
 1 Copyright © 2019 by ASME 

Proceedings of ASME 2019 International Design Engineering Technical Conferences & 
Computers and Information in Engineering Conference 

IDETC/CIE 2019 
Aug 18-21, 2019, Anaheim, CA, USA 

IDETC2019-97420 

EXPLOITING THE ASYMMETRIC ENERGY BARRIER IN MULTI-STABLE  
ORIGAMI TO ENABLE MECHANICAL DIODE BEHAVIOR IN COMPRESSION 

 
 

Nasim Baharisangari and Suyi Li* 
Department of Mechanical Engineering 
Clemson University, Clemson, SC, USA 

 
 
 

ABSTRACT 
Recently, multi-stable origami structures and material systems 
have shown promising potentials to achieve multi-functionality. 
Especially, origami folding is fundamentally a three-dimensional 
mechanism, which imparts unique capabilities not seen in the 
more traditional multi-stable systems.  This paper proposes and 
analytically examines a multi-stable origami cellular structure 
that can exhibit asymmetric energy barriers and a mechanical 
diode behavior in compression. Such a structure consists of many 
stacked Miura-ori sheets of different folding stiffness and accor-
dion-shaped connecting sheets, and it can be divided into unit 
cells that features two different stable equilibria. To understand 
the desired diode behavior, this study focuses on two adjacent 
unit cells and examines how folding can create a kinematic con-
straint onto the deformation of these two cells. Via estimating the 
elastic potential energy landscape of this dual cell system. we 
find that the folding-induced kinematic constraint can signifi-
cantly increase the potential energy barrier for compressing the 
dual-cell structure from a certain stable state to another, how-
ever, the same constraint would not increase the energy barrier 
of the opposite extension switch.  As a result, one needs to apply 
a large force to compress the origami cellular structure but only 
a small force to stretch it, hence a mechanical diode behavior. 
Results of this study can open new possibilities for achieving 
structural motion rectifying, wave propagation control, and em-
bedded mechanical computation. 
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1. INTRODUCTION 
A structure or material system is considered multi-stable if they 
exhibit more than one stable equilibrium (or stable state) within 
the deformation range so that each state corresponds to a 
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potential energy minimum [1].  Exploiting the multi-stability can 
lead to a wide variety of adaptive functionalities including stiff-
ness adaptation [2], energy harvesting [3,4], impact energy ab-
sorption [5–7], and robust sensing [8,9] etc.  Therefore, multi-
stability is a powerful catalyst for constructing smart and multi-
functional structures and material systems.  Over the past several 
decades, many mechanisms, such as the buckled beams and 
asymmetric fiber laminates [10], have been examined exten-
sively as building blocks for achieving multi-stability. 

Recently, origami-based cellular structures and materials 
have emerged as promising platforms to achieve multi-stability 
[11].  Such structures and materials typically consist of multiple 
origami sheets, and they have shown many unique mechanical 
properties such as negative Poisson’s ratio [12–14], discrete stiff-
ness jumps [15,16], and high load-bearing capacity [17].  More-
over, multi-stability would arise in origami if its crease lines have 
different stiffness [18,19], or its facets are deformed between dif-
ferent folding configurations [20–22].  One example of a multi-
stable origami structure is the stacked Miura-ori, which is con-
structed by assembling geometrically compatible Miura-ori 
sheets along their crease lines.  If the stiffness of these Miura-ori 
sheets is significantly different from each other, multi-stability 
will occur.  By combining this multi-stability and the three-di-
mensional nature of origami folding, the stacked Miura-ori has 
been shown to exhibit rapid deformation via pressure-induced 
snapping [19] and elastic modulus programming [23]. 

