
Deletion Propagation for Multiple Key Preserving
Conjunctive Queries: Approximations and

Complexity

Zhipeng Cai∗ Dongjing Miao†,∗ Yingshu Li∗

∗Department of Computer Science, Georgia State University, Atlanta, Georgia

Email: {zcai,yili}@gsu.edu, dmiao1@student.gsu.edu

†School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China

Email: miaodongjing@hit.edu.cn

Abstract—This paper studies the deletion propagation problem
in terms of minimizing view side-effect. It is a problem funda-
mental to data lineage and quality management which could be
a key step in analyzing view propagation and repairing data.
The investigated problem is a variant of the standard deletion
propagation problem, where given a source database D, a set
of key preserving conjunctive queries Q, and the set of views V
obtained by the queries in Q, we try to identify a set T of tuples
from D whose elimination prevents all the tuples in a given set
of deletions on views ΔV while preserving any other results. The
complexity of this problem has been well studied for the case with
only a single query. Dichotomies, even trichotomies, for different
settings are developed. However, no results on multiple queries
are given which is a more realistic case. We study the complexity
and approximations of optimizing the side-effect on the views, i.e.,
find T to minimize the additional damage on V after removing
all the tuples of ΔV . We focus on the class of key-preserving
conjunctive queries which is a dichotomy for the single query
case. It is surprising to find that except the single query case,
this problem is NP-hard to approximate within any constant even
for a non-trivial set of multiple project-free conjunctive queries in
terms of view side-effect. The proposed algorithm shows that it
can be approximated within a bound depending on the number
of tuples of both V and ΔV . We identify a class of polynomial
tractable inputs, and provide a dynamic programming algorithm
to solve the problem. Besides data lineage, study on this problem
could also provide important foundations for the computational
issues in data repairing. Furthermore, we introduce some related
applications of this problem, especially for query feedback based
data cleaning.

Keywords-key preserving; conjunctive query; deletion propa-
gation; approximation

I. INTRODUCTION

Deletion propagation is a special view update problem.

The motivation is to enable the restricted database access

via materialized views so as to translate the updates (e.g.,
deletions) specified on views back into the source database

properly. The major concern is that updates are usually not

fully specified on multiple views defined by different queries.

Therefore, the previous literature has made efforts to guarantee

the correctness of translation and improved expression ability

of updating interfaces by designing syntax and semantics,

and deriving necessary qualifying criterion. Bancilhon and

Spyratos [1] initiated a series of research by defining the

complementary view to inherent ambiguity so as to compute

the translated database. Cosmadakis and Papadimitriou [16]

followed this way characterizing complementary views and

extended it to functional dependencies. Keller [29] later de-

rived translator coherence qualifying criterion. Bohannon et
al. [4] then developed the language for updatable views with

explicit update policies.

In this paper, we study another aspect of view update which

is to translate updates back into source data with the minimum

side-effect [6], [14], [15], [17], [18], [30]–[32] even though

updates are incompletely specified. Motivative examples could

be found in many real-life applications such as relational

data repairing [2], [3], database debugging [32], batched view

updating and so on. For example, some semi-automatic data

repairing systems [2], [3] typically generate a set of queries

first so as to cover the source data as many as possible or the

most inconsistent part.

In these procedures, collecting feedbacks on query results

is the critical step, and these feedbacks are usually obtained

by (empirical) rule-based detection or user-specification (e.g.,

crowd or domain experts). These feedbacks usually specify

errors contained in the result or missing tuples. However, the

incompleteness of feedbacks may lead to the non-existence

of side-effect-free updated database. Therefore, an updated

database with the minimum side-effect should be a recom-

mendation or partial suggestion of removing errors. Another

example is database debugging [32], and a similar task is

to find an updated database suggestion once wrong tuples in

the query results are identified by users. A scenario regarding

information extraction is also mentioned in [31].

The problem considered in this paper is a special case of

view propagation. Given undesired tuples in the materialized

views defined by conjunction queries, it is to seek a way of

tuple deletion from the tables in source database to eliminate

undesired tuples in the view. A solution here is the database

updated by applying the deletion on the source tables. The set

of tuples in the views but different from the undesired ones

506

2019 IEEE 35th International Conference on Data Engineering (ICDE)

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00052

are called side-effect if they are eliminated by the deletion

on the source database. A solution is called side-effect-free

only if no tuples other than the undesired ones are eliminated.

The examples mentioned above show that a side-effect-free

solution does not always exist. Therefore, this series of works

try to figure out the complexity and propose algorithms for

the problem minimizing the side-effect [6], [15], [32], typically

take the cardinality of result tuples lost as the measurement. A

solution is optimal if its side-effect is of minimum cardinality.

This is different from the source side-effect counterpart studied

in [2], where the measurement is the cardinality of the tuples

deleted in the source database in order to eliminate all the

undesired view tuples.

In this paper, we focus on the more realistic extension

of the cases studied in the previous research, i.e., the case

of multiple views. The previous works have figured out the

complexity classes of most major cases taking only one view

as the input, although some dichotomies and trichotomies for

the computational complexity are derived in the literatures [6],

[15], [30]. For example, in the case studied in [15], [30],

not only the view is defined by a single query, but also the

deletion on view is also a single tuple. Detailed results on

the complexity of multi-tuple deletion are given in [32] where

the deletion on view could be multiple tuples but view is still

single. However, besides lack of approximation algorithms for

polynomial intractable cases, no complexity results are known

for the case of multiple views.

To conduct a non-trivial investigation on the case of multiple

views, we focus on the views defined by key-preserving

conjunctive queries. As shown in the previous research, on

data complexity, deletion propagation with the minimum view

side-effect is NP-hard for sj-free conjunctive queries in which

only a single view is given. On the other hand, Miao et al. [36]

shows that on the combined complexity aspect, minimizing

view side-effect is ΣP
2 -hard for single sj-free conjunctive view,

worst still, it is beyond NP (i.e., NP(k)-hard for every integer

k) even when the deletion could be bounded in advance based

on priori knowledge. Fortunately, on the combined complexity,

the case of single project-free conjunctive query view is shown

to be polynomial tractable (i.e., LOGSPACE) containing self-

join and an algorithm has been developed [37]. These results

imply that the projection operator in a conjunctive query pro-

duces ambiguity which increases the hardness of the reversion

process to find an optimal solution. It is easy to see that a

tractable condition has to be within project-free conjunctive

fragment, otherwise NP-hard or beyond NP, because the case

studied in this paper takes multiple views defined by different

queries as input. Therefore, we investigate the complexity of

the case taking multiple project-free views as input to derive

polynomial tractable conditions and develop approximation for

this case. Note that, other than data complexity, approximation

under combined complexity is much more powerful since it

could deal with views defined by more complex queries and

parallel applications.

Our contributions are as follows. We first show that the

previous complexity results for the single view case [31], [32]

TABLE I
SUMMARY OF NOTATIONS

Notation Definition

S schema

D database instance

T relation symbol

t tuple symbol

Q,Q(D), V database query, its result, and its materialized view

Q a set of queries {V1, . . . , Vn}
V a set of views {V1, . . . , Vn}
ΔV a set of deletions {ΔV1, . . . ,ΔVn} on the views in V
| · | the size or the number of elements in a given set

k · k the sum of the size of the elements in a given collection

no longer hold for the multiple queries case. We derive the

following new complexity results.

