, AT&T, etc. Although

attractive, conducting and trading range counting aggregation

in IoT brings two major challenges, i.e., the concerns on

resource consumption and privacy disclosure, and the design

of pricing mechanisms.

The first challenge lies in the performance concern and the

privacy concern. If all IoT data are collected to compute the

exact range counting aggregation, considerable communication

and computation overhead will be incurred [2] [3]. However,

in many cases, approximate range counting results with less

overhead are actually sufficient enough for data customers to

perform data analysis [4], [5], [6]. Meanwhile, data privacy is

another serious concern, which obstacles the wide deployment

and adoption of smart devices. The underlying reason is that

smart devices collect, understand and interact with a user in

a pervasive and intimate way [7]. Thus, aggregation results

released to requesters should avoid considerable leakage of

sensitive information. Although individual efforts have been

made for each concern respectively, it remains unsettled to

compute privacy-preserved approximate range counting aggre-

gation efficiently.

The second challenge is to establish effective pricing mech-

anisms for trading approximate range counting aggregation

results. This challenge arises from potential arbitrage oppor-

tunities in trading procedures. Generally, data consumers are

usually allowed to specify their own expected approximation

degrees, upon which data brokers compute an approximate

aggregation result and perturb it for privacy preservation. In

this case, a smaller approximation degree intuitively leads

to a higher price. However, with a poorly designed pricing

mechanism, malicious consumers may circumvent to pay the

desired price of a query. These consumers turn to buy multiple

cheaper results with high variance, and reduce the variance

by averaging the returned results. Then this sophisticated

trading practice is an arbitrage attack when the total price

of high-variance aggregation is less than a single one with

low-variance. As far as we know, the arbitrage attack has not

been investigated for pricing mechanisms in IoT.

To mitigate the gaps, we propose a sampling-based algo-

rithm for privacy-preserved approximate range counting aggre-

gation. The algorithm presents an unbiased estimator for range
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counting with bounded variance. To derive privacy-preserved

range counting, the state-of-the-art approach Differential Pri-
vacy [8] is adopted, which allows unlimited reasoning power

and background knowledge of adversaries. To meet such a

requirement, our algorithm introduces an additional noise to

the original approximate result.

However, putting differential privacy into approximate range

counting remains a challenging problem, since the two-stage

compositive approximation should still meet the requirement

of a customer. To address the above issues, we formulate an

optimization problem that takes approximation degree as input,

and outputs an optimal noise-adding mechanism, such that the

derived range counting result satisfies the specified approx-

imation degree and privacy preservation can be optimized.

Specifically, our formulation traverses all valid intermediate

approximation aggregations, and calculates the minimized

differential privacy budget for them, while the final result still

guarantees the input approximation degree. We theoretically

prove that the derived range counting result meets the specified

approximation degree while providing the strongest privacy

preservation.

Finally, to develop a pricing mechanism to avoid arbitrage,

a sufficient and necessary condition for all arbitrage-avoiding

pricing functions is proposed, with the information regarding

how fast arbitrage-avoiding pricing functions can decrease

with the approximation degree. Our key contributions are

summarized as follows.

• We propose a privacy-preserved approximate range

counting aggregation algorithm, in which an unbiased

estimator with bounded variance for range counting ag-

gregation is presented.

• An optimization problem is formulated to achieve the

strongest differential privacy, while satisfying the approx-

imation degree specified by data customers. A solution is

provided accordingly.

• An arbitrage-avoiding pricing mechanism is proposed to

eliminate arbitrage attacks. A set of pricing functions can

be constructed based on our identified critical condition

to guarantee justice of trading.

• We extensively evaluate the performance of our approach

based on real-world dataset, i.e., the CityPulse Smart City

Datasets.

The rest of this paper is organized as follows. Section II

introduces our system and adversary models, together with

some preliminary knowledge on differential privacy and our

problem definition. Section III presents the sampling based

range counting aggregation algorithm and the optimization

mechanism for providing the strongest differential privacy.

The pricing mechanism is introduced in Section IV. Section

V illustrates our evaluation results. Section VI discusses the

related works, and Section VII concludes the paper.

II. PROBLEM FORMULATION

This section first presents our system model and adversary

model. Then necessary preliminary knowledge on differential
privacy and the concept of Arbitrage Avoiding is introduced.

At the end of this section, we present the problem definition

of differentially private (α, δ)-range counting.

A. System Model

As shown in Fig. 1, there are three major entities in our

system model including IoT networks, data brokers and data

consumers. IoT networks consist of large scales of smart

devices, which collect data generated by sensing modules or

other input channels. Denote D as the global dataset collected

by all smart devices in IoT networks. Instead of transferring

the entire D to the base station, each smart device only sends

a sample of its locally collected data to the base station.

This will significantly reduce the communication cost of data

transmission. Then a sample S of D is stored in the base

station, which opens the data access API to data brokers.

In this paper, we consider range counting queries on datasets

collected by smart devices, and the definition of range counting

is as below.

Definition 2.1: Range Counting. Given range parameters

l and u (l ≤ u) together with dataset D, the range counting

of D with lower bound l and upper bound u is γ(l, u,D) =
|{x|l ≤ x ≤ u, x ∈ D}|.

Computing exact range counting from scratch is expensive

in terms of real-time communication in IoT networks. In

many scenarios, an approximate range counting with ac-

ceptable accuracy suffices to meet customers’ requirements.

Definition 2.2 presents the notion of (α, δ)-range counting,

which parameterizes range counting with accuracy parameters

specified by customers.

Definition 2.2: (α, δ)-Range Counting. Given 0 ≤ α ≤ 1
and 0 ≤ δ ≤ 1, for any range parameters l and u such that

l ≤ u, the (α, δ)-range counting of dataset D, denoted as

γ̂(l, u,D), satisfies that Pr[|γ̂(l, u,D)−γ(l, u,D)| ≤ α|D|] ≥
δ.