Moreover, the multi-stable stacked Miura-ori also exhibits 
unique asymmetric energy barriers and mechanical diode behav-
ior [24].  That is, the kinematic constraint from folding can sig-
nificantly increase the potential energy barrier for stretching the 
stacked Miura-ori from one stable state to another, but does not 
notably increase the energy barrier for the opposite compression 
switch.  As a result, one must apply a very large force to stretch 
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the stacked Miura-ori but only a small force to compress it, hence 
a static diode behavior.  However, the stacked Miura-ori cellular 
structure can only exhibit such an increase in potential energy 
barrier in extension, which naturally leads to the research ques-
tion of this study: How to achieve a similar diode behavior in 
compression, so that one must apply a large force to compress 
the origami structure but only a small force to extend it? 

In this study, we propose and analyze a new origami cellular 
structure design that exhibits the desired asymmetric energy bar-
rier and mechanical diode behavior in compression.  This new 
design can be considered as a variation of the stacked Miura-ori 
in that the arrangement of different Miura-ori sheet is reversed.  
By calculating the potential energy landscape of this new cellular 
structure using rigid facet and spring hinge crease assumption, 
we show that the kinematic constraints from folding can signifi-
cantly increase the potential energy barrier for a compression 
switch between stable states, but do not notably increase the en-
ergy barrier for the opposite extension switch.  Results of this 
study can lay down the foundation for multi-functional origami 
structure and materials that can perform motion rectifying, wave 
propagation control, and embedded mechanical computation.   

In what follows, section 2 briefly reviews the diode behavior 
in tension; section 3 presents the new cellular origami structure 
design and physical principles of analyzing its potential energy; 
section 4 details the asymmetric energy barrier and mechanical 
diode behavior in compression; and finally, section 5 concludes 
this paper with summary and discussion. 

 
2. BRIEF REVIEW OF THE DIODE EFFECT IN TENSION 
The authors’ previous study examined the nonlinear elastic be-
haviors of a stacked Miura-ori cellular structure, and the diode 
effect occurs between two bistable unit cells connected along 
their zig-zag crease (Figure 1(a)).  Each unit cell can settle into 
two different stable states, which are denoted as the state (0) and 
(1), respectively. Thus, the dual-cell assembly has four unique 
stable states: (00), (01), (10), and (00).  Rigid-folding of Miura-
ori is fundamentally a three-dimensional motion, which imposes 
a kinematic constraint onto the deformation of these two unit 
cells.  That is, the “spine angle” defined by the zig-zag connect-
ing crease should be equal between the two cells (aka. A Bψ ψ=  
in Figure 1(a)).  Such a kinematic constraint was found to signif-
icantly increase the potential energy barrier for the extension 
switch from (01) to (00) stable states, however, it does not im-
pose any notable change to the energy barrier for the opposite 
compression switch from (00) back to (01) state.   

This unorthodox behavior was illustrated in a set of tests.  In 
these tests, two bistable unit cell prototypes were connected by 
two different setups and their overall force-deformation curves 
were measured using a universal test machine.  In one setup, the 
unit cells were connected via a rigid rod, so that they were con-
nected simply in series without reinforcing any kinematic con-
straint of folding (aka. Aψ  and Bψ  were independent).  In the 
other setup, the unit cells were directly connected along their zig-

zag creases using adhesive films to reinforce the kinematic con-
straint (aka. A Bψ ψ≅  with a small mismatch). 

The dual cell assemblies in both setups could be switched 
in-between (11), (01), and (00) stable states as their overall 
length was extended or compressed by the tester machine.  How-
ever, the maximum extension force from (01) and (00) stable 
state was much higher in the second setup with reinforced kine-
matic constraint (aka. F R

e eF F>  in Figure 1(b)).  On the other 
hand, the compression forces in the opposite switch from (00) 

 
 

Figure 1. A review of the mechanical diode behavior in tension. 
(a) The classical stacked Miura-ori cellular structure. The exam-
ined dual-cell assembly is highlighted here, together with the 
four stable states it can settle into.  (b) Measured force-displace-
ment curves showing the mechanical diode effect. Here, the 
solid lines are the averaged results of a loading and unloading 
cycle, and the shaded bands are the standard deviation.  (c) The 
dual cell assembly prototypes at the different stable states ob-
served in the experiments. Figures adapted with permission 
from [24]. Copyright: Elsevier. 
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back to (01) were similar between the two setups ( ).F R
c cF F≅   

