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ABSTRACT 
This research investigates the feasibility of utilizing origami fold-
ing techniques to create an optimized jumping mechanism. As a 
theoretical example, we study the dynamic characteristics of a 
jumping mechanism consisting of two masses connected by a 
Tachi-Miura Polyhedron (TMP) origami structure with nonlin-
ear stiffness characteristics. We show how the desired “strain-
softening” effects of the TMP structure can lead to design of 
jumping mechanisms with optimized performance. The kinemat-
ics of TMP origami structure is reviewed and a modified model 
of its reaction-force displacement curve is presented. We derive 
the equations of motion of the jumping process and use their nu-
merical solutions extensively for design optimization. Through 
this process we are able to obtain optimum geometrical configu-
rations for two different objectives: The maximum time spent in 
the air and the maximum clearance off the ground. Results of this 
study can lead to emergence of a new generation of more efficient 
jumping mechanisms with optimized performance in the future. 
 
Keywords: Jumping mechanism, Origami, Non-linear stiffness, 
Optimization 
 
1. INTRODUCTION 
Among the myriad of great achievements in human history, in-
vention of robots is a major breakthrough. Robots have affected 
and revolutionized so many aspects of our mundane life.  From 
industrial [1–3] and military [4] applications to education [5,6] 
and healthcare [7,8] services, they have been and will continue 
improving the quality of our lives. Among the various existing 
categories of robots, mobile robots are particularly important be-
cause they can perform tasks that are inaccessible or unsafe for 
humans [9], such as volcano exploration, coal extraction, and 
disaster rescue [10].  Mobile robots can be classified into five 
different categories according to their ground-contact-based 
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modes of locomotion: wheeled robots, tracked robots, snake ro-
bots, legged robots, and wheel-legged robots [10].  Among them, 
the legged robots are particularly advantageous due to their rela-
tive superiority in maneuvering and their capability to access 
vastly different terrains [11] like mountain lands, sands, and even 
rugged terrains [10].   

However, the dynamics of legged robots, in general, is more 
complicated compared to the wheeled, tracked, or snake robots 
especially due to their impacts with the ground [12].  They also 
require complex nonlinear control strategies.  Therefore, re-
searchers have been encouraged to study single-legged robotic 
systems as well [12,13].  Despite the relative simplicity of their 
configuration, single-legged robots are found to be extremely ad-
vantageous in different applications [12].  The locomotion in this 
kind of robotic systems is achieved by jumping [14], which is a 
relatively simple mode of locomotion that can be beneficial in 
terrains that are inaccessible to wheeled or tracked systems [12]. 
Recently, there have been a surge of interest in single-legged ro-
botic systems and several researchers have studied different fac-
ets of jumping mechanisms and their locomotion [15–18]. 

One of the most important and crucial topics in the field of 
jumping robots is the energy storage technique.  In all of the ex-
istent jumping mechanisms, the jumping phase of motion is 
achieved by an instant release of the stored energy in the system 
[15].  Therefore, energy storage has an undeniably important role 
in the performance of the jumping robots [13].  Researchers have 
proposed various methods for storing energy in robotic systems: 
From traditional springs [19–21] (compression, extension, or tor-
sional springs),  and compressed air [22], to custom-designed 
elastic elements [23–25].  The latter approach of energy storage 
essentially uses the nonlinear spring elements to introduce 
unique and desirable nonlinear dynamic characteristics to jump-
ing robots. 
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Nonlinear spring elements have been used in several jump-
ing robots and their effect on the overall dynamic performance 
has been studied in several researches.  For example, in the study 
by Yamada et al., the snap-through buckling of a closed elastica 
has been examined as a means of energy storage [25,26].  In an-
other study, Fiorini and Burdick investigated a jumping mecha-
nism with a nonlinear stiffness achieved by implementing a lin-
ear spring in a 6-bar geared mechanism [27].  Furthermore, the 
authors of this paper have recently rigorously examined the ef-
fects of using a generic nonlinear spring in a jumping mechanism 
[13] both numerically and analytically.  We showed that utilizing 
nonlinear springs with “strain-softening” characteristics, can in-
crease the initial stored energy and consequently create higher 
jumps in terms of center of gravity and ground clearance, while 
sacrificing only a negligible amount of efficiency [13].  More 
importantly, results of this study were generic so that they can be 
applied to different types of nonlinear spring mechanisms. This 
leads to the research question of this study:  Can we use origami 
structure to materialize the desired nonlinear stiffness character-
istics in a jumping mechanism? 

