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ABSTRACT

Recently, multi-stable origami structures and material systems
have shown promising potentials to achieve multi-functionality.
Especially, origami folding is fundamentally a three-dimensional
mechanism, which imparts unique capabilities not seen in the
more traditional multi-stable systems. This paper proposes and
analytically examines a multi-stable origami cellular structure
that can exhibit asymmetric energy barriers and a mechanical
diode behavior in compression. Such a structure consists of many
stacked Miura-ori sheets of different folding stiffness and accor-
dion-shaped connecting sheets, and it can be divided into unit
cells that features two different stable equilibria. To understand
the desired diode behavior, this study focuses on two adjacent
unit cells and examines how folding can create a kinematic con-
straint onto the deformation of these two cells. Via estimating the
elastic potential energy landscape of this dual cell system. we
find that the folding-induced kinematic constraint can signifi-
cantly increase the potential energy barrier for compressing the
dual-cell structure from a certain stable state to another, how-
ever, the same constraint would not increase the energy barrier
of the opposite extension switch. As a result, one needs to apply
a large force to compress the origami cellular structure but only
a small force to stretch it, hence a mechanical diode behavior.
Results of this study can open new possibilities for achieving
structural motion rectifying, wave propagation control, and em-
bedded mechanical computation.
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1. INTRODUCTION

A structure or material system is considered multi-stable if they
exhibit more than one stable equilibrium (or stable state) within
the deformation range so that each state corresponds to a
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potential energy minimum [1]. Exploiting the multi-stability can
lead to a wide variety of adaptive functionalities including stiff-
ness adaptation [2], energy harvesting [3,4], impact energy ab-
sorption [5—7], and robust sensing [8,9] etc. Therefore, multi-
stability is a powerful catalyst for constructing smart and multi-
functional structures and material systems. Over the past several
decades, many mechanisms, such as the buckled beams and
asymmetric fiber laminates [10], have been examined exten-
sively as building blocks for achieving multi-stability.

Recently, origami-based cellular structures and materials
have emerged as promising platforms to achieve multi-stability
[11]. Such structures and materials typically consist of multiple
origami sheets, and they have shown many unique mechanical
properties such as negative Poisson’s ratio [ 12—14], discrete stiff-
ness jumps [15,16], and high load-bearing capacity [17]. More-
over, multi-stability would arise in origami if its crease lines have
different stiffness [18,19], or its facets are deformed between dif-
ferent folding configurations [20—22]. One example of a multi-
stable origami structure is the stacked Miura-ori, which is con-
structed by assembling geometrically compatible Miura-ori
sheets along their crease lines. If the stiffness of these Miura-ori
sheets is significantly different from each other, multi-stability
will occur. By combining this multi-stability and the three-di-
mensional nature of origami folding, the stacked Miura-ori has
been shown to exhibit rapid deformation via pressure-induced
snapping [19] and elastic modulus programming [23].

Moreover, the multi-stable stacked Miura-ori also exhibits
unique asymmetric energy barriers and mechanical diode behav-
ior [24]. That is, the kinematic constraint from folding can sig-
nificantly increase the potential energy barrier for stretching the
stacked Miura-ori from one stable state to another, but does not
notably increase the energy barrier for the opposite compression
switch. As a result, one must apply a very large force to stretch
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the stacked Miura-ori but only a small force to compress it, hence
a static diode behavior. However, the stacked Miura-ori cellular
structure can only exhibit such an increase in potential energy
barrier in extension, which naturally leads to the research ques-
tion of this study: How fto achieve a similar diode behavior in
compression, so that one must apply a large force to compress
the origami structure but only a small force to extend it?

In this study, we propose and analyze a new origami cellular
structure design that exhibits the desired asymmetric energy bar-
rier and mechanical diode behavior in compression. This new
design can be considered as a variation of the stacked Miura-ori
in that the arrangement of different Miura-ori sheet is reversed.
By calculating the potential energy landscape of this new cellular
structure using rigid facet and spring hinge crease assumption,
we show that the kinematic constraints from folding can signifi-
cantly increase the potential energy barrier for a compression
switch between stable states, but do not notably increase the en-
ergy barrier for the opposite extension switch. Results of this
study can lay down the foundation for multi-functional origami
structure and materials that can perform motion rectifying, wave
propagation control, and embedded mechanical computation.