• Even for two project-free conjunctive views, the view

side-effect problem cannot be approximated within

O(2log
1−δ kVk) where δ = 1/ log logc kVk for any c <

0.5, unless P=NP. Such lower bound can also be applied

to the balanced deletion problem defined for more prac-

tical cases in Section III.

• The view side-effect problem and its balanced version can

be approximated within O(2l · kVk · log kΔVk) for the

general case, where l is the maximum arity(Q) among

all the given queries.

• The view side-effect problem can be approximated within

l and O(2
p

l · kVk) for the tree case.

• The view side-effect problem can be solved polynomially

for the more restrictive tree case.

The paper is organized as follows. Section II presents the

formal settings and definitions. The problems and related

results are introduced in Section III. The complexity results

for minimizing view side-effect are shown in Section IV. In

Section V, we propose the approximations for minimizing view

side-effect. A polynomial tractable case is identified with a

dynamic programming algorithm in Section V.D. The related

applications are elaborated in Section VI and the related works

are discussed in Section VII. Section VIII concludes the paper.

II. FORMAL STATEMENTS AND PRELIMINARIES

In this section, we review some classical concepts and

present the formal statements in our studies.

A. Schemas and Instances

Let Const be a set of potential constants, and unless

otherwise stated, these constants are denoted by lower-case

letters from the beginning of the alphabet such as ‘a’, ‘b’ and

‘c’. A schema S is a finite sequence (T1, . . . , Tm) containing

distinct relations Ti, and each Ti has an arity Dimi > 0. An

instance D (over a relation T) is a sequence (TD
1 , . . . , TD

m)
such that each TD

i is a finite relation of arity Dimi over Const
(i.e., TD

i is a finite subset of ConstDimi). If t ∈ ConstDimi ,

then t is called a tuple, and it is a tuple of instance D if

t ∈ TD
i . Notationally, we regard an instance as a set of its

507

facts. For examples, T (t) ∈ D means t is in TD; D0 ⊆ D
means D0 is a sub-instance of D, that is, TD0

i ⊆ TD
i for

all i = 1, . . . ,m. For convenience, we usually ignore the

superscript D in the context that instance D is given, i.e.,
we use Ti instead of TD

i .

B. Conjunctive Queries, Key Preserving, and Views

Let Var be a set of variables. We assume that Var and Const
are disjoint sets. We denote variables by lower-case singletons

from the end of the alphabet such as “x”, “y” and “z”.

Conjunctive Queries. We use the datalog style to denote a

conjunctive query (CQ), that is, a CQ defined on a schema S
could be written as

Q(y1, . . . ,yq) :− T1(x1,y1, c1), . . . , Tq(xq,yq, cq)

where xi and yi are two vectors of variables disjoint with each

other. ci is a tuple of constants (from Const). A CQ is actually

a conjunction of atomic formulas (“atom” for simplicity) over

S . Here, Q(y1, . . . ,yq) is the head of query Q, and the other

part is called the body of Q. For any i, every x in xi is called

an existential variable, and every y in yi is called a head

variable. We use Var∃(Q) and Varh(Q) to denote the sets of

existential and head variables of Q. In this paper, each yi

should not be empty. The width or arity of query Q, denoted

as arity(Q), is the sum of the lengths of tuples yi.

For example, consider the following conjunctive queries

Q1(y1, y2, w) :− T1(x, y1, z), T2(x, y2, w)

Q2(y, y1, y, y2, y, y3) :− T1(y, y1), T2(y, y2), T3(y, y3)

Query Q1 has a width arity(Q1) of 3 and has two atoms

T1(x, y1, z) and T2(x, y2, w), while query Q2 has a width

arity(Q2) of 6 and has three atoms T1(y, y1), T2(y, y2), and

T3(y, y3). There are two existential variables in Q1, namely x
and w, and its three head variables are y1, y2 and y3. There

is no existential variable in Q2, and the three head variables

are the same as those of Q1.

For convenience, every time we refer to a query Q, the

underlying schema S will usually not be mentioned. We

assume that this schema is a default one that consists of the

relation symbols appearing in Q (and each symbol has the

arity it takes in that Q). We mainly investigate key preserving
conjunctive queries introduced below.

Key-preserving. In any atom T , there is at least one key

attribute position, and a key specifies a set of key attribute

positions of T . A key on T states that no two tuples in

T have the same values in all positions in key. Intuitively,

any two tuples are different in any table having a key. Any

variable located at the key attribute position is called a key

variable. For convenience, we underline all the key variables

if necessary, like T1(x, y, c). Formally, any CQ Q is a key

preserving conjunctive query if (a) every atom of Q has a

key, and (b) all of the key variables in the keys are included

in the head of Q. Consider query Q1 again.

Q1(y1, y2, w) :− T1(x, y1, z), T2(x, y2, w)

All the key variables (y1 and y2) are included in {y1, y2, w}
which is the head of Q1.

Note that if a query is key preserved, then there must be no

key variables contained in Var∃(Q) (the set of existential vari-

ables). Obviously, a project-free conjunctive query is always

key preserved, like Q2.

View. To formally define views, we begin with an assignment

of a query. An assignment for Q is a mapping from Var(Q)
to Const. For an assignment μ on Q, μ(y) is a tuple created

by substituting every head variable y with constant μ(y). For

an assignment on atom, tuple μ(T) is obtained by substituting

every variable x with constant μ(x). Given an instance D, a

match for Q of D is an assignment μ for Q where μ(T) is

a tuple from D for all atoms T . Every match is also called

an answer of query Q. If μ is a match for Q in D, then μ(y)
is called an answer for Q. The set of all the answers for Q
in D is called query result Q(D) which is just the result of

evaluating Q over D.

A view V is a materialized query result Q(D). Each

individual query answer t in a view V is called a view tuple

of V . The width of a view Q(D) is also the width of a view

tuple in it, which equals to arity(Q).

C. Deletion Propagation

The core of deletion propagation is the side-effect analysis.

Therefore, we focus on (but not restricted to) the problem of

minimizing view side-effect [6], [30]–[32] when propagating

the deletion of multiple answers on multiple queries back to

the source relations.

In the view side-effect minimizing problem for multiple

conjunctive queries, the input inludes a source database in-

stance D, a set of queries Q = {Q1, . . . , Qm}, a set of views

V = {V1, . . . , Vm} where Vi = Qi(D), and the deletion

ΔV = {ΔV1, . . . ,ΔVm} specified on the views in V . The

output is a set of tuples ΔD minimizing the view side-effect

sview =
nX

i=1

si

such that for each Qi ∈ Q,

(a). Qi(D \ΔD) ⊆ Vi \ΔVi, and

(b). si = |Vi \ΔVi| − |Qi(D \ΔD)|.
Consider the example in [15], where we are given two rela-

tions T1(AuName, Journal) and T2(Journal, Topic, #Papers).
An instance D on the two relations includes seven tuples as

shown in Fig.1.

Let ΔV be (John, XML), then various tuple deletions in D
could be found to remove ΔV from view Q3(D). Obviously,

each of tuples (John, TKDE), (John, TODS), (TKDE, XML,

30) and (TODS, XML, 30) is with matching values in ΔV .

