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ABSTRACT

Origami-inspired structures and material systems have been
used in many engineering applications because of their unique
kinematic and mechanical properties induced by folding. How-
ever, accurately modeling and analyzing origami folding and the
associated mechanical properties are challenging, especially
when large deformation and dynamic responses need to be con-
sidered. In this paper, we formulate a high-fidelity model—based
on the iso-parametric Absolute Nodal Coordinate Formulation
(ANCF)—for simulating the dynamic folding behaviors of ori-
gami involving large deformation. The center piece of this new
model is the characterization of crease deformation. To this end,
we model the crease using rotational spring at the nodes. The
corresponding folding angle is calculated based on the local sur-
face normal vectors. Compared to the currently popular analyt-
ical methods for analyzing origami, such as the rigid-facet and
equivalent bar-hinge approach, this new model is more accurate
in that it can describe the large crease and facet deformation
without imposing many assumptions. Meanwhile, the ANCF
based origami model can be more efficient computationally com-
pared to the traditional finite element simulations. Therefore,
this new model can lay down the foundation for high-fidelity ori-
gami analysis and design that involve mechanics and dynamics.

Keywords: Origami Dynamics, High-fidelity Modeling,
Absolute Nodal Coordinate formulation (ANCF)

1. INTRODUCTION

Origami is the ancient art of folding paper into decorative shapes.
Over the past several decades, this art has been transformed into
a framework for designing and fabricating engineered systems
such as deployable structures [1] and mechanical metamaterials
[2]. Such a development in origami application calls for robust

*Address all correspondence to this author: jiayuet@g.clemson.edu

and computationally efficient models to simulate and analyze the
deformations induced by folding. To this end, many analytical
methods have been proposed with different degrees of success.

For rigid origamis that do not induce any facet deformation
during folding, one can obtain a closed form solution for folding
by assuming rigid facets and hinge-like creases, essentially turn-
ing the origami into 3D linkage mechanisms [3]. However, this
method is limited to few origami designs such as the Miura-ori
and its derivatives [4][5]. Moreover, it cannot describe any facet
deformations like bending and twisting, which are inevitable or
even desired in realistic origami applications.

To accommodate the facet deformations, several bar-hinge
methods have been developed. For example, Resch and Christi-
ansen exploited linear elastic rotational hinges for the folding
creases, and modelled each facet using a plane stress element [6].
Schenk [7] and later Li et al. [8] applied this bar-hinge method
to Miura-ori sheets to examine their fundamental modes of de-
formation via eigen-analysis. However, bar-hinge methods were
initially intended for problems of infinitesimal deformation since
they used linear elasticity formulation [9][10]. To address this
limitation, Liu et al. [11] and Gillman et al. [12] developed non-
linear bar-hinge models that considered both geometric and ma-
terial nonlinearities. These nonlinear models are significantly
more capable, but they still only provide insights into the global
behavior of origami folding and cannot analyze the local origami
deformations with a high resolution.

Besides the reduced-order analytical models, finite element
methods (FEM) were also used to simulate origami folding. In
FEM, the facets are typically meshed using shell elements. The
challenge here is to properly model the creases because they ex-
hibit highly concentrated stress and strain during folding. To our
best of knowledge, two crease modeling techniques have been
developed so far [13]. One is to use additional “hinge connection
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elements” to join the overlapping shell element nodes along the
creases, and then assign rotational stiffness to these hinge ele-
ments. For example, Zhou et al. modeled the crease as hinge
joints with a revolute-type connector element inserted at the cen-
ter of the crease [14]. Filipov et al. [15] modeled the crease as
elastic rotational springs at the nodes of interconnected shell el-
ements (Figure 1.) and the spring coefficient is assumed inde-
pendent of folding angle and scale linearly with the fold length.
The other method of modeling the creases in FEM is to use a
refined shell element mesh near the creases and assign reduced
stiffness and strength properties [16]. Compared to the bar-hinge
models, the finite element models can provide more information
like the stress/strain distribution near the creases and localized
buckling in the facets. However, they are computationally expen-
sive, and more importantly, the localized instabilities caused by
large element deformation can prevent the simulations to conver-
gence quickly.

Shell elements
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Figure 1. Traditional finite element formulations of origami. Here,
the facet is modeled as conventional shell elements, whereas
the crease is treated as linear elastic rotational springs at the
nodes of interconnected shell elements. Figure adapted with
permission [14].

