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Abstract—We study a two-hop network with wireless energy
transfer (WET) from the source to multiple energy harvesting
relays. Both the source and relays intend to transmit dedicated
information to the destination. The source, without direct reliable
channels to the destination, needs the relays to forward signals,
while the relays are short of energy and have to harvest energy
from the source to transmit their own data and relaying the
source’s data. Relays use time division to harvest then transmit.
For the multiple access channel (MAC) from the relays to
the destination, we consider both time division multiple access
(TDMA) between the relays and simultaneous transmission (ST)
by all relays. The source and the relays are all selfish and
aim to maximize their own utility. We take a game theoretic
viewpoint to model the hierarchical competition between the
source and the relays. In particular, multi-leader Stackelberg
games are formulated where the relays play as the leaders and
the source plays as the follower. The existence and the uniqueness
of Stackelberg equilibrium (SE) are analyzed, based on which
algorithms are proposed to achieve the SE. The numerical
results verify that the proposed algorithms improve the system
performance comparing to the baseline scheme.

Index Terms—Wireless energy transfer, two-hop system,
multi-leader Stackelberg game, Stackelberg equilibrium.

I. INTRODUCTION

Energy harvesting has been considered a promising solution
to enable perpetual operation of wireless networks. Energy
harvesting sources for wireless nodes include solar radiation,
body heat and motion, and electromagnetic waves. Recently,
energy harvesting from radio frequency (RF) signals has been
considered in energy and data cooperation networks [1]. In
addition to data cooperation in conventional wireless systems,
energy cooperation, as a viable design to improve system
performance [2], can be accomplished by transferring energy
as RF signals from energy-abundant nodes to energy-deprived
nodes. Wireless energy transfer (WET) has been studied in
cellular systems, and cognitive radio networks among others
(1], [3].

A relay network with WET has first been proposed in [4],
where the relay is energy-constrained and harvests energy from
the received RF signals to forward the source’s information.
Both power splitting and time switching energy harvesting
protocols are investigated. Following this two-hop system
model, growing research has focused on wireless information
and power transfer (WIPT) in relay networks from different
perspectives. In particular, several works have studied WIPT
relaying systems from the perspective of game theory [5]-[8].
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Reference [5] has considered multiple source-destination pairs
communicate via an energy harvesting relay. An auction
based harvested energy allocation strategy is proposed and the
properties of the equilibrium are discussed. In [6], a WIPT
system with multiple source-destination pairs communicating
through their dedicated relays is considered. A non-cooperative
game is formulated for the competition among relays whose
strategies are the power splitting ratios. In [7], [8], an energy
harvesting relay with its own objective is considered. In [7],
the relay has its own objective of harvesting energy and a
Nash bargaining game is proposed to balance the information
transmission efficiency of multiple source-destination pairs
and the harvested energy of the relay. Reference [8] considers
relays harvesting energy from the source’s signal not only for
forwarding source’s information but also for transmitting their
own data. Single-leader Stackelberg games are formulated
respectively considering the source as leader and the relay
as leader. For the source as leader, the delivery of source’s
information is given priority and the multiple relays play as
followers, among which one relay with the best channel state
is selected for transmission by Vickery auction.

In this paper, we consider a two-hop system with both
data and energy cooperation based on the model studied in
[8]. In particular, multiple relays are allowed to transmit to
the destination with the primary objective of their own data
delivery in contrast to [8]. Data cooperation is performed
for the information of the source, which is delivered to the
destination via decode-and-forward (DF) relaying at multiple
relays. On the other hand, WET is adopted from the source
to the relays to supply energy for data transmission from the
relays to the destination. In the second hop, for the multiple
access channel (MAC) from the relays to the destination,
both simultaneous transmission (MAC-ST) and time division
multiple access (MAC-TDMA) are investigated. We assume
the source and the relays are selfish in the sense that each
node aims to maximize its own utility. We adopt a multi-leader
Stackelberg game framework. Multi-leader Stackelberg games
have been utilized in wireless games to capture the competition
between hierarchical agents [9], [10], but, to date, not
in wireless energy transfer. Our model is that each relay
plays as a leader in the game and determines its strategy
by anticipating the strategy of the follower and competing
non-cooperatively with other leaders. The source plays as
the follower and chooses its strategy in response to the

