2019 IEEE 35th International Conference on Data Engineering (ICDE)

Deletion Propagation for Multiple Key Preserving
Conjunctive Queries: Approximations and
Complexity

Zhipeng Cai* Dongjing Miao®-* Yingshu Li*

*Department of Computer Science, Georgia State University, Atlanta, Georgia
Email: {zcai,yili} @gsu.edu, dmiaol @student.gsu.edu

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
Email: miaodongjing @hit.edu.cn

Abstract—This paper studies the deletion propagation problem
in terms of minimizing view side-effect. It is a problem funda-
mental to data lineage and quality management which could be
a key step in analyzing view propagation and repairing data.
The investigated problem is a variant of the standard deletion
propagation problem, where given a source database D, a set
of key preserving conjunctive queries O, and the set of views V
obtained by the queries in O, we try to identify a set " of tuples
from D whose elimination prevents all the tuples in a given set
of deletions on views A) while preserving any other results. The
complexity of this problem has been well studied for the case with
only a single query. Dichotomies, even trichotomies, for different
settings are developed. However, no results on multiple queries
are given which is a more realistic case. We study the complexity
and approximations of optimizing the side-effect on the views, i.e.,
find 7' to minimize the additional damage on) after removing
all the tuples of A). We focus on the class of key-preserving
conjunctive queries which is a dichotomy for the single query
case. It is surprising to find that except the single query case,
this problem is NP-hard to approximate within any constant even
for a non-trivial set of multiple project-free conjunctive queries in
terms of view side-effect. The proposed algorithm shows that it
can be approximated within a bound depending on the number
of tuples of both VV and A)V. We identify a class of polynomial
tractable inputs, and provide a dynamic programming algorithm
to solve the problem. Besides data lineage, study on this problem
could also provide important foundations for the computational
issues in data repairing. Furthermore, we introduce some related
applications of this problem, especially for query feedback based
data cleaning.

Keywords-key preserving; conjunctive query; deletion propa-
gation; approximation

I. INTRODUCTION

Deletion propagation is a special view update problem.
The motivation is to enable the restricted database access
via materialized views so as to translate the updates (e.g.,
deletions) specified on views back into the source database
properly. The major concern is that updates are usually not
fully specified on multiple views defined by different queries.
Therefore, the previous literature has made efforts to guarantee
the correctness of translation and improved expression ability
of updating interfaces by designing syntax and semantics,

2375-026X/19/$31.00 ©2019 IEEE

DOI 10.1109/ICDE.2019.00052

506

and deriving necessary qualifying criterion. Bancilhon and
Spyratos [1] initiated a series of research by defining the
complementary view to inherent ambiguity so as to compute
the translated database. Cosmadakis and Papadimitriou [16]
followed this way characterizing complementary views and
extended it to functional dependencies. Keller [29] later de-
rived translator coherence qualifying criterion. Bohannon et
al. [4] then developed the language for updatable views with
explicit update policies.

In this paper, we study another aspect of view update which
is to translate updates back into source data with the minimum
side-effect [6], [14], [15], [17], [18], [30]-[32] even though
updates are incompletely specified. Motivative examples could
be found in many real-life applications such as relational
data repairing [2], [3], database debugging [32], batched view
updating and so on. For example, some semi-automatic data
repairing systems [2], [3] typically generate a set of queries
first so as to cover the source data as many as possible or the
most inconsistent part.

In these procedures, collecting feedbacks on query results
is the critical step, and these feedbacks are usually obtained
by (empirical) rule-based detection or user-specification (e.g.,
crowd or domain experts). These feedbacks usually specify
errors contained in the result or missing tuples. However, the
incompleteness of feedbacks may lead to the non-existence
of side-effect-free updated database. Therefore, an updated
database with the minimum side-effect should be a recom-
mendation or partial suggestion of removing errors. Another
example is database debugging [32], and a similar task is
to find an updated database suggestion once wrong tuples in
the query results are identified by users. A scenario regarding
information extraction is also mentioned in [31].

The problem considered in this paper is a special case of
view propagation. Given undesired tuples in the materialized
views defined by conjunction queries, it is to seek a way of
tuple deletion from the tables in source database to eliminate
undesired tuples in the view. A solution here is the database
updated by applying the deletion on the source tables. The set
of tuples in the views but different from the undesired ones

IEEE
computer
® psoaety

are called side-effect if they are eliminated by the deletion
on the source database. A solution is called side-effect-free
only if no tuples other than the undesired ones are eliminated.
The examples mentioned above show that a side-effect-free
solution does not always exist. Therefore, this series of works
try to figure out the complexity and propose algorithms for
the problem minimizing the side-effect [6], [15], [32], typically
take the cardinality of result tuples lost as the measurement. A
solution is optimal if its side-effect is of minimum cardinality.
This is different from the source side-effect counterpart studied
in [2], where the measurement is the cardinality of the tuples
deleted in the source database in order to eliminate all the
undesired view tuples.

In this paper, we focus on the more realistic extension
of the cases studied in the previous research, i.e., the case
of multiple views. The previous works have figured out the
complexity classes of most major cases taking only one view
as the input, although some dichotomies and trichotomies for
the computational complexity are derived in the literatures [6],
[15], [30]. For example, in the case studied in [15], [30],
not only the view is defined by a single query, but also the
deletion on view is also a single tuple. Detailed results on
the complexity of multi-tuple deletion are given in [32] where
the deletion on view could be multiple tuples but view is still
single. However, besides lack of approximation algorithms for
polynomial intractable cases, no complexity results are known
for the case of multiple views.

To conduct a non-trivial investigation on the case of multiple
views, we focus on the views defined by key-preserving
conjunctive queries. As shown in the previous research, on
data complexity, deletion propagation with the minimum view
side-effect is NP-hard for sj-free conjunctive queries in which
only a single view is given. On the other hand, Miao et al. [36]
shows that on the combined complexity aspect, minimizing
view side-effect is 5 -hard for single sj-free conjunctive view,
worst still, it is beyond NP (i.e., NP(k)-hard for every integer
k) even when the deletion could be bounded in advance based
on priori knowledge. Fortunately, on the combined complexity,
the case of single project-free conjunctive query view is shown
to be polynomial tractable (i.e., LOGSPACE) containing self-
join and an algorithm has been developed [37]. These results
imply that the projection operator in a conjunctive query pro-
duces ambiguity which increases the hardness of the reversion
process to find an optimal solution. It is easy to see that a
tractable condition has to be within project-free conjunctive
fragment, otherwise NP-hard or beyond NP, because the case
studied in this paper takes multiple views defined by different
queries as input. Therefore, we investigate the complexity of
the case taking multiple project-free views as input to derive
polynomial tractable conditions and develop approximation for
this case. Note that, other than data complexity, approximation
under combined complexity is much more powerful since it
could deal with views defined by more complex queries and
parallel applications.