Therefore, the kinematic constraint of Miura-ori rigid-folding 
creates a mechanical diode effect that makes it hard to extend the 
stacked Miura-ori cellular structure but easy to compress it.  Fur-
ther analytical investigation predicted that the strength of such a 
diode effect would further increase if the kinematic constraint is 
strictly reinforced by reducing the mismatch between the two 
spine angles Aψ  and B.ψ   

While promising, the diode behavior in the classical stacked 
Miura-ori cellular structure is available only in extension.  This 
leads to the research question of this study: How to achieve a 
diode behavior in compression and construct a cellular structure 
that is easy to be extended but hard to compress?  This question 
is addressed in the following sections.   
 
3. DESIGN OF THE NEW CELLULAR ORIGAMI STRUCTURE 
In this study, we propose a new multi-stable cellular origami 
structure, which is constructed by stacking geometrically com-
patible Miura-ori sheets and zig-zag shaped “connect sheets” in 
an alternating arrangement (Figure 2(a)).  The most fundamental 
component that can exhibit the desired mechanical diode effect 
in compression consists of two unit cells and one connect sheet 
(Figure 2(b)).  The unit cell here is essentially a variation of the 
unit cell used in the previous study on the extension diode be-
cause the arrangement of Miura-ori sheet I and II are reversed.  
Therefore, the geometric design principles and rigid-folding kin-
ematics of traditional Miura-ori still apply in this study.  The 
crease design of a unit cell is determined by crease lengths ( I ,a

II ,a I ,b II ,b   and cl  ) and sector angles ( I ,γ IIγ  ) (Figure 3(a)).  
Here, subscript I and II denotes the two different Miura-ori 
sheets in a unit cell and cl  is the length of the connecting sheet.  
To ensure geometric compatibility, these design parameters must 
satisfy the following relationships [12]:  

 
II I ,b b=  (1) 

II I

I II

cos .
cos

a
a

γ
γ

=  (2) 

 
To describe the external geometry of a unit cell during rigid-

folding, one can use dihedral folding angles Iθ  and IIθ  defined 
between the facets of two Miura-ori sheets and the x-y reference 
plane, respectively (Figure 3(b)).  We assume the unit cell strictly 
follows the kinematics of rigid-folding, which is essentially a 
one-degree-of-freedom motion.  Hence the two folding angels 
are not independent but rather satisfy the geometric relationship: 

 
II II II .cos tan cos tanθ γ θ γ=  (3) 

 
The external total length of a unit cell along the z-axis is 

simply a summation of its different components so that  

 
 
Figure 2: Design of the new multi-stable stacked origami cellular 
structure. (a) An overview showing the alternating sequence of 
different Miura-ori sheets and zig-zag “connect sheets”.  (b) A 
close-up view of the dual-cell pair, which is the most fundamen-
tal unit to achieve the diode behavior in compression.   
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Figure 3: Detailed design of a unit cell in this study. (a) φi (I = 
1…6) are unique dihedral angles between two adjacent facets 
along the difference creases. ψ is the spine angle, which is also 
the dihedral angle of in the connect sheet.  The two drawings on 
the right show the design of Miura-ori sheets when they are un-
folded into a flat sheet.  (b) The external geometries of the unit 
cell at different θI folding angles. Not shown in this plot are the 
folding angle θII, which is the dihedral angle between the facets 
of Miura sheets II and the x-y reference plane. (c) The energy 
landscape of the two unit cells used in this study. 
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,cL l l lΙ ΙΙ= + +  (4) 
 
where lΙ and lΙΙ  are the length of the two constituent Miura-ori 
sheets, respectively ( sin sin ,l a θ γΙ Ι Ι Ι= sin sin ).l a θ γΙΙ ΙΙ ΙΙ ΙΙ=  

 A spine angle ψ can be defined to describe dihedral folding 
angles between the facets in the connect sheet: 