In what follows, section 2 briefly reviews the diode behavior
in tension; section 3 presents the new cellular origami structure
design and physical principles of analyzing its potential energy;
section 4 details the asymmetric energy barrier and mechanical
diode behavior in compression; and finally, section 5 concludes
this paper with summary and discussion.

2. BRIEF REVIEW OF THE DIODE EFFECT IN TENSION

The authors’ previous study examined the nonlinear elastic be-
haviors of a stacked Miura-ori cellular structure, and the diode
effect occurs between two bistable unit cells connected along
their zig-zag crease (Figure 1(a)). Each unit cell can settle into
two different stable states, which are denoted as the state (0) and
(1), respectively. Thus, the dual-cell assembly has four unique
stable states: (00), (01), (10), and (00). Rigid-folding of Miura-
ori is fundamentally a three-dimensional motion, which imposes
a kinematic constraint onto the deformation of these two unit
cells. That is, the “spine angle” defined by the zig-zag connect-
ing crease should be equal between the two cells (aka. y* ="
in Figure 1(a)). Such a kinematic constraint was found to signif-
icantly increase the potential energy barrier for the extension
switch from (01) to (00) stable states, however, it does not im-
pose any notable change to the energy barrier for the opposite
compression switch from (00) back to (01) state.

This unorthodox behavior was illustrated in a set of tests. In
these tests, two bistable unit cell prototypes were connected by
two different setups and their overall force-deformation curves
were measured using a universal test machine. In one setup, the
unit cells were connected via a rigid rod, so that they were con-
nected simply in series without reinforcing any kinematic con-
straint of folding (aka. y* and " were independent). In the
other setup, the unit cells were directly connected along their zig-
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Figure 1. A review of the mechanical diode behavior in tension.
(a) The classical stacked Miura-ori cellular structure. The exam-
ined dual-cell assembly is highlighted here, together with the
four stable states it can settle into. (b) Measured force-displace-
ment curves showing the mechanical diode effect. Here, the
solid lines are the averaged results of a loading and unloading
cycle, and the shaded bands are the standard deviation. (c) The
dual cell assembly prototypes at the different stable states ob-
served in the experiments. Figures adapted with permission
from [24]. Copyright: Elsevier.

zag creases using adhesive films to reinforce the kinematic con-
straint (aka. w* =" with a small mismatch).

The dual cell assemblies in both setups could be switched
in-between (11), (01), and (00) stable states as their overall
length was extended or compressed by the tester machine. How-
ever, the maximum extension force from (01) and (00) stable
state was much higher in the second setup with reinforced kine-
matic constraint (aka. ' > F in Figure 1(b)). On the other
hand, the compression forces in the opposite switch from (00)
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Figure 2: Design of the new multi-stable stacked origami cellular
structure. (a) An overview showing the alternating sequence of
different Miura-ori sheets and zig-zag “connect sheets”. (b) A
close-up view of the dual-cell pair, which is the most fundamen-
tal unit to achieve the diode behavior in compression.

back to (01) were similar between the two setups (F" = FF).
Therefore, the kinematic constraint of Miura-ori rigid-folding
creates a mechanical diode effect that makes it hard to extend the
stacked Miura-ori cellular structure but easy to compress it. Fur-
ther analytical investigation predicted that the strength of such a
diode effect would further increase if the kinematic constraint is
strictly reinforced by reducing the mismatch between the two
spine angles w* and y"°.

While promising, the diode behavior in the classical stacked
Miura-ori cellular structure is available only in extension. This
leads to the research question of this study: How to achieve a
diode behavior in compression and construct a cellular structure
that is easy to be extended but hard to compress? This question
is addressed in the following sections.