369



2018 IEEE Wireless Communications and Networking Conference (WCNC): Special Session Workshops

~
=
Ak

S to Rg S to Rg
transfer energy|transmit data

S to R] S to Rl
transfer energy |transmit data

k— 8§, T/K —k—(1-6,)T/K— k— 8 T/K —k(1-8x) T/K—
T/K T/K
(b)
Fig. 1. (a) A two-hop network with K relays. Solid lines and dash lines

indicate information transmission and energy transfer, respectively. (b) First
hop transmission.

leaders’ strategies. For MAC-ST, we provide an algorithm
to obtain the solution of the game and prove a sufficient
condition for the uniqueness of SE by the theory of variational
inequality (VI). For MAC-TDMA, we solve a multi-leader
Stackelberg game with a shared constraint among leaders. An
algorithm is proposed to achieve the SE, which is also Pareto
optimal. Numerical results demonstrate system performance
is improved by both transmission protocols as compared to
the single-leader Stackelberg game in [8], and MAC-TDMA
provides a more significant outperformance.

II. SYSTEM MODEL

We consider a two-hop Gaussian channel with one source,
S, K relays, R, k € K ={1,2,..., K}, and one destination,
D, shown in Fig. 1(a). Both the source and the relays intend
to transmit information to the destination. Assume there is no
direct channel available for reliable communications as the
source and the destination are located far apart from each
other. This necessitates the cooperation of relays to forward
the messages of the source. Decode-and-forward relaying is
adopted. The relays have no access to any other energy sources
except harvesting energy from RF signals. Each relay harvests
energy from the received signals of the source to sustain
transmission of both its own and the source’s data to the
destination. The source provides WET to relays as a trade
for channel access and signal relaying to the destination.

Assume transmission duration 7" in each hop. We consider
an additive white Gaussian noise channel with quasi-static
channel gains that are known at the associated transmitters
and receivers. Let hy and g denote the channel gains from
S to Ry and from Ry to D, respectively. In the first hop, the
transmission time 7" is divided into K slots with equal length
%, shown in Fig. 1(b). In particular, S transmits dedicated
signals to Ry, in the kth slot. Ry adopts harvest-then-transmit
protocol, where J;, fraction of its slot is reserved for energy

harvesting and the remaining 1 — dy, fraction for information
receiving. S agrees on d; € [0, 1] chosen by Ry and transmits
with power 65"% and (1_’;7’2)% for energy transfer and data
transmission, respectively. The average transmit power for Ry
over T' is 2py, where py, is restricted to be no larger than the
maximum value Pj. Over the two-hop transmission time 27,

the rate of S via Ry, is given by

1 —dy, he  pe
(g O
where o7 is the received noise power at Rj. The harvested
energy at Ry is nghgprT, where n, € (0,1) is the energy
harvesting efficiency incorporating energy conversion loss and
processing cost [8].

In the second hop, each relay transmits its own and the
source’s data to the destination which is equipped with a
single-user decoder. Assume signal receiving, decoding, and
encoding at the relays incur negligible energy cost and the
consumed energy is for data transmission only. We consider
two transmission protocols, MAC-ST and MAC-TDMA. For
MAC-ST, all relays transmit to D simultaneously over 7. Ry
transmits with power nihrpr. The destination decodes the
received signal of Ry treating the signals from other relays
as noise. The rate of Ry is given by

R, = llog (1 P grenkhipk )’ )
2 ik 9inihipy + o,

where of, is the received noise power at D for signal from

Rj,. For MAC-TDMA protocol, each relay transmits to D in

its assigned slot of length ~;T', where v € [0,1], Vk and

Zszl ~i < 1. The transmit power of Ry, is 77’“{;7,6“, Vk. Then,

the rate of Ry is given by

RRR"TDMA =k log <1 +
2 op, Yk
We define the utility of S as the average payoff over 27" by
transmitting data to all relays. The cost of transmission to Ry
is given by 2upi T, where 2p;T is the energy consumption
and p denotes the predetermined cost per energy unit. Then,
the utility Usg is expressed as

R, =

9k Mhipr > ’ 3)

K
Us =Y Rs, — tkpi- )
k=1

The utility of Ry is considered as the rate of delivering its
own data to D, which is given by

Ug, = Ry,™ — Rs,, m € {ST,TDMA}. (5)

In the sequel, we study multi-leader Stackelberg games for
MAC-ST and MAC-TDMA.

III. MULTI-LEADER STACKELBERG GAMES

The multi-leader Stackelberg game, a generalization of
the single-leader Stackelberg game, consists of multiple
upper-level players, the leaders, and a group of lower-level
players, the followers [11]. Each leader has the privilege
of choosing its strategy by anticipating the response of
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the followers and competing with the other leaders. Each
follower optimizes its strategy for the followers’ game reacting
to leaders’ strategies while competing with other followers
non-cooperatively.

