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ABSTRACT 
Origami-inspired structures and material systems have been 
used in many engineering applications because of their unique 
kinematic and mechanical properties induced by folding. How-
ever, accurately modeling and analyzing origami folding and the 
associated mechanical properties are challenging, especially 
when large deformation and dynamic responses need to be con-
sidered. In this paper, we formulate a high-fidelity model—based 
on the iso-parametric Absolute Nodal Coordinate Formulation 
(ANCF)—for simulating the dynamic folding behaviors of ori-
gami involving large deformation. The center piece of this new 
model is the characterization of crease deformation. To this end, 
we model the crease using rotational spring at the nodes. The 
corresponding folding angle is calculated based on the local sur-
face normal vectors. Compared to the currently popular analyt-
ical methods for analyzing origami, such as the rigid-facet and 
equivalent bar-hinge approach, this new model is more accurate 
in that it can describe the large crease and facet deformation 
without imposing many assumptions. Meanwhile, the ANCF 
based origami model can be more efficient computationally com-
pared to the traditional finite element simulations. Therefore, 
this new model can lay down the foundation for high-fidelity ori-
gami analysis and design that involve mechanics and dynamics. 

 
Keywords: Origami Dynamics, High-fidelity Modeling,  
Absolute Nodal Coordinate formulation (ANCF) 

 
1. INTRODUCTION 
Origami is the ancient art of folding paper into decorative shapes. 
Over the past several decades, this art has been transformed into 
a framework for designing and fabricating engineered systems 
such as deployable structures [1] and mechanical metamaterials 
[2]. Such a development in origami application calls for robust 
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and computationally efficient models to simulate and analyze the 
deformations induced by folding. To this end, many analytical 
methods have been proposed with different degrees of success.  

For rigid origamis that do not induce any facet deformation 
during folding, one can obtain a closed form solution for folding 
by assuming rigid facets and hinge-like creases, essentially turn-
ing the origami into 3D linkage mechanisms [3]. However, this 
method is limited to few origami designs such as the Miura-ori 
and its derivatives [4][5]. Moreover, it cannot describe any facet 
deformations like bending and twisting, which are inevitable or 
even desired in realistic origami applications.  

To accommodate the facet deformations, several bar-hinge 
methods have been developed. For example, Resch and Christi-
ansen exploited linear elastic rotational hinges for the folding 
creases, and modelled each facet using a plane stress element [6]. 
Schenk [7] and later Li et al. [8] applied this bar-hinge method 
to Miura-ori sheets to examine their fundamental modes of de-
formation via eigen-analysis. However, bar-hinge methods were 
initially intended for problems of infinitesimal deformation since 
they used linear elasticity formulation [9][10]. To address this 
limitation, Liu et al. [11] and Gillman et al. [12] developed non-
linear bar-hinge models that considered both geometric and ma-
terial nonlinearities. These nonlinear models are significantly 
more capable, but they still only provide insights into the global 
behavior of origami folding and cannot analyze the local origami 
deformations with a high resolution. 

Besides the reduced-order analytical models, finite element 
methods (FEM) were also used to simulate origami folding. In 
FEM, the facets are typically meshed using shell elements. The 
challenge here is to properly model the creases because they ex-
hibit highly concentrated stress and strain during folding. To our 
best of knowledge, two crease modeling techniques have been 
developed so far [13]. One is to use additional “hinge connection 
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elements” to join the overlapping shell element nodes along the 
creases, and then assign rotational stiffness to these hinge ele-
ments. For example, Zhou et al. modeled the crease as hinge 
joints with a revolute-type connector element inserted at the cen-
ter of the crease [14]. Filipov et al. [15] modeled the crease as 
elastic rotational springs at the nodes of interconnected shell el-
ements (Figure 1.) and the spring coefficient is assumed inde-
pendent of folding angle and scale linearly with the fold length. 
The other method of modeling the creases in FEM is to use a 
refined shell element mesh near the creases and assign reduced 
stiffness and strength properties [16]. Compared to the bar-hinge 
models, the finite element models can provide more information 
like the stress/strain distribution near the creases and localized 
buckling in the facets. However, they are computationally expen-
sive, and more importantly, the localized instabilities caused by 
large element deformation can prevent the simulations to conver-
gence quickly.  

 

 
 
Figure 1. Traditional finite element formulations of origami. Here, 
the facet is modeled as conventional shell elements, whereas 
the crease is treated as linear elastic rotational springs at the 
nodes of interconnected shell elements. Figure adapted with 
permission [14]. 

 
Therefore, the objective of this study is to propose and for-

mulate a high-fidelity dynamic model of origami using a finite-
element inspired approach. Instead of meshing the origami sheets 
with many elements, we propose to exploit the tessellated nature 
of origami and treat each facet as one shell element. To ensure 
the accuracy, we adopt the iso-parametric Absolute Nodal Coor-
dination Formulation (referred to as iso-ANCF hereafter), which 
is efficient and robust for dynamic analysis of structure under 
large deformations and rotations. To complete this new model, 
we develop a new crease model by treating them as rotational 
springs at the crease nodes. Based on this, we also formulate a 
new tangent stiffness matrix of the creases and provide the final 
equations of motion for origami folding. Compared to existing 
nonlinear bar-hinge model [11], our model can be more accurate 
for dynamic analysis of complex origami structures with curved 
crease patterns. Also, it can be more computationally efficient 
than that by using tradition FEM. Therefore, the proposed model 

could strike a balance between accuracy and computational effi-
ciency, thus facilitate the future advancement of origami design 
and analysis. 