Therefore, the objective of this study is to propose and for-
mulate a high-fidelity dynamic model of origami using a finite-
element inspired approach. Instead of meshing the origami sheets
with many elements, we propose to exploit the tessellated nature
of origami and treat each facet as one shell element. To ensure
the accuracy, we adopt the iso-parametric Absolute Nodal Coor-
dination Formulation (referred to as iso-ANCF hereafter), which
is efficient and robust for dynamic analysis of structure under
large deformations and rotations. To complete this new model,
we develop a new crease model by treating them as rotational
springs at the crease nodes. Based on this, we also formulate a
new tangent stiffness matrix of the creases and provide the final
equations of motion for origami folding. Compared to existing
nonlinear bar-hinge model [11], our model can be more accurate
for dynamic analysis of complex origami structures with curved
crease patterns. Also, it can be more computationally efficient
than that by using tradition FEM. Therefore, the proposed model

could strike a balance between accuracy and computational effi-
ciency, thus facilitate the future advancement of origami design
and analysis.

The remainder of this paper is organized as follows. Section
2 briefly reviews the basics of ANCEF. Section 3 constructs the
new model for origami folding using the iso-ANCF method, with
special attentions to the modeling of origami crease. Governing
equation of motion is formulated at the end of this section. Con-
clusions are drawn in Section 4.

2. FUNDAMENTALS OF ANCF

Traditional finite element methods use displacement and rotation
as the nodal coordinates, but they turn out to be numerically un-
stable and inefficient when large deformations or rotations occur.
To address this issue, Mikkola and Shabana proposed Absolute
Nodal Coordinate Formulation (ANCF) by using position and
position gradients as the nodal coordinates [17]. In ANCEF, the
global position field is defined as [18]

r=S(x,y)e, M

where x, y are element local coordinates, as shown in Figure 2A.
r is the global position vector based on global coordinates.
S(x,y) is the element shape function matrix based on local co-
ordinates; e is the vector of nodal coordinates that consist of
nodal position and position gradients as shown in Figure 2B, it
is formulated as,

ez[e' e’ e3:|T. )

For each node (n), this vector is given by

e"::[r” r’ r”}z{r" 661;: (Z}n} (3)

Compared to the traditional finite element method, ANCEF is
robust in analyzing the large structural deformation and rotation.
Firstly, ANCF directly uses position gradients at the nodes rather
than rotations, which means no magnitude limit of the rotation
within ANCF elements [17]. This reduces the number of ele-
ments required to represent complex shell structures. Secondly,
most existing finite element methods for analyzing the large de-
formation and rotation of plates and shells generate nonlinear
mass matrix, whereas the mass matrix in ANCEF is constant. This
allows the use of efficient algorithms for solving dynamic equa-
tions of motion [19][20]. Thirdly, ANCF uses the continuum me-
chanics approach where Green-Lagrange strain tensor is used to
describe the nonlinear strain-displacement relationships. As a re-
sult, this formulation can inherently account for all geometric
nonlinearities.
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In the next section, we formulate a high-fidelity dynamics
model for origami by using a variation of ANCF: iso-parametric
ANCEF (or simply iso-ANCF). Here, the inter-element continuity
conditions will be carefully handled to simulate behavior of
creases, as explained in Section 3.2.

Figure 2. Triangular element parameterization in ANCF method.
A. Local and global coordinate systems for ANCF element. B.
The formulation of vector of the nodal coordinates in ANCF
method, where the gradient vectors are defined based on ele-
ment local coordinates.

3. ISO-PARAMETRIC ANCF FOR ORIGAMI FOLDING
3.1 Governing Kinematic Relationship

3.1.1 Triangular Element Parametrization

Pappalardo et al. [21] furtherly developed iso-ANCF formula-
tion based on traditional ANCF. This formulation treats elements
as iso-parametric ones so that the same shape functions can be
used to describe their geometry and displacement. The nodal po-
sition gradients are defined based on the iso-parametric coordi-
nates instead of element spatial coordinates. In this way, it be-
comes easier to construct shape functions that satisfy the con-
sistency requirements for higher order elements with curved
boundaries. Furthermore, the integrals appeared in the dynamic
equations of motion becomes easier to evaluate because they can
be transformed into the reference domain as shown in Figure
4where the shell elements have simple shapes—and calculated
by the Gaussian quadrature rule.