In order to delete ΔV , one can check that removing (John,

TKDE) and (John, TODS) from Author, or removing (John,

508

AuName Journal
Joe TKDE

John TKDE

Tom TKDE

John TODS
(a) T1(AuName, Journal)

Journal Topic #Papers
TKDE XML 30

TKDE CUBE 30

TODS XML 30
(b) T2(Journal, Topic, #Papers)

AuName Topic
Joe CUBE

Joe XML

Tom CUBE

Tom XML

John CUBE

John XML
(c) Q3(x, z) :− T1(x, y),
T2(y, z, w)

AuName Journal Topic
Joe TKDE CUBE

Joe TKDE XML

Tom TKDE CUBE

Tom TKDE XML

John TKDE CUBE

John TKDE XML
John TODS XML

(d) Q4(x, y, z) :− T1(x, y), T2(y, z,
w)

Fig. 1. An example for key-preserving CQ and view propagation.

TKDE) from Author and (TODS, XML, 30) from Journal both

result in the minimum view side-effect, i.e., one additional

view tuple is forced to be deleted.

Consider another deletion ΔV = (John, TKDE, XML) from

Q4(D). Note that deleting either (John, TKDE) from Author
or (TKDE, XML, 30) from Journal works due to the key

preserving property of query Q4. Checking the view side-

effect can be easily performed by finding the occurrences of

key values of the deleted relation tuples in the view, and this

is the important property we utilize in our work.

This example only shows the single query case, while this

paper studies the case of multiple queries. In many practical

data cleaning or provenancing applications, the multiple query

case is more general and meaningful. It is obvious that the

complexity of the multiple query case is higher than or at

least equal to that of the single query case. However, the exact

complexity class of the multiple query case is still not known.

We are going to offer a characterization based on the key-

preserving property to figure out the lower and upper bounds

of the multiple query case.

D. Preliminaries

We now introduce some preliminary knowledge.

The Red-Blue Set Cover Problem [8]. Given two disjoint

finite sets, one as a set of red elements R = {r1, . . . , rρ} and

another one as set of blue elements B = {b1, . . . , bβ}, and a

collection C ⊆ 2R∪B of subsets of R ∪ B, the Red-Blue Set

Cover Problem is to find a collection C0 = {Ci1 , . . . , Cim} ⊆
C such that all the blue elements are covered, while the

number of the covered red elements is minimized. Formally,

let Cost(R,B, C0) be the total number of the red elements

contained in the sets in C0. The objective is to minimize cost

Cost(R,B, C0) = {
��R ∩ (∪jCij)

�� |B ⊆ ∪jCij}.
Let |C| be the size of C. By a reduction from MMSA3 [8],

Carr et al. shows that the Red-Blue Set Cover problem

cannot be approximated within O(2log
1−δ |C|) where δ =

1/ log logc |C| for any c < 0.5, unless P=NP. We show a linear

reduction from it in the next section to the deletion propagation

problem for multiple queries so as to obtain the lower bound.

The Positive-Negative Partial Set Cover Problem [38]. The

input is similar with that of the Red-Blue Set Cover problem.

Let a set of positive elements P = {p1, . . . , pρ} and a set

of negative elements N = {n1, . . . , nβ} be two disjoint finite

sets, and let C ⊆ 2P∪N be a collection of subsets of P ∪N . In

Positive-Negative Partial Set Cover, instead of covering all the

blue elements, the requirement is relaxed so that it aims to find

the best trade-off between covering the blue elements and not

covering too many red ones. In the context of such Positive-

Negative Partial Set Cover, the red and blue elements are called

negative and positive elements, respectively. Formally, given

an input instance which is a triplet (N,P, C), a solution is a

collection C0 = {Ci1 , . . . , Cim} ⊆ C, and its cost is defined

as

Cost(R,B, C0) =
��P \ (∪jCij)

��+
��N ∩ (∪jCij)

�� ,

namely the number of uncovered positive elements plus the

number of covered negative elements. The goal is to minimize

Cost(R,B, C0).
A linear reduction has been shown from the Red-Blue Set

Cover to this problem by Miettinen [38], thus passing the

lower bound O(2log
1−δ |C|) where δ = 1/ log logc |C| for any

c < 0.5.

Prime-Dual Approximation. As a widely applied approxima-

tion technique, Vazirani provided a detail introduction and talk.

The primal-dual method uses a linear programming relaxation

of an integer linear programming formulation of the problem

being approximated and the dual linear programming of this

formulation. The algorithm starts from zero solutions, which

are infeasible for the primal program and feasible for the dual

one. The algorithm successively changes these solutions, such

that the dual remains feasible, while the primal eventually

becomes feasible, and the α-relaxed primal and the β-relaxed

dual complementary slackness conditions hold. Then, such

a pair of feasible solutions are αβ-approximations of their

respective linear programming ones. [44]. Sometimes, the

algorithm prunes the feasible primal and dual solutions to

ensure that the relaxed complementary slackness conditions

hold.

III. RESULTS ON COMPLEXITIES

Recalling the results for the single query case, it is

polynomial-tractable for a key-preserving conjunctive query.

However, for multiple queries, the problem becomes extremely

hard. The first result we obtained is negative even for project-
free conjunctive queries, i.e., select-join queries. We show that

it is extremely hard to approximate even for multiple key-

preserving conjunctive queries.

Theorem 1. Even for two project-free conjunctive queries,
the view side-effect problem cannot be approximated within
O(2log

1−δ kVk) where δ = 1/ log logc kVk for any c < 0.5,
unless P=NP.

509

Proof: We here provide the proof sketch.

Schema. Given any instance of Red-Blue Set Cover (R,B, C),
we build a schema containing only one relation denoted by

T (x) in which x is an |R∪B|-dimensional vector of variables.

Database instance. We add |C| tuples into T where each tuple

t ∈ T refers to a set C ∈ C. For the value invention of each

tuple corresponding to C ∈ C, for each element bi ∈ B, let

the i-th value of t be bi if bi ∈ C. For the rest cell of tuple

t, fill them by distinct values in T . Finally, a table instance

with |C| tuples of |R ∪B| dimensions is built. It is actually a

bijection between T and C.

View. We define a view for each element in R ∪ B. In fact,

all the views are defined by a set of project-free conjunctive

queries {Qr1 , . . . , Qrρ , Qb1 , . . . , Qbβ}. We use each query to

generate a view corresponding to each element. Concretely,

each query Qri is to build view Vri as a join path for each

red element ri ∈ R and to build view Vbi as a join path for

each blue element bi ∈ B.

View Deletion. Let view deletion ΔV be the set of views

{Vbi} corresponding to all the blue elements in B.

→ T :
r1 b1
r1 b2
r1 b3

V

√
Vr1 :− Qr1(r1, b1, r1, b2, r1, b3)

× Vb1 :− Qb1(r1, b1)× Vb2 :− Qb2(r1, b2) ΔV
× Vb3 :− Qb3(r1, b3)

Fig. 2. Example C : {C1(r1, b1), C2(r1, b2), C3(r1, b3)} is an instance of
Red-Blue Set Cover. T is the corresponding table built in the reduction. The
views are defined by SJ query and view deletions are the last three tuples.

One can verify that there is a solution such that covering all

the blue elements while minimizing the number of covered red

elements, if and only if there is a way of tuple deletion from

T eliminating ΔV while minimizing the damage on results of

Qr1 , . . . , Qrρ , i.e., minimizing view side-effect.