Data customers send (α, δ)-range counting requests denoted

by Λ(α, δ) to a data broker. The data broker may access

S to response these requests. However, the sensitive infor-

mation may still be inferred by adversaries with background

knowledge, even if approximate aggregates, rather than the raw

dataset, are released to data customers, Thus, the IoT network

entrusts the protection of data privacy to the data broker. The

data broker first accesses S to compute a (α′, δ′)-range count-

ing, where α′ ≤ α and δ′ ≥ δ. Then the data broker employs

the standard notion of differential privacy, and adds carefully

controlled noise to the (α′, δ′)-range counting. Subsequently,

the (α′, δ′)-range counting and the noise jointly composite

an (α, δ)-range counting. Finally, the data broker responses

a customer with the composited (α, δ)-range counting, and

charges the customer with price π(α, δ).

B. Adversary Model

The adversaries in this paper are closefisted or malicious

customers, who look for arbitrage opportunities against the

trading pricing designed by a data broker. For example, an

adversary is interested in an aggregate result with low vari-

ance. However, instead of making full payment, the adversary
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Fig. 1. System Model.

turns to purchase several aggregates with high variance at a

cheaper price. Then the adversary can reduce the variance by

averaging the returned aggregates. A benefit-concerned data

broker would like to rule out such arbitrage behaviors. Thus,

the pricing mechanism should provide the property of arbitrage

avoiding, which is defined as follows [9]:

Definition 2.3: Arbitrage Avoiding. A pricing

function π{α, δ} is arbitrage avoiding if ∀m ≥ 1,

{Λ(α1, δ1), . . . ,Λ(αm, δm)} �→ Λ(α, δ) implies:

π(α, δ) ≤
m∑
j=1

π(αj , δj), (1)

where {αi, δj |i, j ∈ {1, . . . ,m}, αi > α, δj < δ}; �→ is an

operation that composites these m range counting results to a

result with (α, δ)-approximation.

Definition 2.3 implies that for a desirable π(α, δ), π(α, δ) ≤∑m
j=1 π(αj , δj). Then adversaries cannot obtain aggregation

service Λ(α, δ) with a lower price through buying multiple

aggregates with diverse higher variances and averaging aggre-

gates at a cheaper price than Λ(α, δ).

C. Differential Privacy

Differential privacy is a well accepted standard notion for

protecting sensitive information in statistical aggregates. The

formal definition of differential privacy is given as follows:

Definition 2.4: ε-Differential Privacy. A randomized algo-

rithm G satisfies ε-Differential Privacy (ε-DP) if and only if

for any two neighboring datasets D and D′ that differ in only

one item and for any possible output O of G, the following

condition holds:

Pr[G(γ(D)) = O] ≤ eε · Pr[G(γ(D′)) = O].

The Laplace mechanism [10], introduced as below, is a

standard approach to achieve differential privacy.

Laplace Mechanism. For a function γ : D→ R
d, Laplace

mechanism derives the following result:

G(D) = γ(D) + Lap

(
Δγ

ε

)d

,

where

Δγ = max
D�D′

‖γ(D)− γ(D′)‖1,

and

Pr[Lap(η) = x] =
1

2η
e−|x|/η

to achieve ε-differential privacy.

Given the privacy budget ε, the amount of noise is also

denoted as Lap(ε) for abbreviation.

D. Problem Definition

The problem of computing differentially private (α, δ)-
range counting is defined as follows:

Input:
1) Data set D;

2) Range parameters l and u (l ≤ u), accuracy parameters α
and δ (0 ≤ α ≤ 1 and 0 ≤ δ ≤ 1).

Output:
1) Differentially private (α, δ)-range counting with the

minimum privacy budget.

In addition to the above problem definition, this paper

studies the design of arbitrage avoiding pricing mechanisms

for trading (α, δ)-range counting aggregation.

III. (α, δ)-DIFFERENTIALLY PRIVATE RANGE COUNTING

In this section, we propose a sampling based algorithm to

provide (α, δ)-differentially private range counting. Section

III-A presents our RankCounting Estimator to answer (α, δ)-
range counting based on samples. Then we define an opti-

mization problem and present a solution in section III-B to

achieve the optimal differential privacy under the constraint

that (α, δ)-range counting is guaranteed.

A. Sampling Based (α, δ)-Range Counting

In this section, we handle the first part of our work, namely

the sampling-based (α, δ)-range counting. High accuracy and

low communication cost are essential to the performance of

the entire system. To achieve this, we propose an estimator

namely RankCounting for answering (α, δ)-range counting

aggregations.

We assume the network is organized in a flat model, in

which each node communicates with the base station directly.

Note that algorithms on flat models can be easily extended

to a general tree model. After samples are collected from

underlying nodes, they will be used to answer future range
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counting aggregations if the required accuracy can be satisfied.

Otherwise, the base station will inform the underlying nodes

to collect more samples from the network.

A straightforward estimation (denoted as BasicCounting)

to the range counting is γB(l, u, S) = |{x|x∈S,l≤x≤u}|
p . This

estimator is unbiased and its variance is
|{x|x∈D,l≤x≤u}|(1−p)

p ,

which may grow to
|D|(1−p)

p when a large range is queried.

This in turn increases the communication cost of sample

transmission since more samples should be drawn to guarantee

query accuracy.

To reduce communication cost, we leverage the rank of

sampled data elements to present the RankCounting estimator.

Let Si be the set of sample drawn by node i, and Di denote the

set of data collected by node i, i = 1, . . . , k. Let S = ∪k
1Si,

D = ∪k
1Di be the global set of sample and data respectively.

Let ni be the number of data collected at node i, and n
denote the total number of data collected at k nodes. Let

fst and lst denote the first and last data collected at node

i, fst ≤ lst, respectively. Given the lower and upper ranges

l, u, our estimator first computes γ̂(l, u, i) using Si, namely

the range counting with parameter (l, u) at node i, and then

obtains the range counting at S, denoted as γ̂(l, u, S).
The RankCounting Estimator. Each node i first inde-

pendently samples each of its data with a certain probability p
(to be determined later). For each sampled data x, it computes

r(x, i), the local rank of x at node i, i.e., the rank of x in Di.