In the 3D domain, a triangular element with curved sides can
be parametrized by three iso-parametric coordinates: &, #, and (.
Out of the three coordinates, only two are independent so they
satisfy the constraint equation &+7n+¢ =1 [21]. For example,

one canuse 7,and ¢, as the independent coordinates with the
origin at node 1, and the iso-parametric coordinate & can be de-
termined by constraint equation & =1-7, -4, (Figure 3A).
Here the subscript “i ” stands for independent coordinates. An
important advantage by using this set of coordinates is that the
position gradient vectors can be defined as tangents to the trian-
gle sides at the nodes (Figure 3B). This is crucial for modeling
the creases, as we will detail in Section 3.2.

Figure 3. Triangular element parameterization in Iso-ANCF
method. A. Independent iso-parametric coordinate system with
the origin at node 1. Here, the constraint equation
& =1-n,—-¢, applies. Any point in the element can be uniquely
determined by independent iso-parametric coordinates
(n,=a, {, =b), where a,be[0,1].B. The formulation of vec-
tor of the nodal coordinates in iso-ANCF method, where the gra-
dient vectors are defined based on independent iso-parametric

coordinates.

The position field of the iso-ANCF triangle element can be
written as

r=S(5;, 75 6,)e, )

where S is the shape function matrix based on independent
iso-parametric coordinates, which is

S=[sI s, 5,1 5,1 50 55,15 s,1]. &)

Here, I is the 3x3 identity matrix; and e is the vector of the nodal
coordinates which can be written as
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e= [rl L o R o o T , (6)
wherer, =0r/d&,, r, =0r/dn,,and r, =0dr/0g, are the nodal
position gradients defined with respect to the independent iso-
parametric coordinates, and superscripts 1, 2, 3 refer to the ele-
ment corner nodes ordered counterclockwise. The shape func-
tionss; (j =1,2,...,9) are included in the Appendix A.

3.1.2 Formulation of the Deformation Gradient
A key quantity in finite deformation analysis is the deformation
gradient tensor F. It describes the relative spatial positions of two
neighboring particles in the current configuration in terms of
their relative spatial positions in the initial configuration, so the
deformation gradient is central to the description of strain tensors
[17][22].

In the initial configuration (Figure 4), the global position
vector of an arbitrary point in the triangle element is defined as

X =Se,, %)

where S is the shape function matrix of the iso-ANCF triangle
element defined in (5); and e, is the vector of nodal coordinates
in the initial configuration.

In the current configuration (Figure 4), the global position
vector of an arbitrary point in the element is defined as

r =Se, (®

where S is the same shape function matrix of the iso-ANCF; and
e is the vector of nodal coordinates in the current configuration.
Hence, the deformation gradient tensor F is defined as

res, 8, oS,
—e¢ —e¢ —¢
ox  or oz
or _|98,, 8, 55, 9)
X |ax  or oz
s, 8, 3,
ox . o oz

€

where S, is i row of the shape function matrix; and X, Y, Z are
the global coordinates in the reference (initial) configuration.

The matrix of deformation gradients consists of derivatives
of the shape functions with respect to the global coordinates,
therefore, the derivatives 0s, /0X, 0s, /0Y, and 8s, /0Z need
to be related to ds, /0&,, 0s,/on,, and 8s, /0., where s,
are the scalar components in Equation (5). Using chain rule, one
can obtain

o | [ex ar azTan ] o]
¢ o5, 0& ¢ || ax ox
Os, |_|0X oY OZ || O | _yr| O | (10
on, on, Om, Onm, || 0Y oY
ds, oX oY oz || s s
%] o % wlel e

As shown in Figure 4, the transformation between scaled straight
element in reference/unit configuration and distorted element in
initial configuration is expressed in the element trasformation
matrix(Jacobian matrix, J), which defines the mapping between
the isoparametric coordinates and the global coordinates. It can
be calculated as

oS, oS, a8,

—¢€ —¢€
o " om " aog
oX asze0 aszeo aszeo. an
ox | o¢ on, o¢;

8, 08, O,
o, ° om0 og ]

i

Reference configuration

J=0X/0¢

Current configuration

F=0r/0X

Intial configuration

4
Figure 4. General motion of a spatial continuum body.

The inverse of both sides of Equation (10) is
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95 | gryr | B (12)
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L 0Z | o,

By inserting (5) into (11) to obtain J, which is then substi-
tuted into (12) and (9), one can obtain the expression of the de-
formation gradient F in terms of e.

