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Abstract—We study a two-hop network with wireless energy
transfer (WET) from the source to multiple energy harvesting
relays. Both the source and relays intend to transmit dedicated
information to the destination. The source, without direct reliable
channels to the destination, needs the relays to forward signals,
while the relays are short of energy and have to harvest energy
from the source to transmit their own data and relaying the
source’s data. Relays use time division to harvest then transmit.
For the multiple access channel (MAC) from the relays to
the destination, we consider both time division multiple access
(TDMA) between the relays and simultaneous transmission (ST)
by all relays. The source and the relays are all selfish and
aim to maximize their own utility. We take a game theoretic
viewpoint to model the hierarchical competition between the
source and the relays. In particular, multi-leader Stackelberg
games are formulated where the relays play as the leaders and
the source plays as the follower. The existence and the uniqueness
of Stackelberg equilibrium (SE) are analyzed, based on which
algorithms are proposed to achieve the SE. The numerical
results verify that the proposed algorithms improve the system
performance comparing to the baseline scheme.

Index Terms—Wireless energy transfer, two-hop system,
multi-leader Stackelberg game, Stackelberg equilibrium.

I. INTRODUCTION

Energy harvesting has been considered a promising solution

to enable perpetual operation of wireless networks. Energy

harvesting sources for wireless nodes include solar radiation,

body heat and motion, and electromagnetic waves. Recently,

energy harvesting from radio frequency (RF) signals has been

considered in energy and data cooperation networks [1]. In

addition to data cooperation in conventional wireless systems,

energy cooperation, as a viable design to improve system

performance [2], can be accomplished by transferring energy

as RF signals from energy-abundant nodes to energy-deprived

nodes. Wireless energy transfer (WET) has been studied in

cellular systems, and cognitive radio networks among others

[1], [3].

A relay network with WET has first been proposed in [4],

where the relay is energy-constrained and harvests energy from

the received RF signals to forward the source’s information.

Both power splitting and time switching energy harvesting

protocols are investigated. Following this two-hop system

model, growing research has focused on wireless information

and power transfer (WIPT) in relay networks from different

perspectives. In particular, several works have studied WIPT

relaying systems from the perspective of game theory [5]–[8].

Reference [5] has considered multiple source-destination pairs

communicate via an energy harvesting relay. An auction

based harvested energy allocation strategy is proposed and the

properties of the equilibrium are discussed. In [6], a WIPT

system with multiple source-destination pairs communicating

through their dedicated relays is considered. A non-cooperative

game is formulated for the competition among relays whose

strategies are the power splitting ratios. In [7], [8], an energy

harvesting relay with its own objective is considered. In [7],

the relay has its own objective of harvesting energy and a

Nash bargaining game is proposed to balance the information

transmission efficiency of multiple source-destination pairs

and the harvested energy of the relay. Reference [8] considers

relays harvesting energy from the source’s signal not only for

forwarding source’s information but also for transmitting their

own data. Single-leader Stackelberg games are formulated

respectively considering the source as leader and the relay

as leader. For the source as leader, the delivery of source’s

information is given priority and the multiple relays play as

followers, among which one relay with the best channel state

is selected for transmission by Vickery auction.

In this paper, we consider a two-hop system with both

data and energy cooperation based on the model studied in

[8]. In particular, multiple relays are allowed to transmit to

the destination with the primary objective of their own data

delivery in contrast to [8]. Data cooperation is performed

for the information of the source, which is delivered to the

destination via decode-and-forward (DF) relaying at multiple

relays. On the other hand, WET is adopted from the source

to the relays to supply energy for data transmission from the

relays to the destination. In the second hop, for the multiple

access channel (MAC) from the relays to the destination,

both simultaneous transmission (MAC-ST) and time division

multiple access (MAC-TDMA) are investigated. We assume

the source and the relays are selfish in the sense that each

node aims to maximize its own utility. We adopt a multi-leader

Stackelberg game framework. Multi-leader Stackelberg games

have been utilized in wireless games to capture the competition

between hierarchical agents [9], [10], but, to date, not

in wireless energy transfer. Our model is that each relay

plays as a leader in the game and determines its strategy

by anticipating the strategy of the follower and competing

non-cooperatively with other leaders. The source plays as

the follower and chooses its strategy in response to the
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Fig. 1. (a) A two-hop network with K relays. Solid lines and dash lines
indicate information transmission and energy transfer, respectively. (b) First
hop transmission.