Finally, node i sends all the sampled data and corresponding

ranks to the base station. Similarly, if the existing samples

are unable to satisfy the query accuracy requirement, more

samples should be drawn and their ranks are also transferred

to the base station.

Given query parameters l and u, we denote r(l, i) as the

smallest rank of any element in Di whose value is no smaller

than l, and r(u, i) is defined as the largest rank of any element

no larger than u. Note that l and u may not exist, in most

cases, in the sampled data Si, so neither the broker nor the

RankCounting estimator is able to obtain the ranks r(l) and

r(u). Nevertheless, the concept of r(l, i) and r(u, i) are only

employed in the accuracy analysis of the proposed estimator,

and they are not involved in estimation calculation at all.

Let p(x, i) denote the predecessor of x in the sampled data

Si, i.e., the largest sampled data no larger than x. Likewise,

let s(x, i) denote the successor of x in the sampled data from

node i, i.e., the smallest value larger than x. It is worth noting

that p(x, i) and s(x, i) may not exist. To distinguish different

cases with regards to the existence or non-existence of p(l, i)
and s(u, i), we make the following denotations, together with

their probabilities below:

ωp: p(l, i) exists, Pr[ωp] = 1− (1− p)r(l);
ωp: p(l, i) does not exist, Pr[ωp] = (1− p)r(l);
ωs: s(u, i) exists, Pr[ωs] = 1− (1− p)ni−r(u)

ωs: s(u, i) does not exist, Pr[ωs] = (1− p)ni−r(u).

Based on the above notations, we carry out our estimator

RankCounting, and RankCounting estimates γ(l, u, i) as be-

low.

γ̂(l, u, i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ(p(l, i), s(u, i), i)− 2
p ; if ωp, ωs;

γ(p(l, i), lst, i)− 1
p ; if ωp, ωs;

γ(fst, s(u, i), i)− 1
p ; if ωp, ωs;

γ(fst, lst, i) else.

In the calculation of γ̂(l, u, i), ranks of certain sam-

ples are employed to improve estimation accuracy. Given

query parameters l, u and the collected samples in Si,

RankCounting determines which of the four cases should be

adopted. Then the corresponding calculation is carried out,

and in this process terms γ(p(l, i), s(u, i), i), γ(p(l, i), lst, i),
γ(fst, s(u, i), i) and γ(fst, lst, i) can be exactly calculated

with the ranks of p(l, i), s(u, i), fst and lst. Here, p(l, i) and

s(u, i) are in Si, so RankCounting can obtain their ranks. The

ranks of fst and lst are simply 1 and ni.

Based on γ̂(l, u, i), RankCounting estimates γ(l, u,D) as

γ̂(l, u, S) =
k∑
i

γ̂(l, u, i). (2)

Next, we illustrate the high accuracy of RankCounting
with Theorem 3.1, which shows that RankCounting can use

γ̂(l, u, i) to accurately estimate γ(l, u, i).
Theorem 3.1: For any l and u, γ̂(l, u, i) is an unbiased

estimation of γ(l, u, i) with variance Var[γ̂(l, u, i)] ≤ 8
p2 .

Proof. Denote Ψ = γ̂(l, u, i) − γ(l, u, i), then Ψ could be

formulated under different cases as follows,

Ψ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ(p(l, i), s(u, i), i)− γ(l, u, i)− 2
p ; if ωp, ωs;

γ(p(l, i), lst, i)− γ(l, u, i)− 1
p ; if ωp, ωs;

γ(fst, s(u, i), i)− γ(l, u, i)− 1
p ; if ωp, ωs;

γ(fst, lst, i)− γ(l, u, i). else

The proof first shows that E(Ψ) = 0 and then il-

lustrates the bounded variance of γ̂(l, u, i). We observe

that γ(p(l, i), s(u, i), i), γ(p(l, i), lst, i), γ(fst, s(u, i), i) and

γ(fst, lst, i) are all no smaller than γ(l, u, i), since they

contain additional data elements compared to the query range

(l, u). The number of additional data elements can be studied

in four cases according to the existence or non-existence of

p(l, i) and s(u, i). γ(p(l, i), s(u, i), i)−γ(l, u, i) represents the

number of additional data elements located in range intervals

(p(l, i), l) and (u, s(u, i)), when both p(l, i) and s(u, i) exist.

γ(p(l, i), lst, i)−γ(l, u, i) represents the number of additional

data elements located in (p(l, i), l) and (u, lst), when only

p(l, i) exists. Likewise, γ(fst, s(u, i), i)−γ(l, u, i) represents

the number of additional data elements located in (fst, l) and

(u, s(u, i)), when only s(u, i) exists. γ(l, u, i)− γ(fst, lst, i)
represents the number of additional data elements located in

(fst, l) and (u, lst), when neither p(l, i) or s(u, i) exists.

We introduce term C[i]es = |{x|x ∈ Di, s ≤ x ≤ e}|
to denote the number of data elements from Di located in

the range interval (s, e). For example, C[i]
p(l,i)
l and C[i]

s(u,i)
u

represent the number of data elements located in (p(l, i), l)
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and (u, s(u, i)), when p(l, i) and s(u, i) exist, respectively.

For a given j satisfying 1 ≤ j ≤ r(l), the probability of

C[i]lp(l) = j is p(1 − p)j−1, when C[i]lp(l) exists. Similarly,

for a given j satisfying 1 ≤ j ≤ ni − r(u), the probability

of C[i]
s(u)
u = j is p(1 − p)j−1, when C[i]

s(u)
u exists. Ac-

cording to the definition of C, we have C[i]lfst = r(l, i) and

C[i]lstu = ni − r(u, i). Note that for given query parameters l

and u, C[i]lp(l,i), C[i]
s(u,i)
u , C[i]lfst and C[i]lstu can be regarded

as random variables. C[i]
p(l,i)
l is independent of C[i]

s(u,i)
u and

C[i]lstu , while C[i]
s(u,i)
u is independent of C[i]lp(l,i) and C[i]lfst.

