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This study examines a novel approach to generate peristaltic-like locomotion in a segmented origami
robot. Specifically, we demonstrate the use of multi-stability embedded in the origami skeleton to
eliminate the need for multiple actuators or digital controllers to coordinate the complex robotic
movements in peristaltic crawling. The crawling robot in this study consists of two serially connected
bistable origami segments, each featuring a generalized Kresling design and a foldable anchoring

Keywords: mechanism. Mechanics analysis and experimental testing reveal that the nonlinear elastic behaviors
Multi-stability of this dual-segment module, especially its rapid deformation due to the non-monotonic energy
Origami landscape and force-displacement relationship, can create a deterministic deformation sequence or

Peristaltic crawling
Compliant robot
Motion sequencing

actuation cycle. This cycle can then be used to generate the different phases in a peristaltic-like
locomotion gait. Instead of individually controlling the segment deformation like in earthworm and
other crawling robots, we only control the total length of this robot. Therefore, this approach can
significantly reduce the total number of actuators needed for locomotion and simplify the control
requirements. Moreover, the richness in Kresling origami design offers us substantial freedom to tailor
the locomotion performance. The results of this study will contribute to a paradigm shift in how we

can use the mechanics of multi-stability for robotic actuation and control.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Limbless and metameric invertebrates like the earthworm use
peristalsis to crawl over uneven surfaces, burrow through soil,
and navigate in confined spaces with ease. The body of an earth-
worm consists of many segments that are grouped into several
“driving modules”. Each module includes three types of seg-
ments according to their states of deformation: “contracting”,
“anchoring”, and “extending” [1] (Fig. 1(a)). In a peristaltic lo-
comotion cycle, the contracting segment expands in diameter
and contracts in length by engaging its longitudinal muscles
(Fig. 1(b)). The extending segment deforms oppositely by engag-
ing its circular muscles. When a contracting segment reaches the
fully-contracted shape, it becomes an anchoring segment, which
can firmly attach itself to its surrounding by further deploying
hair-like bristles (aka. setae) on its surface. By carefully coordinat-
ing the deformation of its segments, the earthworm can generate
a retrograde peristaltic wave that propagates towards the tail end
of its body, thus driving itself forward (Fig. 1(a)).

The locomotion performance of a peristaltic gait is easily tun-
able by changing the number of these three types of segments
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in a driving module [2,3]. The absence of complex external ap-
pendages like legs or wings makes the driving module design
compact and light. As a result, peristaltic locomotion has been
implemented in many worm-inspired crawling robots for field
exploration and in-pipe inspection. However, these robots typi-
cally require many actuators - such as pneumatic chambers [4-6],
shape memory alloy (SMA) springs [7], electric motors [8], or
permanent magnets [9] - to activate their segments individually.
Moreover, a complicated control architecture is also necessary
to coordinate the individual segment deformation to achieve
peristaltic locomotion (Fig. 1(c)). This can lead to a cumbersome
mechatronic setup that can significantly constrain the overall
application potential, especially when these robots need to be
completely soft and un-tethered [10].

To address this issue, we examine the use of non-monotonic
energy landscape and force-displacement relationship in multi-
stable origami to generate peristaltic-like locomotion without
relying on multiple actuators or digital controllers. A material
or structure is multi-stable when it possesses more than one
stable equilibria (or states). It can remain at one of its stable
states without any external aid, and switch between these states
by external or internal actuation. The potential energy land-
scape of a multi-stable system has multiple peaks and valleys by
definition, which creates non-monotonic force-displacement re-
lationships. Under certain loading conditions, this non-monotonic
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Fig. 1. The vision of using multi-stability to drastically simplify the mechatronic
setup for generating peristaltic locomotion. (a) Peristaltic locomotion cycle in
an earthworm. The earthworm body moves forward while the peristaltic wave
propagates backwards. For clarity, the earthworm body consists of six identical
segments and two driving modules. (b) The muscular actuation scheme of
an earthworm segment. The alternate contraction of longitudinal and circu-
lar muscles drives the segment deformation and anchoring actions. (c) The
mechatronic setup of a traditional earthworm-inspired robot that requires many
actuators and a complicated controller. (d) The proposed peristaltic locomotion
mechanism that uses multi-stability to eliminate the need of multiple actuators
and controllers. (e) A to-scale schematic diagram of the dual-Kresling driving
module and its foldable anchors.

behavior can induce large deformation through a rapid release of
elastic energy (also referred to as “snap-through” in some scenar-
ios). This rapid deformation in multi-stable system is the driving
mechanism underpinning many nastic plant movements [11], and
it has found various engineering applications like energy harvest-
ing [12-14], vibration isolation [15-17], as well as actuation and
morphing [18-20].