leaders’ strategies. For MAC-ST, we provide an algorithm

to obtain the solution of the game and prove a sufficient

condition for the uniqueness of SE by the theory of variational

inequality (VI). For MAC-TDMA, we solve a multi-leader

Stackelberg game with a shared constraint among leaders. An

algorithm is proposed to achieve the SE, which is also Pareto

optimal. Numerical results demonstrate system performance

is improved by both transmission protocols as compared to

the single-leader Stackelberg game in [8], and MAC-TDMA

provides a more significant outperformance.

II. SYSTEM MODEL

We consider a two-hop Gaussian channel with one source,

S, K relays, Rk, k ∈ K = {1, 2, . . . ,K}, and one destination,

D, shown in Fig. 1(a). Both the source and the relays intend

to transmit information to the destination. Assume there is no

direct channel available for reliable communications as the

source and the destination are located far apart from each

other. This necessitates the cooperation of relays to forward

the messages of the source. Decode-and-forward relaying is

adopted. The relays have no access to any other energy sources

except harvesting energy from RF signals. Each relay harvests

energy from the received signals of the source to sustain

transmission of both its own and the source’s data to the

destination. The source provides WET to relays as a trade

for channel access and signal relaying to the destination.

Assume transmission duration T in each hop. We consider

an additive white Gaussian noise channel with quasi-static

channel gains that are known at the associated transmitters

and receivers. Let hk and gk denote the channel gains from

S to Rk and from Rk to D, respectively. In the first hop, the

transmission time T is divided into K slots with equal length
T
K

, shown in Fig. 1(b). In particular, S transmits dedicated

signals to Rk in the kth slot. Rk adopts harvest-then-transmit

protocol, where δk fraction of its slot is reserved for energy

harvesting and the remaining 1 − δk fraction for information

receiving. S agrees on δk ∈ [0, 1] chosen by Rk and transmits

with power pk

δk
1

K

and pk

(1−δk)
1

K

for energy transfer and data

transmission, respectively. The average transmit power for Rk

over T is 2pk, where pk is restricted to be no larger than the

maximum value Pk. Over the two-hop transmission time 2T ,

the rate of S via Rk is given by

RSk
=

1− δk
2K

log

(

1 +
hk

σ2
k

pk

(1− δk)
1
K

)

, (1)

where σ2
k is the received noise power at Rk. The harvested

energy at Rk is ηkhkpkT , where ηk ∈ (0, 1) is the energy

harvesting efficiency incorporating energy conversion loss and

processing cost [8].

In the second hop, each relay transmits its own and the

source’s data to the destination which is equipped with a

single-user decoder. Assume signal receiving, decoding, and

encoding at the relays incur negligible energy cost and the

consumed energy is for data transmission only. We consider

two transmission protocols, MAC-ST and MAC-TDMA. For

MAC-ST, all relays transmit to D simultaneously over T . Rk

transmits with power ηkhkpk. The destination decodes the

received signal of Rk treating the signals from other relays

as noise. The rate of Rk is given by

RRk

ST =
1

2
log

(

1 +
gkηkhkpk

∑K
j 6=k gjηjhjpj + σ2

Dk

)

, (2)

where σ2
Dk

is the received noise power at D for signal from

Rk. For MAC-TDMA protocol, each relay transmits to D in

its assigned slot of length γkT , where γk ∈ [0, 1], ∀k and
∑K

k=1 γk ≤ 1. The transmit power of Rk is ηkhkpk

γk
, ∀k. Then,

the rate of Rk is given by

RRk

TDMA =
γk
2

log

(

1 +
gk
σ2
Dk

ηkhkpk
γk

)

. (3)

We define the utility of S as the average payoff over 2T by

transmitting data to all relays. The cost of transmission to Rk

is given by 2µkpkT , where 2pkT is the energy consumption

and µk denotes the predetermined cost per energy unit. Then,

the utility US is expressed as

US =

K
∑

k=1

RSk
− µkpk. (4)

The utility of Rk is considered as the rate of delivering its

own data to D, which is given by

URk
= RRk

m −RSk
, m ∈ {ST,TDMA}. (5)

In the sequel, we study multi-leader Stackelberg games for

MAC-ST and MAC-TDMA.