3. DESIGN OF THE NEW CELLULAR ORIGAMI STRUCTURE

In this study, we propose a new multi-stable cellular origami
structure, which is constructed by stacking geometrically com-
patible Miura-ori sheets and zig-zag shaped “connect sheets” in
an alternating arrangement (Figure 2(a)). The most fundamental
component that can exhibit the desired mechanical diode effect
in compression consists of two unit cells and one connect sheet
(Figure 2(b)). The unit cell here is essentially a variation of the
unit cell used in the previous study on the extension diode be-
cause the arrangement of Miura-ori sheet I and II are reversed.
Therefore, the geometric design principles and rigid-folding kin-
ematics of traditional Miura-ori still apply in this study. The
crease design of a unit cell is determined by crease lengths (a,,
ay, b, by, and [ ) and sector angles (y,, v, ) (Figure 3(a)).
Here, subscript I and II denotes the two different Miura-ori
sheets in a unit cell and /_ is the length of the connecting sheet.
To ensure geometric compatibility, these design parameters must
satisfy the following relationships [12]:
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Figure 3: Detailed design of a unit cell in this study. (a) ¢i (/ =
1...6) are unique dihedral angles between two adjacent facets
along the difference creases. y is the spine angle, which is also
the dihedral angle of in the connect sheet. The two drawings on
the right show the design of Miura-ori sheets when they are un-
folded into a flat sheet. (b) The external geometries of the unit
cell at different 6, folding angles. Not shown in this plot are the
folding angle 6, which is the dihedral angle between the facets
of Miura sheets Il and the x-y reference plane. (c) The energy
landscape of the two unit cells used in this study.

cosyy _ a4y
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To describe the external geometry of a unit cell during rigid-
folding, one can use dihedral folding angles 6, and 6, defined
between the facets of two Miura-ori sheets and the x-y reference
plane, respectively (Figure 3(b)). We assume the unit cell strictly
follows the kinematics of rigid-folding, which is essentially a
one-degree-of-freedom motion. Hence the two folding angels
are not independent but rather satisfy the geometric relationship:

cos 6, tan y, = cos 6, tan y,. 3)

The external total length of a unit cell along the z-axis is
simply a summation of its different components so that
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L =1 +I,+1, 4)

where [, and [ are the length of the two constituent Miura-ori
sheets, respectively ([, =a,sin@, siny,, [, = a, sing, siny,).

A spine angle w can be defined to describe dihedral folding
angles between the facets in the connect sheet:

w =2tan '(cos 6, tany,), %)

Since the unit cells are assumed to satisfy the kinematics of
rigid-folding, we assume that the facets are rigid and the crease
lines act like perfect hinges with prescribed torsional stiffness.
Therefore, the total elastic potential energy a unit cell is the sum-
mation of the crease torsional spring energy:
2

| ol 0
=k (o, ~) + 3k (v—v") (©)

where ¢, is the dihedral crease opening angle denoted in Figure
3; k,is the corresponding torsional spring stiffness; and k_is the
torsional crease stiffness in the connect sheets. Angles with the
superscript o represents the initial stress-free configuration. The
magnitudes of the crease opening angles are also functions of the
independent variable 6, so that

o =n-20, (7
. cos 6,
@, =2sin™’ — |, (8)
y/1=sin” g sin” y,
@, =m—2cos” (tan 7y tan”™" ¥, cos 6, ), 9)
@, =2sin”"' [msin&j, (10)
sin yy, 2
b4
s :E'Hgl' (11)
T
®s :5_911' (12)

Although the torsional springs added to the creases are line-
arly elastic as shown in Equation 6, the corrections between fold-
ing and external deformation are geometric and strongly nonlin-
ear. This nonlinearity is the origin of the desired diode behavior.
Denote &, and k; as the crease torsional spring stiffness per
unit length of the Miura-ori sheet I and II, respectively, and &,
is the crease torsional spring stiffness per unit length of the
connecting sheet. The stiffness coefficients in equation (6) are:
k, =2kb, k,=2ka, k,=2kb, k,=2k,a,, k, =4kb,
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Figure 4: Kinematic properties due to the folding induced con-
straint (or the lack of). (a) Admissible deformation of the dual
cell assembly. The two kinematic paths based on ideal rigid-
folding condition are shown by the solid and dashed curves. The
gray area represents deformations that are not kinematically ad-
missible. (b) The geometry of the dual cell assembly at different
locations along these to kinematic paths.

ky =4k b,, and k, =2k , where the numerical constants in
these equations represent the number of similar creases in one
unit cell.