Regarding the applications in robotics, multi-stability also
shows promise in amplifying the authority and speed of robotic
actuation [7,21], actuating an untethered soft swimming robot
[22] or increasing the precision and repeatability of a micro-
robotic end effector [23]. More importantly, recent studies reveal
that multi-stability can be harnessed to drastically reduce or even
eliminate the need for using digital controllers to generate soft
robot locomotion [24], mechanical logic gates [25], non-peristaltic
crawling [26], and coordinated oscillation [27]. Logical program-
ming for robotic gripping is also proven feasible by using soft
bistable valves [28]. It is worth emphasizing that in some of these
studies, the necessary condition to achieve robotic functions is
the non-monotonic energy landscape or force-displacement rela-
tionship, while multi-stability serves as a mechanism to achieve
the desired non-monotonic behavior.

In this study, we show that by exploiting the non-monotonic
energy landscape in the multi-stable Kresling origami, we can
create peristaltic-like crawling locomotion with only one actuator
and without any digital controllers (Fig. 1(d)). Origami is an
ancient art of paper folding wherein folding a 2D sheet along
prescribed crease lines results in the creation of complex 3D
shapes. Over the past few decades, it has become a framework
for constructing deployable structures [29], mechanical meta-
materials [30], and reconfigurable robots [31]. Origami mecha-
nisms are inherently lightweight, compact, and compliant. More
importantly, they can exhibit unique mechanical properties -
such as auxetics, programmable nonlinear stiffness, and multi-
stability [32-40] - due to the nonlinear kinematics of folding.

The crawling robot, in this study, consists of a driving mod-
ule composed of two serially connected Kresling segments and
foldable anchors (Fig. 1(e)). We designed the Kresling pattern
according to the desired kinematics and bistability so that these
segments can exhibit both longitudinal and radial deformation
via folding. When its total length is increased and decreased by
a linear actuator, the dual-Kresling driving module can display
a deterministic deformation sequence (or “actuation cycle”) that
includes two rapid “jumps”. We then designate different parts
of this actuation cycle as the phases of a peristaltic-like loco-
motion gait. By doing so, we can eliminate the need for using
individual actuators for each segment or using digital controllers
to coordinate these actuators. That is, the peristaltic locomotion
is essentially “coordinated” by the nonlinear mechanics of Kres-
ling origami. Therefore, this study will contribute to a paradigm
shift in how we can use multi-stability for robotic actuation and
control.

We first proposed this concept of peristaltic locomotion using
Kresling origami mechanics in a single case study without any
experimental validation or in-depth investigation [41]. Therefore,
the purpose of this letter is to examine the correlations between
origami design, folding mechanics, and locomotion performance
comprehensively through both analytical and experimental ef-
forts. The following sections of this letter will - (2) detail the
design, analysis, and characterization of the elementary Kresling
origami segments; (3) elucidate the creation of a deformation
sequence (or “actuation cycle”) using the rapid deformations
caused by multi-stability; (4) discuss the experimental validation
of the peristaltic-like locomotion using this actuation cycle and a
comprehensive parametric study of gait length; and (5) conclude
this study with summary and discussion.

2. Generalized Kresling origami segment

The centerpiece of the peristaltic crawling robot in this study
is a driving module consisting of two serially connected Kres-
ling origami segments. The Kresling pattern consists of a linear
array of mountain and valley folds defined by triangular facets
(Fig. 2(a)). By attaching the two ends of this array (marked by
*), we obtain a twisted polygonal prism with a regular polygon
at its top and bottom. These two end polygons remain rigid
throughout the folding motion. Kresling origami was initially
studied as a buckling mode in thin cylindrical shells subjected
to torsion [42,43]. Since then, it has been used extensively as a
template for deployable structures or robotic skeletons [44-46].
Kresling origami suits this study well because it has the de-
sired tubular cross-section, and more importantly, it is inherently
bistable, thus exhibiting the desired non-monotonic energy land-
scape and force-displacement curve. A Kresling segment can
settle in a fully-extended or a fully-contracted stable state, and it
shows a large deformation between these two states. This bista-
bility originates from its non-rigid-foldable nature. The triangular
facets remain undeformed at the two stable states, but must
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Fig. 2. Design, analysis, and experimental characterization of the generalized Kresling origami. (a) Crease pattern and the folded segment of both traditional and
generalized Kresling origami showing the important design parameters and variables related to folding. The traditional Kresling always has a zero-length at the
fully-contracted state (0), while the generalized Kresling has a “user-defined” L. (b) The normalized strain energy versus length of three Kresling segment designs
of different angle ratios but the same Lgy(= 20 mm), N(= 8), and P(= 30 mm). Increasing the angle ratio can increase the bistability strength and length of
the segment at the fully-extended state (1). (c) Experimentally measured force-displacement curves of Kresling segments with different angle ratios but the same
Lioy(= 10 mm), N(= 8), and P(= 30 mm). One can clearly see the correlation between angle ratio and bistability strength in terms of the maximum reaction force
between stable states. The inserted picture on the right shows the experimental setup. (d) Results of parametric study depicting influence of the normalized L versus
A landscape showing bistability range for different N. The designs in Region A are always bistable. The Kresling segments in inset are identical with configuration
in Region C as state (1) and the one in Region A as state (0). (e) The normalized L(g) versus A (for A > 0.5) landscape showing bistability strength for different N.
In these two plots, the color map (labeled on the right) represents the height of the normalized energy barrier between two stable states. Therefore, a darker color
means weaker bistability and vice versa.

deform while folding between these two states. Indeed, if these and ¢ = m/N. The traditional Kresling design, however, has a

triangular facets were strictly rigid, the Kresling segment would
not fold. For clarity, we refer the fully-contracted stable state as
the state (0) and the fully-extended stable state as the state (1)
hereafter.