Origami – the ancient Japanese art of paper folding – has 
recently expanded the design and fabrication repertoire of engi-
neers[28].  It has found lots of applications from kinetic archi-
tectures [29] and self-folding robots [30] to surgery devices [31] 
and DNA machines [32].  In addition, researchers have been 
studying origami folding techniques as a method for achieving 
tunable nonlinear stiffness recently such as negative and quasi-
zero stiffness [28,33–35] and multi-stability [36,37].  

Therefore, in this paper, we investigate the feasibility of us-
ing origami as the energy storage element in the jumping mech-
anism and achieve the desired “strain-softening” nonlinear stiff-
ness.  To this end, we first analyze the stiffness properties of a 
re-entrant origami structure based on Tachi-Miura polyhedron 
(TMP) [38] and investigate the effect of its design parameters on 
the structure’s overall force-displacement relationship.  Then, we 
examine a basic jumping mechanism consisting of two masses 
connected by the TMP structure—which acts as a nonlinear 
spring element in the system—and analyze its dynamic jumping 
behavior.  Finally, we try to optimize the design of this origami 
jumper based on two different performance criteria: 1) jumping 
air-time and 2) clearance of the bottom mass. 

The rest of the paper is organized as follows: In Section 2, 
we review the governing kinematic relations of TMP structure 
and its force-displacement curve under quasi-static loading.  Fur-
thermore, we modify the mathematical model of its force-dis-
placement curve based on the nonlinear constitutive model of ro-
tational springs proposed by Liu and Paulino [39].  In Section 3, 
we derive the equations of motion of the jumping mechanism for 
the pre-jump and post-jump phases of motion.  Section 4 focuses 
on design optimization of the origami structure based on the 
abovementioned performance criteria.  To this end, we solve the 
derived equations of motion numerically and use the results ex-
tensively.  Section 5 concludes the paper with a summary and 
discussion. 

2. TACHI-MIURA POLYHEDRON (TMP) BELLOW 
In this study, we use a variation of the Tachi-Miura polyhedron 
(TMP) origami bellow studied by Yasuada and Yang [36] as the 
basis for our jumping mechanism.  The TMP bellow is essen-
tially a linear assembly of identical unit cells and each cell con-
sists of two connected origami sheets (aka. the front sheet and 
back sheet shown in Figure 1(a,b)).  The geometric design of two 
origami sheets can be uniquely defined based on two fold lines 
( ,l ),m  the side length ( ),d and a sector angle ( ).α   For clarity, 
we refer the fold lines that remain parallel to the horizontal x-z 
reference plane as the “main-folds” and all other fold lines are 
the “sub-folds” (Figure 1(b)).  

Despite the relatively complex geometry, TMP bellow is 
rigid-foldable in that its folding motion does not induce any de-
formations in the facets. Therefore, we can assume the facets are 
rigid, and the fold lines behave like perfect hinges with assigned 
torsional stiffness.  In this way, we can use the virtual work prin-
ciple and estimate the reaction force F of the TMP bellow along 
its length direction (y-axis in Figure1(a)) as follows[38], 
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In this equation, N  is the number of unit cells in the TMP 

bellow; Mk  and Sk  are the equivalent torsional stiffness of the 
main-folds and sub-folds, respectively; Mθ  is the dihedral angle 
associated with the main-folds, defined between the facets and 
x-z reference plane as shown in Figure 1(c); Sθ  is the dihedral 
angle between the facets along the sub-folds; and Sθ  is the angle 
between x-axis and a main-fold.  Denote u  as the change in unit 
cell height through folding and 0Mθ  as the main fold angle cor-
responding to the initial, resting configuration, the magnitude of 
these angles can be calculated as 
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Figure 2(a) illustrates the force displacement curve of a 
TMP bellow design based on 30mm,l m d= = = 40 ,α = °