 
1

I I2 tan (cos tan ),ψ θ γ−=                                                      (5) 
 
Since the unit cells are assumed to satisfy the kinematics of 

rigid-folding, we assume that the facets are rigid and the crease 
lines act like perfect hinges with prescribed torsional stiffness.  
Therefore, the total elastic potential energy a unit cell is the sum-
mation of the crease torsional spring energy:  

 

( ) ( )2 21 1 ,
2 2

o o
i i i ck kϕ ϕ ψ ψΠ = − + −    (6) 

 
where iϕ  is the dihedral crease opening angle denoted in Figure 
3; ik is the corresponding torsional spring stiffness; and ck is the 
torsional crease stiffness in the connect sheets.  Angles with the 
superscript o represents the initial stress-free configuration.  The 
magnitudes of the crease opening angles are also functions of the 
independent variable Iθ  so that    

   
1 I2 ,ϕ π θ= −  (7) 

 

1 I
2 2 2

I I

cos2sin ,
1 sin sin

θ
ϕ

θ γ
−
 
 =
 − 

 (8) 

 

( )1 1
I3 II I2cos tan tan cos ,ϕ π γ γ θ− −= −  (9) 

 

1 I 2
4

II

sin2sin sin ,
sin 2

γ ϕ
ϕ

γ
−  

=  
 

 (10) 

 

5 I .2
πϕ θ= +  (11) 

 

6 II .2
πϕ θ= −  (12) 

 
Although the torsional springs added to the creases are line-

arly elastic as shown in Equation 6, the corrections between fold-
ing and external deformation are geometric and strongly nonlin-
ear. This nonlinearity is the origin of the desired diode behavior. 
Denote kΙ   and kΙΙ   as the crease torsional spring stiffness per 
unit length of the Miura-ori sheet I and II, respectively, and ck  
is the crease torsional spring stiffness per unit length of the 
connecting sheet. The stiffness coefficients in equation (6) are: 

1 2 ,k k bΙ Ι=   2 2 ,k k aΙ Ι=   3 2 ,k k bΙΙ Ι=   4 2 ,k k aΙΙ ΙΙ=   5 4 ,ck k bΙ=  

6 4 ,ck k bΙ=  and 2 ,c c ck k l=   where the numerical constants in 
these equations represent the number of similar creases in one 
unit cell.   

To achieve bi-stability in a unit cell, the crease stiffness of 
the larger Miura-ori sheet II must be significantly higher than 
sheet than those of sheet I and connecting sheet (aka. II Ik k> and 

II ).ck k>   In addition, the initial stress-free folding angle I( )θ  
must deviate from 0°.  Figure 3(c) illustrates the energy land-
scape of two unit cells (designated as A and B hereafter) corre-
sponding to II 2cm,a b= =   II I ,1.25aa =   I 45 ,γ =    I2.5a ,cl =

I ,ck k=  and III 20 .kk =   The initial folding angle I 60oθ = −    for 
unit cell A and 60 for cell B.  The bi-stability, characterized by 
the two potential energy wells, is evident based on these unit cell 
designs.  For clarity, we denote the stable state with a positive 
sheet I folding angle as the state (1) and the one with the negative 
sheet I folding angle as the state (0), so that the unit cell has a 
shorter length L at state (0) than the state (1).  Unless noted oth-
erwise, these design variables are used throughout this paper. 

Once the external geometry and potential energy of a unit 
cell is formulated, the overall energy and dimension of the dual-
cell assembly can be calculated as  

 
t A B 0 ,Π = Π +Π +Π  (13) 

 

 
 
Figure 4: Kinematic properties due to the folding induced con-
straint (or the lack of).  (a) Admissible deformation of the dual 
cell assembly.  The two kinematic paths based on ideal rigid-
folding condition are shown by the solid and dashed curves.  The 
gray area represents deformations that are not kinematically ad-
missible.  (b) The geometry of the dual cell assembly at different 
locations along these to kinematic paths. 
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t A B 0 .L L L L= + +  (14) 
 

In equation (13), AΠ  and BΠ  are the strain energy of the 
unit cell A and B defined in equation (6), respectively.  0Π  is the 
strain energy of the connect sheet in-between two unit cells, and 
it is estimated as 

 

( )20 A1 ,
2

Bk ψ ψ∗Π = −  (15) 

 
where k∗  is the “constraint stiffness” of the connecting sheet.   