Our contributions are as follows. We first show that the
previous complexity results for the single view case [31], [32]

507

TABLE I
SUMMARY OF NOTATIONS

Notation Definition

S schema

D database instance

T relation symbol

t tuple symbol

Q,Q(D),V database query, its result, and its materialized view

Q a set of queries {V1,...,V,}

% a set of views {V1,...,V,}
AY a set of deletions {AV1,..., AV, } on the views in V
[-] the size or the number of elements in a given set
|-l the sum of the size of the elements in a given collection

no longer hold for the multiple queries case. We derive the
following new complexity results.

o Even for two project-free conjunctive views, the view
side-effect problem cannot be approximated within
0(21°g176 IVl where 6 = 1/loglog®||V| for any ¢ <
0.5, unless P=NP. Such lower bound can also be applied
to the balanced deletion problem defined for more prac-
tical cases in Section III

The view side-effect problem and its balanced version can
be approximated within O(2 - ||V|| - log||AV||) for the
general case, where [is the maximum arify(Q)) among
all the given queries.

The view side-effect problem can be approximated within
I and O(24/1-||V]|) for the tree case.

The view side-effect problem can be solved polynomially
for the more restrictive tree case.

The paper is organized as follows. Section II presents the
formal settings and definitions. The problems and related
results are introduced in Section III. The complexity results
for minimizing view side-effect are shown in Section IV. In
Section V, we propose the approximations for minimizing view
side-effect. A polynomial tractable case is identified with a
dynamic programming algorithm in Section V.D. The related
applications are elaborated in Section VI and the related works
are discussed in Section VII. Section VIII concludes the paper.

II. FORMAL STATEMENTS AND PRELIMINARIES

In this section, we review some classical concepts and
present the formal statements in our studies.

A. Schemas and Instances

Let Const be a set of potential constants, and unless
otherwise stated, these constants are denoted by lower-case
letters from the beginning of the alphabet such as ‘a’, ‘b’ and
‘c’. A schema S is a finite sequence (771, ...,7,,) containing
distinct relations 73, and each 7; has an arity Dim; > 0. An
instance D (over a relation T') is a sequence (T2,...,T2)
such that each T} is a finite relation of arity Dim; over Const
(i.e., TP is a finite subset of Const”™™). If t € Const?"™,
then ¢ is called a tuple, and it is a tuple of instance D if
t € TP. Notationally, we regard an instance as a set of its

facts. For examples, T(t) € D means ¢t is in TP; D' C D
means D' is a sub-instance of D, that is, T,’" C TP for
all ¢ = 1,...,m. For convenience, we usually ignore the
superscript D in the context that instance D is given, ie.,
we use 7T} instead of T}P.

B. Conjunctive Queries, Key Preserving, and Views

Let Var be a set of variables. We assume that Var and Const
are disjoint sets. We denote variables by lower-case singletons
from the end of the alphabet such as “x”, “y” and “z”.
Conjunctive Queries. We use the datalog style to denote a
conjunctive query (CQ), that is, a CQ defined on a schema S
could be written as

Qly1,.--

where x; and y; are two vectors of variables disjoint with each
other. c; is a tuple of constants (from Const). A CQ is actually
a conjunction of atomic formulas (“atom” for simplicity) over
S. Here, Q(y1,...,Yyq) is the head of query), and the other
part is called the body of Q. For any i, every x in x; is called
an existential variable, and every y in y; is called a head
variable. We use Varz(Q) and Var,(Q) to denote the sets of
existential and head variables of (). In this paper, each y;
should not be empty. The width or arity of query (), denoted
as arity(Q)), is the sum of the lengths of tuples y;.
For example, consider the following conjunctive queries

7Yq) = Tl(XLYLCl)v e 7Tq(Xq:anCq)

Ql(ylyy27w) = T1($7y172)7T2($:y2»w)

Q2 y1,9,y2: Y, y3) — T1(y, y1). To(y, y2), Ts(y, ys)

Query (1 has a width arity(Q1) of 3 and has two atoms
Ti(z,y1,2) and To(z,y2,w), while query (2 has a width
arity(Q)2) of 6 and has three atoms 71 (y,y1), T2(y, y2), and
T3(y, y3). There are two existential variables in ()1, namely x
and w, and its three head variables are y;, y» and y3. There
is no existential variable in ()5, and the three head variables
are the same as those of Q).

For convenience, every time we refer to a query (), the
underlying schema S will usually not be mentioned. We
assume that this schema is a default one that consists of the
relation symbols appearing in () (and each symbol has the
arity it takes in that (). We mainly investigate key preserving
conjunctive queries introduced below.

Key-preserving. In any atom 7, there is at least one key
attribute position, and a key specifies a set of key attribute
positions of 7. A key on T states that no two tuples in
T have the same values in all positions in key. Intuitively,
any two tuples are different in any table having a key. Any
variable located at the key attribute position is called a key
variable. For convenience, we underline all the key variables
if necessary, like T} (z,y, c¢). Formally, any CQ Q is a key
preserving conjunctive query if (a) every atom of @ has a

508

key, and (b) all of the key variables in the keys are included
in the head of (). Consider query (), again.

Ql(y17y27w) = Tl(xaﬂa Z)/ZE(%,%,U))

All the key variables (y; and ys) are included in {y1,y2,w}
which is the head of Q.

Note that if a query is key preserved, then there must be no
key variables contained in Var3(Q) (the set of existential vari-
ables). Obviously, a project-free conjunctive query is always
key preserved, like Q2.

View. To formally define views, we begin with an assignment
of a query. An assignment for) is a mapping from Var(Q)
to Const. For an assignment p on @, p(y) is a tuple created
by substituting every head variable y with constant u(y). For
an assignment on atom, tuple p(7") is obtained by substituting
every variable = with constant y(z). Given an instance D, a
match for @ of D is an assignment y for Q where u(7T) is
a tuple from D for all atoms 7'. Every match is also called
an answer of query Q. If i is a match for @ in D, then pu(y)
is called an answer for (). The set of all the answers for @
in D is called query result Q(D) which is just the result of
evaluating @ over D.

A view V is a materialized query result Q(D). Each
individual query answer ¢ in a view V is called a view tuple
of V. The width of a view Q(D) is also the width of a view
tuple in it, which equals to arity(Q).

C. Deletion Propagation

The core of deletion propagation is the side-effect analysis.
Therefore, we focus on (but not restricted to) the problem of
minimizing view side-effect [6], [30]-[32] when propagating
the deletion of multiple answers on multiple queries back to
the source relations.

In the view side-effect minimizing problem for multiple
conjunctive queries, the input inludes a source database in-
stance D, a set of queries Q = {Q1,...,Qm}, a set of views
V = {Vi,...,Vin} where V; = Q;(D), and the deletion
AV = {AVy,...,AV,,} specified on the views in V. The
output is a set of tuples AD minimizing the view side-effect

n
Sview = E Si
i=1

such that for each Q; € O,
(@). Qi(D\AD)CV;\ AV, and
). s; = |Vi\ AVi| = |Qi(D\ AD)|.

Consider the example in [15], where we are given two rela-
tions T (AuName, Journal) and Ty (Journal, Topic, #Papers).
An instance D on the two relations includes seven tuples as
shown in Fig.1.