It is easy to check the linearity of this reduction, so that

view side-effect for multiple project-free conjunctive queries

cannot be approximated within O(2log
1−1/ log logc kVk kVk) for

any c < 0.5, unless P = NP.

As a further step, here we talk about a variant of the

standard view side-effect problem, named balanced deletion
propagation. For this balanced version, we consider not only

removing the bad view tuples but also preserving the good

view tuples. Formally, the input still includes the database

instance, the views and tuple deletions on them. Let ΔD be a

solution of tuple deletions in source data, then the view tuples

deleted from view Vi by ΔD should be Vi − Qi(D \ ΔD).
The balanced version is to trade off deleting view tuples and

not deleting too many good view tuples, i.e., to minimize

|V|X

i=1

|Vi −Qi(D \ΔD)|+
|V|X

i=1

|Vi \ΔVi −Qi(D \ΔD)|

where each Qi ∈ Q.

By utilizing the idea of such reduction, we can show

the hardness result for the Balanced Deletion Propagation
problem.

Theorem 2. Unless P=NP, even for two project-free con-
junctive queries, the Balanced Deletion Propagation problem
cannot be approximated within O(2log

1−δ kVk) where δ =
1/ log logc kVk for any c < 0.5.

Proof: Here we reduce Positive-Negative Partial Set

Cover to Balanced Deletion Propagation. We still build a table

corresponding to the positive and negative sets according to

the way of the proof of Theorem 1. Define a view for each

element in N∪P . All the views are defined by a set of project-
free conjunctive queries {Qp1 , . . . , Qpρ , Qn1 , . . . , Qnβ

}. Each

query is to generate a view corresponding to an individual

element. Concretely, each query Qpi
is to build view Vpi

as a

join path for each positive element pi ∈ P and to build view

Vni
as a join path for each blue element ni ∈ N . At last, let

view deletion ΔV be the set of views {Vni} corresponding

to all the blue elements of N . One can verify that there

is a solution such that covering all the blue elements while

minimizing the number of covered red elements, if and only

if there is a way of tuple deletion from T eliminating ΔV
while minimizing damage on the results of Qr1 , . . . , Qrρ , i.e.,
minimizing view side-effect.

This result again implies balanced deletion propagation

for multiple project-free conjunctive queries cannot be ap-

proximated within O(2log
1−δ kVk) where δ = 1/ log logc kVk

for any c < 0.5, unless P = NP. Concretely, we employ

the second corollary in [38]. In fact, it is shown that un-

less NP⊆DTIME(npolylog(n)), it is impossible to approximate

Positive-Negative Partial Set Cover within O(2log
1−δ |C|), for

any δ > 0. The first theorem given by Miettinen [38] could be

applied here to obtain a similar result on the hardness of Red-

Blue Set Cover. Combining Theorem 3.1 in [8] and Theorem 1

in [38], we can derive the following result on the lower bound

of the standard and balanced versions of the view side-effect

problem.

Unless P = NP, it is impossible to approximate Positive-

Negative Partial Set Cover within O(2log
1−δ n) where δ =

1/ log logc n for any c < 0.5.

This statement and the second corollary in [38] imply

a similar approximation ratio for the balanced version, be-

cause through the reduction from positive-negative partial set

cover to balanced deletion propagation, an approximation of

balanced deletion propagation within O(2log
1−δ kVk) follows,

due to the approximation within O(2log
1−δ 2|C|) of positive-

negative partial set cover.

The second corollary in [38] states the inapproximability of

positive-negative partial set cover within O(2log
1−δ|B|) for any

δ > 0, unless P = NP.

Therefore, the linear reduction from positive-negative partial

set cover implies the inapproximability of balanced deletion

propagation within O(2log
1−δ kΔVk).

510

IV. APPROXIMATION ALGORITHMS

In this section, we propose the approximate algorithms for

the view side-effect problem. To deal with more practical

scenario, we provide an algorithm solving the weighted ver-

sion, where each view tuple to be preserved has a weight

representing user preference.

A. Approximation for the General Case

Our first result is shown by the following claim. Let l be

the maximum width of the given key-preserving conjunctive

queries (views), namely

l = max
Q∈Q

arity(Q)

, then we have the following result.

Claim 1. Let V be the set of given views and ΔV be the set of
intended tuple deletions. View side-effect can be approximated
within O(2

p
l · kVk · log kΔVk).

This can be done by reducing view side-effect to Red-Blue

Set Cover. (a) Generate a red element for each view tuple to

be preserved, (b) Generate a blue element for each view tuple

to be deleted, and (c) Generate a set for each tuple t such that

this set contains exactly the view tuples containing the tuple

in it, i.e., t is on the corresponding join paths simultaneously.

Due to the key-preserving property, it is always feasible to

find all the corresponding tuples. The weights of the view

tuples are transferred as they are. It is easy to check that a

solution to the obtained red-blue set cover instance is mapped

to a solution for the corresponding instance of the view

side-effect problem in this reverse manner. This reduction

preserves the feasibility and the cost of a solution, thus

passing the upper bound from red-blue set cover to view

side-effect. We employ the algorithm LowDegTwo proposed

by Peleg [41] to solve the red-blue set cover instance obtained

by the reverse reduction. Then transform the solution cover

back to a set of the corresponding tuples, i.e., deletion on

the source data. It is easy to check this mapping from view

side-effect to Red-Blue Set Cover preserves the approximation

ratio. Since the algorithm for Red-Blue Set Cover achieves

a ratio of 2
p
|C| log |B|, the transferred ratio should be

O(2
p
l · kVk · log kΔVk). The claim follows since each tuple

involved in the views defines a set in the reduction of view

side-effect to red-blue set cover.

For the balanced view side-effect problem, we show that a

feasible solution of a ratio guarantee could be found as follows.

Lemma 1. Balanced deletion propagation could be approxi-
mated within 2

p
l · (kVk+ kΔVk) · log kΔVk).

For any instance of balanced deletion propagation, one can

reduce it to positive-negative partial set cover. As any instance

of positive-negative partial set cover can be approximated

within 2
p

(|C|+ |B|) log |B|, and obtain a solution for bal-

anced deletion propagation by transforming the approximate

solution back to a set of corresponding tuples. This preserves

the approximation ratio, as claimed above, yielding the ap-

proximation ratio of 2
p
l · (kVk+ kΔVk) · log kΔVk.

Next, we present a characterization to distinguish better cases.

B. Characterization by Dual Graph

Now, we address a class of sj-free key preserving con-

junctive queries. According to the dichotomy characterized by

Kimelfeld et al. [30], the case of a conjunctive query without

head-domination is polynomial intractable even for the sj-free
ones. However, an sj-free conjunctive query of key-preserving

property does not imply head-dominations, e.g., sj-free key-

preserving conjunctive query Q(y1, y2) :− T1(y1, x), T (x, y2)
is sj-free key-preserving but not of head-domination.

Dual Hypergraph. Given schema S = {T1, . . . , Tm},
let Q be a set of sj-free key preserving conjunctive queries

{Q1, . . . , Qm} where each individual query has form

Qi :− Ti1 , . . . , Tiqi
.

Its dual hypergraph H(Q) has vertex set {T1, . . . , Tm}. Each

query Qi determines the hyperedge consisting of all those

relations in it: ei = {Tij |1 ≤ j ≤ qi}.
For all the given sj-free key preserving conjunctive queries

in Q, a dual graph could be obtained in the following way. If

every connected component is a hypertree [23], then the input

is a forest case.