III. MULTI-LEADER STACKELBERG GAMES

The multi-leader Stackelberg game, a generalization of

the single-leader Stackelberg game, consists of multiple

upper-level players, the leaders, and a group of lower-level

players, the followers [11]. Each leader has the privilege

of choosing its strategy by anticipating the response of
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the followers and competing with the other leaders. Each

follower optimizes its strategy for the followers’ game reacting

to leaders’ strategies while competing with other followers

non-cooperatively.

We consider static games with a group of rational players.

Every player knows the complete and perfect information of

the set of players, the set of strategies and the utility functions

of all players, and does best response [12]. Here, each relay, as

a leader, decides its strategy by considering the strategy of the

follower, the source, and competing with other relays. Denote

the strategy of leader Rk by qk. Let q , (qk)
K
k=1 be the

strategies of all relays, q−k , (q1, . . . ,qk−1,qk+1, . . . ,qK)
denote the strategies of other relays except Rk, and p ,

(pk)
K
k=1 denote the strategy of the source. The strategy sets of

relays for MAC-ST and MAC-TDMA are defined respectively

as, ∀k,

Qk = {qk , δk ∈ R+ : δk ≤ 1}, (6)

Qk = {qk , (δk,γk)∈R
2
+ : δk≤1, γk≤1,

K
∑

k=1

γk ≤ 1}. (7)

Let Q ,
∏K

k=1 Qk and f , (URk
(q))Kk=1. The leaders’ game

G = (K,Q, f) is a non-cooperative game, where each leader

Rk solves the optimization problem

max
qk∈Qk

URk
(qk,q−k,p). (8)

Reacting to leaders’ strategies q, the follower, S, maximizes

its utility by choosing strategy p in the strategy set P = {p ∈
R

K
+ : pk ≤ Pk, ∀k ∈ K}. S solves the optimization problem

max
p∈P

US(p,q). (9)

The Stackelberg equilibrium (SE) of the multi-leader

Stackelberg game is defined as follows [11].

Definition 1: Let q∗
k be the optimal solution for problem (8)

and p∗ be the optimal solution for problem (9). Then, (q∗,p∗)
is an SE for the proposed multi-leader Stackelberg game if for

any (q,p) ∈ Q× P

URk
(q∗

k,q
∗
−k,p

∗) ≥ URk
(qk,q

∗
−k,p

∗), ∀k ∈ K, (10)

US(p
∗,q∗) ≥ US(p,q

∗). (11)

Next, we solve the SE of the proposed game by finding the

Nash equilibrium (NE) of the leader’s non-cooperative game

G. By backward induction, the source’s strategy is analytically

solved and substituted into each leader’s optimization problem,

then the NE can be found for the game G.

A. MAC-ST

The source’s optimization problem (9) is a convex problem

for any given q. The unconstrained solution maximizing the

objective function in (9) is obtained by taking the gradient with

respective to p and equating to zero, i.e., ∇pUS(p,q) = 0.

Then, projecting to the strategy set P gives

pk = min
{

Pk,max
{

0,
1− δk
K

φk

}}

, ∀k ∈ K, (12)

where φk , 1
2µk

−
σ2

k

hk
.

It can be observed that pk is nonincreasing in δk. As

δk increasing, rate RSk
decreases due to a shorter data

transmission phase. As a response, S has to lower its transmit

power to reduce the energy cost so as to maintain a positive

utility. Furthermore, pk is also nonincreasing in µk and

nondecreasing in hk, which implies pk equals zero if φk = 0
due to a large µk and/or a small hk. In this case, the utility of S

via Rk and the utility of Rk both end up with zero regardless

of the choice of δk since Rk is unable to transmit without

harvested energy. Hence, we only consider φk > 0 in the

following. The transmit power of S to Rk can be rewritten as

pk =

{

Pk, if δk ∈ [0, δ̄k),
1−δk
K

φk, if δk ∈ [δ̄k, 1].
(13)

where δ̄k , 1−min{KPk

φk
, 1}.