Let AV be (John, XML), then various tuple deletions in D
could be found to remove AV from view Q3(D). Obviously,
each of tuples (John, TKDE), (John, TODS), (TKDE, XML,
30) and (TODS, XML, 30) is with matching values in AV.
In order to delete AV, one can check that removing (John,
TKDE) and (John, TODS) from Author, or removing (John,

AuName | Journal Journal | Topic | #Papers
Joe TKDE
John TKDE TKDE XML 30
Tom TKDE TKDE | CUBE 30
TODS XML 30
John TODS (b) T2 (Journal, Topic, #Papers)
(@) T1(AuName, Journal) —_—
- AuName | Journal | Topic
A”?; — CTIOJ’;;CE Joc | TKDE | CUBE
Joe XML Joe TKDE XML
Tom CUBE Tom TKDE | CUBE
Tom XML Tom TKDE XML
John CUBE John TKDE | CUBE
John TKDE | XML
John XML
@ Qs(z,2) = Ti(z,9); Jon | TODS | XML
To(y, 2, w) - (d; Qalz,y, 2) = T1(z,), Ta(y, 2,
= w
Fig. 1. An example for key-preserving CQ and view propagation.

TKDE) from Author and (TODS, XML, 30) from Journal both
result in the minimum view side-effect, i.e., one additional
view tuple is forced to be deleted.

Consider another deletion AV = (John, TKDE, XML) from
Q4(D). Note that deleting either (John, TKDE) from Author
or (TKDE, XML, 30) from Journal works due to the key
preserving property of query (4. Checking the view side-
effect can be easily performed by finding the occurrences of
key values of the deleted relation tuples in the view, and this
is the important property we utilize in our work.

This example only shows the single query case, while this
paper studies the case of multiple queries. In many practical
data cleaning or provenancing applications, the multiple query
case is more general and meaningful. It is obvious that the
complexity of the multiple query case is higher than or at
least equal to that of the single query case. However, the exact
complexity class of the multiple query case is still not known.
We are going to offer a characterization based on the key-
preserving property to figure out the lower and upper bounds
of the multiple query case.

D. Preliminaries

We now introduce some preliminary knowledge.
The Red-Blue Set Cover Problem [8]. Given two disjoint
finite sets, one as a set of red elements R = {r,...,r,} and
another one as set of blue elements B = {by,...,bs}, and a
collection C C 28YB of subsets of R U B, the Red-Blue Set
Cover Problem is to find a collection C' = {C;,,...,C;, } C
C such that all the blue elements are covered, while the
number of the covered red elements is minimized. Formally,
let Cost(R, B,C’) be the total number of the red elements
contained in the sets in C’. The objective is to minimize cost

COSt(R7B,C/) = {|Rﬂ (U]C7J)| ‘B - chij}-

Let |C| be the size of C. By a reduction from MMSA3 [8],

Carr et al. shows that the Red-Blue S%t Cover problem
i

cannot be approximated within O(2°8 "¢} where § =

509

1/1oglog®|C| for any ¢ < 0.5, unless P=NP. We show a linear
reduction from it in the next section to the deletion propagation
problem for multiple queries so as to obtain the lower bound.
The Positive-Negative Partial Set Cover Problem [38]. The
input is similar with that of the Red-Blue Set Cover problem.
Let a set of positive elements P = {p1,...,p,} and a set
of negative elements N = {ny,...,ng} be two disjoint finite
sets, and let C C 2PYN pe a collection of subsets of PUN. In
Positive-Negative Partial Set Cover, instead of covering all the
blue elements, the requirement is relaxed so that it aims to find
the best trade-off between covering the blue elements and not
covering too many red ones. In the context of such Positive-
Negative Partial Set Cover, the red and blue elements are called
negative and positive elements, respectively. Formally, given
an input instance which is a triplet (N, P,C), a solution is a
collection C' = {C;,,...,C;, } € C, and its cost is defined
as

Cost(R,B,C') = |P\ (U;C;,)| + |N N (U;Cy,)|

namely the number of uncovered positive elements plus the
number of covered negative elements. The goal is to minimize
Cost(R, B,C’).

A linear reduction has been shown from the Red-Blue Set

Cover to this problem by Miettinen [38], thus passing the
lower bound O(21°8" " €1} where § = 1/loglog®|C| for any
c < 0.5.
Prime-Dual Approximation. As a widely applied approxima-
tion technique, Vazirani provided a detail introduction and talk.
The primal-dual method uses a linear programming relaxation
of an integer linear programming formulation of the problem
being approximated and the dual linear programming of this
formulation. The algorithm starts from zero solutions, which
are infeasible for the primal program and feasible for the dual
one. The algorithm successively changes these solutions, such
that the dual remains feasible, while the primal eventually
becomes feasible, and the «-relaxed primal and the S-relaxed
dual complementary slackness conditions hold. Then, such
a pair of feasible solutions are «f-approximations of their
respective linear programming ones. [44]. Sometimes, the
algorithm prunes the feasible primal and dual solutions to
ensure that the relaxed complementary slackness conditions
hold.

III. RESULTS ON COMPLEXITIES

Recalling the results for the single query case, it is
polynomial-tractable for a key-preserving conjunctive query.
However, for multiple queries, the problem becomes extremely
hard. The first result we obtained is negative even for project-
free conjunctive queries, i.e., select-join queries. We show that
it is extremely hard to approximate even for multiple key-
preserving conjunctive queries.

Theorem 1. Even for two project-free conjunctive queries,
the view side-effect problem cannot be approximated within
02" " IVIly yhere 5§ = 1/loglog® |V| for any ¢ < 0.5,
unless P=NP.

Proof: We here provide the proof sketch.

Schema. Given any instance of Red-Blue Set Cover (R, B,C),
we build a schema containing only one relation denoted by
T'(x) in which x is an | RUB|-dimensional vector of variables.
Database instance. We add |C| tuples into 7" where each tuple
t € T refers to a set C' € C. For the value invention of each
tuple corresponding to C' € C, for each element b, € B, let
the i-th value of ¢ be b; if b; € C. For the rest cell of tuple
t, fill them by distinct values in 7'. Finally, a table instance
with |C| tuples of |RU B| dimensions is built. It is actually a
bijection between 7" and C.

View. We define a view for each element in R U B. In fact,
all the views are defined by a set of project-free conjunctive
queries {Qr,,...,Qr,, Qp,,...,Qv,}. We use each query to
generate a view corresponding to each element. Concretely,
each query (), is to build view V,., as a join path for each
red element r; € R and to build view V;, as a join path for
each blue element b; € B.

View Deletion. Let view deletion AV be the set of views
{Vp, } corresponding to all the blue elements in B.

IA‘
® o
— T: T1 bz
C Cs T1 b3
C>
\/ VT‘l = Q"‘l (T17b1>rl7b27rlyb3)
Vv X Vb1 — le (7“17 bl)
X Vb = Quy(r1,02) AV
X Vig i— Qbg (11, b3)

Fig. 2. Example C : {C1(r1,b1),C2(r1,b2),C3(r1,b3)} is an instance of
Red-Blue Set Cover. T is the corresponding table built in the reduction. The
views are defined by SJ query and view deletions are the last three tuples.