The remainder of this paper is organized as follows. Section 
2 briefly reviews the basics of ANCF. Section 3 constructs the 
new model for origami folding using the iso-ANCF method, with 
special attentions to the modeling of origami crease. Governing 
equation of motion is formulated at the end of this section. Con-
clusions are drawn in Section 4. 

 
 
2. FUNDAMENTALS OF ANCF 
Traditional finite element methods use displacement and rotation 
as the nodal coordinates, but they turn out to be numerically un-
stable and inefficient when large deformations or rotations occur. 
To address this issue, Mikkola and Shabana proposed Absolute 
Nodal Coordinate Formulation (ANCF) by using position and 
position gradients as the nodal coordinates [17]. In ANCF, the 
global position field is defined as [18] 

 
( , ) ,x y=r S e  (1) 

 
where x, y are element local coordinates, as shown in Figure 2A. 
r  is the global position vector based on global coordinates. 

( , )x yS  is the element shape function matrix based on local co-
ordinates; e is the vector of nodal coordinates that consist of 
nodal position and position gradients as shown in Figure 2B, it 
is formulated as,  

 
1 2 3 .

T
 =  e e e e  (2) 

 
For each node (n), this vector is given by 

 

.
n n

n n n n n
x y x y

 ∂ ∂ == =    ∂ ∂ 

r re r r r r  (3) 

 
Compared to the traditional finite element method, ANCF is 

robust in analyzing the large structural deformation and rotation. 
Firstly, ANCF directly uses position gradients at the nodes rather 
than rotations, which means no magnitude limit of the rotation 
within ANCF elements [17]. This reduces the number of ele-
ments required to represent complex shell structures. Secondly, 
most existing finite element methods for analyzing the large de-
formation and rotation of plates and shells generate nonlinear 
mass matrix, whereas the mass matrix in ANCF is constant. This 
allows the use of efficient algorithms for solving dynamic equa-
tions of motion [19][20]. Thirdly, ANCF uses the continuum me-
chanics approach where Green-Lagrange strain tensor is used to 
describe the nonlinear strain-displacement relationships. As a re-
sult, this formulation can inherently account for all geometric 
nonlinearities. 

X

Y

Z
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In the next section, we formulate a high-fidelity dynamics 
model for origami by using a variation of ANCF: iso-parametric 
ANCF (or simply iso-ANCF). Here, the inter-element continuity 
conditions will be carefully handled to simulate behavior of 
creases, as explained in Section 3.2. 
  

 
 

Figure 2. Triangular element parameterization in ANCF method. 
A. Local and global coordinate systems for ANCF element. B.  
The formulation of vector of the nodal coordinates in ANCF 
method, where the gradient vectors are defined based on ele-
ment local coordinates. 

 
3. ISO-PARAMETRIC ANCF FOR ORIGAMI FOLDING 
3.1 Governing Kinematic Relationship  
3.1.1 Triangular Element Parametrization 
Pappalardo et al. [21] furtherly developed iso-ANCF formula-
tion based on traditional ANCF. This formulation treats elements 
as iso-parametric ones so that the same shape functions can be 
used to describe their geometry and displacement. The nodal po-
sition gradients are defined based on the iso-parametric coordi-
nates instead of element spatial coordinates. In this way, it be-
comes easier to construct shape functions that satisfy the con-
sistency requirements for higher order elements with curved 
boundaries. Furthermore, the integrals appeared in the dynamic 
equations of motion becomes easier to evaluate because they can 
be transformed into the reference domain as shown in Figure 
4where the shell elements have simple shapes—and calculated 
by the Gaussian quadrature rule.  

In the 3D domain, a triangular element with curved sides can 
be parametrized by three iso-parametric coordinates: ξ, η, and ζ. 
Out of the three coordinates, only two are independent so they 
satisfy the constraint equation 1ξ η ζ+ + =  [21]. For example, 

one can use iη and iζ  as the independent coordinates with the 
origin at node 1, and the iso-parametric coordinate ξ can be de-
termined by constraint equation 1 i iξ η ζ= − −  (Figure 3A).  
Here the subscript “ i ” stands for independent coordinates. An 
important advantage by using this set of coordinates is that the 
position gradient vectors can be defined as tangents to the trian-
gle sides at the nodes (Figure 3B). This is crucial for modeling 
the creases, as we will detail in Section 3.2. 
 