With the knowledge of the source’s strategy, each relay

makes its decision by solving optimization problem (8). For

δk ∈ [0, δ̄k), we have

URk
(δk, δ−k) =

1

2
log

(

1 +
gkηkhkPk

∑K
j 6=k gjηjhjpj + σ2

Dk

)

−
1− δk
2K

log

(

1 +
hk

σ2
k

Pk

(1− δk)
1
K

)

. (14)

It can be easily verify that URk
(δk, δ−k) increases on δk,

which implies that the optimal δk lies in [δ̄k, 1]. Thus, in

the sequel we focus on δk ∈ [δ̄k, 1]. The strategy set can

be redefined as Qk = {δk ∈ R+ : δ̄k ≤ δk ≤ 1}, and (8)

is rewritten as a convex optimization problem in terms of δk,

that is

max
δk∈Qk

URk
(δk, δ−k) =

1

2
log

(

1+
αk(1−δk)

∑K
j 6=k αj(1−δj)+σ2

Dk

)

−(1−δk)βk, (15)

where αk , gkηkhkφk/K and βk , 1
2K log(1 + hkφk

σ2

k

). This

game G is a Nash equilibrium problem (NEP), which is closely

related to the variational inequality (VI) problem. Specifically,

the equivalency between the NEP and a properly defined VI

problem is given as follows [13].

Theorem 1: Given the game G = (K,Q, f) in (15),

where for each leader k, the strategy set Qk is closed and

convex, the utility function URk
(qk,q−k) is continuously

differentiable in q and concave in qk for every fixed q−k,

then, the NEP is equivalent to the VI(Q,F), where F(q) =
(−∇qk

URk
(q))Kk=1.

Moreover, the existence of an NE of the game G is given

by the following theorem.

Theorem 2: There is at least one NE for the game G.

Proof: By Theorem 1, NEs of G exist if the equivalent

VI(Q,F) problem has a nonempty solution set. Based on the

properties of VI, given VI(Q,F) defined in Theorem 1, the

solution set of VI(Q,F) is nonempty, closed, and convex if

Q is convex and compact, and F is monotone on Q [13]. It

can be easily verify that Q is convex and compact. And F is

monotone if and only if URk
(qk,q−k) is concave in qk for
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Algorithm 1 Distributed iterative algorithm

1: Choose an initial strategy δ(0) = (δ
(0)
k )Kk=1 ∈ Q, set n =

0.

2: repeat

3: for k = 1, . . . ,K do

4: compute δ
(n+1)
k as in (16) for given δ

(n)
−k .

5: end for

6: set δ(n+1) = (δ
(n+1)
k )Kk=1 and n← n+ 1.

7: until δ(n+1) satisfies a suitable termination criterion.

8: Compute the strategy of the source p as in (12).

given q−k, ∀k ∈ K, which is true. Therefore, there is at least

one NE of G.

Due to the selfish nature of players, each leader dedicates to

maximize its own objective function. This naturally gives rise

to a distributed iterative algorithm, where each leader, given

the strategies of other leaders, updates its strategy by solving

(15) at each iteration [13]. (15) can be solved by the first-order

optimality condition, i.e.,
∂URk

(δk,δ−k)

∂δk
= 0, and mapping to

the feasible set. We obtain

δk=min

{

1,max

{

δ̄k, 1−
1

2βk

+

K
∑

j 6=k

αj(1−δj)+σ2
Dk

αk

}}

. (16)

In Algorithm 1, we summarize the distributed iterative

algorithm based on the above discussion. Each relay has to

know the local CSI and its signal-to-interference-plus-noise

ratio (SINR) measured at the destination in every iteration. A

sufficient condition of the uniqueness of the NE of the game

is provided next, under which the global convergency to the

NE can be guaranteed.