2.1. Design of the generalized kresling origami

The design of a traditional Kresling segment is fully defined by
three independent parameters: the number of sides of the base
and top polygon N, the side length of the polygon P, and an angle
ratio A, which is related to the angle between polygon side and
valley crease in the triangular facets (Fig. 2(a)). The length of the
valley and mountain creases are:

D; = 2Rcos(y — Ay), (1
(2)

where y (= 7 /2 — ¢) is the angle between the diagonal and side
of the end polygon, R(= 0.5P/sin¢) is its circumscribed radius,

B = \/PZ + D? — 2PD; cos(Ay),

shortcoming: Its length at the fully-contracted stable state (0)
is always zero. This is impossible in practice due to the finite
material thickness, more importantly, it significantly constrains
the design space available for tailoring the kinematics of peri-
stalsis crawling. To address this issue, we created a generalized
Kresling pattern by adding the fourth independent design vari-
able: a non-zero segment length at stable state (0) (aka. Ly in
Fig. 2(a)) [41]. The triangular facets are “stretched” as a result and
their geometry is adjusted accordingly:

D; = /D} + L), (3)
By = /B + L. (4)
PZ +D2 _ BZ
6, = cos™! # (5)
g

Here, 6, is the angle between polygon side and valley crease,
the subscript “i” denotes the traditional Kresling and “g” denotes
the generalized Kresling. By using this generalized design, we can
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freely assign non-zero lengths to the Kresling segment at both
fully-contracted stable state (0) and fully-extended stable state
(1).

To characterize the bistability of generalized Kresling seg-
ments, we adopt the equivalent truss frame approach [44]. This
approach uses pin-jointed truss elements to represent the moun-
tain and valley creases and assumes that the valley creases do
not change their length during folding [45,46]. In this way, the
triangular facet deformations induced by folding between the
two stable states can be approximated as the stretching and
compression of the truss elements along mountain creases. More
specifically, the mountain crease trusses are un-deformed at the
two stable states, but they are compressed as we fold the Kresling
segment between its two states. To describe the Kresling folding
deformation, we use three variables: the relative rotation angle
between the top and bottom end polygon during folding «, the
overall length of the Kresling segment [, and the length of the
truss element along mountain creases b. These three variables
apply to both traditional and generalized Kresling, and they are
inter-dependent. Notably, the values of « are the same between
the traditional and generalized Kresling, so we can use it as the in-
dependent variable and obtain a closed-form solution describing
the folding kinematics:

() = \/L(ZO) +2R2 [cos(a + 2¢) — cos(ero) + 20)]. (6)
b(a) = v/2R?(1 — cos(a)) + I2. (7)

Here, ao)(= 21y) is the angle between top and bottom polygon
at the fully-contracted stable state (0). Angle o) corresponding
to the fully-extended stable state (1) can be found by setting the
mountain crease length b equal to its undeformed length Bg:

oy = {min(e)]b(e) = By). (8)

Alternatively, «(1y can be computed as:

amy=2(1—1)y VA>05 (9)
The equivalent strain € and strain energy U due to folding are:
b 1
€=——1and U = —Ke?, (10)
B, 2

where K represents the constituent sheet material stiffness. For
the purpose of this analysis, we normalize the strain energy U by
K, and define the non-dimensional strain energy as:
1,

E= 2e . (11)
Fig. 2(b) illustrates the normalized strain energy of three Kresling
designs with the same Ly but different angle ratios A. The two
potential energy wells are evident in these analytical results.
Moreover, as the angle ratio increases, the effective strain € in-
creases, consequently increasing the bistability strength in terms
of the height of energy barrier between stable states. For a given
L(o), the transition from mono-stability to bistability takes place
at & = 0.5 and bistability is strongest when A = 1.

2.2. Experimental characterization

To confirm the correlation mentioned above between bi-
stability strength and angle ratio; we fabricated and tested pro-
totypes of the generalized Kresling segments using paper (Daler-
Rowney Canford 150 gsm). We first prepared the 2D drawing of
Kresling pattern in SOLID-WORKS™and cut them out of paper
with perforated creases on a plotter cutter (Cricut Maker®). We
then manually folded the cut pattern into the Kresling segment
and attached its top and bottom polygons to the universal testing
machine (ADMET eXpert 5601). To accommodate the relative

rotation of these end polygons, we designed a custom rotation
fixture consisting of a dual ball-bearing hub (Fig. 2(c)). Certain
adjustments to the Kresling segment fabrication were necessary
to facilitate smooth folding. First, we cut the mountain creases to
alleviate any excessive stresses that can lead to tearing after a few
loading cycles. A similar approach is used in the “Flexigami” [45].
Secondly, we added triangular reinforcements to the facets to in-
crease their stiffness relative to the creases, strengthening overall
bistability (Fig. 2(c)).