      
 

Figure 3. Triangular element parameterization in Iso-ANCF 
method. A. Independent iso-parametric coordinate system with 
the origin at node 1. Here, the constraint equation 

1 i iξ η ζ= − −  applies. Any point in the element can be uniquely 
determined by independent iso-parametric coordinates 
( ,  ),i ia bη ζ= =  where [ ], 0,1a b∈ . B. The formulation of vec-
tor of the nodal coordinates in iso-ANCF method, where the gra-
dient vectors are defined based on independent iso-parametric 
coordinates. 

 
The position field of the iso-ANCF triangle element can be 

written as 
 
( , , ) ,i i iξ η ζ=r S e  (4) 

 
where S   is the shape function matrix based on independent 
iso-parametric coordinates, which is  

 
[ ]1 2 3 4 5 6 7 8 9                .s s s s s s s s s=S I I I I I I I I I  (5) 
 

Here, I is the 3×3 identity matrix; and e is the vector of the nodal 
coordinates which can be written as 
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1 1 1 2 2 2 3 3 3              , 
i i i i i i

T

η ζ ζ ξ ξ η =  e r r r r r r r r r  (6) 

 
where ,

i iξ ξ= ∂ ∂r r ,
i iη η= ∂ ∂r r  and  

i iζ ζ= ∂ ∂r r  are the nodal 
position gradients defined with respect to the independent iso-
parametric coordinates, and superscripts 1, 2, 3 refer to the ele-
ment corner nodes ordered counterclockwise. The shape func-
tions js ( 1, 2,...,9)j = are included in the Appendix A.   

 
3.1.2 Formulation of the Deformation Gradient 
A key quantity in finite deformation analysis is the deformation 
gradient tensor F. It describes the relative spatial positions of two 
neighboring particles in the current configuration in terms of 
their relative spatial positions in the initial configuration, so the 
deformation gradient is central to the description of strain tensors 
[17][22]. 

In the initial configuration (Figure 4), the global position 
vector of an arbitrary point in the triangle element is defined as 

 

0 ,=X Se  (7) 
 

where S is the shape function matrix of the iso-ANCF triangle 
element defined in (5); and 0e is the vector of nodal coordinates 
in the initial configuration.  

In the current configuration (Figure 4), the global position 
vector of an arbitrary point in the element is defined as 

 
,=r Se  (8) 

 
where S is the same shape function matrix of the iso-ANCF; and 
e is the vector of nodal coordinates in the current configuration. 
Hence, the deformation gradient tensor F is defined as 

 
1 1 1

2 2 2

3 32

,

X Y Z

X Y Z

X Y Z

∂ ∂ ∂ 
 ∂ ∂ ∂ 
∂ ∂ ∂∂  = =  ∂ ∂ ∂ ∂
 
∂ ∂∂ 
 ∂ ∂ ∂ 

S S Se e e

S S SrF e e e
X

S SSe e e

 (9) 

 
where iS is ith row of the shape function matrix; and X, Y, Z are 
the global coordinates in the reference (initial) configuration. 

The matrix of deformation gradients consists of derivatives 
of the shape functions with respect to the global coordinates, 
therefore, the derivatives ,ks X∂ ∂  ,ks Y∂ ∂  and 

ks Z∂ ∂  need 
to be related to ,iks ξ∂ ∂   ,k is η∂ ∂   and ,iks ζ∂ ∂   where 

ks  

are the scalar components in Equation (5). Using chain rule, one 
can obtain 

 

.

kk

i i i i

T

i i i i

k

k

i i ii

k k

k kk

s X Y Z s s
X X

s s sX Y Z
Y Y
s ss X Y Z
Z Z

ξ ξ ξ ξ

η η η η

ζ ζ ζζ

   ∂ ∂ ∂ ∂ ∂ ∂          ∂ ∂ ∂ ∂ ∂ ∂          ∂ ∂ ∂∂ ∂ ∂    = =       ∂ ∂ ∂ ∂ ∂ ∂           ∂ ∂∂ ∂ ∂ ∂           ∂ ∂   ∂ ∂ ∂∂      

J  (10) 

 
As shown in Figure 4, the transformation between scaled straight 
element in reference/unit configuration and distorted element in 
initial configuration is expressed in the element trasformation 
matrix(Jacobian matrix, J), which defines the mapping between 
the isoparametric coordinates and the global coordinates. It can 
be calculated as 

 

1 1 1
0 0 0

2 2 2
0 0 0

3 32
0 0 0

.

i i i

i i i

i i i

ξ η ζ

ξ η ζ

ξ η ζ

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂∂

= =  
∂ ∂ ∂ ∂ 

 ∂ ∂∂
 
∂ ∂ ∂  

S S Se e e

S S SXJ e e e

S SSe e e

χ
 (11) 

 
 

 

 
 

Figure 4. General motion of a spatial continuum body. 
 
The inverse of both sides of Equation (10) is 
 

J=∂X/∂ξ
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i
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i
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i
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ss
X
s s
Y
s s
Z

ξ

η

ζ

− ⋅

 ∂∂     ∂∂     ∂ ∂  =   ∂ ∂    ∂ ∂    ∂  ∂  

J  (12) 

 
By inserting (5) into (11) to obtain J, which is then substi-

tuted into (12) and (9), one can obtain the expression of the de-
formation gradient F in terms of e. 
 