0 65 ,Mθ = °  and 0.03N.m .M Sk k rad= =   Due to the nonlinear 
geometric relationships induced by origami folding, the TMP 
bellow shows a strong nonlinearity.  In particular, it shows a 
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“strain softening” behavior in compression.  That is, the TMP 
exhibits a high stiffness under small compressive deformation, 
but its stiffness decreases as the deformation increases.  Previous 
study by the authors has shown that such nonlinearity is desired 
because it can store more energy upon compression compared to 
the traditional linear spring, leading to a higher jump [13].  More-
over, after careful examinations, we discover that the reaction 
force generated by the sub-folds shows a stronger nonlinearity 
than the main-folds.  Therefore, we will intentionally weaken 
main-folds and stiffen up the sub-folds to strengthen the desired 
non-linearity.  This allows us to neglect the contribution of the 
main-folds to the overall reaction force, and simplify equation (1
) into the following: 
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However, this reaction force equation does not consider the 

deformation limits due to rigid folding.  That is, TMP bellow can 
only be folded in-between its compression limit at 0Sθ = ° (fully 
compressed) and extension limit at 90Sθ = °  (fully stretched).  
However, in reality when the TMP is compressed near 0 ,Sθ = °  
its facets would come into contact with each other and resist fur-
ther compression.  On the other hand, when the TMP is extended 
near 90 ,Sθ = °  both the front and back sheets are stretched flat 

so that the overall tension stiffness would increase significantly.  
To incorporate these deformation limits by folding, we adopt the 
method developed by Liu and Paulino [37] and set two folding 
angle limits: 1 20θ = ° for compression and 2 70θ = °  for tension.  
When 1,Sθ θ<  the reaction force equation (5) is modified into 
the following: 
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Similarly, when 2 ,Sθ θ> the reaction force becomes, 
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Figure 2(b) illustrate the modified reaction force, which is 

used for the subsequent dynamic analysis and optimization. 

 
 
Figure 1: Design of the Tachi-Miura Polyhedron (TMP) bellow.  (a) The overall external geometry of a TMP bellow; this one consists 
of eight unit cells, and one of them is highlighted in gray. (b) The crease design of the front sheet and back sheet that makes up two 
unit cells. The main-folds are highlighted by red color. (c) The external geometry of a folded front sheet, showing the different angles 
used in the kinematics and mechanics analysis. 
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Figure 2(c) illustrates the effect of the sector angle α   on the 
force-displacement curve.  When other design variables are 
fixed, increasing the α  angle would decrease the reaction force 
in the structure when compressed.  This leads to less stored strain 
energy. For this reason we would expect smaller alpha angles to 
lead to better jumping performance. 
 
3. THE DYNAMICS OF TMP JUMPER 
The TMP jumping mechanism (shown in Figure 3) consists of 
two identical masses connected by a TMP bellow, which serves 
as the energy storage element in the mechanism.  It is worth not-
ing again that the TMP exhibits nonlinear stiffness properties. In 
order to only focus on the effects of nonlinear stiffness on the 
jumping performance of the origami structure, in this study, we 
assume that damping is zero. One should notice although this 

might affect the dynamics quantitatively, it does not alter the 
qualitative behavior of the structure, as long as it exhibits mono-
stable hardening characteristics.  To initiate jumping, this mech-
anism is actuated via an external force acting on the upper mass, 
which deforms the TMP bellow and thus stores energy in the sys-
tem.   

The dynamics of jumping can be divided into two distinct 
phases: 1) pre-jump phase and 2) post-jump phase. To focus on 
the effects of the TMP bellow on the dynamic performance of the 
jumping mechanism, we assumed that the masses are equal: 

1 2 .m m M= =   In the following two subsections we investigate 
the motion in these two phases and derive the equations of mo-
tion for pre-jump and post-jump phases, respectively. 
 