(a) Hypergraph for Q1 (b) Hypertree for Q2 (c) Hypertree for Q3

Fig. 3. A dual hypergraph and a dual hypertree.

For example, given the following five queries

Q1 :− T1, T2, T3, Q2 :− T1, T2, T4

Q3 :− T1, T2, Q4 :− T1, T3, Q5 :− T2, T3

and three query sets Q1 = {Q1, Q3, Q4, Q5}, Q2 =
{Q1, Q3, Q5}, and Q3 = {Q1, Q2, Q5} as shown in Fig.3,

the dual hypergraphs of Q2 and Q3 are both hypertrees, but

the dual hypergraph of Q1 is not.

We provide two approximations for the forest cases where

each component is a hypertree.

C. l-Approximation for the Forest Cases

Having shown the hardness, we design two approximation

algorithms for (weighted) view side-effect. Similar results will

be shown for the balanced version. The first algorithm makes

use of the primal-dual technique for view side-effect on trees.

This algorithm is inspired by a related primal-dual-algorithm

for multicut on trees [25].

We are given the linear relaxation of the integer linear

programming formulation of the view side-effect of the tree

case as follows. Let R be the set of tuples to be preserved

{V1 \ΔV1, . . . }, then we have

511

minimize
X

r∈R
wrxr (1)

s. t.

∀r ∈ R krxr −
X

t∈r

yt ≥ 0 (2)

∀r ∈ ΔV krxr −
X

t∈r

yt ≥ 1 (3)

∀t ∈ D yt ≥ 0 (4)

∀r ∈ R xr ≥ 0 (5)

Here, yt is the variable indicating the deletion of tuple t
from source database D, and xr is the variable indicating the

accident elimination of view tuple r which is supposed to be

preserved. Concretely, delete tuple t if yt = 1 and view tuple

r is eliminated by accident if xr = 1. Formula (3) indicates

that every view tuple (i.e., project-free conjunctive query result

tuple) to be deleted is removed by deleting at least one of

the tuples joined by its query, and Formula (2) indicates that

once a view tuple to be preserved loses any tuple joined in,

it will be removed as well. Our objective is to minimize the

total weight of the view tuples to be preserved but actually

removed by accident.

The following LP is the dual to the LP formulated above.

maximize
X

r∈ΔV
vr (6)

s. t.

∀r ∈ R krvr ≤ wr (7)

∀t ∈ D
X

r∈ΔV ∧ t∈r

vr −
X

s∈P ∧ t∈s

vs ≤ 0 (8)

∀r ∈ R vr ≥ 0 (9)

∀r ∈ ΔV vr ≥ 0 (10)

The interpretation of an optimal integer solution to the dual

LP is to maximize the total number of view tuples to be deletet

such that the weight constraints hold for the view tuples to be

preserved that dominate the view tuples to be deleted involving

each tuple. We have the primal complementary slackness

conditions in our formulation as follows.

∀t ∈ D, yt > 0⇒
X

r∈ΔV ∧ t∈r

vr =
X

s∈P ∧ t∈s

vs (11)

∀r ∈ R, xr > 0⇒ krvr = wr (12)

We have the relaxed dual complementary slackness condi-

tions as follows.

∀t ∈ D, yt > 0⇒
X

r∈ΔV ∧ t∈r

vr =
X

s∈P ∧ t∈s

vs (13)

∀r ∈ R, xr > 0⇒ krvr = wr (14)

For the tree case, we define the depth of a tuple as the length

of the path from this tuple to the root tuple at the beginning of

the tree like join result. Define the lowest common ancestor of

two tuples t1 and t2 as the tuple of the path from one to the

other with the minimum depth. The lowest common ancestor

is unique since in a tree, the path can be found by looking at

the first tuple of the path from t1 to the root tuple that is also

on the path from the root tuple to t2. Therefore, each previous

tuple on the part of the path from t1 to this tuple is less deep,

while every next tuple on the following part of the path back

to t2 is deeper. Algorithm 1 is then provided based on the

primal-dual technique.

Algorithm 1 PrimeDualVSE(D,V,ΔV,R, ω)

1: Mark the infeasible primal and dual zero solutions.

2: Pick any table as the beginning such that the root of trees

is tuples contained in this table.

3: for ∀t ∈ D in increasing depth with respect to roots do
4: (a) For each view tuple r to be deleted such that r is a

join result (t, ..., t0) with lca(t, t0) = v: increase vr as

much as possible (not necessarily integrally), with the

necessary increase of the intersecting view tuples to be

preserved, to preserve the feasibility of the dual linear

programming.

5: (b) All the saturated (in the sense of Constraint (8) holds

with equality and for every view tuple to be preserved,

Constraint (7) holds with equality) tuples are chosen to

be deleted (yt = 1), and those xr are set as 1 in case

to support Constraint (2).

6: end for
7: for each chosen tuple t (yt = 1) in the reverse procedure

of the addition, if deleting it is not necessary for fulfilling

constraint (3) do
8: (a) yt ← 0.

9: (b) xr ← 0 if any xr can be set as 0 while obeying

Constraint (2).

10: end for

The correctness of Algorithm PrimeDualVSE could be

guaranteed as follows.

Theorem 3. Algorithm PrimeDualVSE returns a feasible l-
approximation for view side-effect.

Proof: First, we prove that the returned solution, defined

by {yt|t ∈ D, yt = 1}, is feasible. Because we take all the

saturated tuples in the maximum view tuples to be deleted,

and this means all those view tuples of ΔV have been

eliminated. This is correct, since otherwise, we could have

a view tuple of ΔV where no tuple is saturated, contradictory

to the maximality of that view tuple. The returned primal

solution is feasible because those xr’s are picked to make the

primal solution feasible, and the pruning step prunes only if

the primal solution remains feasible. The dual solution is also

feasible because the view tuples are routed in a manner that

preserves feasibility. In order to assert the approximation ratio,

we prove that the primal and the relaxed dual complementary

slackness holds. The primal conditions hold because the taken

edges are saturated. The relaxed dual condition (13) holds

512

because xr is positive only if at least one of the tuple r is

selected. Therefore, if the left hand side of Condition (13)

is positive, then
∑

t∈r yt ≥ 1, and the required inequality

follows. Condition (14) follows because of the argument given

in the proof of Lemma 18.5 in [44]. Having primal and dual

feasible solutions that satisfy the exact primal and the l-
relaxed dual complementary slackness conditions implies that

the primal solution is an l-approximation to the optimum.

Proposition 1. Let n be the size of the input database instance,
Algorithm 1 terminates in O(l · kΔVk2 · kVk+ kVk4) time.

D. 2
p
kVk-Approximation for the Forest Cases

We now propose another algorithm for view side-effect on

trees that approximates within 2
p
kVk, which is sometimes

better than factor l of the last algorithm. We refine the

algorithm LowDegTwo for Red-Blue Set Cover [8], using the

l-approximation to view side-effect problem. Recall that l is

defined as the maximum width, namely max
Q∈Q

arity(Q), among

all queries. We use the algorithm for standard view side-

effect since the extension for the weighted version is straight-

forward. We first describe Algorithm LowDegTreeVSE in-

spired by LowDegTwo [8].