One can verify that there is a solution such that covering all
the blue elements while minimizing the number of covered red
elements, if and only if there is a way of tuple deletion from
T eliminating AV while minimizing the damage on results of
Qrys -+ Qr,, i.e., minimizing view side-effect. |

It is easy to check the linearity of this reduction, so that
view side-effect for multiple project-free conjuncctive queries
cannot be approximated within 0(21’”4171/log et vl Iy
any c¢ < 0.5, unless P = NP.

As a further step, here we talk about a variant of the
standard view side-effect problem, named balanced deletion
propagation. For this balanced version, we consider not only
removing the bad view tuples but also preserving the good
view tuples. Formally, the input still includes the database
instance, the views and tuple deletions on them. Let AD be a
solution of tuple deletions in source data, then the view tuples
deleted from view V; by AD should be V; — Q;(D \ AD).
The balanced version is to trade off deleting view tuples and
not deleting too many good view tuples, i.e., to minimize

for

VI VI

STIVi— QD \AD)[+ > [Vi\ AV; — Qi(D \ AD)
=1 =1

510

where each Q; € Q.

By utilizing the idea of such reduction, we can show
the hardness result for the Balanced Deletion Propagation
problem.

Theorem 2. Unless P=NP, even for two project-free con-
Jjunctive queries, the Balanced Deletion Propagation problem
cannot be approximated within 0(2103176‘“)”) where § =
1/loglog® || V|| for any ¢ < 0.5.

Proof: Here we reduce Positive-Negative Partial Set
Cover to Balanced Deletion Propagation. We still build a table
corresponding to the positive and negative sets according to
the way of the proof of Theorem 1. Define a view for each
element in VU P. All the views are defined by a set of project-
free conjunctive queries {Qp,,...,Qp,,Qn,;---,Qn,} Each
query is to generate a view corresponding to an individual
element. Concretely, each query @), is to build view V,, as a
join path for each positive element p; € P and to build view
V., as a join path for each blue element n; € N. At last, let
view deletion AV be the set of views {V},,} corresponding
to all the blue elements of N. One can verify that there
is a solution such that covering all the blue elements while
minimizing the number of covered red elements, if and only
if there is a way of tuple deletion from 7" eliminating AV
while minimizing damage on the results of Q. ,...,Q.,, ie.,
minimizing view side-effect.]

This result again implies balanced deletion propagation
for multiple project-free conjunctive queries cannot be ap-
proximated within O(2°8" " IVIl) where § = 1/loglog® ||V
for any ¢ < 0.5, unless P = NP. Concretely, we employ
the second corollary in [38]. In fact, it is shown that un-
less NPCDTIME (nPooe(")) it is impossible to approximate
Positive-Negative Partial Set Cover within 0(21°g176 €1, for
any ¢ > 0. The first theorem given by Miettinen [38] could be
applied here to obtain a similar result on the hardness of Red-
Blue Set Cover. Combining Theorem 3.1 in [8] and Theorem 1
in [38], we can derive the following result on the lower bound
of the standard and balanced versions of the view side-effect
problem.

Unless P = NP, it is impossible to approximate Positive-
Negative Partial Set Cover within 0(210g1*5 ™) where 6 =
1/loglog®n for any ¢ < 0.5.

This statement and the second corollary in [38] imply
a similar approximation ratio for the balanced version, be-
cause through the reduction from positive-negative partial set
cover to balanced deletion propagation, an approximation of
balanced deletion propagation within O(2°8" " IVIl) follows,
due to the approximation within O(2'°8"* 2ICl) of positive-
negative partial set cover.

The second corollary in [38] states the inapproximability of

o _ logl—élB‘
positive-negative partial set cover within O(2) for any
0 > 0, unless P = NP.

Therefore, the linear reduction from positive-negative partial
set cover implies the inapproximability of balanced deletion
propagation within O(210g17(s AV

IV. APPROXIMATION ALGORITHMS

In this section, we propose the approximate algorithms for
the view side-effect problem. To deal with more practical
scenario, we provide an algorithm solving the weighted ver-
sion, where each view tuple to be preserved has a weight
representing user preference.

A. Approximation for the General Case

Our first result is shown by the following claim. Let | be
the maximum width of the given key-preserving conjunctive
queries (views), namely

| = max ari
max arity(Q)
, then we have the following result.

Claim 1. Let V be the set of given views and AV be the set of
intended tuple deletions. View side-effect can be approximated
within O(2/1 - ||V - log [|AV|]).

This can be done by reducing view side-effect to Red-Blue
Set Cover. (a) Generate a red element for each view tuple to
be preserved, (b) Generate a blue element for each view tuple
to be deleted, and (c) Generate a set for each tuple ¢ such that
this set contains exactly the view tuples containing the tuple
in it, i.e., ¢ is on the corresponding join paths simultaneously.
Due to the key-preserving property, it is always feasible to
find all the corresponding tuples. The weights of the view
tuples are transferred as they are. It is easy to check that a
solution to the obtained red-blue set cover instance is mapped
to a solution for the corresponding instance of the view
side-effect problem in this reverse manner. This reduction
preserves the feasibility and the cost of a solution, thus
passing the upper bound from red-blue set cover to view
side-effect. We employ the algorithm LowDegTwo proposed
by Peleg [41] to solve the red-blue set cover instance obtained
by the reverse reduction. Then transform the solution cover
back to a set of the corresponding tuples, i.e., deletion on
the source data. It is easy to check this mapping from view
side-effect to Red-Blue Set Cover preserves the approximation
ratio. Since the algorithm for Red-Blue Set Cover achieves
a ratio of 24/|C|log|B|, the transferred ratio should be
O(2+/1-||V] - log ||AV||). The claim follows since each tuple
involved in the views defines a set in the reduction of view
side-effect to red-blue set cover.

For the balanced view side-effect problem, we show that a
feasible solution of a ratio guarantee could be found as follows.

Lemma 1. Balanced deletion propagation could be approxi-
mated within 2./1- (|V]| + [[AV]]) - log |AV])).

For any instance of balanced deletion propagation, one can
reduce it to positive-negative partial set cover. As any instance
of positive-negative partial set cover can be approximated
within 2./(|C| + |B|)log|B|, and obtain a solution for bal-
anced deletion propagation by transforming the approximate
solution back to a set of corresponding tuples. This preserves

511

the approximation ratio, as claimed above, yielding the ap-
proximation ratio of 21/ - (V|| + [[AV]]) - log |AV].
Next, we present a characterization to distinguish better cases.

B. Characterization by Dual Graph

Now, we address a class of sj-free key preserving con-
junctive queries. According to the dichotomy characterized by
Kimelfeld et al. [30], the case of a conjunctive query without
head-domination is polynomial intractable even for the sj-free
ones. However, an sj-free conjunctive query of key-preserving
property does not imply head-dominations, e.g., sj-free key-
preserving conjunctive query Q(y1,y2) :— T1(y1,), T(x,y2)
is sj-free key-preserving but not of head-domination. o

Dual Hypergraph. Given schema S {Ty,...,Tn},
let Q be a set of sj-free key preserving conjunctive queries
{@1,...,Qm} where each individual query has form

Qi —

Its dual hypergraph H(Q) has vertex set {17, ...,T,,}. Each
query (); determines the hyperedge consisting of all those
relations in it: e; = {731 < j < ¢;}.