3.2 Modeling of Origami Crease

Liu et al. [11] presented a nonlinear bar-hinge model, in which
the creases are treated as rotational springs that can store poten-
tial energy as they fold. The corresponding folding angle is de-
fined as the dihedral angle between two neighboring facets,
which are defined by three bar elements. This crease description
is valid only if the facets are planar or nearly planar as the ori-
gami deforms, i.e., it restricts the magnitude of facet defor-
mation. Moreover, when it comes to complex origami structures
with curved crease pattern, such as in Earwig wing [23], it is im-
practical to model it only by bar elements.

Based on the iso-ANCF method proposed in this paper, the
crease is modeled by rotational spring at the nodes and the cor-
responding folding angle is calculated based on the local surface
normal vectors at these nodes (Figure 5).

2

iso-ANCF elements

0.

Rotational spring

Rotational spring

Z

Figure 5. Modeling of origami crease. Here, the facet is modeled
as iso-ANCF elements, whereas the crease is modeled by rota-
tional springs at the nodes. The degree of rotation is measured
by the folding angle 6, which is defined based on the local surface
normal vectors at the nodes 1 and 3 of facet elementlandlIl,
respectively.

The folding energy of the crease is defined as

i ! 1
Uy = ZU}{J - szf (91 _Qf,O)z (13)

where / is the number of nodes with rotational springs along the
crease (in this model,/=2), and U, ; denotes the folding en-
ergy of the j™ rotational spring; 0, is the degree of rotation, aka.
the folding angle at the /" rotational spring, and 0, , is the corre-
sponding initial stress-free folding angle, which could be calcu-
lated by using basic geometric relations in the initial configura-
tion.
The localized stiffness of the crease is simply defined as

K =Lk (14)

where & is the bending modulus of the sheet defined as
k=E /12(1-v*), E,v is Young’s modulus and Poisson’s
ratio of the sheet. L is length scale factor (in units of length),
which defines the relative stiffness of the fold based on the ma-
terial, fabrication, and geometric properties [25].

As shown in Figure 5, the crease is modeled by two rota-
tional springs at nodes 1 and 3. Half of the stiffness from (14) is
distributed to each rotational spring, that is, the stiffness of rota-
tional spring at the nodes 1 and 3 is defined as

ky =k =Llry (15)
Y

The definition of folding angle 6, of the j™ rotational spring
can be given by

m-n
6 =arccos| ——— | mod 2, (16)
' (||m||'||"||J

where the symbol ‘mod’ means modulo operation; m and » are
the local surface normal vectors at the j rotational spring, that
is

o 11 S § 11 1
m=r, xr,, n=r, xr, . atnode l (17)
m=rxr’, n=r"xr?’. atnode3 (18)

Here, the operator ‘ x ’ between two vectors is the cross product.

In the framework of iso-ANCF method, the continuity equa-
tions of the rotational spring (aka. linear hinge constraint) at
nodes 1 and 3 can be expressed as

rllzrlll’ l‘_Ilzrlll’ (19)
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= 1‘1[3, l‘;3 —y (20)

It is worth highlighting that by using the iso-ANCF method,
the definition of folding angle € in equation (16) is valid for ori-
gami with curved crease pattern. This is a clear advantage com-
pared to the currently popular bar-hinge models, which assume
that the facet defined by three bar elements must remain planar.
Furthermore, iso-ANCF allows us to model complex shell struc-
tures by using a small number of elements.

3.3 Equations of Motion

To derive the governing dynamic equations of motion of origami
folding based on iso-ANCF method, we employ the Lagrange
equations

i(ﬁ_T)+(6_U+%):% (21)

dr e de  Oe de

In the subsections below, we detail the derivation of the
terms in (21), separately.

3.3.1 Work done by the external force

As shown in Figure 6, the definition of work done by distributed
external force vector f; (i.e. the surface traction vector for thin
shell structure) is

ij rdQ,, (22)

l]Q

where m is the total number of facet elements; r, is the global

position vector of element i. Based on the fundamental of con-
tinuum mechanics [22], equation (22) can be rewritten as

W =3[ fora0,. (23)

llQO

Here, fdQ, = f;,dQ,, is applied. dQ, and dQ,, is the infini-
tesimal surface area of facet element i in current and initial con-
figuration, respectively. f; and f;, is the external force vector
defined in current and initial configuration, respectively.