Fig. 2(c) also illustrates the measured force-displacement
curves of several Kresling segment prototypes. The correlation
between angle ratio and bistability strength is evident in that a
segment with a higher angle ratio demands a more significant ac-
tuation force to be switched between stable states. Moreover, we
observe a hysteresis loop between the extension and contraction
cycles. The force-displacement curves remain almost identical
under repeated measurement cycles; unless we excessively ex-
tend the segment beyond its stable state causing tears in the
creases. Thus we think this hysteresis behavior is intrinsic to the
system, and it probably originates due to the contact between
triangular facets and the plasticity of the paper. Nonetheless, we
can minimize this hysteresis by the cutting and reinforcement
techniques so that it will not significantly affect the generation
of the actuation cycle.

2.3. Parametric design study on the Kresling bi-stability

We performed further parametric analyses to fully understand
the correlation between design parameters and stability proper-
ties of the generalized Kresling segment. In this study, we varied
the number of polygon sides N, the polygon side length P, the
fully-contracted segment length L), and the angle ratio A. To
ensure consistency, we normalized the fully-contracted segment
length Ly based on the base polygon side length P. Results of
the parametric study show that changes in P or N do not fun-
damentally alter the segment stability. The generalized Kresling
segments are always bistable regardless of the L) value if A > 0.5
(Region A in Fig. 2(d)). The segments are always mono-stable if
A is precisely 0.5. If 1 < 0.5, the generalized Kresling segments
can transit from being mono-stable to bi-stable as Ly increases
(Region B to C in Fig. 2(d), respectively). Decreasing N lowers the
transition curve between Region B and C; thus decreasing the
design space available in mono-stable region. The magnitude of
the critical LE“O) at the boundary between Region B and C is:

Ly = V2R? (cos(21y) + cos(2ry + 2¢)) (12)

However, upon closer inspection, we find that the bistable seg-
ment designs in Region C are redundant. That is, for any bistable
Kresling design in Region C with an angle ratio of A < 0.5, we
can find an identical one in Region A with an angle ratio of 1— A.
Moreover, the “Li)” in Region C indeed represents the segment
length at its fully-extended stable state. Therefore, we neglect the
bistable Kresling designs with A < 0.5 hereafter.

Fig. 2(e) shows the effects of adjusting segment N and L) on
its bistability strength, which is characterized by the normalized
strain energy barrier between the two stable states. Higher strain
energy barrier corresponds to stronger bistability strength and
vice-versa. Generally speaking, increasing the L) while keeping
other design parameters unchanged would decrease the bistabil-
ity strength. Therefore, Kresling segments with a smaller Ly and
a larger angle ratio A exhibit stronger bistability. Moreover, the
polygon side length P is unrelated to bistability, while a reduc-
tion in N can increase the bistability strength. These parametric
design studies can help us tailor the crawling locomotion gait
performance in the following sections.
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Fig. 3. Formation of the actuation cycle in the multi-stable Kresling driving module and the corresponding peristaltic-like locomotion gait. (a) The design of the
driving module and the nomenclature denoting the different phases in the actuation cycle. (b) Analytical prediction (up) and experimental results (below) of the
Segment I and Il deformations versus the prescribed change in the total length of the driving module. In the two plots of analytical prediction, the color map (labeled
on the right) represents the total potential energy landscape. Darker color represents lower energy and vice versa. The transparent thick curve superimposed on the
full equilibrium path (below) depicts the experimental measurements of the actuation cycle only. (c) To-scale schematic diagram of the peristaltic-like crawling gait
that is generated using the four phases in the actuation cycle and foldable anchors. Design parameters of the driving module are listed in Table 1.

Table 1
Design parameters of the two Kresling segments in the driving
module.
Parameter Segment | Segment 11
N 8 8
P (mm) 30 30
A 0.8 0.6
L(g) (mm) 15 5

3. Actuation cycle from the multi-stable driving module

In this section, we use a case study to illustrate how to harness
the multi-stability in the Kresling origami to generate a deter-
ministic deformation sequence (or “actuation cycle”) with only
one actuator. In this case study, the driving module consists of
two generalized Kresling segments of different angle ratios and
bistability strengths (Fig. 3(a)). Without any loss of generality,
we assume A; > Ay, where the subscript “I” and “II” represents
the two constituent Kresling segments, respectively. The Kresling
design parameters used for this dual-segment driving module are
listed in Table 1. To generate the actuation cycle, we stretch and
compress this driving module at its two ends without manipu-
lating its two segments individually. That is, we only increase
and decrease the total length (I;) of the driving module without
directly controlling the individual segment lengths.