The notation of Ψ could be formulated using C as follows:

Ψ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C[i]lp(l,i) + C[i]
s(u,i)
u − 2

p ; if ωp, ωs;

C[i]lp(l,i) + C[i]lstu − 1
p ; if ωp, ωs;

C[i]lfst + C[i]
s(u,i)
u − 1

p ; if ωp, ωs;

C[i]lfst + C[i]lstu . else

In the following analysis, we omit the identifier i of node

in r(·, i), C[i](·)(·), p(·, i) and s(·, i), and use r(·), C(·)(·), p(·) and

s(·) respectively for abbreviation when focusing on node i.
The expectation of Ψ can be computed as shown below:

E(Ψ) =
∑

1≤m≤r(l)
1≤n≤ni−r(u)

(m+ n− 2

p
)Pr[Cl

p(l) = m,Cs(u)
u = n]

+
∑

1≤m≤r(l)

(m+ ni − r(u)− 1

p
)Pr[Cl

p(l) = m,ωs]

+
∑

1≤n≤ni−r(u)

(r(l) + n− 1

p
)Pr[Cs(u)

u = m,ωp]

+ (r(l) + ni − r(u))Pr[ωp, ωs]

=Pr[ωs]E[Cl
p(l) −

1

p
] + Pr[ωp]E[Cs(u)

u − 1

p
]

+ Pr[ωs]E[Cl
p(l) −

1

p
] + Pr[ωp](ni − r(u))Pr[ωs]

+ Pr[ωs]r(l)Pr[ωp] + Pr[ωp]E[Cs(u)
u − 1

p
]

+ (r(l) + ni − r(u))Pr[ωs]Pr[ωp]

=E[Cl
p(l)]−

1

p
Pr[ωp] + E[Cs(u)

u ]− 1

p
Pr[ωs]

+ r(l)Pr[ωp] + (ni − r(u))Pr[ωs]

=

r(l)∑
j=1

jp(1− p)j−1 − 1

p
(1− (1− p)r(l))

+

ni−r(u)∑
j=1

jp(1− p)j−1 − 1

p
(1− (1− p)ni−r(u))

+ (1− p)r(l)r(l) + (1− p)ni−r(u)(ni − r(u))

=0

So we have E[γ̂(l, u, i)] = γ(l, u, i), and the RankCounting
estimator produces an unbiased estimation to γ(l, u, i). Given

query parameters l and u, the exact query result γ(l, u, i) is

a constant, and it indicates that Var[γ̂(l, u, i)] = Var[Ψ] since

Ψ = γ̂(l, u, i)−γ(l, u, i). Next, we investigate the variance of

γ̂(l, u, i) by calculating the variance of Ψ.

Var[γ̂(l, u, i)] = Var[Ψ] = E[Ψ2]− E[Ψ]2 = E[Ψ2]

=
∑

1≤m≤r(l)
1≤n≤ni−r(u)

(m+ n− 2

p
)2Pr[Cl

p(l) = m,Cs(u)
u = n]

+
∑

1≤m≤r(l)

(m+ ni − r(u)− 1

p
)2Pr[Cl

p(l) = m,ωs]

+
∑

1≤n≤ni−r(u)

(r(l) + n− 1

p
)2Pr[Cs(u)

u = m,ωp]

+ (r(l) + ni − r(u))2Pr[ωp, ωs]

<
∑

1≤m≤r(l)
1≤n≤ni−r(u)

(2m2 + 2n2 +
4

p2
)Pr[Cl

p(l) = m,Cs(u)
u = n]

−
∑

1≤m≤r(l)
1≤n≤ni−r(u)

2(m+ n)

p
Pr[Cl

p(l) = m,Cs(u)
u = n]

+
∑

1≤m≤r(l)

(2m2 + 2(ni − r(u))2 +
1

p2
)Pr[Cl

p(l) = m,ωs]

−
∑

1≤m≤r(l)

2(m+ ni − r(u))

p
Pr[Cl

p(l) = m,ωs]

+
∑

1≤n≤ni−r(u)

(2r2(l) + 2n2 +
1

p2
)Pr[Cs(u)

u = m,ωp]

−
∑

1≤n≤ni−r(u)

2(r(l) + n)

p
Pr[Cs(u)

u = m,ωp]

+ (2r2(l) + (ni − r(u))2)Pr[ωp, ωs]

< 2E[(Cl
p(l))

2] + 2E[(Cs(u)
u )2] + 2Pr[ωp]r

2(l)

+ 2Pr[ωs](ni − r(u))2 +
4

p2
− 2

p
(E[Cl

p(l)] + E[Cs(u)
u ])

=
4

p2
+ 2

r(l)∑
j=1

j2p(1− p)j−1 + 2

ni−r(u)∑
j=1

j2p(1− p)j−1

+ 2(1− p)r(l)r(l)2 + 2(1− p)ni−r(u)(ni − r(u))2

− 2

p
(

r(l)∑
j=1

jp(1− p)j−1 +

ni−r(u)∑
j=1

jp(1− p)j−1) ≤ 8

p2

�
Compared with BasicCounting whose variance is bounded

by
|D|(1−p)

p , our estimator does provide advantage to improve

the communication cost. The total number of samples drawn

in the system is expected to be |S| = |D|p. In general cases,

only a small fraction of the raw data will be sampled, so we

have 1 − p > 0.5. If |S| = |D|p > 16k and 8
p2 <

|D|(1−p)
p ,

it indicates that the proposed estimator provides smaller vari-

ance and incurs smaller communication cost. In contrast, if
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|S| = |D|p ≤ 8k, it means that the average number of samples

transferred by each node is no larger than 16. In this case,

a node could pack the samples into an ordinary heartbeat

message to the broker, and no more communication cost is

incurred either.