The integration of external work W, needs to be per-
formed over spatial domain in the initial configuration, which
can have an irregular and complex shape. Hence, it is easier to
perform the integration over the corresponding reference domain
as shown in Figure 6, where
A, = {(f,?],é’) |0<é&En,¢<,E+n+l = 1} . The mapping be-
tween the two domains is [18]

dQ, , =|J|dA, (24)

Here J is the Jacobian matrix in (11). So equation (22) can be
updated as

Wy =[5 £ I]dA,. (25)

IlA

The generalized external forces vector can be calculated as

Zj(—) fo|3]dA,. (26)

zlA

Here, the global position gradient vector can be written as

o _0Be _o 27)
oe oe
Hence,

Ms

Q,= j S” £, |3]dA,. (28)

i

b Time=0

Figure 6. Work done by the external force. Here, the origami is
modeled as thin shell structure, and we assume no body force
is applied when origami deforms.

3.3.2 Facet strain energy

Here, we assume the origami material is linearly elastic, but the
deformation is finite so geometric nonlinearity must be taken
into consideration [17]. We use Kirchhoff plate theory with non-
linear strain-displacement relationships to obtain elastic forces.
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The definition of strain energy of the facet elements can be writ-
ten as follows

U :iégj

i=1 10

& Eg,dQ, , +% [ k! Ek,dQ, (29)
QI.D

where E is the matrices of elastic coefficients for the plane-
stress conditions [26],

E 1 v 0
E_1 Slv 1 0 , (30)
“lo 0 a-w/2

where 4 is the thickness of facet.
Similar to derivation of equation (25), the strain energy of
facet elements can be further rewritten as

| =

[&7 Es,[3]aa, +% [k Ek,|3]dA,. 31)
i=l <A A
The strain energy in equation (31) consists of two compo-
nents. The first one comes from the longitudinal and shear defor-
mations in the midplane, and the second one comes from bending
and twisting. The nonlinear Green—Lagrange strain measure is
used to account for all geometric nonlinearity, and to ensure zero
strain under rigid body motions [27]. For the plane stress condi-
tions, the stresses in the plate thickness direction are assumed to
be zero and the strains in this direction are expressed as a func-
tion of the strains at the element mid-surface. The strain vector
g, at the mid-surface of element. i .is [28]

1

g =[g, &, 26,1, ¢ =E(r;[rxj -5). (32)

The first derivatives of the global position vector with re-

spect to global coordinates can be further derived from the defi-
nition of deformation gradient in Section 3.1.2 as,

b0 059 oS oS 0,
Yoex, ox, X, oy, oX,

i

= Se,

i

e=,(J")'Se (33)

where ;(J")™" denotes the component of (J)™" atits i row and
J" column; S, denotes the first derivatives of shape function ma-
trix with respect to the independent iso-parametric coordinates;
and S=,J")7'S,.

In order to calculate the bending and twisting deformation
of the facet elements, the curvature k, at the mid-surface of el-
ementi is defined as [25]

r'N
k, =[k, ky 2k12]T9 i~ "]N" > (34)

i

where N is the normal vector of the element mid-surface, and it
can be calculated as n=r, xr;. Here, the first and second de-
rivatives of the global position vector with respect to the inde-
pendent iso-parametric coordinates in Section 3.1.1 can be writ-
ten as

p o0 080 B _ge (35)

oy ox o

or 0(Se) 0S

= = = e=S e, (36)
oxx, Oxx, Oxx;

ij

where S, denotes the second derivatives of shape function matrix
with respect to independent iso-parametric coordinates.