Algorithm 2 LowDegTreeVSE(D,V,ΔV,R, ω, τ)

1: Remove the tuples t of D joined in more than τ view

tuples to be preserved (i.e. from R).

2: Let the renewed instance be (D0,R0,V 0,ΔV 0, ω, τ), where

D0 is the instance after tuple deletion and so are the other

input parameters.

3: if the new instance is infeasible then
4: return D.

5: end if
6: For prune, find out view tuples to be preserved such that

R0
> = {r ∈ R0, where arity(r) >

p
kVk}.

7: Prune those wide view tuples such that R00 = R0 \ R0
>.

8: return PrimeDualVSE(D0,V 0,ΔV 0,R00, ω, τ).

The following claim follows.

Claim 2. Let τ be the last input to Algorithm
LowDegTreeVSE, we have |R0

>| <
p
kVk · τ .

Proof: Since every tuple of D is joined in at most τ view

tuples to be preserved, we have

|R0
>|

p
kVk <

X

r∈R0>
|{t|t ∈ r}| ≤

X

r∈R0
|{t|t ∈ r}|

so that

|R0
>| ·

p
kVk < kV 0k · τ ≤ kVk · τ.

The first inequality is from the definition of R0
>, and the

equality is a reversal of the summation order. Therefore,

|R0
>| <

kVk · τp
kVk

=
p
kVk · τ.

We can now prove the following claim.

Claim 3. Let OPT* be an optimal solution for
an input instance of view side-effect. If input τ̂ is
max |{r ∈ R| r contains t, and t ∈ OPT*}| and apply
Algorithm LowDegTreeVSE, then it returns a 2

p
kVk-

approximation.

Proof: Due to the value of τ , the algorithm will re-

turn a feasible solution at last. An l-approximation could be

guaranteed which has been shown in advance. The input of

PrimeDualVSE has l ≤
p
kVk, thus its solution, say α, gives

|R0(α)| ≤
p
kVk |R0(α*)| .

Apply |R0
>| <

p
kVkτ̂ in the last claim so that the total

number of the view tuples removed by accident is

|R(α)| <
p
kVk |R0(OPT*)|+

p
kVkτ̂ .

Since τ̂ ≤ |R(OPT*)|, we can bound |R(α)| by

2
p
kVk |R(OPT*)|.

The algorithm for approximating the actual problem can

now be shown as follows where τ̂ is unknown in advance.

Algorithm 3 LowDegTreeVSETwo(D,V,ΔV,R, ω)

1: Let OPT be D
2: for τ = 1 to |R| do
3: Let α be LowDegTreeVSE(D,V,ΔV,R, ω, τ)
4: if ω(R(α)) < ω(R(OPT)) then
5: Let OPT be α
6: end if
7: end for
8: return OPT

The following theorem is then derived from the last claim.

Theorem 4. Algorithm LowDegTreeVSETwo approximates
the solution to view side-effect problem within 2

p
kVk.

This has been proven for the non-weighted case, and it is

straight-forward to extend the result to the weighted case.

We next provide a dynamic programming for a more re-

stricted tree case.

E. Forest Cases with Pivot Tuple

We design a dynamic programming for a class of forest

cases. To illustrate this class, we introduce an additional

structure of data dual graph.

Data dual graph. Let H(Q) be the hypergraph of Q, and

it is an hypertree. Then for each tuple r in query result Q(D),
we take the projection r[T] on any involved relation T , say

t, as a vertex. In this way, take each tuple t as a path in the

order of the layout of H(Q).
Forest dual data graph with pivot tuple. In a graph obtained

in this way (we call it dual data graph), for each connected

component, there exist some fixed relation T and a tuple t ∈ T ,

called pivot tuple, such that every view tuple is on a path from

t to all the other tuples.

513

This assumption allows us to solve both view side-effect

and its balanced version exactly using dynamic programming.

We define the recursion to be a subtree and the view tuples

strictly joined through its root after possible tuple deletions

outside this subtree.

Let t ∈ T be a vertex and r be the set of tuples on

the (only) path from t to the root tuple of the tree. Let

T (t) := {r ∈ V| r contains t} be the set of the originally

given view tuples that pass through t. Denote by S(t) the

subtree rooted on t. The possible subsets of view tuples that

enter T (t) after deleting some tuple outside of T (t) are

T (t) = {T (t)\T ({t})|t ∈ rt}. We do not consider deleting a

subset of tuples on r, because for T (t) it would be equivalent

to deleting the tuple of this subset closest to t. The dynamic

programming solves view side-effect exactly.

Algorithm 4 DPTreeVSE(D,V,ΔV,R, ω)

1: The algorithm maintains the status transition array indexed

by D × T (t).
2: for each tuple t ∈ D \ troot in a post-order traversal do
3: for each r ∈ T (t) do
4: Delete the tuple from t to its parent if and only if t

maximizes the total objective function in S(t).
5: Memoize the resulting tuple deletion and the resulting

objective function for the current entry (t, r) ∈ D ×
T (t).

6: end for
7: end for
8: The completed status transition array contains an optimal

set of tuple deletions.

It is a polynomial algorithm since its status transition array

is of a poly size. Indeed, T (t) contains |r| elements, as defined

and explained above.

V. RELATED APPLICATIONS

Besides the connection with why-provenance, where-
provenance and query reverse engineering [15], we introduce

some more practical applications of deletion propagation,

especially from the view side-effect aspects.

Data annotation. Recall ΔV1 = (John, XML) in Example

1. It is already known that there is an error (John, XML) in

view Q1(D) since researcher John does not do any research on

XML. As stated in [15], data annotation is an important feature

of new generation database. Therefore, one may want to look

for tuples ΔD from the source data D in order to annotate

the error such that the corresponding annotations propagate to

the fields of view tuples in ΔV via Q1. However, since errors

in views are essentially produced by the errors in source data,

then usually if there is an error found in one view, it is almost

sure that some errors appear in other views. By making use

of propagating annotations on the results of multiple queries,

the candidate tuples in the source data can be found more

accurately. Concretely, we can observe from Example 1 that

there are usually multiple optimal solutions, some of which

may not be the best choice, but the results could be shrunk by

merging deletions specified on the results of multiple queries,

and the candidate will be found more accurately. Ideally, if the

views and view deletions are given completely, we can always

find the view side-effect free solutions. Intuitively, the more

queries and its views, the closer we approach the side-effect

free solution. This is why we should provide a necessary tool

for such a more general and practical case.

Query-oriented cleaning. Alternatively, in the context of

data repairing like the query-oriented cleaning framework,

one may want to delete ΔD so as to achieve a tuple-level

repair of the inconsistent or inaccurate ΔV . Emerging data

cleaning tools [2], [3] integrate user efforts on query result

corrections. They find out inconsistent information by making

use of materialized (or non-materialized) views specified by

user queries. However, the latest proposed cleaning system

QOCO [2] interacts with domain experts (like crowds) to

identify potentially wrong answers in the query results. In

their system, queries are generated to cover source tuples as

many as possible. However, the feedbacks on user queries

are processed one by one, not in the way of batch process

due to the theoretical limit which cannot provide a guarantee

on the feasibility and accuracy of the result obtaining by the

batch process. Such a non-batch process introduces additional

dependent factors, namely the order of processing, which

potentially leads to more damage on loss on quality of data

cleaning. To tackle this problem, our theoretical study provides

a guarantee on the batch process so that it enables the batch

process with theoretical guarantee.