For all the given sj-free key preserving conjunctive queries
in Q, a dual graph could be obtained in the following way. If
every connected component is a hypertree [23], then the input
is a forest case.

T,

Zqi M

Tim"'a

(b) Hypertree for Qo

(a) Hypergraph for Q1 (c) Hypertree for Qs

Fig. 3. A dual hypergraph and a dual hypertree.

For example, given the following five queries

Q1 —T1, 15,15, Q2:—T1,1T3,T}
Q3 =T, Ty, Qi:—T1,T35, Q5:—13,T3

and three query sets Q; {@1,Q3,Q4,Q5}, Q2
{Q1,Q3,Qs}, and Q3 = {Q1,Q2,Q5} as shown in Fig.3,
the dual hypergraphs of Qs and Q3 are both hypertrees, but
the dual hypergraph of Q; is not.

We provide two approximations for the forest cases where
each component is a hypertree.

C. l-Approximation for the Forest Cases

Having shown the hardness, we design two approximation
algorithms for (weighted) view side-effect. Similar results will
be shown for the balanced version. The first algorithm makes
use of the primal-dual technique for view side-effect on trees.
This algorithm is inspired by a related primal-dual-algorithm
for multicut on trees [25].

We are given the linear relaxation of the integer linear
programming formulation of the view side-effect of the tree
case as follows. Let R be the set of tuples to be preserved
{Vi\ AV4,...}, then we have

minimize Z Wy Ty (nH
reR
s. L.
VreR kae— Y y >0 @
ter
Vre AV ka, — Zyt >1 3)
ter
Vte D Yyt >0 4
VreR z, >0 5)

Here, y; is the variable indicating the deletion of tuple ¢
from source database D, and x, is the variable indicating the
accident elimination of view tuple r which is supposed to be
preserved. Concretely, delete tuple ¢ if y; = 1 and view tuple
r is eliminated by accident if z,, = 1. Formula (3) indicates
that every view tuple (i.e., project-free conjunctive query result
tuple) to be deleted is removed by deleting at least one of
the tuples joined by its query, and Formula (2) indicates that
once a view tuple to be preserved loses any tuple joined in,
it will be removed as well. Our objective is to minimize the
total weight of the view tuples to be preserved but actually
removed by accident.

The following LP is the dual to the LP formulated above.

maximize Z Uy 6)
reAY
s. L.
VreR krvy < w, @)
Vte D o= Y w0 (8
reAV Ater sEP Ntes
VreR v >0 9
Vr e AY v, >0 (10)

The interpretation of an optimal integer solution to the dual
LP is to maximize the total number of view tuples to be deletet
such that the weight constraints hold for the view tuples to be
preserved that dominate the view tuples to be deleted involving
each tuple. We have the primal complementary slackness
conditions in our formulation as follows.

VteD, y>0= > u.= > v, (1)
reAV Ater SEP NtEs
Vr € R, z, > 0= kv, = w, (12)

We have the relaxed dual complementary slackness condi-
tions as follows.

VteD, wu>0= > wv.= Y v, (13)
reAV A ter sEP A t€Es
Vr € R, z, > 0= kv, = w, (14)

For the tree case, we define the depth of a tuple as the length
of the path from this tuple to the root tuple at the beginning of

512

the tree like join result. Define the lowest common ancestor of
two tuples ¢; and to as the tuple of the path from one to the
other with the minimum depth. The lowest common ancestor
is unique since in a tree, the path can be found by looking at
the first tuple of the path from ¢; to the root tuple that is also
on the path from the root tuple to ¢,. Therefore, each previous
tuple on the part of the path from ¢; to this tuple is less deep,
while every next tuple on the following part of the path back
to to is deeper. Algorithm 1 is then provided based on the
primal-dual technique.

Algorithm 1 PrimeDualVSE(D,V, AV, R, w)

1: Mark the infeasible primal and dual zero solutions.

2: Pick any table as the beginning such that the root of trees

is tuples contained in this table.

3: for V¢ € D in increasing depth with respect to roots do
(a) For each view tuple r to be deleted such that r is a
join result (¢,...,t") with lca(t,t') = v: increase v, as
much as possible (not necessarily integrally), with the
necessary increase of the intersecting view tuples to be
preserved, to preserve the feasibility of the dual linear
programming.

5. (b) All the saturated (in the sense of Constraint (8) holds
with equality and for every view tuple to be preserved,
Constraint (7) holds with equality) tuples are chosen to
be deleted (y; = 1), and those x,- are set as 1 in case
to support Constraint (2).

6: end for

7: for each chosen tuple ¢ (y; = 1) in the reverse procedure

of the addition, if deleting it is not necessary for fulfilling
constraint (3) do

8: (a) yr + 0.

9: (b) z, < 0 if any x, can be set as 0 while obeying
Constraint (2).
10: end for

The correctness of Algorithm PrimeDualVSE could be
guaranteed as follows.

Theorem 3. Algorithm PrimeDualVSE returns a feasible -
approximation for view side-effect.

Proof: First, we prove that the returned solution, defined
by {y:|t € D,y = 1}, is feasible. Because we take all the
saturated tuples in the maximum view tuples to be deleted,
and this means all those view tuples of A) have been
eliminated. This is correct, since otherwise, we could have
a view tuple of A) where no tuple is saturated, contradictory
to the maximality of that view tuple. The returned primal
solution is feasible because those x,.’s are picked to make the
primal solution feasible, and the pruning step prunes only if
the primal solution remains feasible. The dual solution is also
feasible because the view tuples are routed in a manner that
preserves feasibility. In order to assert the approximation ratio,
we prove that the primal and the relaxed dual complementary
slackness holds. The primal conditions hold because the taken
edges are saturated. The relaxed dual condition (13) holds

because x, is positive only if at least one of the tuple r is
selected. Therefore, if the left hand side of Condition (13)
is positive, then Zt@ y+ > 1, and the required inequality
follows. Condition (14) follows because of the argument given
in the proof of Lemma 18.5 in [44]. Having primal and dual
feasible solutions that satisfy the exact primal and the [-
relaxed dual complementary slackness conditions implies that
the primal solution is an [-approximation to the optimum. M

Proposition 1. Let n be the size of the input database instance,
Algorithm 1 terminates in O(L - |AV||? - |[V|| + [|[V||*) time.

D. 2./||V||-Approximation for the Forest Cases

We now propose another algorithm for view side-effect on
trees that approximates within 2./||V||, which is sometimes
better than factor [of the last algorithm. We refine the
algorithm LowDegTwo for Red-Blue Set Cover [8], using the
l-approximation to view side-effect problem. Recall that [is
defined as the maximum width, namely mea)Qc arity(QQ), among

all queries. We use the algorithm for standard view side-
effect since the extension for the weighted version is straight-
forward. We first describe Algorithm LowDegTreeVSE in-
spired by LowDegTwo [8].

Algorithm 2 LowDegTreeVSE(D, V, AV, R,w, T)
1: Remove the tuples ¢ of D joined in more than 7 view
tuples to be preserved (i.e. from R).