The elemental internal force vector can be calculated using
the strain energy as follows

OU _ - %8y ok,
Q=% Z£<ae)EsezlJld z+£(6e)Ek,|J|d, 37)

i=1

Here, the gradients of strains can be written as

(%)T:[% 0%y ag_lz} (38)
oe oe oe de |’

)

1
o€.. B a(g(r; Iy _51'; ) 1 B(r;[rxj)

Oe oe 2 oOe
[, o) | o)
=—|r, +r,
21 71 Oe 7 Oe (39)
o( ;Se _
U (50 25D, ((geyr LSO
2 Oe oe
1 &
=e' [E(iST S+ 8! ,.S)} =e'S;.
where S = %(I.ST S+ 8T.S).
Similarly, the gradients of curvatures are
(%)T = {% _61(22 %}’ (40)
oe oe Oe  Oe
r'N

(i)
oky _ IN] l[rf aNJFNT%j_ 1 af( ) (41)

e oe  fl"oe  oe) froe’
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where f = ||N|| =+/N'N . In the case of stiff material, the last
component of equation (41) is small compared with the first one
so it can be neglected. Moreover,

o(r, xr : or, ,
6N —( ) _on, ><r.+r,.><—’:—a(s’e)><(S €)
e Oe oe Oe e ! (42)
a(s )
+(S,e) x 6é =S, x(S,e)+(S,e)xS,.

Hence

ok, oS e
_’fzi (Si_e)Ta_NJrNT_( y )
oe f| 77 oe Oe

- %[efsé (S, x(S,€)+(S,)xS ) +N'S, |.

(43)

The tangent stiffness matrix of the facet elements can be fur-
therly calculated as [18]

_0Q, (% 1. OF
K= Oe _;J(Ee) Eg(ae)|J|dAi---
| (44)

+f<—) £ (Epajan,

3.3.3 Creases folding energy
The definition of the folding energy of creases are discussed ear-
lier in Section 3.2. Here, the internal force vector and tangent
stiffness matrix of creases are provided by calculating from the
folding energy of creases.

The folding energy of creases is defined as

n i n i 1 2
U,= ZZ;UJ’.,/‘ = ZZ};’@ (Hj - 9/-,0) (43)
Jj= j=

where 7 is the number of creases. U,
ergy of the j" rotational spring.

Take the rotational spring at node 1 in Figure 5 as an exam-
ple, the internal force vector can be calculated as

. denotes the folding en-

ou,, 06
=L =k, (6,-6 ! (46)
Qf’l Oe ( 10) oe

Here, the first derivative (aka, gradients) of folding angle 6,
with respect to nodal coordinates can be summarized as

11
o0, [
—_— = m

11 2
o, ol

(47

i

nan a
ol |

06, 06,00
et @)
i i

where

- Hl 1 1
l' l' l'

and
|| || el

All other first derivatives of the folding angle 6, with respect

(50)

to nodal coordinates are 0 , since 6, is function of “, rc“, and
r;', as shown in equation (16) and (17). More details "of the der-

ivation of gradients of folding angle are elaborated in Appendix
B.
The tangent stiffness matrix can be further calculated as

oQ,, 00, _ a6, 50
K= e ~h e @ Th (0 -0u) 53¢ e

The complete Hessian matrix (the second-order derivative
of the folding angle with respect to nodal coordinates) has 9
blocks of submatrices, where each block is of size 3 by 3. Owing
to symmetry of the Hessian matrix, we only need to derive 6
blocks of such submatrices. For example, the first block, i.e. the
derivative with respect to the position gradient vector r;" at
node 1, is given by

oo _ |
ow)  |m[’

[ ®(r“><m)+(r“><m)®m] (52)

The operator * ® ’ between two vectors is the tensor product.
More details of the derivation of Hessian matrix are elaborated
in Appendix C.

Therefore, the internal force vector and tangent stiffness ma-
trix of rotational springs can be calculated as

Q= E"ZZ;Q,/-,j (53)

K, =>>K,, (54)

3.3.4 Kinetic energy
In the iso-ANCF method, the mass matrix of the plate element
can be obtained using the following expression [17]
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21
T=3~[pi'tdQ,. (55)
2510

where I; is the absolute velocity vector of facet element i, and it
can be written as

r =Se. (56)
Similar to the derivation of equation (25), the kinetic energy

of facet elements can be rewritten as

i=l1

T= f% [put"E |3]dA,, (57)
Ai

where p and p, are the mass density in current configuration
and initial configuration, respectively. Here, pdQ, = p,dQ, , is

applied.
Hence,
G| 1

T=)— Se,)" (Sé,)|J|dA, =—e"Me, (58)
27 [asey se)llaa, =5

where the mass matrix is

M

M:

i

M. = i [pS"S|3]dA, (59)
Al

i=1

3.4 Final Solution

In summary, by substituting equations (28), (37), (53) and (58)
into equation (21), one can update the dynamic equations of mo-
tion for origami folding as

Mé+Q,+Q, =Q,. (60)
Or it can be written as

Meé+K.e+K e=Q,. (61)

4

The noncommercial multibody and finite element research
code HOTINT is used for solving (60) or (61).