We consider static games with a group of rational players.
Every player knows the complete and perfect information of
the set of players, the set of strategies and the utility functions
of all players, and does best response [12]. Here, each relay, as
a leader, decides its strategy by considering the strategy of the
follower, the source, and competing with other relays. Denote
the strategy of leader Ry by qi. Let 9 £ (qx)i_, be the
strategies of all relays, q_y £ (A1)« Q=15 A1y - - - s AK)
denote the strategies of other relays except Ry, and p £
(pk)f:1 denote the strategy of the source. The strategy sets of
relays for MAC-ST and MAC-TDMA are defined respectively
as, Vk,

Qr={ar =6 € Ry : 6, <1}, (6)
K
Qr = {ar 2 (Go) ERZ 1 <L, %<1 Y % <1} (D)
k=1
Let Q = HkK:1 Qy and £ = (Ug, (q))E_,. The leaders’ game
G = (K, Q,f) is a non-cooperative game, where each leader
Ry, solves the optimization problem
max URk (qka q—k, p) (8)
ar€Qk
Reacting to leaders’ strategies q, the follower, S, maximizes
its utility by choosing strategy p in the strategy set P = {p €
RE : pr, < Py, Vk € K}. S solves the optimization problem

max Us(p,q). )

The Stackelberg equilibrium (SE) of the multi-leader
Stackelberg game is defined as follows [11].

Definition 1: Let qj, be the optimal solution for problem (8)
and p* be the optimal solution for problem (9). Then, (q*, p*)
is an SE for the proposed multi-leader Stackelberg game if for
any (q,p) € @ x P

URk (q27qik7p*) > URk (qk>qik>p*)7 Vk € IC7 (10)
Us(p™.d") = Us(p,q"). (11

Next, we solve the SE of the proposed game by finding the
Nash equilibrium (NE) of the leader’s non-cooperative game
G. By backward induction, the source’s strategy is analytically
solved and substituted into each leader’s optimization problem,
then the NE can be found for the game G.

A. MAC-ST

The source’s optimization problem (9) is a convex problem
for any given q. The unconstrained solution maximizing the
objective function in (9) is obtained by taking the gradient with
respective to p and equating to zero, i.e., VpUs(p,q) = 0.
Then, projecting to the strategy set P gives

1-6
Py = min {Pk,max{o, = ’“m}}, Vkek, (12)
0.2
where ¢k £ ﬁ — ﬁ

It can be observed that p; is nonincreasing in dg. As
0 increasing, rate Rg, decreases due to a shorter data
transmission phase. As a response, S has to lower its transmit
power to reduce the energy cost so as to maintain a positive
utility. Furthermore, pj is also nonincreasing in gy and
nondecreasing in hg, which implies p; equals zero if ¢ =0
due to a large j1j, and/or a small hy. In this case, the utility of S
via Ry and the utility of Ry both end up with zero regardless
of the choice of J; since Ry is unable to transmit without
harvested energy. Hence, we only consider ¢ > 0 in the
following. The transmit power of S to Ry can be rewritten as

Pk:a if 61€ c [ngk)a
Pr =9 1-s, if 5 5
FEbr, if O € [0, 1].
where 0y £ 1 — min{ £ 1},

Pk
With the knowledge of the source’s strategy, each relay

makes its decision by solving optimization problem (8). For
Ok € [0,0x), we have

1
Ur,, (0k, 6—k) =5 log (1 +

13)

e P )
K
ik 9inihip; + of,

1— 0k h Py
— log| 14+ —5——7— . (14
e os (U sy ) 09
It can be easily verify that Ug, (dx,0-%) increases on dy,
which implies that the optimal J; lies in [dy,1]. Thus, in
the sequel we focus on 3 € [0y, 1]. The strategy set can
be redefined as Qr = {0 € Ry : 0 < & < 1}, and (8)
is rewritten as a convex optimization problem in terms of Jy,
that is
max UR,C(dk,d,k) =

0k EQK

o (1—65)
S ai(1=6;)+0d,
where oy 2 grnrhrér/K and By, £ ﬁ log(1 + h(’;#) This
game G is a Nash equilibrium problem (NEP), which is closely
related to the variational inequality (VI) problem. Specifically,
the equivalency between the NEP and a properly defined VI
problem is given as follows [13].