Since the global range counting aggregation is the sum of

local range counting aggregations, which is produced indepen-

dently, we conclude that γ̂(l, u, S) is an unbiased estimator of

γ(l, u,D) with bounded variance in Theorem 3.2.

Theorem 3.2: For any l and u, γ̂(l, u, S) =
∑k

i γ̂(l, u, i)
is an unbiased estimation of γ(l, u,D) with variance

Var[γ̂(l, u, i)] ≤ 8k
p2 , where k is the number of nodes.

Therefore, by setting p =
√

8k/αn, the variance will be

(αn)2. According to Chebyshev’s inequality, this means that

γ̂(l, u, S) approximates γ(l, u,D) within an additive error

of αn with constant probability. We can make this constant

probability arbitrarily close to 1 by enlarging p by appropriate

constant factors. The total communication overhead in this

case is
√

8k/α, since this is the expected number of samples

to be transferred. Furthermore, according to Chebyshev’s

inequality, we can extend the above approximation, which is

within additive error of αn with constant probability, to the

case with a certain probability guarantee (say δ):

Theorem 3.3: Given query parameters l and u, the number

of nodes k, for any 0 < α < 1 and 0 < δ < 1, if the

sampling probability p in the RankCounting estimator satisfies

that p ≥
√
2k

αn
2√
1−δ

, then γ̂(l, u, S) is an (α, δ)-range counting.

Proof. The RankCounting estimator provides an unbiased

estimation γ̂(l, u, S) and its variance is no larger than 8k
p2 .

Combined with the Chebyshev’s inequality, we have

Pr[|γ̂(l, u, S)− γ(l, u,D)| ≤ αn]

= Pr[|γ̂(l, u, S)− E[γ̂(l, u,D)]| ≤ αn]

≥ 1− Var[γ̂(l, u, S)]

(αn)2
= 1−

8k
p2

(αn)2
≥ 1−

8k

(
√
2k

αn
2√
1−δ

)2

(αn)2

= δ.

To this end, we can see that γ̂(l, u, S) satisfies the requirement

of (α, δ)-Range counting. �

B. Differentially Private Approximate Range Counting

To keep sensitive data in D private, we adopt a two-phase

approach to response to (α, δ)-range counting in a private

manner, and we formulate an optimization problem aiming

at achieving the optimal differential privacy, while taking

accuracy requirements as constraints. Given query parameters

l, u, α and δ, a data broker firstly chooses a pair of (α′, δ′),
and computes (α′, δ′)-range counting γ̂(l, u, S). Then the

Laplacian mechanism is employed with privacy budget ε, and

finally γ∗(l, u, S) = γ̂(l, u, S) + Lap(ε) is returned to the

querying data customer. Note that γ∗(l, u, S) should satisfy

the (α, δ)-range counting accuracy. We can get α′ < α and

δ′ > δ, since γ̂(l, u, S) must be more accurate than γ∗(l, u, S),
otherwise, it will violate the accuracy requirement after adding

Laplacian noise Lap(ε). For each pair of (α′, δ′), the data

broker should include as many samples as possible in the

computation of γ̂(l, u, S). Then in the next step a larger search

space of ε will be obtained under the final (α, δ) accuracy

requirement. For a given pair of (α′, δ′), the data broker

calculates the smallest ε making γ∗(l, u, S) a (α, δ)-range

counting. After traversing all pairs of (α′, δ′), the data broker

is able to achieve the optimal differential privacy, e.g., the

smallest ε.
A problem in the above process is how to calculate the

accuracy of γ∗(l, u, S) = γ̂(l, u, S) + Lap(ε), given γ̂(l, u, S)
is an (α′, δ′)-range counting and Laplacian noise is determined

by ε. This problem is equivalent to calculate the probabil-

ity Pr[|γ∗(l, u, S) − γ(l, u,D)| ≤ αn]. It is known that

Pr[|γ̂(l, u, S) − γ(l, u,D)| ≤ α′n] ≥ δ′. For a specified ε,
suppose Pr[|Lap(ε)| ≤ (α− α′)n] ≥ τ , then we have

Pr[|γ∗(l, u, S)− γ(l, u,D)| ≤ αn]

≥ Pr[|γ̂(l, u, S)− γ(l, u,D)|+ |Lap(ε)| ≤ αn]

≥ Pr[|γ̂(l, u, S)− γ(l, u,D)| ≤ α′n]Pr[|Lap(ε)| ≤ (α− α′)n]
= δτ.

From the above inequality, it is seen that if Pr[|Lap(ε)| ≤
(α−α′)n] = τ ≤ δ

δ′ , then we will derive that Pr[|γ∗(l, u, S)−
γ(l, u,D)| ≤ αn] ≥ δ holds. It is worth mentioning that

random variables X = γ̂(l, u, S)−γ(l, u,D) and Y = Lap(ε)
are independent, and if τ < δ

δ′ , then we cannot guarantee that

Pr[|γ∗(l, u, S)− γ(l, u,D)| ≤ αn] ≥ δ holds.