Theorem 3: The game G in (15) has an unique NE if matrix

M ∈ RK×K is positive definite, where each entry of M is

[M]kj ,







1, if k = j

−

∑K
i=1

αi(1−δ̄i)+σ2

Dj

σ2

Dk

, if k 6= j
, ∀k, j ∈ K. (17)

Proof: By Theorem 1, the game G has an unique NE if

and only if the solution of VI(Q,F) is unique. Based on the

properties of VI, the VI(Q,F) admits a unique solution if F is

strongly monotone [13]. In the Appendix, we give a proof of

the strong monotonicity of F under the condition of positive

definiteness of M.

B. MAC-TDMA

Now, we investigate MAC-TDMA transmission in the

second hop. The source’s game is solved as in (12) and (13).

Each relay is aware of the source’s response and determines its

strategy qk = (δk, γk) based on that. Considering the strategy

set Qk in (7), the utility for δk ∈ [0, δ̄k) is given by

URk
(qk,q−k) =

γk
2

log

(

1 +
gk
σ2
Dk

ηkhkPk

γk

)

−
1− δk
2K

log

(

1 +
hk

σ2
k

Pk

(1− δk)
1
K

)

. (18)

We see URk
(qk,q−k) increases on δk for any γk ∈ Qk, thus,

we can focus on δk ∈ [δ̄k, 1] for optimal solution.

The optimization problem of relay k is

max
qk∈Qk

URk
(qk,q−k)=

γk
2
log

(

1+
αk(1−δk)

γkσ2
Dk

)

−(1−δk)βk, (19)

where Qk is redefine as Qk = {qk = (δk, γk) ∈ R
2
+ : δ̄k ≤

δk ≤ 1, γk ≤ 1,
∑K

k=1 γk ≤ 1}, and αk and βk are defined as

in (15). We observe that (19) is a convex optimization problem,

since the objective function is a perspective function concave

on (δk, γk), and the feasible set Qk is closed and convex.

With the shared constraint
∑K

k=1 γk ≤ 1 in the strategy set,

the game G becomes a generalized Nash equilibrium problem

(GNEP), where each player’s strategy set depends on the rival

players’ strategies. Different from the equivalency between the

VI and NEP in Sec. III-A, the relationship between the solution

of VI and that of GNEP is stated in the following theorem [13].

Theorem 4: Given the game G = (K,Q, f) in (19), consider

the VI(Q,F), where F(q) = (−∇qk
URk

(q))Kk=1. Every

solution of VI(Q,F) is a solution of the GNEP with the shared

constraint, which is called a variational solution.

In particular, notice that F(q) = (−∇qk
URk

(q))Kk=1

is the negative gradient of the concave function f̄(q) =
∑K

k=1 URk
(q), i.e., F(q) = −∇qf̄(q) [14]. Thus, finding

the solution of VI(Q,F) coincides with solving the convex

optimization problem given by

max
q∈Q

f̄(q)=

K
∑

k=1

γk
2
log

(

1+
αk(1−δk)

γkσ2
Dk

)

−(1−δk)βk. (20)

Due to the convexity of the problem (20) and the independent

constraints on δ = (δk)
K
k=1 and γ = (γk)

K
k=1, alternating

optimization on δ and γ converges to the global optimum. By

the concavity of log(·), we have for any given δ ∈ Q,

K
∑

k=1

γk
2
log

(

1+
αk(1−δk)

γkσ2
Dk

)

≤
1

2
log

( K
∑

k=1

γk

(

1+
αk(1−δk)

γkσ2
Dk

))

≤
1

2
log

(

1+
K
∑

k=1

αk(1−δk)

σ2
Dk

)

, (21)

where the equalities hold when
∑K

k=1 γk = 1 and

γk =
αk(1− δk)

∑K
k=1 αk(1− δk)

, ∀k ∈ K. (22)

It implies that by allocating transmission time to each relay

proportional to the power in its channel, we achieve the

optimal system throughput
∑

k∈K RRk

TDMA for given δ. On

the other hand, given γ ∈ Q, the objective function in terms

of δ is maximized by the first-order optimality condition
∂f̄(δ)
∂δk

= 0 and projecting to interval [δ̄k, 1], ∀k, which gives

δk = min

{

1,max

{

δ̄k, 1 + γk

(

σ2
Dk

αk

−
1

2βk

)}}

. (23)