To identify the actuation cycle, we first need to find how the
driving module strain energy changes when the total length (I;)
of the driving module is changed from its minimum to maximum
and vice versa. This will enable us to get the individual segment

deformations and identify the path the system follows as total
length (I;) is changed. We applied a customized optimization
algorithm to the landscape of total strain energy (Fig. 3(b)) [47].
In this optimization, the objective function is the total strain
energy E; = E; + Ey set according to Eq. (11). The independent
variable is the segment length I} or I, and they must satisfy
the equality constraint [ + I = I, and be within the bounds
lI min = ll = ll max» and lll min = lll < lIl max- In this way, the
optimization problem becomes: Find the value for I; (or I;;) which
locally minimizes the scalar objective function E; for a given
prescribed total length I, and satisfies the given equality con-
straint. Results of this optimization are shown as the “equilibrium
paths” in Fig. 3(b), and Appendix A details a more comprehensive
optimization procedure involving multiple Kresling segments.

We start by stretching the driving module when its two seg-
ments are both at its fully-contracted stable state (0) (point a in
Fig. 3(b)). During the stretching, the Kresling segments deform
by following the equilibrium patha — b — ¢ — d — e until
both of them reach the fully-extended stable state (1) (point e
in Fig. 3(b)). Then, we compress the driving module and observe
that the segments follow a different equilibrium path e — d* —
f — g — a until they come back to the state (0) (Supplemental
Video A).

In these equilibrium paths, We observe two distinct “jumps”
caused by the non-monotonic energy landscape of the multi-
stable origami. One occurs during the stretching from ¢ — d, and
the other during the compression from f — g (Fig. 3(b)). When
these jumps occur, a branch of local energy minima reaches its
end so that the driving module is forced to deform to a distant
branch of energy minima quickly. During these jumps, the two
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Kresling segments change their length significantly, while their
total length (I;) remains almost the same. By combining parts of
these equilibrium paths and the two jumps, we can construct an
“actuation cycle”: g - b - ¢ - d - d* — f — g. This
actuation cycle consists of four consecutive “phases”: In Phase I
(g — b — c), Segment I increases in length significantly while
Segment Il remains almost fully-extended. Phase Il (¢ — d) is the
first jump, by which Segment I quickly reaches the fully-extended
state, but Segment II contracts significantly in length. In Phase III
(d —» d* — f), Segment II continues to contract in length until
reaching its fully-contracted state, Segment I also contracts but
to a lesser degree. The final Phase IV (f — g) is the second jump,
by which Segment I quickly deforms to its fully-contracted state,
but Segment II extends in length significantly.

Here, it is worth emphasizing that in this driving module,
multi-stability of the two segments is a sufficient but not neces-
sary condition to cause the deterministic deformation sequence in
the actuation cycle. Indeed, similar deformation sequence could
be achieved if the force-displacement curve of at least one seg-
ment has a non-monotonic force-displacement relationship [48,
49].

We experimentally verified the formation of this actuation
cycle in a paper-based prototype of the driving module (Fig. 3(b))
(Supplemental Video A). The fabrication procedure and exper-
imental set up are the same as the single Kresling segment
tests. The universal testing machine was used to prescribe the
change in the total length of the driving module (I;). To accurately
measure the segment deformation, we obtained high-resolution
video footage of the driving module and used the MATLAB®Image
Processing Toolbox™ to measure the length of Kresling segments
(ll and I" )

The measured actuation cycle, including the two jumps, agrees
well with the analytical predictions. The experiment is repeatable
over multiple extension and contraction cycles. However, there
are slight discrepancies between the analytical prediction and
experiment measurements. More specifically; the measured total
lengths at which the jumps occur are slightly different from the
predictions and the jump magnitudes are lower. The deviation
from the ideal actuation cycle is mainly attributed to the hys-
teresis observed in individual segment testing. Errors are also
introduced during the fabrication and measurement stages. The
experimental results show that the equilibrium path from g to
b in Phase I is not fully closed as depicted in the analytical pre-
diction. A further experiment with the Phases of actuation cycle
shows that the “real” Phase I slightly differs from the observed
equilibrium path during extension, but it does not change the
location of jumps in Phase Il and Phase IV (Fig. 3(b)). Nonetheless,
these discrepancies do not hinder the creation of peristaltic-like
locomotion as we will discuss in the following section.

4. Locomotion gait generation

In this section, we show how the actuation cycle, combined
with foldable anchors, can create peristaltic-like crawling loco-
motion. Segments in the earthworm body increase in diameter
while contracting in length and vice versa (Fig. 1(b)). This is an
important component for achieving peristaltic locomotion be-
cause it provides a mechanism to anchor the fully-contracted
segment to its surroundings by the setae. The diameter of Kresling
segment, on the other hand, does not change when its length
changes. This necessitates the design of anchors which mimic the
radial deformation of earthworm segments.