After injecting a Laplacian noise scaled at Lap(ε), not only

the inaccuracy is composited by sampling and Laplacian noise,

but also the final privacy degree. In other words, the differ-

ential privacy budget achieved by our two-phase approach

denoted as ε′ is determined, in a collaborative manner, by

sampling probability p and privacy budget ε. Lemma 3.4

generalized from [11] shows the relationship of ε′, p and ε.
Lemma 3.4: If function φ(·) is ε-differentially private,

and function S(·) returns independent random samples with

probability 0 ≤ p ≤ 1, then φ(S(·)) is ε′-differential private,

where ε′ = ln(1− p+ peε).
Proof. Let D and D′ be any pair of neighboring datasets,

assuming D = D′ ∪ {i}. Let o be any output of φ(S(·)).
Pr[φ(S(D)) = o]

=
∑

Z⊆S(D′)

pPr[S(D′) = Z]Pr[φ(Z ∪ {i}) = o]

+
∑

Z⊆S(D′)

(1− p)Pr[S(D′) = Z]Pr[φ(Z) = o]

≤ (peε + 1− p)
∑

Z⊆S(D′)

Pr[S(D′) = Z]Pr[φ(Z) = o]

= (peε + 1− p)Pr[φ(S(D′)) = o]

Similarly, we can get that

Pr[φ(S(D′)) = o] ≤ (peε + 1− p)Pr[φ(S(D)) = o],

and φ(S(·)) is ε′-differential private, with ε′ = ln(1−p+p·eε).
�
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Now we can formulate the optimization problem of achiev-

ing the optimal differential privacy (with the smallest privacy

budget) under the (α, δ)-range counting accuracy requirement.

In the following, we present the formulation:

min ε′ = ln(1 + p(eε − 1))

s.t.
√
2k

α′n
2√
1−δ′ ≤ p

α′ ≤ α
δ ≤ δ′

Pr[|Lap(ε)| ≤ (α− α′)n] ≥ δ
δ′

ε ≥ 0

(3)

Given α, δ and p as inputs, the optimization problem in (3)

can be constructed, taking the optimized ε (together with

intermediate α′, δ′) as output, which is used to conduct an

(α, δ)-range counting. The search space of (3) contains all

the feasible solutions for (α, δ)-range counting conducted by

the two-phase approach. Next, we show how to compute the

optimal solution to (3) and how to conduct a differentially

private (α, δ)-range counting based on the optimal solution.

For a fixed α′, to avoid repeated sampling in continuous

queries, a data broker uses all the existing samples (collected

with p) at the base station to compute an (α′, δ′)-range

counting. Then, δ′ can be obtained by setting
√
2k

α′n
2√
1−δ′ = p.

According to (3), α, δ, p, k and n are all constants, and the

data broker can obtain a minimum ε for the fixed α′ with the

following constraint:

Pr[|Lap(ε)| ≤ (α− α′)n] = 1− e−
(α−α′)nε

Δγ̂ ≤ δ

δ′
.

Then we know ε ≥ Δγ̂
(α−α′)n ln δ′

δ′−δ , and the optimal differen-

tial privacy is achieved by setting ε = Δγ̂
(α−α′)n ln δ′

δ′−δ . Δγ̂ is

the sensitivity of γ̂(l, u, i). In the worst case, Δγ̂ grows to ni

with an extremely small probability, and adopting Δγ̂ = ni

will totally destroy the aggregation utility. A fair solution is

to use the expectation of Δγ̂, which is 1
q in the general cases.

By traversing α′ in [0, α], an optimal solution consisting of

α′, δ′ and ε can be found. Although the searching range of

α′ is continuous, we can approximate it to a discrete domain

with arbitrarily small intervals.

Given an optimal solution consisting of α′, δ′ and ε, the data

broker carries out the following two steps. First, an (α′, δ′)-
range counting is computed as x′ =

∑k
1 γ̂(l, u, i). Second,

Laplacian noise Lap(ε) is added on x′ and the final result

is x′′ =
∑k

1 γ̂(l, u, i) + Lap(ε), which is an ε′-differentially

private (α, δ)-range counting.

IV. PRICING MECHANISM

This section discusses the existence of arbitrage attacks for

pricing mechanisms, and how the pricing mechanism should

be designed to thwart such attacks.

Initiatively, π(α, δ) should monotonically decrease with the

approximation degree α and increase with δ, to achieve a

negative correlation with the variance. However, a carelessly

designed π(α, δ) could still be vulnerable under the negative

correlation.

Example 4.1: A data consumer wants to buy a range

counting aggregation service Λ(α, δ) with low aggregation

variance. Therefore, she will intuitively specify a small value

of α and a large value of δ, and a higher price will be charged.

However, she may also circumvent to pay the full price, and

turns to buy multiple cheaper services of the same range

counting with higher variances, denoted as {Λ(αi, δi)|i ∈
{1, . . . ,m}, αi > α, δi < δ}. We use V (αi, δi) to indicate the

variance derived from the parameter pair (αi, δi), respectively.

Afterwards, the data consumer estimates the result according

to Formula (4).

{Λ(α1, δ1), . . . ,Λ(αm, δm)}

�−→γ(.) =
1

m

m∑
1

γi(.)

�−→V (.) =
1

m2

m∑
i=1

V (αi, δi),

(4)

In other words, the data consumer obtains a final range

counting aggregation by computing the average of m noisy

answers, with an accumulated variance 1
m2

∑m
i=1 V (αi, δi)

potentially lower than V (α, δ). If the pricing function π(α, δ)
is arbitrage avoiding, the following conditional statement must

hold:

1

m2

{
m∑
i=1

V (αi, δi)

}
≤ V (α, δ)⇒

m∑
i,j=1

π(αi, δi) ≥ π(α, δ).

With the above conditional statement, we first use Lemma

4.1 to show the equivalence property of arbitrage-avoiding

pricing function π(α, δ) according to the variance.

Lemma 4.1: For an arbitrary-avoiding pricing function

π(α, δ), there must be another function ψ(V (α, δ)) = π(α, δ),
when π(α, δ) is arbitrage free.

Proof. Assume there are two arbitrary sets of parameters

α, δ and α′, δ′ with V (α, δ) = V (α′, δ′). Then we must

have π(α, δ) = π(α′, δ′), i.e., ψ(V (α, δ)) = ψ(V (α′, δ′)),
indicating the price is uniquely determined by the variance.