We summarize the distributed alternating optimization

algorithm in Algorithm 2. In every iteration, γ is calculated

as in (22) centrally and feedbacked to relays, which can be

done at the destination, then each relay updates δk as in (23)
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Algorithm 2 Alternating optimization algorithm

1: Choose an initial strategy q(0) = (δ
(0)
k , γ

(0)
k )Kk=1 ∈ Q, set

n = 0.

2: repeat

3: calculate γ(n+1) as in (22) for given δ(n).

4: for k = 1, . . . ,K do

5: compute δ
(n+1)
k as in (23) for given γ

(n+1)
k .

6: end for

7: set q(n+1) = (δ
(n+1)
k , γ

(n+1)
k )Kk=1 and n← n+ 1.

8: until q(n+1) satisfies a suitable termination criterion.

9: Compute the strategy of the source p as in (12).
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Fig. 2. Utilty versus number of relays for µ = 0.01 bits/J/Hz, P = 0.05 W.

based on local CSI. Notably, in this way, we achieve an NE

that maximizes the sum utility of the game G, thus, the NE is

most socially stable and also Pareto optimal [12].

Notice that given γk in (22), the problem (20) is equivalent

to maximize the sum utility of relays by optimizing δk in a

centralized way, meaning maximizing the objective function
1
2 log(1+

∑K
k=1

αk(1−δk)
σ2

Dk

)−
∑K

k=1(1− δk)βk. And it can be

verified that the optimal δk solved by this means is identical

as (16) for MAC-ST. This implies that the transmit power pk
and the rate of source RSk

, thus, the source utility US for

MAC-TDMA are the same as those for MAC-ST, but a higher

system throughput
∑

k∈K RRk

TDMA can be achieved since for

each given δ, γ is optimized as in (21) and (22) that maximizes
∑

k∈K RRk

TDMA.

IV. NUMERICAL RESULTS

In this section, we present numerical results of the proposed

algorithms. We consider carrier frequency 900 MHz with

bandwidth 1 MHz. The noise power spectrum density is

10−19 W/Hz. Rayleigh fading with average power −3 dB

is used to model the small-scale multipath fading. For the

large-scale fading, we adopt the free space path loss model

with path loss exponent 2 and reference distance 1 meter.

The distance between the source and the destination is 100
meters and the relays are located uniformly in between. The

antenna gain at all receivers is set to be 6 dBi. We set
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Fig. 3. System throughput versus number of relays.
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Fig. 4. System energy consumption versus distance between the source and
the relay for µ = 0.01 bits/J/Hz, P = 0.05 W.

T = 1 and ηk = 0.8, µk = µ (bit/Hz/J), and Pk = P
(W) for all k. The numerical results are averaged over

thousands of channel fading realizations. In Figs. 2-4, system

performance metrics in terms of sum utility of relays, utility

of source, system throughput
∑

k∈K RRk
, and system energy

consumption are evaluated by varying the number of relays

and system parameters µ and P . Our proposed algorithms for

MAC-ST and MAC-TDMA are compared with the baseline

in [8], where the relay with best channel state is chosen for

transmission via Vickery auction (VA) and a single-leader

Stackelberg game is solved with the source as the leader and

the selected relay as the follower. Observe that the utilities and

system throughput increase on the number of relays.

In Fig. 2, the proposed algorithms outperform the baseline

on the sum utility of relays, but are worse on the source’s

utility. This is due to the fact that the leaders in Stackelberg

game have the priority to choose the most beneficial strategy

and the followers make a following movement. Thus, the

relays as the leaders in the proposed algorithms achieve

higher utilities. While, it is the source at an advantage as

the leader in the baseline. Furthermore, the relays’ sum

utility of MAC-TDMA is higher than that of MAC-ST due
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to interference free, and the source’s utilities of both are

identical confirming the conclusion in Sec. III-B. In terms

of the system throughput in Fig. 3, the proposed algorithms

perform better and MAC-TDMA provides highest throughput.