Table 2
Anchor design parameters, units in mm.
Parameter Seg. 1 Seg. 11
Length 18 15
Foam cube Width 15 15
Thickness 10 10
Length 15 15
Connector sheet Width 15 15
Thickness 0.5 0.5

4.1. Anchor design

We designed the anchors by taking advantage of the folding
kinematics of Kresling segments. These anchors are attached to
the triangular facets, so they can deploy and increase the effective
diameter when the segments are contracting (Fig. 4(a,b)). They
have plastic foam cubes at their tips to create sufficient friction
and thus a strong anchorage to their surroundings (a pipe of
47.5 mm radius in this case). Moreover, we define a “cut-off”
length for each segment to ensure proper anchor deployment.
When the Kresling segment contracts longitudinally below its
cut-off length, its anchors should be deployed far enough to
create an anchorage with its surroundings. For Segment I, its cut-
off length is the length at the point c on its equilibrium path as
shown in Fig. 3; for Segment II, its cut-off length corresponds
to the point d. We then determined the dimensions of these
anchors according to these cut-off lengths, folding kinematics of
the Kresling, and the pipe inner diameter (Table 2). The anchors
are designated as tail anchor and head anchor according to their
position on the robot. The tail anchor is attached to Segment I
and the head anchor is attached to the Segment IL In this way,
the effective diameter of the Segment I is larger than the pipe
diameter during Phase I of the actuation cycle, while the diameter
of Segment Il is larger than the pipe during Phase III (Fig. 4(c)).
Moreover, the anchoring location switches from Segment I to II
in the Phase II jump, and switches back from Segment II to I in
the Phase IV jump.

4.2. Peristaltic-like locomotion gait

By combining the dual-segment multi-stable driving module
and the properly designed anchors, we now complete the design
of crawling robot and harness the actuation cycle to generate a
peristaltic-like locomotion gait. More specifically, the four con-
secutive phases in the actuation cycle can be used to alternate
the anchoring locations between the head and tail of the driv-
ing module, resulting in a net forward displacement as detailed
below (Fig. 3(c)):

In Phase I (g — b — c), the crawling robot is anchored at its
tail because its Segment I is below its cut-off length. Meanwhile,
the robot body is increasing in its total length by the actuator
input, giving a net forward displacement.

In Phase Il (c — d), the jump between the equilibrium paths
switches the anchor location from the tail to the head. No head
or tail displacement occurs during this jump.

In Phase Il (d — d* — f), the crawling robot is anchored at
its head because its Segment II is now below its cut-off length.
Meanwhile, the robot body is contracting in its total length,
moving the tail forward.

In the final Phase IV (f — g), the second jump occurs and the
anchor location switches back from head to the tail. At the end of
this phase, the crawling robot returns to its original configuration
of the actuation cycle, i.e. at the start of Phase I. The “gait length”
is the total forward movement of the crawling robot head after
one actuation cycle. It is equal to the change in driving module
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Fig. 4. Fabrication and testing of the multi-stable origami crawler prototype. (a) Left: a 3D CAD rendering of the Kresling segment with the anchors attached. Right:
The relationship between the effective anchor radius R,, pipe radius R,, and segment length I. (b) The fabricated segment showing maximum and minimum anchor
radius with respect to the pipe radius. (c) The change in anchor radius during one actuation cycle. The anchor design parameters are in Table 2. (d) 3D CAD rendering
of the crawler with a cutaway view showing the motor-winch actuation mechanism. (e) The measured movement of the robotic head over many actuation cycles.
The insert figure at the upper left corner illustrates the four different phases in one actuation cycle. Insert at the lower right compares the averaged gait in the
experiment and the analytical prediction. The shaded band is the standard deviation. (f) The observed four phases of the actuation cycle in the origami crawling

robot. The anchor switch locations and gait length are highlighted.

length (I;) between two jumps; i.e. Gait Length = l((c — d) —
It(g — f). The actuation cycle from Phase I to Phase IV can be
repeated to drive the robot forward continuously.

To experimentally validate the peristaltic-like locomotion in-
duced by multi-stability, we fabricated and tested a proof-of-
concept prototype of the crawling robot. This prototype features
the same Kresling origami and anchor designs as in the analytical
case study (Tables 1 and 2). A compression spring-winch mech-
anism attached to the two end plates of this robot is used to
control its total length (Fig. 4(d)). A 5 V stepper motor drives
this spring-winch mechanism, and the motor rotation is pre-
programmed using Ardruino METRO 328 and motor-shield v2.3.
To decrease driving module length, the robot’s stepper motor
turns the winch, pulling in the attached tendon. To increase the
total length, the motor turns the winch in the opposite direc-
tion to release the tendon. The compression spring provides the
internal force to keep the tendon taut. To measure the loco-
motion performance, we took high-quality video footage of the
crawling robot in action and used the Computer Vision Toolbox
in MATLAB®(Supplemental Video B). We developed a computer
program using the Kalman filter based motion tracking algorithm
to track the movement of the head of the robot.