4. CONCLUSION

This paper presents a new high-fidelity dynamic model for
origami folding based on the iso—parametric Absolute Nodal Co-
ordinate Formulation (iso-ANCF). The iso-ANCF uses position
and position gradients instead of displacement and rotation as the
nodal coordinates, so it is efficient and robust for the large defor-
mation and rotation analysis of origami folding. In the context of
is0-ANCF method, this study develops a new crease model by

treating them as rotational springs at the crease nodes. The cor-
responding folding angle is defined based on the local surface
normal vectors at the crease nodes. Besides, based on the pro-
posed model, this paper formulates a new tangent stiffness ma-
trix of the creases and provides the final equations of motion for
origami folding. Compared to the currently popular origami me-
chanics models like the nonlinear bar-hinge model [11], this new
model is more advanced in that its definition of folding angle &
is valid for complex origami structures with curved crease pat-
tern. Besides, it is more consitent with the actural origami struc-
tures by using continuous shell elements instead of 1-D bar ele-
ment. Compared to the traditional finite element method, the iso-
ANCF methodallows complex origami structures to be simulated
using a smaller number of elements. Moreover, the dynamic
analysis of origami subjected to large deformation and rotations
is more computationally efficient due to the use of global posi-
tion gradients and shape functions
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APPENDIX

APPENDIX A: SHAPE FUNCTIONS OF ISO-ANCF ELEMENT
The shape functions of the iso-ANCF element introduced in (5)

1S

5, =&(&7+3¢(n+¢)+21¢) (62)
5 =3én(36 <) (63)
5 =3&0(3¢-n) (64)
sy=n(n* +3n(5 +&€)+24¢) (65)

(66)

so=3n (30 -¢)
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s=netn-<) (©7)
5, =¢(&7 +3¢ (& + )+ 26m) (68)
s =Lentic ) (©9)
5=36n(3¢ =) (70)

where ¢ , 5 , ¢ ,are the independent isoparametric coordinates.
Here subscript ; is omitted for notation convenience [21].
APPENDIX B: GRADIENTS OF FOLDING ANGLE

The derivation of gradients of folding angle ¢, at node 1 is shown
in follows.

0(7]arccos[ J
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The expressions contain terms that will reach singularity
whensin 6, = 0. Based on research work done by Liu et al. [11],
one can obtain equivalent expressions for the gradients that are
free of any singularities, that is
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Following the same procedure, one can obtain
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Based on research work

done by Liu et al. [11], one can obtain
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where

1 1 n 1
i r’]v rs’,

’ 1 and B= ul?
T 2]

(76)

All other first derivatives of the folding angle ¢ with respect
to nodal coordinates areo, since ¢, is function of (", 2, and r"
, as shown in equation (16) and (17).

APPENDIX C: HESSIAN MATRIX OF FOLDING ANGLE
The Hessian matrix appears in the tangent stiffness matrices of
rotational springs. The Hessian contains 9 blocks of submatrices
(of size 3 x 3), among which there are 6 independent blocks due
to symmetry.

Let us define a new operator ‘ o’ as

aOb=a®b+b®a, VabeR®

Note that «os results in a symmetric matrix. The 6 inde-
pendent blocks of the Hessian matrix of the rotation angle with
respect to the nodal coordinates are expressed as

sq__ || 77
T el 77
az'9| 3 il 78
6(1'}"')2 H H [nO(r xn)] ( )

vo__mor |7

= oO(r,) xm)|, (79)
CEETT T
029 n®r[11 1 80
L i m
3!"“6&"1 - H H HrmH H H [ O X")] ( )
6 _ o1
51‘:,’1(31‘;' _03><3 ( )
2’6, 00 o 20, _ 00
Ty .‘,.argl "o 5 .:.) (8 ,.a o gt (82)

Here, the symbol o,, means a 3 x 3 zero matrix.
Owing to symmetry, the other 3 blocks of the Hessian matrix
can be completed with the following identities

o6 83

or)'or)! _(Br”ar”) ’ (83)
%6,

W:(ﬁrmf’rm) > (84)
o°6

W:(arma;n) (85)
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