3.2 Modeling of Origami Crease 
Liu et al. [11] presented a nonlinear bar-hinge model, in which 
the creases are treated as rotational springs that can store poten-
tial energy as they fold. The corresponding folding angle is de-
fined as the dihedral angle between two neighboring facets, 
which are defined by three bar elements. This crease description 
is valid only if the facets are planar or nearly planar as the ori-
gami deforms, i.e., it restricts the magnitude of facet defor-
mation. Moreover, when it comes to complex origami structures 
with curved crease pattern, such as in Earwig wing [23], it is im-
practical to model it only by bar elements. 

Based on the iso-ANCF method proposed in this paper, the 
crease is modeled by rotational spring at the nodes and the cor-
responding folding angle is calculated based on the local surface 
normal vectors at these nodes (Figure 5). 

 

 
 
Figure 5. Modeling of origami crease. Here, the facet is modeled 
as iso-ANCF elements, whereas the crease is modeled by rota-
tional springs at the nodes. The degree of rotation is measured 
by the folding angle θ, which is defined based on the local surface 
normal vectors at the nodes 1 and 3 of facet element Ι and II , 
respectively. 

 
The folding energy of the crease is defined as 
 

( )2

,0
1 1

,
1
2

l l

f jf f j j
j j

U kU θ θ
= =

= = −∑ ∑  (13) 

 
where l  is the number of nodes with rotational springs along the 
crease (in this model, 2l = ), and ,f jU  denotes the folding en-
ergy of the jth rotational spring; jθ is the degree of rotation, aka. 
the folding angle at the jth rotational spring, and ,0jθ is the corre-
sponding initial stress-free folding angle, which could be calcu-
lated by using basic geometric relations in the initial configura-
tion. 

The localized stiffness of the crease is simply defined as  
 

*
F

l
Lk k
L

=  (14) 

 
where k   is the bending modulus of the sheet defined as 

3 2/12(1 )k Et v= −  , E  , v   is Young’s modulus and Poisson’s 
ratio of the sheet. *L  is length scale factor (in units of length), 
which defines the relative stiffness of the fold based on the ma-
terial, fabrication, and geometric properties [25].  

As shown in Figure 5, the crease is modeled by two rota-
tional springs at nodes 1 and 3. Half of the stiffness from (14) is 
distributed to each rotational spring, that is, the stiffness of rota-
tional spring at the nodes 1 and 3 is defined as  

 

*

1 1
2 2

F
f l

Lk k k
L

==  (15) 

  
The definition of folding angle jθ of the jth rotational spring 

can be given by 
 

arccos      mod  2π,jθ
 ⋅

=   ⋅ 

m n
m n

 (16) 

 
where the symbol ‘mod’ means modulo operation; m and n are 
the local surface normal vectors at the jth rotational spring, that 
is 

 
Ι1 Ι1
i iη ζ= ×r rm , II1 II1.

i iζ η= ×r rn  at node 1 (17) 
 

Ι3 Ι3
i iξ η= ×r rm , II3 II3.

i iξ ζ= ×r rn  at node 3 (18) 
 

Here, the operator ‘× ’ between two vectors is the cross product.   
In the framework of iso-ANCF method, the continuity equa-

tions of the rotational spring (aka. linear hinge constraint) at 
nodes 1 and 3 can be expressed as  

 
 I1  II1  I1  II1             ,  ,

i iζ η= =r r r r  (19) 

rI1ηi

rI1ζi

X

Y

Z

rII1ζi
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I3 II3  I3  II3            , .  

i iξ ξ= =r r r r  (20) 

 
It is worth highlighting that by using the iso-ANCF method, 

the definition of folding angleθ  in equation (16) is valid for ori-
gami with curved crease pattern. This is a clear advantage com-
pared to the currently popular bar-hinge models, which assume 
that the facet defined by three bar elements must remain planar. 
Furthermore, iso-ANCF allows us to model complex shell struc-
tures by using a small number of elements. 

 
3.3 Equations of Motion 
To derive the governing dynamic equations of motion of origami 
folding based on iso-ANCF method, we employ the Lagrange 
equations 

 
d ( ) ( ) .
d

f extUT U
t

W∂ ∂∂ ∂
+ + =

∂ ∂ ∂ ∂e e e e

 (21) 

 
In the subsections below, we detail the derivation of the 

terms in (21), separately. 
 

3.3.1 Work done by the external force 
As shown in Figure 6, the definition of work done by distributed 
external force vector if (i.e. the surface traction vector for thin 
shell structure) is 

 

1 Ω

,dΩ
i

m

ext i i i
i

W
=

⋅= ∑∫ rf  (22) 

 
where m is the total number of facet elements; ir  is the global 
position vector of element i. Based on the fundamental of con-
tinuum mechanics [22], equation (22) can be rewritten as 

  

,0

,0 ,0
1 Ω

.dΩ
i

m

ext i i i
i

W
=

⋅= ∑ ∫ rf  (23) 

 
Here, ,0 ,0dΩ dΩi i i i=f f  is applied. dΩi

  and 
,0dΩi

  is the infini-
tesimal surface area of facet element i in current and initial con-
figuration, respectively. if  and 

,0if  is the external force vector 
defined in current and initial configuration, respectively. 