To achieve bi-stability in a unit cell, the crease stiffness of
the larger Miura-ori sheet Il must be significantly higher than
sheet than those of sheet I and connecting sheet (aka. &, > &, and
k, > k.). In addition, the initial stress-free folding angle (6,)
must deviate from 0°. Figure 3(c) illustrates the energy land-
scape of two unit cells (designated as A and B hereafter) corre-
sponding to a, =b, =2cm, a, =1.25a,, y,=45", [ =2.5a,
k, =k.,and k, =20k, The initial folding angle 6 =—-60" for
unit cell A and 60° for cell B. The bi-stability, characterized by
the two potential energy wells, is evident based on these unit cell
designs. For clarity, we denote the stable state with a positive
sheet I folding angle as the state (1) and the one with the negative
sheet I folding angle as the state (0), so that the unit cell has a
shorter length L at state (0) than the state (1). Unless noted oth-
erwise, these design variables are used throughout this paper.

Once the external geometry and potential energy of a unit
cell is formulated, the overall energy and dimension of the dual-
cell assembly can be calculated as

M =1 +11° +11°, (13)
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L'=*"+1*+1. (14)

In equation (13), I1* and IT® are the strain energy of the
unit cell A and B defined in equation (6), respectively. I1° is the
strain energy of the connect sheet in-between two unit cells, and
it is estimated as

=k (=", (5)

where k* is the “constraint stiffness” of the connecting sheet.
The magnitude of this constraint stiffness is crucial in this
study because it characterizes the strength of the kinematical
constraint due to folding. If the kinematics of rigid-folding is
strictly followed (aka, all facets in the dual cell assembly are
rigid and all creases behave like perfect hinges), the spine angle
of the unit cells should be equal, i.e. " =", In this way, the
admissible deformations of the dual-cell assembly are limited to
two “kinematic paths” shown in Figure 4. On one path, the fold-
ing angles of two unit cells are equal (aka. 6, = 6,); on the other
path, the two folding angles have the same magnitude but oppo-
site sign (6, =—6,). However, in realistic scenarios, there
would be some mismatch between the two spine angles due to
small facet bending or crease wrapping. Therefore, the configu-
ration of the dual-cell assembly can occur at any location within
the curved parallelogram shown in Figure 4. However, such a
deviation from the ideal rigid-folding can induce additional
strain energy, which can be characterized by the constraint stiff-
ness k™. 1Tt is worth highlighting that this constraint stiffness
concept was introduced in the authors’ previous study on exten-
sion diode and was able to explain the experimental observations
[24]. Thus, we will apply it to the compression diode study here.
In the following sections, we first examine the nonlinear elastic
behaviors of this dual-cell assembly without imposing any kine-
matic constraint from folding (aka. k" = 0) and then examine the
effects from an increasingly stronger constraint (k" > 0).

4. DIODE EFFECT IN COMPRESSION

Figure 5(a) illustrates the total energy landscape of the dual cell
assembly according to equation (13) assuming k* = 0. This cor-
responds to a hypothetical case that the connecting sheets be-
tween the two unit cells are soft in that they do not provide any
resistance to the mismatch between the two spine angles w* and
w"®. From this plot, one can identify “equilibrium paths” corre-
sponding to the potential energy minima at a given total length.
These are paths of deformation that the dual-cell assembly would
follow when its total length is increased or decreased. Here, we
focus on the continuous equilibrium path that connects three sta-
ble states of (00), (01), and (11). The energy landscape of the
dual cell assembly along this equilibrium path is plotted in Fig-
ure 5(b). Based on this plot, one can identify the potential energy
barrier (AE,) for the extension switch from (00) stable state to
the (01) state and the energy barrier (AE ) for the opposite
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Figure 5: Mechanics of the dual-cell assembly assuming zero
constraint stiffness k*: (a) the total potential energy landscape,
(b) the equilibrium path, and (c) the reaction force along the equi-
librium path. The colormap in (a) represents the total potential
energy, darker color means lower energy. It is worth nothing that
in this figure and the following Figure 6, only the equilibrium path
containing the (00), (01), and (11) stable states are shown in the
energy landscape and reaction force plots. This is because the
(10) state is not achievable by global extension or compression.