Theorem 1: Given the game G = (K, Q,f) in (15),
where for each leader k, the strategy set (Jj is closed and
convex, the utility function Ug, (qg,q—x) is continuously
differentiable in q and concave in qj for every fixed q_p,
then, the NEP is equivalent to the VI(Q,F), where F(q) =
(7vqk Ur,, (q))lle'

Moreover, the existence of an NE of the game G is given
by the following theorem.

Theorem 2: There is at least one NE for the game G.

Proof: By Theorem 1, NEs of G exist if the equivalent
VI(Q, F) problem has a nonempty solution set. Based on the
properties of VI, given VI(Q, F) defined in Theorem 1, the
solution set of VI(Q,F) is nonempty, closed, and convex if
Q is convex and compact, and F is monotone on Q [13]. It
can be easily verify that Q is convex and compact. And F is
monotone if and only if Ug, (qr,q—x) is concave in qj for

;log<1+ )—(1—5k)6k, (15)
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Algorithm 1 Distributed iterative algorithm

1: Choose an initial strategy () = (6(0))k 1 €9, setn =
0.
repeat

for k=1,...,K do

compute 5,(C"+1) as in (16) for given 5(_",3

end for

set 6+ = (50K and < n 4 1.
until 6"+ satisfies a suitable termination criterion.
Compute the strategy of the source p as in (12).

S A R o

given q_g, Vk € IC, which is true. Therefore, there is at least
one NE of G. ]

Due to the selfish nature of players, each leader dedicates to
maximize its own objective function. This naturally gives rise
to a distributed iterative algorithm, where each leader, given
the strategies of other leaders, updates its strategy by solving
(15) at each iteration [13]. (15) can be solved by the first-order

I .. OUR, (k,0-k) .
optimality condition, i.e., — e — 0, and mapping to
the feasible set. We obtain

K
. > aj(1=0;)+op,
5kmin{1,max{(§k’12 I J7k }} (16)

B Qg

In Algorithm 1, we summarize the distributed iterative
algorithm based on the above discussion. Each relay has to
know the local CSI and its signal-to-interference-plus-noise
ratio (SINR) measured at the destination in every iteration. A
sufficient condition of the uniqueness of the NE of the game
is provided next, under which the global convergency to the
NE can be guaranteed.

Theorem 3: The game G in (15) has an unique NE if matrix
M € REXE s positive definite, where each entry of M is

N if k= j
M, = K,l a;(1-8;)+0d .
M]i; =4 TE U50tob, iep s

g
Dk

Yk, je K. (A7)

Proof: By Theorem 1, the game G has an unique NE if
and only if the solution of VI(Q, F) is unique. Based on the
properties of VI, the VI(Q, F') admits a unique solution if F' is
strongly monotone [13]. In the Appendix, we give a proof of
the strong monotonicity of F under the condition of positive
definiteness of M. [ ]

B. MAC-TDMA

Now, we investigate MAC-TDMA transmission in the
second hop. The source’s game is solved as in (12) and (13).
Each relay is aware of the source’s response and determines its
strategy qx = (Jk, %) based on that. Considering the strategy
set Q, in (7), the utility for & € [0, ) is given by
gk ﬂkhkpk>

Ur, (dk, 9—r) :% log (1 + =5
Dk Tk

1— 0 hy, Py
— I 1+ ————+]. (18
2 og( +U}§(15k)11(> (%)

K

We see Ug, (qk,q-«) increases on d for any 7j € Q, thus,
we can focus on 0y € [0y, 1] for optimal solution.
The optimization problem of relay & is

max U, (qr,q_k)=— 1o <1+M)(14k)5k, (19)
qrEQy 2 Yk Dy
where Q, is redefine as Q) = {qr = (,7) € R2 : 6 <
O <1,y < l,szzl Y < 1}, and oy, and Sy are defined as
in (15). We observe that (19) is a convex optimization problem,
since the objective function is a perspective function concave
on (0k,7k), and the feasible set Qj is closed and convex.
With the shared constraint Zszl v < 1 in the strategy set,
the game G becomes a generalized Nash equilibrium problem
(GNEP), where each player’s strategy set depends on the rival
players’ strategies. Different from the equivalency between the
VI and NEP in Sec. III-A, the relationship between the solution
of VI and that of GNEP is stated in the following theorem [13].

Theorem 4: Given the game G = (K, Q, f) in (19), consider
the VI(Q,F), where F(q) = (—Vq,Ur,(q))X . Every
solution of VI(Q, F) is a solution of the GNEP with the shared
constraint, which is called a variational solution.