The integration of external work 
extW   needs to be per-

formed over spatial domain in the initial configuration, which 
can have an irregular and complex shape. Hence, it is easier to 
perform the integration over the corresponding reference domain 
as shown in Figure 6, where 

( ){ }A , , | 0 , , 1, 1i ξ η ζ ξ η ζ ξ η ζ= ≤ ≤ + + =  . The mapping be-
tween the two domains is [18] 

 

,0dΩ dAi i= J  (24) 

 

Here J is the Jacobian matrix in (11). So equation (22) can be 
updated as 

 

,0
1 A

d .A
i

m
T

ext i i i
i

W
=

= ∑∫r Jf  (25) 

 
The generalized external forces vector can be calculated as 
 

,0
1 A

( A .) d
i

m
Text

g
i

i i
i

W
=

∂
∂

∂
= =

∂ ∑∫e
J

e
r

Q f  (26) 

 
Here, the global position gradient vector can be written as 

 
( ) .∂

=
∂

=
∂ ∂

Se S
e e
r  (27) 

 
Hence, 
 

,0
1 A

d .A
i

m

ig
T

i
i=

= ∑∫Q S Jf  (28) 

 

 
 
Figure 6. Work done by the external force. Here, the origami is 
modeled as thin shell structure, and we assume no body force 
is applied when origami deforms. 
 
3.3.2 Facet strain energy  
Here, we assume the origami material is linearly elastic, but the 
deformation is finite so geometric nonlinearity must be taken 
into consideration [17]. We use Kirchhoff plate theory with non-
linear strain-displacement relationships to obtain elastic forces. 
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The definition of strain energy of the facet elements can be writ-
ten as follows 

 

,0 ,0

2
,0 ,0

1 Ω Ω

,1 1dΩ dΩ
2 2

i i

m
T T
i i i i i i

i

U h
=

+= ∑ ∫ ∫ε Eε k Ek  (29) 

 
where E   is the matrices of elastic coefficients for the plane-
stress conditions [26], 

 

2

1 0
1 0 ,

1
0 0 (1 ) / 2

E
ν

ν
ν

ν

 
 =  −
 − 

E     (30) 

 
where h is the thickness of facet. 

Similar to derivation of equation (25), the strain energy of 
facet elements can be further rewritten as 

 

2

1 A A

1 1dA .dA
2 2

i i

m
T T
i i i i i i

i

U h
=

+= ∑ ∫ ∫J Jε Eε k Ek  (31) 

 
The strain energy in equation (31) consists of two compo-

nents. The first one comes from the longitudinal and shear defor-
mations in the midplane, and the second one comes from bending 
and twisting. The nonlinear Green–Lagrange strain measure is 
used to account for all geometric nonlinearity, and to ensure zero 
strain under rigid body motions [27]. For the plane stress condi-
tions, the stresses in the plate thickness direction are assumed to 
be zero and the strains in this direction are expressed as a func-
tion of the strains at the element mid-surface. The strain vector

iε at the mid-surface of element. i .is [28] 
 

11 22 12[ ] ,2 T
i ε ε ε=ε   1 ( ).

2 i j

T
ij X X ijε δ= −r r  (32) 

 
The first derivatives of the global position vector with re-

spect to global coordinates can be further derived from the defi-
nition of deformation gradient in Section 3.1.2 as, 

 

1( ) = = ( )

= ,

i

j T
X ij j

i i i j i

i

X X X X
χ

χ
−∂∂ ∂ ∂ ∂

= = =
∂ ∂ ∂ ∂ ∂

r Se S Sr e e J S e

     Se
 (33) 

 
where 1( )T

ij
−J  denotes the component of 1( )T −J  at its ith row and 

jth column; jS denotes the first derivatives of shape function ma-
trix with respect to the independent iso-parametric coordinates; 
and 1( )T

i ij j
−S = J S . 

In order to calculate the bending and twisting deformation 
of the facet elements, the curvature 

ik  at the mid-surface of el-
ement i is defined as [25] 

 

T
11 22 12[ 2 ] ,i k k k=k   ,

T
ij

ijk ≈
r N
N

 (34) 

 
where N  is the normal vector of the element mid-surface, and it 
can be calculated as .i j×n = r r  Here, the first and second de-
rivatives of the global position vector with respect to the inde-
pendent iso-parametric coordinates in Section 3.1.1 can be writ-
ten as 

( ) ,i i
i i iχ χ χ

∂ ∂ ∂
= = =
∂ ∂ ∂

r Se Sr e = S e  (35) 

 
( ) ,ij ij

i j i j i jχ χ χ χ χ χ
∂ ∂ ∂

= = =
∂ ∂ ∂

r Se Sr e = S e  (36) 

 
where ijS denotes the second derivatives of shape function matrix 
with respect to independent iso-parametric coordinates. 