The experimental results summarized in Fig. 4(e,f) agree quite
well with the analytical predictions in Fig. 3(c) regarding the
segment deformation sequence and anchor location switches.
Moreover, the robot locomotion cycle is uniform and repetitive
(Fig. 4(e)). There is a discrepancy regarding the magnitude of gait
length between the experiment and analysis, and two factors can
contribute to this. One is that the analytical prediction uses an

Table 3

Features and performance of the final origami crawler prototype.
Feature Value
Mass 70 g
Maximum length 90 mm
Minimum length 55 mm
Average speed 3.3 mm/s
Average gait length 22 mm
Average cycle duration 6.7 s

idealistic model to characterize the Kresling bi-stability so it does
not fully capture the behaviors of the physical prototypes with
anchors and actuators integrated (also evident in Fig. 3(b)). The
other factor is the slippage between the pipe and robot anchors,
which results from the temporary loss of contact during the
anchor switching in Phase II and IV. Regardless, this experiment
firmly validates the feasibility of using multi-stability in the Kres-
ling origami to create the peristaltic-like locomotion with only
one actuator and without a complex control architecture to coor-
dinate the segments. That is, the deformation of the segments and
anchorage locations are “coordinated” directly by the mechanics
of elastic multi-stability.

Table 3 summarizes the features and locomotion performances
of the dual-segment multi-stable origami crawler. It is important
to highlight that the actuation cycle induced by multi-stability is
independent of the rate of stretching/compression in total length.
Therefore, by changing the rotational speed of the motor one
can adjust the frequency of the locomotion cycle and thus the
averaged crawling speed, however, the motor speed does not
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Fig. 5. Parametric Study depicting the influence of segment angle ratio A and fully-contracted length L) on the gait length of crawling robot. (a) Results of the
parametric study depicting the influence of segment bistability strengths on locomotion gait length for different fully-contracted lengths L. Here, the color map
represents the normalized locomotion gait length, and the color bar on the right applies to all four plots. (b) Examples of equilibrium paths that do not exhibit any
properly defined, four-phased actuation cycles with certain combinations of segment angle ratios. N = 8, P = 30 mm.

affect the gait length in one locomotion cycle. The gait length is
only related to the Kresling origami design and the corresponding
multi-stability. We detail this further in the following parametric
study.

4.3. Parametric study: Gait length

It is clear from the actuation cycle study that the locomotion
gait length depends on the driving module deformation between
the two jumps and the magnitude of these jumps, and the under-
lying Kresling design also plays an important role. To uncover the
correlations between peristalsis gait length and Kresling origami
design, we performed a parametric study by combining two seg-
ments of different bistability strength (aka. different angle ratios
and A; > Ay). To ensure consistency, we normalize the gait
length based on the fully-contracted length of the driving module
l¢ min. Results of the parametric study show that, for a given A,
normalized gait length increases as Ay increases. On the other
hand, for a given Ay, normalized gait length is insensitive to
changes in A (Fig. 5(a)). Moreover, the fully-contracted lengths of
the segments (L (o)) have a significant influence on the normalized
gait length and permissible combinations of segment angle ratios.
Generally speaking, the normalized gait length decreases as L)
increases. However, smaller L) can make more combinations
of angle ratios unfeasible for peristalsis locomotion as we detail
below.

There are three possible scenarios by which peristaltic-like
locomotion is unachievable. In the first scenario, there are less
than two jumps in the actuation cycle. If the jump during the
contraction phase does not occur (case (i) in Fig. 5(b)), both
segments will contract monotonically and anchor to the pipe,
thus preventing any further locomotion. If the jump during the
extension phase does not occur, both segments will elongate
monotonically, thus losing proper anchorage at both ends of the
robot. In the second scenario, there are more than two jumps
in the actuation cycle (case (ii) in Fig. 5(b)). It is difficult to

generate anchorage switches from these jumps consistently, and
the resulting actuation cycle becomes unnecessarily complicated.
Moreover, the presence of multiple jumps during the extension
or contraction phase may reduce the jump magnitude, making
peristaltic motion unachievable. Therefore, we choose not to per-
form any detailed study of this multiple-jump scenario. The third
scenario occurs when A, An (case (iii) in Fig. 5(b)). In this
case, there are no discernible jumps that can create any actuation
cycles.

5. Summary and conclusion

In this study, we demonstrated the use of multi-stability em-
bedded in a robotic origami skeleton to create peristaltic-like
locomotion without the need for multiple actuators or compli-
cated controllers. By combining two bistable Kresling origami
segments into a driving module and increasing/decreasing its to-
tal length, one can generate a deterministic deformation sequence
(or actuation cycle). This actuation cycle has two discrete “jumps”
that can significantly change the length of two constituent Kres-
ling segments without affecting their total length. These jumps
are the result of the complicated non-monotonic energy land-
scape caused by the nonlinear mechanics of folding, and they
naturally divide the actuation cycle into four distinct phases.
We then designed and experimentally validated a peristaltic-
like robotic crawling by using two phases for moving the robot
forward and the other two for switching the anchoring locations.
To ensure proper anchorage to the surroundings, we designed
and implemented foldable anchors according to the kinematics of
Kresling folding. The results of this work show that the nonlinear
mechanics of multi-stability can be used to directly coordinate
the robotic motion and drastically simplify the mechatronic setup
and control of compliant robots.