Otherwise, we have π(α, δ) �= π(α′, δ′), which means

π(α, δ) is not uniquely determined by V (α, δ). We prove

the lemma by contradiction. Assume π(α, δ) > π(α′, δ′),
then an arbitrage attack exists, as V (α′, δ′) = V (α, δ), and

π(α′, δ′) < π(α, δ). This contradicts the assumption that

π(α, δ) is arbitrary-free. The proof is finished. �
With the above equivalent expression, the following theorem

shows how to address an arbitrage attack.

Theorem 4.2: Any pricing function π(α, δ) is arbitrage-

avoiding if and only if the following properties hold:

1) π(α, δ) = ψ(V (α, δ))
2) ∀α = α0, δ = δ0,Δδ ≥ 0, the relative difference of π(·)

and V (·) follows
π(α0,δ0+Δδ)−π(α0,δ0)

π(α0,δ0+Δδ) ≥ V (α0,δ0)−V (α0,δ0+Δδ)
V (α0,δ0)
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3) ∀α = α0, δ = δ0,Δα ≥ 0, the relative difference of

π(·) and V (·) follows
π(α0,δ0)−π(α0+Δα,δ0)

π(α0,δ0)
≤ V (α0+Δα,δ0)−V (α0,δ0)

V (α0+Δα,δ0)
.

Proof.
Part 1: Sufficiency.
We first prove the sufficiency of the properties, where the

three listed properties can guarantee the pricing function to be

arbitrage-avoiding.
Assume there are two groups of parameters: {(α, δ)} and

{(α1, δ1), (α2, δ2), · · · , (αm, δm)}. Data consumers could ei-

ther request for range counting once with parameters {(α, δ)},
or request multiple times with (α2, δ2), · · · , (αm, δm)}. In the

latter strategy, data consumers will apply the average value of

all results as the final conclusion, with the variance equals

V ar( 1
m

∑m
i=1Ri), where Ri indicates the result for the ith

query.
To prove pricing function π(α, δ) is arbitrage-avoiding,

we need to prove that π(α, δ) ≤ ∑m
i=1 π(αi, δi) when

V ar( 1
m

∑
Ri) ≤ V (α, δ).

Firstly, we have

V ar(
1

m

∑
Ri) =

1

m2

m∑
i=1

V (αi, δi) =
1

m2

m∑
i=1

ki · V (α, δ).

(5)

We also have
m∑
i=1

π(αi, δi) =
m∑
i=1

li · π(α, δ). (6)

For an arbitrary set (αi, δi), we introduce an intermediate

set (α, δi), and estimate its relative change on variance and

price compared to (α, δ). According to Property 2), we can

accumulate the difference and

π(α, δi)

π(α, δ)
≥ V (α, δ)

V (α, δi)
. (7)

We can further estimate the change according to Property

3) by accumulating the difference, and achieve the following

inequality:
π(αi, δi)

π(α, δi)
≥ V (α, δi)

V (αi, δi)
. (8)

Then we can combine the two inequalities, and the follow-

ing conclusion holds:

π(αi, δi)

π(α, δ)
≥ V (α, δ)

V (αi, δi)
, (9)

which means li ≥ 1
ki
.

As 1
m2

∑m
i=1 ki · V (α, δ) ≤ V (α, δ), we have

∑m
i=1 ki ≤

m2.
Assume k =

∑m
i=1 ki

m . Then we have k ≤ m. The conclusion

can be further extended:

k ≥ 1

m
. (10)

The result in Inequality (10) can be combined with the

following fact:
m∑
i=1

1

ki
≥

m∑
i=1

1

k
, (11)

and guarantees
m∑
i=1

1

ki
≥ 1. (12)

Finally, we combine the results:

m∑
i=1

li ≥
m∑
i=1

1

ki
≥ 1. (13)

This is the same as the conclusion that

m∑
i=1

π(αi, δi) ≥ π(α, δ), (14)

and the proof of sufficiency is completed.

Part 2: Necessity.
Now we prove the necessity of the properties. Assume

pricing function π(α, δ) is arbitrage-avoiding. We achieve the

conclusion by contradiction.

The necessity of the first property is proved in Lemma 4.1.

As for the second property, assume there is a pair of α′ and

δ′, where

π(α′, δ′ + Δδ)− π(α′, δ′)
π(α′, δ′ + Δδ)

<
V (α′, δ′)− V (α′, δ′ + Δδ)

V (α′, δ′)
(15)

for some Δδ > 0. Assume V (α′, δ′) = k ·V (α′, δ+Δδ), and

π(α′, δ′) = l · π(α′, δ + Δδ). Then there must be a pair of

integers m1 and m2, such that data consumers can either buy

range counting queries m1 times with V (α′, δ′), or m2 times

with V (α′, δ+Δδ), while their general variances are identical.

In this case, the total cost for the first strategy is smaller than

that of the second one, as l ≤ 1
k according to Inequality (15).

Then it contradicts the fact that π(α, δ) is arbitrage-avoiding,

as we can achieve the same query result and variance with a

lower cost.

The proof of the third property is similar with that of

Property 2), thus omitted here.

Generally, any arbitrage-avoiding pricing function π(α, δ)
must guarantee all the properties, and the necessity is proved.

�

V. EXPERIMENTS

This section presents the evaluation results of the proposed

method. Both the results for approximate range counting

aggregation, and the tradeoff between privacy preservation and

utility are investigated.

Datasets. The evaluation employs a real-world dataset, the

pollution records in CityPulse Smart City Datasets [12]. The

data are contributed by sensors with exact locations along

the rode sides. Each record contains 5 air quality indexes:

ozone, particulate matter, carbon monoxide, sulfur dioxide,

and nitrogen dioxide. The dataset has 17568 records collected

from 0:05am, 8/1/2014 to 0:00am, 10/1/2014.
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A. Effectiveness of the Sampling-Based Algorithm

We evaluate the performance of the proposed sampling-

based algorithm for answering approximate range counting

queries.