The elemental internal force vector can be calculated using 
the strain energy as follows 

 

1 A A

.( ) dA ( ) dA
i i

m
T Ti i

i i k i i
i

e
U

ε
=

∂ ∂
∂

+
∂

∂
= =
∂ ∑∫ ∫Q
e

J
e

J
e
ε k

E ε E k  (37) 

 
Here, the gradients of strains can be written as 

 
11 22 1T 2( ) ,i ε ε ε∂ ∂ ∂ ∂ =  ∂ ∂ ∂ ∂ e e e e

ε  (38) 

 
T T

T T

T T

T T T

1 ( )) ( )12
2

( ) ( )1
2

( ) ( )1 ( ) ( )
2

1 ( ) .
2

(
i j i j

j i

i j

X X ij X Xij

X X
X X

j i
i i

T
i j j i ij

ε

ε δ−
=

 
 
  
 

=  
 
 = =

∂ ∂∂
=

∂ ∂ ∂
∂ ∂

= +
∂ ∂

∂
+

∂



∂



∂



r r r r

e e e
r r

r r
e e

Se Se
Se Se

e e

e S S + S S e S

 (39) 

 

where T T1 ( )
2ij i j j i

ε =S S S + S S . 

Similarly, the gradients of curvatures are 
 

11 22 1T 2( ) ,i k k k∂ ∂ ∂ ∂ =  ∂ ∂ ∂ ∂ e e e e
k  (40) 

 

( )2

)(
1 1 ,

T
ij

ij ijT T T
ij ij

k f
f f

∂ ∂ ∂
+ −

∂
∂

≈ = ∂ ∂ ∂ ∂ ∂ 

r N
rN Nr N r N

e e e e e
 

(41) 
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where Tf = =N N N  . In the case of stiff material, the last 
component of equation (41) is small compared with the first one 
so it can be neglected. Moreover, 

 
( ) ( )

( )

( )
( ) ( ) ( ) .

i j ji i
j i j

j
i i j i j

∂ ∂ ∂ ∂

∂ × ∂∂ ∂∂
= = × + × = ×

∂
+ × = × + ×

∂

∂

r r rr S eN r r S e
e e e e e

S e
S e S S e S e S

e

 (42) 

Hence 
 

( )1 ( )

1 ( ( ) ( ) ) .

ij ijT T
ij

T T T
ij i j i j ij

f

f

k ∂ ∂
+ 

 

 = × + × 

∂



≈
∂ ∂

+

∂

S eNS e N
e e e

e S S S e S e S N S
 (43) 

 
The tangent stiffness matrix of the facet elements can be fur-

therly calculated as [18] 
 

1 A

A

( ) ( ) dA

( ) ) .(

..

dA

.
i

i

m
Ti i

i
i

Ti i
k

e
e

i

ε
=

∂ ∂
∂ ∂

∂

∂
= =

∂

∂
∂

+
∂

∑∫

∫

Q
K

e e e

e e

J

J

ε ε
E

k k
E

 (44) 

 
3.3.3 Creases folding energy 
The definition of the folding energy of creases are discussed ear-
lier in Section 3.2. Here, the internal force vector and tangent 
stiffness matrix of creases are provided by calculating from the 
folding energy of creases. 

The folding energy of creases is defined as 
 

( )2

,0
1 1

,
1
2

n l n l

f f j j
j j

f jU kU θ θ
= =

= −=∑∑ ∑∑  (45) 

 
where n is the number of creases. ,f jU  denotes the folding en-
ergy of the jth rotational spring. 

Take the rotational spring at node 1 in Figure 5 as an exam-
ple, the internal force vector can be calculated as 

 

( ) 1
1 1,1 0

,1
, f

f
f k

U θ
θ θ

∂
= =

∂
∂

−
∂

Q
e e

 (46) 

 
Here, the first derivative (aka, gradients) of folding angle 1θ

with respect to nodal coordinates can be summarized as 
 

Ι1
1
Ι1 2 ,i

i

ζ

η

θ∂
=

∂r

r
m

m
 (47) 

 

II1
1

II1 2 ,i

i

η

ζ

θ∂
=

∂

r

r
n

n
 (48) 

 

1 1 1
I1 II1 Ι1 ,
i i i

A B
ζ ζ η

θ θ θ∂ ∂ ∂
= −

∂ ∂ ∂r r r
 (49) 

 
where 
 

II1 II1

2II1

i i

i

A ζ η

η

=
⋅r r

r
  and  

Ι1 Ι1

2Ι1

i i

i

B η ζ

ζ

=
⋅r r

r
 (50) 

 
All other first derivatives of the folding angle 1θ with respect 

to nodal coordinates are 0 , since 1θ is function of Ι1,
iη

r I1,
iζ

r and 

II1
iζ

r , as shown in equation (16) and (17). More details of the der-
ivation of gradients of folding angle are elaborated in Appendix 
B.  