While we have used a compression spring-winch based lin-
ear actuator to control the length of the driving module, any
other mechanism that can work in the required deformation
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range may be used to actuate the robot. The scale independence
of the origami mechanism ensures that the same robot design
principles can be used to create nano/micro-scale as well as
large-scale robots. Moreover, it is worth highlighting that al-
though Kresling origami is used in this study for its simplicity
and versatility, the principle of using elastic multi-stability to
generate peristaltic-like locomotion is applicable to any other
segmented robot systems, as long as the segment can (i) exhibit
a coupled longitudinal and radial deformations (aka. expanding
radially while shrinking longitudinally, and vice versa) and (ii)
exhibit a strong non-monotonic force-displacement relationship.

In future work, the fabrication and modeling precision of
the generalized kresling origami will be improved to provide
more accurate analysis of the locomotion performance. Origami
possesses many other unique properties, such as programmable
stiffness and auxetics, which could also be exploited for soft
robotic applications. Finally, the results of this study can be used
to create an efficient and hybrid approach for soft robotic control.
In this approach, the lower-level control tasks (such as locomo-
tion gait generation) are taken up by the embedded mechanics
of multi-stability in the mechanical domain, while the high-
level control tasks (such as adapting locomotion direction and
speed according to the working environment) are achieved by
sensors and controllers in the digital domain. In essence, folding
induced multi-stability can impart a “mechanical intelligence” to
the robotic body as a foundation for this vision of hybrid soft
robotic control.
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Appendix A. Equilibrium paths search

In this section, we elucidate how to calculate the equilibrium
paths of a driving module consisting of any number of serially
connected bistable segments. We calculate the “equilibrium path”
followed by the driving module via searching for its local potential
energy minima at a prescribed total length. The total potential
energy E; and total length I; of a driving module of n bistable
segments are defined as:

n n
Ec=) E(l)andl; = I
i=1 i=1

where [; is current length of the ith segment and E; is the corre-
sponding strain potential energy.

The search for equilibrium paths can be defined as an op-
timization problem. The objective function of this optimization
is the total strain energy E; (a scalar function), and it is to be
minimized over the R"~! vector space of individual segment
lengths L = [l;...l;_1]. An equality constraint regarding the
prescribed total length must be satisfied so that I, = I; — Z}:]] li.
Therefore, the optimization problem can be described as follows:

(A1)

n—1 n—1
Minimize E; = ZE,—(l,—) + En(le — Z 1)
i=1 i=1

satisfying the bounds l; min < li < Ii max and Ly min < I < Iy max,

wherei=1,2..n—1 (A.2)

The optimization problem described in Eq. (A.2) is solved for
every prescribed total length of the driving module [;, which
is increased from its minimum to the maximum value with an
incremental step Al;:

n
M= Z li 0y,
i=1
n
="k,
i=1

(lgnax _ Iinin)
Al[

where m is the total number of increments. l; oy and [; (1) are
the ith segment’s length at its fully-contracted stable state (0)
and fully-extended stable state (1), respectively. Notice that J; ()
is different from I; min by definition, and typically i min < I; (o).
Similarly I max > li (1)- )

For the jth increment in & (j = 2..m), the solutions of
the optimization problem are the vectors of individual segment
lengths I/ = [E...E,_,] corresponding to a local minima of E;. The
following pseudo-code describes the optimization algorithm used
to search for the equilibrium path of driving module when it is
stretched from [Min,

Step 1: Initialize the optimization problem using the segment
lengths at their fully-contracted stable states (aka. [; (0)). We do
not have to perform optimization for this first increment because
it already corresponds to an energy minima. For segments i =
1, 2...n — 1 define:

Il =1 oy and I} = [P

and m = , (A.3)

L'=1[4...I} ] (A4)
Step 2: Initiate the next increment step j = 2 so that:

E=1+ Al

L=L'=[;...I_ ] (A5)

Here, I is the total length of driving module at this increment
step, and Lﬁ is the initial input needed to solve the optimization
problem.

Step 3: Solve the optimization problem described in Eq. (A.2).
Here, Lg is the first guess for finding the optimized lengths of
individual segments and the optimized result is recorded as L?.
The length of the last segment is calculated as:

n—1
E=F-> P
i=1

The corresponding total energy of the module is then written as:

(A6)

n
EZ ™ =" "EA(1) (A7)
i=1

Step 4: Prepare the next increment step by setting L’OH =U
and £ = IMn 4 (j — 1)Al,, (j = 3...m). Then solve the optimization
problem again using the procedures in Step 3. Notice that the
optimization output I/ in the jth increment step is always used
as the initial guess LJOJrl of the next (j 4+ 1)th increment step.

Step 5: Repeat Steps 2 to 4 until j = m.

Egs. (A.6) and (A.7) together provide the segment lengths
and potential energy along the equilibrium path of this driving
module when it is stretched from the minimum length ™", The
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equilibrium path for compressing the driving module need not
be same as the path for stretching it. Thus, the similar procedure
can be used to search for the other equilibrium path of the driving
module when it is compressed from the maximum length [

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.em1.2019.100552.
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