Balanced version. We now introduce the motivation of the

balanced version. Obviously, there are always scenarios where

the unexpected damage on views caused by removing all the

bad results is too huge, and such loss or cost sometimes is

too expensive for users to afford. If the information on view

errors is not complete (like the crowds stated above), ΔV may

not be specified accurately. Therefore, in such a case, we just

want to see if there is some possible solution ΔD on the views

removing major part of the bad results ΔV while taking small

side-effect on the other results. The balanced version is just

defined for this kind of cases.

VI. RELATED WORKS

Some efforts have been spent on studying the computational

complexities of source side-effect and view side-effect. The

previous results regarding source side-effect are presented in

Table II and Table III. The previous results regarding view
side-effect are summarized in Table IV and Table V. The

complexity of relational query languages was first investigated

by Chandra and Merlin [9] about 40 years ago. Then, it became

one of the most primary concerns in the theoretical study

of the database field. Unfortunately, for query evaluation, the

available complexity results of query languages are shown in

a general way and seems too rough. A few years later, two

new metrics are proposed in [43] to measure the complexity of

query evaluation. These two new metrics are data complexity
and combined complexity. By considering these two metrics,

514

TABLE II
POLY-TRACTABLE CASES OF THE SOURCE SIDE-EFFECT PROBLEM

Complexity Citations Query Class

PTime

Buneman et al. 2002 [6] project-free & sj-free conjunctive queries

Cong et al. 2012 [15] key-preserving conjunctive queries

Freire et al. 2015 [24]
triad-free & sj-free conjunctive queries

fd-induced-triad-free & sj-free conjunctive queries

TABLE III
HARD CASES OF THE SOURCE SIDE-EFFECT PROBLEM

Complexity Citations Query Class

NP-complete

Buneman et al. 2002 [6] select-free conjunctive queries

Cong et al. 2012 [15] non-key-preserving conjunctive queries

Freire et al. 2015 [24]
queries with triad

queries with fd-induced triad

co-W[1]-complete
[36]

conjunctive queries for parameter query size or #variables

positive queries for parameter query size

co-W[SAT]-hard positive queries for parameter #variables

co-W[t]-hard first-order queries for parameter query size

co-W[P]-hard first-order queries for parameter #variables

TABLE IV
POLYNOMIAL TRACTABLE CASES OF THE VIEW SIDE-EFFECT PROBLEM

Complexity Citations Query Class

PTime

Buneman et al. 2002 [6] project-free & sj-free conjunctive queries

Cong et al. 2012 [15] key-preserving conjunctive queries

Kimelfeld et al. 2012 [30]
sj-free conjunctive queries having head-domination

sj-free conjunctive queries having fd-head-domination

FPT Kimelfeld et al. 2013 [32]
sj-free conjunctive queries having level-k head-domination

sj-free conjunctive queries having head-domination

TABLE V
HARD CASES OF THE VIEW SIDE-EFFECT PROBLEM

Complexity Citations Query Class

NP-complete

Buneman et al. 2002 [6] select-free conjunctive queries
Cong et al. 2012 [15] non-key-preserving conjunctive queries

Kimelfeld et al. 2012 [30]
non-head-domination conjunctive queries

non fd-head-domination conjunctive queries
Kimelfeld et al. 2013 [32] non level-k head-domination conjunctive queries

NP(k)-complete Miao et al. 2017 [36] conjunctive queries for bounded source deletions
ΣP

2 -complete Miao et al. 2016 [37] conjunctive queries under general settings

the complexity of query evaluation can be investigated in a

more reasonable way. Intuitively, data complexity helps with

identifying the scenarios where the query size is small with

respect to the database instance involving a reasonable number

of join operations. Therefore, it is represented as a function

of the size of the database instance and the considered query

is regarded as a fixed one. Differently, combined complexity
focuses on more general scenarios where both the considered

query and database instance are not fixed. Thus, the considered

query and database instance are both regarded as variables

of the complexity function. The combined complexity for a

specific class of queries involving join operations is usually

inevitably exponential higher than the data complexity. Be-

cause of this reason, data complexity is more meaningful for

practical query evaluations, thus it draws a lot of attentions.

Thanks to such two metrics, more complexity results of the

view side-effect problem are obtained [6], [14], [15], [30]–

[32]. For data complexity, Kimelfeld et al. [31] introduced

a dichotomy called ‘head-domination’. It is shown that for

sj-free conjunctive queries, view side-effect is polynomial

tractable by the unidimensional algorithm for the queries with

the head-domination property, and no PTAS even without

the head-domination property. The functional dependency re-

stricted version is a natural extension of view side-effect.

Things change too much with the presence of functional

dependency. Thus, the work in [30] introduced another ex-

tended dichotomy, called ‘fd-head domination’. Besides single

deletion, they also identified a trichotomy, called ‘level k-

515

domination’, for multi-tuple deletion in [32]. It is claimed that

finding a k-factored constant-optimal solution is polynomial

tractable for a query with the level k-domination property,

but it is NP-hard to derive a constant optimal solution. For

combined complexity, there exist many results for different

fragments of monotone (i.e., Select-Project-Join-Union) query

[14], [15], [37]. The authors in [14], [15] presented the

intractable cases and illustrated a key-preserving condition to

recognize a polynomial tractable case. The authors in [37]

investigated the functional dependency restricted view side-

effect problem. Similarly, several polynomial tractable and

intractable cases are presented for view side-effect.

Moreover, there are some results on the source side-effect

problem [6], [14], [15], [24]. The work in [24] is very related

to this paper. Freire et al. identified the ‘triad’ property for

dual hypergraph representation of conjunctive queries. Based

on this work, we can know that the resilience decision problem

is polynomial decidable if the dual hypergraph of the given

query q excludes the triad structure. Otherwise, the problem

is NP-complete. Similarly, if a set of functional dependencies

are defined in advance, then the ‘triad’ structure should be

changed to ‘fd-induced triad’ which is more general. Then, a

tight dichotomy follows.

The view update problem is another related problem. It has

been widely investigated for many years. The example works

include [1], [4], [16], [19], [29]. The view update problem

studies how to perform an update on the source data in order to

remove ambiguity or achieve the expected update to a specified

view while guaranteeing the semantic correctness. Most of the

previous works mainly focus on recognizing the conditions

under which uniqueness of update can be guaranteed if the

update is carried out. It is worth mentioning that an update is

not always ideally unique in practice. Therefore, such works

are only effective for the restricted scenarios. A more practical

study is to identify an update to database instance D which

can enable the specified update to Q(D) while minimizing

the side-effect, e.g., unintended update. This is essentially the

same as view propagation.

VII. CONCLUSION

We conclude that the previously established complexity

results for the single view case no longer hold in the multiple

query case. Instead, we derive the new complexity results

even for two project-free conjunctive views, and show that

the view side-effect problem cannot be approximated within

O(2log
1−δ kVk) where δ = 1/ log logc kVk for any c < 0.5,

unless P=NP. This lower bound can also be applied to the

balanced deletion problem which is defined for more prac-

tical cases. The view side-effect problem and its balanced

version can be approximated within O(2kVk log kΔVk) for

the general case. We show that the view side-effect problem

can be approximated within l and O(2
p
kVk) for the forest

cases where l is the maximum arity(Q) among all the given

queries. Finally, a dynamic programming validates that the

view side-effect problem can be solved polynomially for the

more restrictive forest case.