2: Let the renewed instance be (D', R’, V', AV’ w, T), where
D’ is the instance after tuple deletion and so are the other
input parameters.
if the new instance is infeasible then

return D.
end if
For prune, find out view tuples to be preserved such that
RL = {r e R', where arity(r) > /||V|}.
Prune those wide view tuples such that R” = R’ \ RL.
8: return PrimeDualVSE(D' V' AV R" w,).

A A

e

The following claim follows.

Claim 2. Let 7 be the last input
LowDegTreeVSE, we have |RL| < /||V| - .

to Algorithm

Proof: Since every tuple of D is joined in at most 7 view
tuples to be preserved, we have

RUIVIVE < Y0 Htlterd < Y Htlter}
reRL rer’
so that
RLL-VIVIE < VI-m < VI

The first inequality is from the definition of R., and the
equality is a reversal of the summation order. Therefore,

V-7
MLz _ -

VIVI

RL

513

We can now prove the following claim.

Claim 3. Let OPT* be an optimal
an input instance of view side-effect. If input T s
max |[{r € R|r contains t, and t € OPT*}| and apply
Algorithm LowDegTreeVSE, then it returns a 2+/||V|-
approximation.

solution for

Proof: Due to the value of 7, the algorithm will re-
turn a feasible solution at last. An [-approximation could be
guaranteed which has been shown in advance. The input of
PrimeDual VSE has [< /||V||, thus its solution, say «, gives

R ()] < VIVIIR ()]

Apply |RL] < +/||V||7 in the last claim so that the total
number of the view tuples removed by accident is

R()| < VIVIIR(OPT*)| + /[V] 7.
Since 7 < |R(OPT*)|, we can bound |R(«)| by
2/||V|| IR(OPT*)|.]

The algorithm for approximating the actual problem can
now be shown as follows where 7 is unknown in advance.

Algorithm 3 LowDegTreeVSETwo(D,V, AV, R,w)
1: Let OPT be D
2: for 7 =1 to |R| do
3. Let o be LowDegTreeVSE(D,V, AV, R, w, T)
4 if w(R(a)) < w(R(OPT)) then
5 Let OPT be «
6: end if
7
8

: end for
: return OPT

The following theorem is then derived from the last claim.

Theorem 4. Algorithm LowDegTreeVSETwo approximates
the solution to view side-effect problem within 2./||V||.

This has been proven for the non-weighted case, and it is
straight-forward to extend the result to the weighted case.

We next provide a dynamic programming for a more re-
stricted tree case.

E. Forest Cases with Pivot Tuple

We design a dynamic programming for a class of forest
cases. To illustrate this class, we introduce an additional
structure of data dual graph.

Data dual graph. Let H(Q) be the hypergraph of Q, and
it is an hypertree. Then for each tuple 7 in query result Q(D),
we take the projection r[T] on any involved relation T, say
t, as a vertex. In this way, take each tuple ¢ as a path in the
order of the layout of H(Q).

Forest dual data graph with pivot tuple. In a graph obtained
in this way (we call it dual data graph), for each connected
component, there exist some fixed relation 7" and a tuple t € T,
called pivot tuple, such that every view tuple is on a path from
t to all the other tuples.

This assumption allows us to solve both view side-effect
and its balanced version exactly using dynamic programming.
We define the recursion to be a subtree and the view tuples
strictly joined through its root after possible tuple deletions
outside this subtree.

Let t € T be a vertex and r be the set of tuples on
the (only) path from ¢ to the root tuple of the tree. Let
T(t) == {r € V| r contains t} be the set of the originally
given view tuples that pass through ¢. Denote by S(t) the
subtree rooted on t. The possible subsets of view tuples that
enter 7 (t) after deleting some tuple outside of T (t) are
Tt) ={T\T{t})|t € r+}. We do not consider deleting a
subset of tuples on r, because for 7 (¢) it would be equivalent
to deleting the tuple of this subset closest to . The dynamic
programming solves view side-effect exactly.

Algorithm 4 DPTreeVSE(D,V, AV, R, w)
1: The algorithm maintains the status transition array indexed
by D x T(¢).
2: for each tuple t € D \ ¢, in a post-order traversal do
3. for each r € T(t) do

4: Delete the tuple from ¢ to its parent if and only if ¢
maximizes the total objective function in S(t).

5: Memoize the resulting tuple deletion and the resulting
objective function for the current entry (¢,7) € D X
T(%).

6: end for

7: end for

8: The completed status transition array contains an optimal
set of tuple deletions.

It is a polynomial algorithm since its status transition array
is of a poly size. Indeed, 7 (¢) contains |r| elements, as defined
and explained above.

V. RELATED APPLICATIONS

Besides the connection with why-provenance, where-
provenance and query reverse engineering [15], we introduce
some more practical applications of deletion propagation,
especially from the view side-effect aspects.

Data annotation. Recall AVy = (John, XML) in Example
1. It is already known that there is an error (John, XML) in
view Q1 (D) since researcher John does not do any research on
XML. As stated in [15], data annotation is an important feature
of new generation database. Therefore, one may want to look
for tuples AD from the source data D in order to annotate
the error such that the corresponding annotations propagate to
the fields of view tuples in AV via Q). However, since errors
in views are essentially produced by the errors in source data,
then usually if there is an error found in one view, it is almost
sure that some errors appear in other views. By making use
of propagating annotations on the results of multiple queries,
the candidate tuples in the source data can be found more
accurately. Concretely, we can observe from Example 1 that
there are usually multiple optimal solutions, some of which

514

may not be the best choice, but the results could be shrunk by
merging deletions specified on the results of multiple queries,
and the candidate will be found more accurately. Ideally, if the
views and view deletions are given completely, we can always
find the view side-effect free solutions. Intuitively, the more
queries and its views, the closer we approach the side-effect
free solution. This is why we should provide a necessary tool
for such a more general and practical case.

Query-oriented cleaning. Alternatively, in the context of
data repairing like the query-oriented cleaning framework,
one may want to delete AD so as to achieve a tuple-level
repair of the inconsistent or inaccurate AV. Emerging data
cleaning tools [2], [3] integrate user efforts on query result
corrections. They find out inconsistent information by making
use of materialized (or non-materialized) views specified by
user queries. However, the latest proposed cleaning system
QOCO [2] interacts with domain experts (like crowds) to
identify potentially wrong answers in the query results. In
their system, queries are generated to cover source tuples as
many as possible. However, the feedbacks on user queries
are processed one by one, not in the way of batch process
due to the theoretical limit which cannot provide a guarantee
on the feasibility and accuracy of the result obtaining by the
batch process. Such a non-batch process introduces additional
dependent factors, namely the order of processing, which
potentially leads to more damage on loss on quality of data
cleaning. To tackle this problem, our theoretical study provides
a guarantee on the batch process so that it enables the batch
process with theoretical guarantee.

Balanced version. We now introduce the motivation of the
balanced version. Obviously, there are always scenarios where
the unexpected damage on views caused by removing all the
bad results is too huge, and such loss or cost sometimes is
too expensive for users to afford. If the information on view
errors is not complete (like the crowds stated above), AV may
not be specified accurately. Therefore, in such a case, we just
want to see if there is some possible solution AD on the views
removing major part of the bad results AV while taking small
side-effect on the other results. The balanced version is just
defined for this kind of cases.