The tangent stiffness matrix can be further calculated as 
 

( )
2

1 1 1
1 1,

,1
,1 0 2f f

f
f k kθ θ θ

θ θ
∂ ∂∂

= =
∂

∂
⊗ + −

∂ ∂ ∂

Q
K

e e e e
 (51) 

 
The complete Hessian matrix (the second-order derivative 

of the folding angle with respect to nodal coordinates) has 9 
blocks of submatrices, where each block is of size 3 by 3. Owing 
to symmetry of the Hessian matrix, we only need to derive 6 
blocks of such submatrices. For example, the first block, i.e. the 
derivative with respect to the position gradient vector Ι1

iη
r   at 

node 1, is given by 
 

Ι12
Ι1 Ι11

Ι1 42 ( ) ( ) ,
( )

i

i i

i

ζ
ζ ζ

η

θ∂  = − ⊗ + ⊗ ∂
× ×

r

r
m r m r m m

m
 (52) 

 
The operator ‘⊗ ’ between two vectors is the tensor product. 

More details of the derivation of Hessian matrix are elaborated 
in Appendix C.  

Therefore, the internal force vector and tangent stiffness ma-
trix of rotational springs can be calculated as 

 

,
1

n l

j
f f j

=

= ∑∑Q Q  (53) 

 

,
1

n l

j
f f j

=

= ∑∑K K  (54) 

 
3.3.4 Kinetic energy 
In the iso-ANCF method, the mass matrix of the plate element 
can be obtained using the following expression [17] 
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T

1 Ω

1 .dΩ
2

i

m

i i
i

T ρ
=

= ∑ ∫ r r i  (55) 

 
where ri  is the absolute velocity vector of facet element i, and it 
can be written as 

 
.=r Se   (56) 

 
Similar to the derivation of equation (25), the kinetic energy 

of facet elements can be rewritten as 
 

T
0

1 A

1 dA
2

,
i

m

i i
i

T ρ
=

= ∑ ∫ r r J i  (57) 

 
where ρ  and 

0ρ  are the mass density in current configuration 
and initial configuration, respectively. Here, 0 ,0dΩ dΩi iρ ρ=  is 
applied.  

Hence, 
 

T
0

1 A

1 1( ) ( ) dA ,
2 2

i

m
T

i i i
i

T ρ
=

== ∑ ∫ Se Se J e Me     (58) 

 
where the mass matrix is 
 

0
1 1 A

dA
i

m m
T

i i
i i

ρ
= =

=∑ ∑∫M = M S S J  (59) 

 
3.4 Final Solution 
In summary, by substituting equations (28), (37), (53) and (58) 
into equation (21), one can update the dynamic equations of mo-
tion for origami folding as 

 
.e f gMe + Q + Q = Q  (60) 

 
Or it can be written as 

 
.e f gMe + K e + K e = Q  (61) 

 
The noncommercial multibody and finite element research 

code HOTINT is used for solving (60) or (61). 
 

4. CONCLUSION 
This paper presents a new high-fidelity dynamic model for 

origami folding based on the iso-parametric Absolute Nodal Co-
ordinate Formulation (iso-ANCF). The iso-ANCF uses position 
and position gradients instead of displacement and rotation as the 
nodal coordinates, so it is efficient and robust for the large defor-
mation and rotation analysis of origami folding. In the context of 
iso-ANCF method, this study develops a new crease model by 

treating them as rotational springs at the crease nodes. The cor-
responding folding angle is defined based on the local surface 
normal vectors at the crease nodes. Besides, based on the pro-
posed model, this paper formulates a new tangent stiffness ma-
trix of the creases and provides the final equations of motion for 
origami folding. Compared to the currently popular origami me-
chanics models like the nonlinear bar-hinge model [11], this new 
model is more advanced in that its definition of folding angleθ
is valid for complex origami structures with curved crease pat-
tern. Besides, it is more consitent with the actural origami struc-
tures by using continuous shell elements instead of 1-D bar ele-
ment. Compared to the traditional finite element method, the iso-
ANCF methodallows complex origami structures to be simulated 
using a smaller number of elements. Moreover, the dynamic 
analysis of origami subjected to large deformation and rotations 
is more computationally efficient due to the use of global posi-
tion gradients and shape functions 
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APPENDIX 
 

APPENDIX A: SHAPE FUNCTIONS OF ISO-ANCF ELEMENT 
The shape functions of the iso-ANCF element introduced in (5) 
is 
 

( )( )2
1 3 2s ξ ξ ξ η ζ ηζ= + + +  (62) 

 
( )2

1 3
3

s ξη ξ ζ= −  (63) 

 
( )3

1 3
3

s ξζ ξ η= −  (64) 

 
( )( )2

4 3 2s η η η ζ ξ ζξ= + + +  (65) 

 
( )5

1 3
3

s ηζ η ξ= −  (66) 
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( )6
1 3
3

s ηξ η ζ= −  (67) 

 
( )( )2

7 3 2s ζ ζ ζ ξ η ξη= + + +  (68) 

 
( )8

1 3
3

s ζη ζ η= −  (69) 

 
( )9

1 3
3

s ζη ζ ξ= −  (70) 

 
where ξ  , η  , ζ  ,are the independent isoparametric coordinates. 
Here subscript i is omitted for notation convenience [21]. 
APPENDIX B: GRADIENTS OF FOLDING ANGLE   
The derivation of gradients of folding angle 1θ at node 1 is shown 
in follows. 
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(71) 