3.1 Pre-Jump Phase 

In this phase, the jumping mechanism is actuated by an ex-
ternal force on the upper mass, which moves it to a certain initial 
displacement ( ).d  Then the external force is removed and the 
reaction force from TMP bellow accelerates the upper mass up-
ward.  This pre-jump phase of motion continues until the bottom 
mass leaving the ground.  One can derive the governing equation 
of motion for this phase as: 
 

2 2 0( ) ,MY F Y l Mg= − − −  (8) 
 

where M  is the mass of the upper body; 2 0( )F Y l−  is the reac-
tion force of the TMP bellow defined in equation (5); 0l  is the 
initial, resting length of the TMP; 2Y  and 2Y  are the acceleration 
and position of the upper mass (relative to the ground), respec-
tively. 
 
3.2 Post-Jump Phase 

 
 
Figure 2: The force-displacement curve of a TMP bellow. (a) 
The contribution of main-folds and sub-folds to the overall reac-
tion force, and the sub-folds show the desired “strain softening” 
behavior in compression. (b) The modified reaction force curve 
considering the deformation limit due to folding. (c) The reaction 
force curve corresponding to different α angles, while all other 
design variables remain the same as those used in (a). 

 
 

Figure 3: The jumping mechanism based on TMP bellow and its 
equivalent system.  Here the nonlinear spring shows the force-
displacement curves defined in equations (5-7). 
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If the jumping mechanism can overcome the gravitational 
force after the deformation of the TMP bellow becomes positive, 
the jump can occur.  In other words, once the restoring force of 
the TMP bellow on the lower mass exceeds its weight (aka. 

2, 0( ) ),jumpF Y l Mg− ≥ the jumping mechanism enters the second 
phase of motion.  Here 2, jumpY  stands for the critical upper mass 
displacement when the jump occurs.  

Once the bottom mass has left the ground, the governing 
system of coupled equations of motion can be described as: 

 

1 2 1 0

2 2 1 0

( ) ,

( ) .

MY F Y Y l Mg

MY F Y Y l Mg

= − − −

= − − − −





 (9) 

 
The initial conditions of equation (9) can be extracted from 

the solution of the pre-jump phase equation (8).  Figure 5 shows 
a typical time response of an origami jumper, in which one can 
clearly identify the two different phases of jumping.  Moreover, 
once the origami jumper is airborne, it also exhibits an internal 
oscillation with respect to its center of mass.  In the next section, 
we use the numerical solution of equation (8) and (9) to optimize 
the performance of the jumping mechanism.  
 
4. TMP DESIGN OPTIMIZATION  

The goal of this optimization is to identify the TMP bellow 
design that can lead to the best jumping performance.  To this 
end, we describe the jumping performance based on two differ-
ent objectives: Airtime and Clearance (illustrated in Figure 4).  
Airtime is the total time that the jumping mechanism spends in 
the air; and Clearance is the peak height achieved by the lower 
mass. We normalize the Clearance by the rest height of TMP bel-
low and use the normalized values as the optimization objective 
function.  

There are five design variables that that can be tailored to 
optimize the jumping performance. The definition and range of 
these variables are listed in Table 1, and Figure 1 illustrates how 
they relate to the overall geometry of TMP bellow.  Moreover, 
three geometric constraints are imposed.  The first constraint en-
sures that the design of TMP bellow is properly defined and there 
are no conflicting crease lines.  The second constraint defines a 
minimum main-fold length for the ease of manufacturing and as-
sembly.  The third constraint sets an upper limit on the unit cell 
length.  The additional 15mm in the third constraint is for an ex-
tended tab to facilitate the assembly of two sheets.  

 
Table 1. The design variables and geometric constraints 

used in the design optimization. 