VI. RELATED WORKS

Some efforts have been spent on studying the computational
complexities of source side-effect and view side-effect. The
previous results regarding source side-effect are presented in
Table II and Table III. The previous results regarding view
side-effect are summarized in Table IV and Table V. The
complexity of relational query languages was first investigated
by Chandra and Merlin [9] about 40 years ago. Then, it became
one of the most primary concerns in the theoretical study
of the database field. Unfortunately, for query evaluation, the
available complexity results of query languages are shown in
a general way and seems too rough. A few years later, two
new metrics are proposed in [43] to measure the complexity of
query evaluation. These two new metrics are data complexity
and combined complexity. By considering these two metrics,

TABLE II
POLY-TRACTABLE CASES OF THE SOURCE SIDE-EFFECT PROBLEM

Complexity Citations Query Class
Buneman et al. 2002 [6] project-free & sj-free conjunctive queries
PTime Cong et al. 2012 [15] key-preserving conjunctive queries
Freire et al, 2015 [24] . triad—fre-e & sj-free -conjuncti\-/e qu.eries -
fd-induced-triad-free & sj-free conjunctive queries
TABLE III
HARD CASES OF THE SOURCE SIDE-EFFECT PROBLEM
Complexity Citations Query Class
Buneman et al. 2002 [6] select-free conjunctive queries
NP-complete Cong et al. 2012 [15] non-key-preserving conjunctive queries

Freire et al. 2015 [24]

queries with triad

queries with fd-induced triad

conjunctive queries for parameter query size or #variables

co-W[1]-complete
[36]

positive queries for parameter query size

co-W[SAT]-hard

positive queries for parameter #variables

co-W(t]-hard

first-order queries for parameter query size

co-W[P]-hard

first-order queries for parameter #variables

TABLE IV
POLYNOMIAL TRACTABLE CASES OF THE VIEW SIDE-EFFECT PROBLEM

Complexity Citations Query Class
Buneman et al. 2002 [6] project-free & sj-free conjunctive queries
Cong et al. 2012 [15] key-preserving conjunctive queries
PTime Kimelfeld e al, 2012 [30] sj?free co.njunc'tive que'ries ha'ving.head—domination
sj-free conjunctive queries having fd-head-domination
FPT Kimelfeld ef al. 2013 [32] sj-free conjunc.tive queries t.laving .Zevel—k head-domination
sj-free conjunctive queries having head-domination
TABLE V
HARD CASES OF THE VIEW SIDE-EFFECT PROBLEM
Complexity Citations Query Class
Buneman et al. 2002 [6] select-free conjunctive queries
Cong et al. 2012 [15] non-key-preserving conjunctive queries
NP-complete non-head-domination conjunctive queries

Kimelfeld et al. 2012 [30]

non fd-head-domination conjunctive queries

Kimelfeld er al. 2013 [32]

non level-k head-domination conjunctive queries

NP (k)-complete Miao et al. 2017 [36]

conjunctive queries for bounded source deletions

5T -complete Miao et al. 2016 [37]

conjunctive queries under general settings

the complexity of query evaluation can be investigated in a
more reasonable way. Intuitively, data complexity helps with
identifying the scenarios where the query size is small with
respect to the database instance involving a reasonable number
of join operations. Therefore, it is represented as a function
of the size of the database instance and the considered query
is regarded as a fixed one. Differently, combined complexity
focuses on more general scenarios where both the considered
query and database instance are not fixed. Thus, the considered
query and database instance are both regarded as variables
of the complexity function. The combined complexity for a
specific class of queries involving join operations is usually
inevitably exponential higher than the data complexity. Be-
cause of this reason, data complexity is more meaningful for

practical query evaluations, thus it draws a lot of attentions.

Thanks to such two metrics, more complexity results of the
view side-effect problem are obtained [6], [14], [15], [30]-
[32]. For data complexity, Kimelfeld et al. [31] introduced
a dichotomy called ‘head-domination’. It is shown that for
sj-free conjunctive queries, view side-effect is polynomial
tractable by the unidimensional algorithm for the queries with
the head-domination property, and no PTAS even without
the head-domination property. The functional dependency re-
stricted version is a natural extension of view side-effect.
Things change too much with the presence of functional
dependency. Thus, the work in [30] introduced another ex-
tended dichotomy, called ‘fd-head domination’. Besides single
deletion, they also identified a trichotomy, called ‘level k-

515

domination’, for multi-tuple deletion in [32]. It is claimed that
finding a k-factored constant-optimal solution is polynomial
tractable for a query with the level k-domination property,
but it is NP-hard to derive a constant optimal solution. For
combined complexity, there exist many results for different
fragments of monotone (i.e., Select-Project-Join-Union) query
[14], [15], [37]. The authors in [14], [15] presented the
intractable cases and illustrated a key-preserving condition to
recognize a polynomial tractable case. The authors in [37]
investigated the functional dependency restricted view side-
effect problem. Similarly, several polynomial tractable and
intractable cases are presented for view side-effect.

Moreover, there are some results on the source side-effect
problem [6], [14], [15], [24]. The work in [24] is very related
to this paper. Freire et al. identified the ‘triad’ property for
dual hypergraph representation of conjunctive queries. Based
on this work, we can know that the resilience decision problem
is polynomial decidable if the dual hypergraph of the given
query g excludes the triad structure. Otherwise, the problem
is NP-complete. Similarly, if a set of functional dependencies
are defined in advance, then the ‘triad’ structure should be
changed to ‘fd-induced triad’ which is more general. Then, a
tight dichotomy follows.

The view update problem is another related problem. It has
been widely investigated for many years. The example works
include [1], [4], [16], [19], [29]. The view update problem
studies how to perform an update on the source data in order to
remove ambiguity or achieve the expected update to a specified
view while guaranteeing the semantic correctness. Most of the
previous works mainly focus on recognizing the conditions
under which uniqueness of update can be guaranteed if the
update is carried out. It is worth mentioning that an update is
not always ideally unique in practice. Therefore, such works
are only effective for the restricted scenarios. A more practical
study is to identify an update to database instance D which
can enable the specified update to Q(D) while minimizing
the side-effect, e.g., unintended update. This is essentially the
same as view propagation.

VII. CONCLUSION

We conclude that the previously established complexity
results for the single view case no longer hold in the multiple
query case. Instead, we derive the new complexity results
even for two project-free conjunctive views, and show that
the view side-effect problem cannot be approximated within
O(2'°8' " IVIl) where § = 1/loglog® ||V|| for any ¢ < 0.5,
unless P=NP. This lower bound can also be applied to the
balanced deletion problem which is defined for more prac-
tical cases. The view side-effect problem and its balanced
version can be approximated within O(2]|V| log ||AV)||) for
the general case. We show that the view side-effect problem
can be approximated within [and O(2+/||V||) for the forest
cases where [is the maximum ariry(Q)) among all the given
queries. Finally, a dynamic programming validates that the
view side-effect problem can be solved polynomially for the
more restrictive forest case.