compression switch from (01) to (00). The corresponding reac-
tion force, shown in Figure 5(c), is calculated as the variation of
total potential energy with respect to the change in total length,

ort'
= (16)
Based on the reaction force plot, one can calculate two im-
portant forces: One is the critical reaction force (F,) during the
extension switch from the (00) stable state to (01); the other is
the critical force (F,) during the opposite switch from (01) to
(00). Essentially, F,is the required extension force to stretch the
dual cell assembly from the (00) state to (01), while F is the re-
quired force to compress this assembly back to the (00) state.
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Figure 6: The energy contours (first row), energy landscapes (second row), and the reaction force (third row) corresponding to an in-
creasingly stronger folding induced kinematic constraint: (a) k*/ki=50, (b) k*/ki=140, and (c) k*/ki=600. The “jump” between the equilibrium
paths are illustrated as dashed arrows in the insert figure in the first row of (c).

Figure 6 illustrates the potential energy landscape and reac-
tion force of the dual cell assembly when the constraint stiffness
k" increases, which realistically represents the structural behav-
ior of dual cell assembly under external loads. Typically, stiffer
connect sheets between two unit cells can strengthen the kine-
matic constraints due to folding, thus gives a higher constraint
stiffness &*. As the constraint stiffness increases, the potential
energy barrier for compression switch from (01) stable state to
(00) increases significantly, however, the energy barrier for the
extension switch does not increase by the same degree. Moreo-
ver, when the constraint stiffness reaches a threshold value
(& / k, =140 in this case study), the initially continuous equilib-
rium path that connects three stable states splits into to separated
ones (see the first two rows of Figure 6(b, ¢)). As a result, as the
dual cell assembly is stretched from the (00) stable state, it will
deform to point P at the end of one equilibrium path and then
“jump” to the other path. Similarly, when the dual cell assembly
is compressed from the (01) stable state, it will deform to point
O first before jumping (see the insert figure in the first row if
Figure 6(c)). The energy barrier for reaching these jumps are
significantly different between extension and compression,

therefore, the kinematic constraint due to folding imposes an
asymmetry in the energy barriers of the dual cell assembly.
Such asymmetry can be further illustrated by examining the
changes in critical reaction forces as the constraint stiffness k"
increases (the third-row Figure 6). That is, when k" increases,
the required force for the compression switch from (01) stable
state to (00) increases significantly, while the required extension
force for the opposite extension switch from (00) to (10) does not
increase much (Table 1). Essentially, the kinematic constraint of
folding induces a mechanical diode effect so that the stacked ori-
gami cellular structure can be stretched easily but hard
to be compressed.

Table 1. The normalized critical forces in the extension and
compression switches between the (00) and (01) stable
states based on the reaction force plots in Figure 5 and 6.

Kk Felki Fclki
0 26.5 -91.7
50 325 -467.3
140 36.3 -1261.7
600 39.9 -2079.7
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5. SUMMARY AND CONCLUSION

This study proposes and analytically examines a multi-stable,
cellular origami structure that can exhibit an asymmetric energy
barrier and mechanical diode behavior in compression. Such a
cellular structure consists of multiple unit cells, each of which is
made by stacking two different Miura-ori sheets and accordion-
shaped connecting sheets. These unit cells can be bistable due
to the nonlinear correlations between folding and crease defor-
mation. This study focuses on a dual cell assembly, which is the
most fundamental structure to achieve the desired mechanical di-
ode behavior. The fundamentally three-dimensional origami
folding imposes a unique kinematic constraint onto the defor-
mations of these two unit cells. This constraint can be estimated
based on a mismatch between the spine angles of these two cells
and an equivalent constraint stiffness coefficient. Our analysis
shows that when the folding-induced kinematic constraint
strengthens (aka. constraint stiffness increases), the potential en-
ergy barrier of compressing the dual cell assembly from a certain
stable state to another is significantly increased, however, the en-
ergy barrier of the opposite extension does not change as much.
As aresult, one needs to apply a large force to compress the ori-
gami cellular structure but only a small force to stretch it, hence
the mechanical diode behavior. The results of this study, com-
bined with the authors’ previous work on the mechanical diode
in tension, can open new avenues towards multi-functional struc-
tures and material systems capable of motion rectifying, wave
propagation control, and mechanical computation.
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