 
The expressions contain terms that will reach singularity 

when 1sin 0θ = . Based on research work done by Liu et al. [11], 
one can obtain equivalent expressions for the gradients that are 
free of any singularities, that is 
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Following the same procedure, one can obtain 
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m n m n

 

(74) 

 
Based on research work done by Liu et al. [11], one can obtain 
 

( ) ( )

( ) ( )

( ) ( )

2 2
II1 Ι11

3 3I1
1 1

II1 Ι1
3 3

1 1

II1 Ι1
1 1II1 Ι1

3 3II1 Ι1
1 1

II1 II1

II

1 1
sin sin

1 1
sin sin

sin sin1 1
sin sin

i i

i

i i

i i

i i

i i

i i

i

ζ η
ζ

ζ η

η ζ
ζ η

η ζ

ζ η

η

θ
θ θ

θ θ

θ θ

θ θ

× ×

×

− ⋅ − ⋅∂
= +

∂

× × × ×
= +

⋅
×

×

⋅

× ×
= +

⋅ ⋅

××
=

×

r r
r

r r

r r
r r

r r

r

n m m n n m n m n m
m n m n

n m n m n m
n m m n

n m n -m m n

r n m r m n

n Ι1 Ι1

2 21 Ι

II1 II1 Ι1 Ι1

2 2II1 Ι1

1 1
II1 Ι1

i i

i

i i i i

i i

i i

A

A B

η ζ

ζ

ζ η η ζ

η ζ

ζ η

θ θ

×
−

= −

∂

×

⋅ ⋅

∂
−

∂ ∂

r r

r

r r r r

r r

r r

m

n m

n m
n m

=

 (75) 
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where 
 

II1 II1

2II1

i i

i

A ζ η

η

=
⋅r r

r
  and  

Ι1 Ι1

2Ι1

i i

i

B η ζ

ζ

=
⋅r r

r
 (76) 

 
All other first derivatives of the folding angle θ with respect 

to nodal coordinates are 0 , since 1θ is function of Ι1,
iη

r I1,
iζ

r and II1
iζ

r

, as shown in equation (16) and (17).  
 

APPENDIX C: HESSIAN MATRIX OF FOLDING ANGLE   
The Hessian matrix appears in the tangent stiffness matrices of 
rotational springs. The Hessian contains 9 blocks of submatrices 
(of size 3 × 3), among which there are 6 independent blocks due 
to symmetry. 

Let us define a new operator ‘


’ as 
 

3: , , R= ⊗ ⊗ ∀ ∈a b a b + b a      a b   
Note that 

a b  results in a symmetric matrix. The 6 inde-
pendent blocks of the Hessian matrix of the rotation angle with 
respect to the nodal coordinates are expressed as 

 
Ι1

2

2
Ι11

4Ι1 ( ) ,
( )

i

i

i

ζ
ζ

η

θ∂
× = −  ∂ r



r
m r m

m
 (77) 

 
II1

2

2
II11

4II1 ( )
( )

,i

i

i

η
η

ζ

θ∂  = −  ∂
×

r
r

r
n n

n
 (78) 

 
Ι1Ι12

Ι11
2 4Ι1 I1 Ι1

( ) ,ii

i i

i

i

ζζ

η ζ ζ
η

θ ⊗∂  = +  ∂
×

∂r r


rm r
m r m

m r m
 (79) 

 
II1II12

II11
2 4II1 II1 II1

( ) ,ii

i

i i i

ηη
ζ

ζ ηη

θ ⊗∂  = +  ∂
×

∂

rr
r

r r r


n
n n

n n
 (80) 

 
2

1
3 3I1 II1

i iζη

θ
×

∂
=

∂ ∂
0

r r
 (81) 

 
2 2 2

1 1 1 1 1 1 1
I1 II1 II1 II1 II1 Ι1 I1 Ι1 I12 ( ) ( ),

( )
i i i i i i i i i

A B
ζ ζ ζ η ζ ζη η η

θ θ θ θ θ θ θ∂ ∂ ∂ ∂ ∂ ∂ ∂
== + ⊗ − + ⊗

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂r r r r r r r r r
 (82) 

  
Here, the symbol 3 3×0 means a 3 × 3 zero matrix.  

Owing to symmetry, the other 3 blocks of the Hessian matrix 
can be completed with the following identities 

 
2 2

1 1
Ι1 I1 I1 Ι1( ) ,
i i i i

T

η ζ ζ η

θ θ∂ ∂
=

∂ ∂ ∂ ∂r r r r
 (83) 

 
2 2

1 1
II1 II1 II1 II1( ) ,
i i i i

T

ζ ζη η

θ θ∂ ∂
=

∂ ∂ ∂ ∂r r r r
 (84) 

 
2 2

1 1
I1 II1 II1 I1( ) ,
i i i i

T

ζη ηζ

θ θ∂ ∂
=

∂ ∂ ∂ ∂r r r r
 (85) 

 
 

 
 