The first evaluation validates the impact of sampling prob-

ability p on the accuracy of the sampling algorithm. In

this evaluation, the maximum relative error of the sampling

algorithm is calculated, while p increases from 0.0173 to

0.4048. Fig. 2 shows that the maximum relative error is high

with the maximum value 27% when the sampling probability

is less than 0.12. Furthermore, with less data being preserved

for querying, the accuracy oscillates considerably. Querying

accuracy is very high if there are more than 15% data which

are preserved in the samples; and accuracies remain stable.

From Fig. 2, we further conclude that the proposed algorithm

has high aggregation accuracy, i.e., the maximum relative error

can be bounded to 3% if there are more than 5% data which

are preserved in the samples.

The second evaluation studies the impact of α and δ on the

accuracy of the achieved results. The accuracy is computed

while α and δ increase from 0.08 to 0.8. Fig. 3 shows that

the maximum relative error remains stable when δ is larger

than 0.3. Furthermore, the maximum relative error is less than

0.019 when δ is larger than 0.3. When a small δ is given, e.g.,
δ < 0.3, the maximum relative error shocks significantly.

The third evaluation investigates the impact of data size on

the sampling probability. In this evaluation, α and δ are set

to be 0.055 and 0.5, respectively. The sampling probability is

computed while the size of data increases from 10% to 100%

of the original dataset. As shown in Fig. 4, our algorithm is

suitable for big data range counting aggregation, as it largely

reduces computation and communication overhead. When data

size is very large, the sampling probability can converge to a

stable state with less data collected. Therefore, our sampling

probability can appropriately balance aggregation accuracy

and overhead.

B. Privacy-Utility Tradeoff

We also evaluate the performance of the differential privacy

mechanism for realizing privacy-utility tradeoff. The first

evaluation investigates the impact of privacy budget ε on the

accuracy of the range counting aggregation. The accuracy is

computed while α and δ increase from 0.08 to 0.8. Further-

more, ε increases from 0.01 to 8, and p = 0.4. As shown

in Fig. 5, with the decreasing of the privacy requirements,

aggregation accuracy can be improved, indicating less privacy

concerns lead to better utilities. Moreover, if a strong privacy

guarantee is required with ε = 0.1, our algorithm can still

bound the relative error under 8% for all these 5 datasets,

showing the high stability of the proposed framework.

The second evaluation investigates the impact of sampling

probability on privacy preservation under different privacy

budgets. Fig. 6 shows that querying accuracy is low when p <
0.15. With the increasing of sampling probability from 0.0173

to 0.25, querying accuracy is improved as more samples are

collected. The above observations indicate that the global

sensitivity of γ̂(bl, bu, S) satisfies GS(γ̂(bl, bu, S)) ∝ 1/p,

and a larger p means smaller volume of differential privacy

noise.

VI. LITERATURE REVIEW

Approximate Range Counting Aggregation. Sampling-based

algorithms have been proposed for approximate data aggrega-

tion in many areas [13] [14] [15], such as data stream, tradition

database systems, P2P networks, etc. However, these works are

not designed for range counting queries for big data in IoT,

indicating that no guarantees on performance are provided for

this kind of queries.

The sampling-based algorithms have also been applied for

long-term queries via continuous data collection. Considering

the high correlation in temporal and spatial dimensions, the

work in [16] proposes a distributed approximate aggregation

algorithm which can considerably reduce aggregation over-

head. The work in [17] proposes some algorithms to realize

the tradeoff between aggregation overhead and aggregation

accuracy in order to prolong network lifetime through allocat-

ing tolerable error bounds to each sensor node in a network.

Some indexing structures are proposed in [18] to conduct

spacial online sampling and data aggregation on big temporal-

spatial and spatial datasets. As a sampling-based algorithm,

the structures proposed in [18] have good performance for

dynamic datasets. However, these works mainly focus on the

reduction of long-term bandwidth consumption. They have no

promise on the performance of the one sample multiple queries

discussed in this paper. Furthermore, they neglect the privacy

issues underlying the collected data.

Differentially Private Data Aggregation. There are many

state-of-the-art paradigms investigating differentially private

data aggregation [19]. Especially, the work in [20] studies

the problem of hierarchical decomposition with differential

privacy guarantee based on spatial decomposition trees. The

paradigm proposed in [20] can efficiently answer differentially

private range counting by eliminating the dependence of

querying sensitivity on the maximum height of the decom-

position tree. The work in [21] investigates the problem of

releasing the degree distribution of a graph under differential

privacy. To reduce Laplace noise volume, the work in [21]

transfers high-dimensional graph data to low dimensional

data based on a graph projection approach. However, these

studies mainly focus on reducing the scale of noise introduced

by privacy preservation, while they fail to demonstrate an

unbiased estimator and cannot be applied directly for data in

distributed environment.

Trading Private Aggregation. For the trade of data analyzing

results, current research mainly focuses on arbitrage avoiding

in querying-based pricing mechanisms [22] [23]. The work

in [9] proposes some arbitrage avoiding pricing mechanisms

for arbitrary formats of queries. However, these conclusions

cannot be extended to the range counting aggregation, and no

guarantees on privacy and utility tradeoff are given.
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p

Fig. 2. Querying accuracy affected by sampling
probability p.

Fig. 3. Querying accuracy affected by α and δ.

 p

Fig. 4. Sampling probability and data size
relationship.

Fig. 5. Querying accuracy affected
by ε with p = 0.4.

p

Fig. 6. Querying accuracy affected
by p.

VII. CONCLUSION

This paper investigates the problem of trading approximate

range counting for big IoT data. The objective is to derive

query answers with optimal differential privacy guarantee,

while the answers satisfy the specified approximation degree.

A two-phase sampling-based approach with bounded variance

is proposed, including an unbiased estimator based on sampled

data and a perturbation mechanism designed for optimal differ-

ential privacy. The paper further studies the pricing mechanism

for trading counting results, facing the arbitrage attacks from

cunning consumers. As a result, the critical condition to

establish a proper pricing function is established. All the

proposed methods are validated towards real-world datasets.
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