The magnitude of this constraint stiffness is crucial in this 
study because it characterizes the strength of the kinematical 
constraint due to folding.  If the kinematics of rigid-folding is 
strictly followed (aka, all facets in the dual cell assembly are 
rigid and all creases behave like perfect hinges), the spine angle 
of the unit cells should be equal, i.e. A B.ψ ψ=  In this way, the 
admissible deformations of the dual-cell assembly are limited to 
two “kinematic paths” shown in Figure 4.  On one path, the fold-
ing angles of two unit cells are equal (aka. I II );θ θ=  on the other 
path, the two folding angles have the same magnitude but oppo-
site sign I II .( )θ θ= −    However, in realistic scenarios, there 
would be some mismatch between the two spine angles due to 
small facet bending or crease wrapping.  Therefore, the configu-
ration of the dual-cell assembly can occur at any location within 
the curved parallelogram shown in Figure 4.  However, such a 
deviation from the ideal rigid-folding can induce additional 
strain energy, which can be characterized by the constraint stiff-
ness .k∗    It is worth highlighting that this constraint stiffness 
concept was introduced in the authors’ previous study on exten-
sion diode and was able to explain the experimental observations 
[24].  Thus, we will apply it to the compression diode study here. 
In the following sections, we first examine the nonlinear elastic 
behaviors of this dual-cell assembly without imposing any kine-
matic constraint from folding (aka. 0k∗ = ) and then examine the 
effects from an increasingly stronger constraint ( 0k∗ > ). 
 
4. DIODE EFFECT IN COMPRESSION 
Figure 5(a) illustrates the total energy landscape of the dual cell 
assembly according to equation (13) assuming 0.k∗ =  This cor-
responds to a hypothetical case that the connecting sheets be-
tween the two unit cells are soft in that they do not provide any 
resistance to the mismatch between the two spine angles Aψ  and 

B.ψ   From this plot, one can identify “equilibrium paths” corre-
sponding to the potential energy minima at a given total length.  
These are paths of deformation that the dual-cell assembly would 
follow when its total length is increased or decreased.  Here, we 
focus on the continuous equilibrium path that connects three sta-
ble states of (00), (01), and (11).  The energy landscape of the 
dual cell assembly along this equilibrium path is plotted in Fig-
ure 5(b). Based on this plot, one can identify the potential energy 
barrier ( )eE∆  for the extension switch from (00) stable state to 
the (01) state and the energy barrier ( )cE∆   for the opposite 

compression switch from (01) to (00).  The corresponding reac-
tion force, shown in Figure 5(c), is calculated as the variation of 
total potential energy with respect to the change in total length,  

 
t

t .F
L

∂Π
=
∂

 (16) 

 
Based on the reaction force plot, one can calculate two im-

portant forces: One is the critical reaction force ( )eF  during the 
extension switch from the (00) stable state to (01); the other is 
the critical force ( )cF  during the opposite switch from (01) to 
(00).  Essentially, eF is the required extension force to stretch the 
dual cell assembly from the (00) state to (01), while cF is the re-
quired force to compress this assembly back to the (00) state.   