In particular, we show the results for P = 0.01, 0.05 W and

µ = 0.01, 0.05 bits/J/Hz. The throughput of all algorithms

grows when P increases. But the superiority of MAC-ST to

VA is less obvious for large P , since MAC-ST has a superior

performance for small SINR. We also see the impact of µ that

system throughput turns down for a higher µ. Fig. 4 shows the

system energy consumption. The MAC-TDMA and MAC-ST

coincide as discussed in Sec. III-B, and consume more energy

as more relays are occupied. However, since only one relay is

transmitting in baseline, the consumed energy is no larger than

2P . When K = 1, all algorithms result in the same energy

consumption as the only relay transmits. Moreover, when

relays are close to the destination, more energy is consumed

than the case of relays close to the source since energy transfer

for larger distance becomes less efficient.

V. CONCLUSION

In this paper, we have studied a multi-leader Stackelberg

game in a two-hop system with wireless energy transfer from

the source to multiple energy harvesting relays. Considering

each relay’s objective of transmitting its own data to the

destination, we have formulated a game with the relays as

leaders and the source as the follower. Two transmission

protocols, MAC-ST and MAC-TDMA, for the second hop

have been investigated, where the NEP and the GNEP have

been solved, respectively. Numerical results have verified that

the proposed algorithms, allowing multiple relays transmitting,

achieve better system performance than the baseline. Future

works include the impact of incorrect incomplete system

information in this game theoretic framework, and dynamic

multi-shot games for time-varying channels.

APPENDIX

PROOF OF THEOREM 3

The proof follows Appendix B in [15]. Denote Fk(δ) =

−∇δkURk
(δ) = 1

2

(

∑K
j=1 α̂jk(1− δj) + σ̂2

k

)−1

− βk, where

α̂jk ,
αj

αk
and σ̂2

k ,
σ2

Dk

αk
for all k. Note that α̂kk = 1. We

show that F(δ) =
(

Fk(δ)
)K

k=1
is strongly monotone when

M defined in Theorem 3 is positive definite. That is, given

two solutions δ, δ′ ∈ Q, there exists a constant c > 0 such

that (δ − δ′)(F(δ) − F(δ′))T ≥ c ‖δ − δ′‖
2

for M positive

definite. For the ease of notation, we define for all k ∈ K,

ωk ,

√

∑K
j=1 α̂jk(1− δj) + σ̂2

k ·
√

∑K
j=1 α̂jk(1− δ′j) + σ̂2

k

and ek ,
(1−δk)−(1−δ′k)√

2ωk

. Then, for any k, we have

(δk − δ′k)(Fk(δ)− Fk(δ
′)) = e2k +

∑K
j=1,j 6=k ek

α̂jkωj

ωk
ej

≥ e2k−
∑K

j=1,j 6=k

∣

∣

∣
ek

α̂jkωj

ωk
ej

∣

∣

∣

(a)

≥ e2k−
∑K

j=1,j 6=k |ek|
α̂jkωj

ωk
|ej |

(b)

≥ e2k +
∑K

j=1,j 6=k |ek| [M]kj |ej | = |ek|
∑K

j=1[M]kj |ej | ,

where (a) is by Cauchy-Schwarz inequality, and (b) is because

σ̂2
k ≤ ωk ≤ ωmax

k ,
∑K

i=1 α̂ik(1 − δ̄i) + σ̂2
k. Then, since

|ek| ≥
|(1−δk)−(1−δ′k)|√

2ωmax

k

≥
|(1−δk)−(1−δ′k)|

max
k∈K

√
2ωmax

k

, we obtain

(δ−δ′)
(

F(δ)−F(δ′)
)T
≥|e|M |e|

T
≥

λmin(M)

max
k∈K

2(ωmax
k )2

‖δ−δ′‖
2
,

where λmin(M) is the minimum eigenvalue of M. Since M

is positive definite, λmin(M) > 0. Thus, we find the constant

c =
λmin(M)

max
k∈K

2(ωmax
k )2

> 0 such that F is strongly monotone.
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