ACKNOWLEDGMENT

This work is partly supported by the National Natural

Science Foundation of China (NSFC) under grant NOs.

61832003, U1811461, 61732003 and the National Science

Foundation (NSF) under grant NOs. 1252292, 1741277,

1829674 and 1704287.

REFERENCES

[1] F. Bancilhon, N. Spyratos. Update semantics of relational views. ACM
Transactions on Database Systems, 6(4):557-575, 1981.

[2] M. Bergman, T. Milo, S. Novgorodov, W. Tan. Query-oriented data
cleaning with oracles. In SIGMOD, pages 1199-1214, 2015.

[3] M. Yakout, A. K. Elmagarmid, J. Nevillem, M. Ouzzani, I. F. Ilyas.
Guided data repair. PVLDB, 4(5):279-289, 2011.

[4] A. Bohannon, B. C. Pierce, J. A. Vaughan. Relational lenses: a language
for updatable views. In PODS, pages 338-347, 2006.

[5] D. Brügmann, C. Komusiewicz, H. Moser. On generating triangle-free
graphs. Electronic Notes in Discrete Mathematics. 32:51-58, 2009.

[6] P. Buneman, S. Khanna, W.-C. Tan. On propagation of deletions and
annotations through views. In PODS, pages 150-158, 2002.

[7] P. Buneman, A. Chapman, J. Cheney. Provenance management in curated
databases. In SIGMOD, pages 539-550, 2006.

[8] R. D. Carr, S. Doddi, G. Konjevod, M. Marathe. On the red-blue set cover
problem. In SODA, pages 345-353, 2002.

[9] A. K. Chandra, P. M. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In STOC, pages 77-90, 1977.

[10] A. Chapman, H. V. Jagadish. Why not?. In SIGMOD, pages 523-534,
2009.

[11] J. Cheney, L. Chiticariu, W.-C. Tan. Provenance in databases: why, how,
and where. Foundations and Trends in Databases, 1(4):379-474, 2009.

[12] R. Chen, S. Singh, S. Prabhakar. U-DBMS: a database system for
managing constantly-evolving data. In VLDB, pages 1271-1274, 2005.

[13] H. Chockler, J. Y. Halpern. Responsibility and blame: a structural-model
approach. Journal of Artificial Intelligence Research, 22:93-115, 2004.

[14] G. Cong, W. Fan, F. Geerts. Annotation propagation revisited for key
preserving views. In CIKM, pages 632-641, 2006.

[15] G. Cong, W. Fan, F. Geerts, J. Li, J. Luo. On the complexity of
view update analysis and its application to annotation propagation. IEEE
Transactions on Knowledge and Data Engineering, 24(3):506-519, 2012.

[16] S. S. Cosmadakis, C. H. Papadimitriou. Updaies of relational views. In
PODS, pages 742-760, 1983.

[17] Y. Cui, J. Widom. Run-time translation of view tuple deletions using
data lineage. Technique Report, Stanford, 2001.

[18] R. Fagin, J. Ullman, M. Y. Vardi. On the semantics of updates in
databases. In PODS, pages 352-365, 1983.

[19] U. Dayal, P. A. Bernstein. On the correct translation of update operations
on relational views. ACM Transactions on Database Systems, 7(3):381-
416, 1982.

[20] D. Deutch, Y. Moskovitch, V. Tannen. A provenance framework for
data-dependent process analysis. PVLDB, vol.7, pp 457-468, 2014.

[21] R. G. Downey, M. R. Fellows. Parameterized complexity. Springer-
Verlag, New York, 1999.

[22] T. Eiter, T. Lukasiewicz. Complexity results for structure-based causality.
Artificial Intelligence, 142(1):53-89, 2002.

[23] R. Fagin. Degrees of acyclicity for hypergraphs and relational database
schemes. Journal of the ACM, 30(3):514-550, 1983.

[24] C. Freire, W. Gatterbauer, N. Immerman, A. Meliou. The complexity
of resilience and responsibility for self-join-free conjunctive queries.
PVLDB, 9(3):180-191, 2015.

[25] N. Garg, V. V. Vazirani, M. Yannakakis. Primal-dual approximation
algorithms for integral flow and multicut in trees. Algorithmica, 18(1):3-
20, 1997.

[26] M. Grohe. The parameterized complexity of database queries. In PODS,
pages 82-92, 2002.

[27] J. Håstad. Some optimal inapproximability results. Journal of the ACM,
48(4):798-859, 2001.

[28] J. Huang, T. Chen, A. Doan, J. F. Naughton. On the provenance of
non-answers to queries over extracted data. PVLDB, 1(1):736-747, 2008.

[29] A. M. Keller. Algorithms for translating view updates to database
updates for views involving selections, projections, and joins. In PODS,
pages 154-163, 1985.

516

[30] B. Kimelfeld. A dichotomy in the complexity of deletion propagation
with functional dependencies. In PODS, pages 191-202, 2012.

[31] B. Kimelfeld, J. Vondrák, R. Williams. Maximizing conjunctive views in
deletion propagation. ACM Transactions on Database Systems, 37(4):1-
37, 2012.

[32] B. Kimelfeld, J. Vondrák, D. P. Woodruff. Multi-tuple deletion propa-
gation: approximations and complexity. PVLDB, 6(13):1558-1569, 2013.

[33] A. Meliou, W. Gatterbauer, K. F. Moore, D. Suciu. The complexity of
causality and responsibility for query answers and non-answers. PVLDB,
4(1):34-45, 2010.

[34] A. Meliou, W. Gatterbauer, S. Nath, D. Suciu. Tracing data errors with
view-conditioned causality. In PODS, pages 505-516, 2011.

[35] A. Meliou, S. Roy, D. Suciu. Causality and explanations in databases.
PVLDB, 7(13):1715-1716, 2014.

[36] D. Miao, Z. Cai, J. Li. On the complexity of bounded view propagation
for conjunctive queries. IEEE Transactions on Knowledge and Data
Engineering, 30(1):115-127, 2018.

[37] D. Miao, X. Liu, J. Li. On the complexity of sampling query feedback
restricted database repair of functional dependency violations. Theoretical
Computer Science, 609:594-605, 2016.

[38] P. Miettinen. On the positive-negative partial set cover problem. Infor-
mation Processing Letters, 108(4):219-221, 2008.

[39] X. Niu, B.S. Arab, S. Lee, Su. Feng, et. al. Debugging transactions and
tracking their provenance with reenactment. PVLDB, 10(12):1857-1860,
2017.

[40] C. H. Papadimitriou, M. Yannakakis. On the complexity of database
queries (extended abstract). In PODS, 1997, pp. 12-19.

[41] D. Peleg. Approximation algorithms for the label-cover max and red-
blue set cover problems. Journal of Discrete Algorithms, 5(1):55-64,
2007.

[42] S. Roy, D. Suciu. A formal approach to finding explanations for database
queries. In SIGMOD, pages 1579-1590, 2014.

[43] M. Y. Vardi. The complexity of relational query languages (extended
abstract). In STOC, pages 137-146, 1982.

[44] V. Vazirani. Approximation Algorithms. Springer-Verlag, Berlin, 2003.

517