516

ACKNOWLEDGMENT

This work is partly supported by the National Natural
Science Foundation of China (NSFC) under grant NOs.
61832003, U1811461, 61732003 and the National Science
Foundation (NSF) under grant NOs. 1252292, 1741277,
1829674 and 1704287.

REFERENCES

—

[1] F. Bancilhon, N. Spyratos. Update semantics of relational views. ACM

Transactions on Database Systems, 6(4):557-575, 1981.

M. Bergman, T. Milo, S. Novgorodov, W. Tan. Query-oriented data

cleaning with oracles. In SIGMOD, pages 1199-1214, 2015.

M. Yakout, A. K. Elmagarmid, J. Nevillem, M. Ouzzani, I. F. Ilyas.

Guided data repair. PVLDB, 4(5):279-289, 2011.

A. Bohannon, B. C. Pierce, J. A. Vaughan. Relational lenses: a language

for updatable views. In PODS, pages 338-347, 2006.

D. Briigmann, C. Komusiewicz, H. Moser. On generating triangle-free

graphs. Electronic Notes in Discrete Mathematics. 32:51-58, 2009.

P. Buneman, S. Khanna, W.-C. Tan. On propagation of deletions and

annotations through views. In PODS, pages 150-158, 2002.

P. Buneman, A. Chapman, J. Cheney. Provenance management in curated

databases. In SIGMOD, pages 539-550, 2006.

R. D. Carr, S. Doddi, G. Konjevod, M. Marathe. On the red-blue set cover

problem. In SODA, pages 345-353, 2002.

A. K. Chandra, P. M. Merlin. Optimal implementation of conjunctive

queries in relational data bases. In STOC, pages 77-90, 1977.

[10] A. Chapman, H. V. Jagadish. Why not?. In SIGMOD, pages 523-534,
2009.

[11] J. Cheney, L. Chiticariu, W.-C. Tan. Provenance in databases: why, how,
and where. Foundations and Trends in Databases, 1(4):379-474, 2009.

[12] R. Chen, S. Singh, S. Prabhakar. U-DBMS: a database system for
managing constantly-evolving data. In VLDB, pages 1271-1274, 2005.

[13] H. Chockler, J. Y. Halpern. Responsibility and blame: a structural-model
approach. Journal of Artificial Intelligence Research, 22:93-115, 2004.

[14] G. Cong, W. Fan, F. Geerts. Annotation propagation revisited for key
preserving views. In CIKM, pages 632-641, 2006.

[15] G. Cong, W. Fan, F. Geerts, J. Li, J. Luo. On the complexity of
view update analysis and its application to annotation propagation. I[EEE
Transactions on Knowledge and Data Engineering, 24(3):506-519, 2012.

[16] S. S. Cosmadakis, C. H. Papadimitriou. Updaies of relational views. In
PODS, pages 742-760, 1983.

[17] Y. Cui, J. Widom. Run-time translation of view tuple deletions using
data lineage. Technique Report, Stanford, 2001.

[18] R. Fagin, J. Ullman, M. Y. Vardi. On the semantics of updates in
databases. In PODS, pages 352-365, 1983.

[19] U. Dayal, P. A. Bernstein. On the correct translation of update operations
on relational views. ACM Transactions on Database Systems, 7(3):381-
416, 1982.

[20] D. Deutch, Y. Moskovitch, V. Tannen. A provenance framework for
data-dependent process analysis. PVLDB, vol.7, pp 457-468, 2014.

[21] R. G. Downey, M. R. Fellows. Parameterized complexity. Springer-
Verlag, New York, 1999.

[22] T. Eiter, T. Lukasiewicz. Complexity results for structure-based causality.
Artificial Intelligence, 142(1):53-89, 2002.

[23] R. Fagin. Degrees of acyclicity for hypergraphs and relational database
schemes. Journal of the ACM, 30(3):514-550, 1983.

[24] C. Freire, W. Gatterbauer, N. Immerman, A. Meliou. The complexity
of resilience and responsibility for self-join-free conjunctive queries.
PVLDB, 9(3):180-191, 2015.

[25] N. Garg, V. V. Vazirani, M. Yannakakis. Primal-dual approximation
algorithms for integral flow and multicut in trees. Algorithmica, 18(1):3-
20, 1997.

[26] M. Grohe. The parameterized complexity of database queries. In PODS,
pages 82-92, 2002.

[27] J. Hastad. Some optimal inapproximability results. Journal of the ACM,
48(4):798-859, 2001.

[28] J. Huang, T. Chen, A. Doan, J. F. Naughton. On the provenance of
non-answers to queries over extracted data. PVLDB, 1(1):736-747, 2008.

[29]1 A. M. Keller. Algorithms for translating view updates to database

updates for views involving selections, projections, and joins. In PODS,

pages 154-163, 1985.

(2]
(31
(4]
(5]
(6]

(9]

[30] B. Kimelfeld. A dichotomy in the complexity of deletion propagation
with functional dependencies. In PODS, pages 191-202, 2012.

[31] B. Kimelfeld, J. Vondrak, R. Williams. Maximizing conjunctive views in
deletion propagation. ACM Transactions on Database Systems, 37(4):1-
37, 2012.

[32] B. Kimelfeld, J. Vondrdk, D. P. Woodruft. Multi-tuple deletion propa-
gation: approximations and complexity. PVLDB, 6(13):1558-1569, 2013.

[33] A. Meliou, W. Gatterbauer, K. F. Moore, D. Suciu. The complexity of
causality and responsibility for query answers and non-answers. PVLDB,
4(1):34-45, 2010.

[34] A. Meliou, W. Gatterbauer, S. Nath, D. Suciu. Tracing data errors with
view-conditioned causality. In PODS, pages 505-516, 2011.

[35] A. Meliou, S. Roy, D. Suciu. Causality and explanations in databases.
PVLDB, 7(13):1715-1716, 2014.

[36] D. Miao, Z. Cai, J. Li. On the complexity of bounded view propagation
for conjunctive queries. IEEE Transactions on Knowledge and Data
Engineering, 30(1):115-127, 2018.

[37] D. Miao, X. Liu, J. Li. On the complexity of sampling query feedback
restricted database repair of functional dependency violations. Theoretical
Computer Science, 609:594-605, 2016.

[38] P. Miettinen. On the positive-negative partial set cover problem. Infor-
mation Processing Letters, 108(4):219-221, 2008.

[39] X. Niu, B.S. Arab, S. Lee, Su. Feng, et. al. Debugging transactions and
tracking their provenance with reenactment. PVLDB, 10(12):1857-1860,
2017.

[40] C. H. Papadimitriou, M. Yannakakis. On the complexity of database
queries (extended abstract). In PODS, 1997, pp. 12-19.

[41] D. Peleg. Approximation algorithms for the label-cover max and red-
blue set cover problems. Journal of Discrete Algorithms, 5(1):55-64,
2007.

[42] S. Roy, D. Suciu. A formal approach to finding explanations for database
queries. In SIGMOD, pages 1579-1590, 2014.

[43] M. Y. Vardi. The complexity of relational query languages (extended
abstract). In STOC, pages 137-146, 1982.

[44] V. Vazirani. Approximation Algorithms. Springer-Verlag, Berlin, 2003.

517