 
 
Figure 5: Mechanics of the dual-cell assembly assuming zero 
constraint stiffness k*: (a) the total potential energy landscape, 
(b) the equilibrium path, and (c) the reaction force along the equi-
librium path.  The colormap in (a) represents the total potential 
energy, darker color means lower energy. It is worth nothing that 
in this figure and the following Figure 6, only the equilibrium path 
containing the (00), (01), and (11) stable states are shown in the 
energy landscape and reaction force plots. This is because the 
(10) state is not achievable by global extension or compression. 
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Figure 6 illustrates the potential energy landscape and reac-
tion force of the dual cell assembly when the constraint stiffness 
k∗  increases, which realistically represents the structural behav-
ior of dual cell assembly under external loads.  Typically, stiffer 
connect sheets between two unit cells can strengthen the kine-
matic constraints due to folding, thus gives a higher constraint 
stiffness .k∗   As the constraint stiffness increases, the potential 
energy barrier for compression switch from (01) stable state to 
(00) increases significantly, however, the energy barrier for the 
extension switch does not increase by the same degree.  Moreo-
ver, when the constraint stiffness reaches a threshold value 

I( 140k k∗ =  in this case study), the initially continuous equilib-
rium path that connects three stable states splits into to separated 
ones (see the first two rows of Figure 6(b, c)).  As a result, as the 
dual cell assembly is stretched from the (00) stable state, it will 
deform to point P at the end of one equilibrium path and then 
“jump” to the other path.  Similarly, when the dual cell assembly 
is compressed from the (01) stable state, it will deform to point 
Q first before jumping (see the insert figure in the first row if 
Figure 6(c)).  The energy barrier for reaching these jumps are 
significantly different between extension and compression, 

therefore, the kinematic constraint due to folding imposes an 
asymmetry in the energy barriers of the dual cell assembly. 

Such asymmetry can be further illustrated by examining the 
changes in critical reaction forces as the constraint stiffness k∗  
increases (the third-row Figure 6).  That is, when k∗ increases, 
the required force for the compression switch from (01) stable 
state to (00) increases significantly, while the required extension 
force for the opposite extension switch from (00) to (10) does not 
increase much (Table 1).  Essentially, the kinematic constraint of 
folding induces a mechanical diode effect so that the stacked ori-
gami cellular structure can be stretched easily but hard     
to be compressed.  

 
Table 1. The normalized critical forces in the extension and 

compression switches between the (00) and (01) stable 
states based on the reaction force plots in Figure 5 and 6. 

k*/kI Fe/kI Fc/kI 
0 26.5 -91.7 
50 32.5 -467.3 

140 36.3 -1261.7 
600 39.9 -2079.7 

 

 
 
Figure 6: The energy contours (first row), energy landscapes (second row), and the reaction force (third row) corresponding to an in-
creasingly stronger folding induced kinematic constraint: (a) k*/kI=50, (b) k*/kI=140, and (c) k*/kI=600. The “jump” between the equilibrium 
paths are illustrated as dashed arrows in the insert figure in the first row of (c). 
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5. SUMMARY AND CONCLUSION  
This study proposes and analytically examines a multi-stable, 
cellular origami structure that can exhibit an asymmetric energy 
barrier and mechanical diode behavior in compression.  Such a 
cellular structure consists of multiple unit cells, each of which is 
made by stacking two different Miura-ori sheets and accordion-
shaped connecting sheets.  These unit cells can be bistable due 
to the nonlinear correlations between folding and crease defor-
mation.  This study focuses on a dual cell assembly, which is the 
most fundamental structure to achieve the desired mechanical di-
ode behavior.  The fundamentally three-dimensional origami 
folding imposes a unique kinematic constraint onto the defor-
mations of these two unit cells.  This constraint can be estimated 
based on a mismatch between the spine angles of these two cells 
and an equivalent constraint stiffness coefficient.  Our analysis 
shows that when the folding-induced kinematic constraint 
strengthens (aka. constraint stiffness increases), the potential en-
ergy barrier of compressing the dual cell assembly from a certain 
stable state to another is significantly increased, however, the en-
ergy barrier of the opposite extension does not change as much.  
As a result, one needs to apply a large force to compress the ori-
gami cellular structure but only a small force to stretch it, hence 
the mechanical diode behavior.  The results of this study, com-
bined with the authors’ previous work on the mechanical diode 
in tension, can open new avenues towards multi-functional struc-
tures and material systems capable of motion rectifying, wave 
propagation control, and mechanical computation. 
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