In particular, notice that F(q) = (—Vq,Ur,(q))X,
is the negative gradient of the concave function f(q) =
Zszl Ur,(q), ie., F(q) = —Vqf(q) [14]. Thus, finding
the solution of VI(Q,F) coincides with solving the convex
optimization problem given by

Z”’“ ( W)(lék)ﬂk. 0)

k9D,

ma

mex J(a
Due to the convex1ty of the problem (20) and the independent
constraints on & = (8;)F_, and v = ()X ,, alternating
optimization on & and -« converges to the global optimum. By
the concavity of log(-), we have for any given § € Q,

K
k) akl 5k)> 1 ( ( Oék(l—5k)>)
M) ) < 2, 1420k
Z < 'yka%k -2 8 ;WC ’ykd%k
1 Ckk ]. (Sk
< glog (1+Z > @21

k
where the equalities hold when Zk:l v = 1 and

o= (L =00) e

Dt k(1= d)’
It implies that by allocating transmission time to each relay
proportional to the power in its channel, we achieve the
optimal system throughput ), RRkTDMA for given 4. On
the other hand, given v € Q, the objective function in terms
of & is maximized by the first-order optimality condition

Og(ga) = 0 and projecting to interval [dy, 1], Vk, which gives

- od) 1
0r = min{ 1, max< 0p, 1 + v ko — . (23
ag 205k

We summarize the distributed alternating optimization
algorithm in Algorithm 2. In every iteration, =y is calculated
as in (22) centrally and feedbacked to relays, which can be
done at the destination, then each relay updates & as in (23)

(22)
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Algorithm 2 Alternating optimization algorithm

1: Choose an initial strategy q(®) = (5120)771(?))5:1 € Q, set

n = 0.
repeat
calculate v("*1) as in (22) for given 5,
for k=1,... K do
compute 6,(:’“)
end for
set @D = (50D A FINK and e 1
until gtV satisfies a suitable termination criterion.
Compute the strategy of the source p as in (12).

as in (23) for given ’y,inﬂ).
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0.9

—&— Sum UR-TDMA

0.8 ff —B— Sum UR-ST
—p— Sum UR-VA
-4 - US-TDMA

- - - US—ST

0.7

0.6

0.5

0.4

Utility (bps/Hz)

0.3
0.2

!
01F

»V'—__‘___.‘.-—-“"

0 =-- L L L L L L
1 2 3 4 5 6 7 8 9 10

Number of relays

Fig. 2. Utilty versus number of relays for u = 0.01 bits/J/Hz, P = 0.05 W.

based on local CSI. Notably, in this way, we achieve an NE
that maximizes the sum utility of the game G, thus, the NE is
most socially stable and also Pareto optimal [12].

Notice that given 4 in (22), the problem (20) is equivalent
to maximize the sum utility of relays by optimizing dj in a
centralized way, meaning maximizing the objective function

) —

Llog(1+ S0, ‘“ST_(S’“ © (1= 63)Bk. And it can be

verified that the optinllcal 0 solved by this means is identical
as (16) for MAC-ST. This implies that the transmit power py,
and the rate of source Rg,, thus, the source utility Ug for
MAC-TDMA are the same as those for MAC-ST, but a higher
system throughput ), ;- RRkTDMA can be achieved since for
each given 4, ~ is optimized as in (21) and (22) that maximizes
Y rex RRkTDMA.

IV. NUMERICAL RESULTS

In this section, we present numerical results of the proposed
algorithms. We consider carrier frequency 900 MHz with
bandwidth 1 MHz. The noise power spectrum density is
10~'? W/Hz. Rayleigh fading with average power —3 dB
is used to model the small-scale multipath fading. For the
large-scale fading, we adopt the free space path loss model
with path loss exponent 2 and reference distance 1 meter.
The distance between the source and the destination is 100
meters and the relays are located uniformly in between. The
antenna gain at all receivers is set to be 6 dBi. We set

- -4 - 1;=0.01,P=0.05,TDMA
09| - “® - 4=0.01P=005,ST .
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Fig. 3. System throughput versus number of relays.
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Fig. 4. System energy consumption versus distance between the source and
the relay for © = 0.01 bits/J/Hz, P = 0.05 W.

T =1 and n, = 0.8, up = p (bittHz/J), and P, = P
(W) for all k. The numerical results are averaged over
thousands of channel fading realizations. In Figs. 2-4, system
performance metrics in terms of sum utility of relays, utility
of source, system throughput ), .- Rg,, and system energy
consumption are evaluated by varying the number of relays
and system parameters g and P. Our proposed algorithms for
MAC-ST and MAC-TDMA are compared with the baseline
in [8], where the relay with best channel state is chosen for
transmission via Vickery auction (VA) and a single-leader
Stackelberg game is solved with the source as the leader and
the selected relay as the follower. Observe that the utilities and
system throughput increase on the number of relays.

In Fig. 2, the proposed algorithms outperform the baseline
on the sum utility of relays, but are worse on the source’s
utility. This is due to the fact that the leaders in Stackelberg
game have the priority to choose the most beneficial strategy
and the followers make a following movement. Thus, the
relays as the leaders in the proposed algorithms achieve
higher utilities. While, it is the source at an advantage as
the leader in the baseline. Furthermore, the relays’ sum
utility of MAC-TDMA is higher than that of MAC-ST due
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to interference free, and the source’s utilities of both are
identical confirming the conclusion in Sec. III-B. In terms
of the system throughput in Fig. 3, the proposed algorithms
perform better and MAC-TDMA provides highest throughput.
In particular, we show the results for P = 0.01,0.05 W and
1 = 0.01,0.05 bits/J/Hz. The throughput of all algorithms
grows when P increases. But the superiority of MAC-ST to
VA is less obvious for large P, since MAC-ST has a superior
performance for small SINR. We also see the impact of p that
system throughput turns down for a higher p. Fig. 4 shows the
system energy consumption. The MAC-TDMA and MAC-ST
coincide as discussed in Sec. III-B, and consume more energy
as more relays are occupied. However, since only one relay is
transmitting in baseline, the consumed energy is no larger than
2P. When K = 1, all algorithms result in the same energy
consumption as the only relay transmits. Moreover, when
relays are close to the destination, more energy is consumed
than the case of relays close to the source since energy transfer
for larger distance becomes less efficient.

V. CONCLUSION

In this paper, we have studied a multi-leader Stackelberg
game in a two-hop system with wireless energy transfer from
the source to multiple energy harvesting relays. Considering
each relay’s objective of transmitting its own data to the
destination, we have formulated a game with the relays as
leaders and the source as the follower. Two transmission
protocols, MAC-ST and MAC-TDMA, for the second hop
have been investigated, where the NEP and the GNEP have
been solved, respectively. Numerical results have verified that
the proposed algorithms, allowing multiple relays transmitting,
achieve better system performance than the baseline. Future
works include the impact of incorrect incomplete system
information in this game theoretic framework, and dynamic
multi-shot games for time-varying channels.

APPENDIX
PROOF OF THEOREM 3

The proof follows Appendix B in [15]. Denote Fj(d) =
1

~Vs,Ur,(6) = % (Zj‘l (1 —05) + &%) — By, where

0_2
G = z—; and 62 £ 5: for all k. Note that Ay, = 1. We
show that F(§) = (Fk(é))z{:l is strongly monotone when
M defined in Theorem 3 is positive definite. That is, given
two solutions 8,8’ € Q, there exists a constant ¢ > 0 such
that (8 — &')(F(8) — F(6")T > ¢||6 — &||* for M positive

definite. For the ease of notation, we define for all k£ € IC,

w2 /S0 a1 8) + 67T, dge(1 - 8) + 67

and e, £ W. Then, for any k, we have
(01 — 5/19)(Fk(6) - Fk(‘s/)) = ei + Z;‘(:Lj;ék €k a{j:)j €j

(@)

K o .
e%_Zj:I,j;ék lex] aif:] le;

Y

2 K djkw]‘ .
> €D i1 itk ‘ek wn €

® K K
> e+ 2o en 1€kl Mk lej] = lex] 22521 [M]kj le;]
where (a) is by Cauchy-Schwarz inequality, and (b) is because
62 < LI% < e é| Zlfi L air(1 — 5|i) + 62. Then, since
(1=6)—(1-5}) (1-8x)—(1-6})
|€/€| 2 V2wmax > max v/2whax
ke

, We obtain

)\min(M)

2 (ymax 2
tnax 2(w™)

where Apin (M) is the minimum eigenvalue of M. Since M
is positive definite, \yin(M) > 0. Thus, we find the constant

(6-0")(F(6)~F(6")" >|e|Mle|"> 16-8'|1%,

min .
¢= ———————— > 0 such that F is strongly monotone.
I’;ﬂa‘% 2(wrknax)2 gly
€
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