:N   Unit cell # 4 10N≤ ≤  

:d  Side length 20mm 40mmd≤ ≤  

:α  Sector angle 30 70α≤ ≤   

:l  Fold length  20mm 40mml≤ ≤  

:m  Fold length 20mm 40mmm≤ ≤  

Constraint 1: 2 cot 2 cos 0l d mα α− + ≥  

Constraint 2: 10mm
2 tan

d l
α
− ≤ −  

Constraint 3: 2 tan 15 300mm
2 2
dl m π α  + + − + ≤  

  
 

 
In this study, the three constraints on design variables are 

defined based on the fabrication capabilities available to the au-
thors.  Increasing the variables beyond the upper limits would 

 

 
 
Figure 4: A typical time response of the TMP origami jumper.  The schematic plots at the upper left corner illustrates the origami 
jumper at resting configuration, initial configuration when the upper mass is compressed, and post jump phase, respectively. The 
two objective functions of the design optimization: Airtime and Clearance are highlighted.  Notice the internal oscillation during the 
post jump phase influences the Clearance performance. 
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require additional fabrication equipment; while reducing them 
below the lower limit would makes assembly too difficult.  Re-
gardless, we can still obtain valuable insights on the correlations 
between the design variables and jumping performance within 
these constraints.  

 
Table 2. Other design variables used in the optimization. 

:M  End masses 1 2 0.25kgm Mm = = =  

0
:Mθ  Resting main-fold 

angle 0
65Mθ =   

:FR  Initial folding ratio 
90 100% 75%

90
MFR θ° −

= × =


 

:Sk  Sub-fold stiffness 0.0383 .Sk N m rad=  
 
Besides the geometric design variables of TMP bellow, the 

magnitudes of some other variables are defined for the optimiza-
tion (Table 2).  One of them is the stress-free, resting folding an-
gle of the main-folds 0.Mθ   However, a very large resting folding 
angle is difficult to achieve in experiments.  Based on repeated 
trial-and-errors using TMP prototypes of different geometric de-
signs, 0 65Mθ =   is found to be a realistic value.  Another im-
portant variable is the initial folding ratio, which is essentially 
the initial condition of the dynamic simulation discussed below.  
Again, after repeated trial-and-error, it is found that an initial 
folding ratio of 75% is preferred because it can achieve the max-
imum stored energy for jumping without inducing any signifi-
cant plastic deformation.  The crease torsional stiffness coeffi-
cient k is estimated based on the experimental data gathered from 
different shim stock, which will be used to stiffen the sub-folds.  

We numerically simulate the jumping behavior of the TMP 
mechanism in MATLAB using ode45 solver for the different 
jumping phases outlined in Section 3.  In these simulations, we 
assume the upper mass is lowered so that the TMP bellow is com-
pressed to the initial folding ratio of 75%, and then the upper 
mass is released for jumping.  We then use the ode45 solver to 
obtain the pre-jump time response according to equation (8).  
Based on this response, we can identify the moment when the 
TMP bellow is stretched to the point that its resulting tension 
force surpass the weight of lower mass.  At this moment, the 
lower mass leaves the ground so that we can use this as the initial 
conditions for the post-jump phase.  Ode45 solver is used again 
to obtain the time response of the jumping phase so that the Air-
time and Clearance can be recorded.  

To optimize the TMP bellow design, we integrate the jump-
ing simulations and ModeFrontier using the NSGA-II optimiza-
tion algorithm. NSGA-II is a common genetic algorithm for 
multi-objective optimization problems. We use a total population 
size of 2500 individuals across 5 generations.   Interested readers 
can refer to [40] for a complete description of this optimization 
method.  The optimization results according to each objective 
function are represented in Table 3.  

From the results in Table 3, one can observe that the opti-
mized sector angle α is always at its lower limit.  As we explained 
in Section 2, a lower α angle corresponds to a stronger nonline-
arity in the force-displacement relationship of the TMP bellow 
(Figure 2(c)), which is desired for better jumping performance. 
The optimized unit cell side length d and the crease length l, m 
are the same.  Moreover, d and m are also at their lower limit.  
The unit-cell side length d appears in the denominator of the re-
action force equation (9), so a small side length corresponds to a 
bigger reaction force and therefore more stored strain energy for 
jumping. The crease length m does not appear in the reaction 
force equation explicitly, but its value is kept low to avoid vio-
lating the third geometric constraint.  Similarly, the value of 
crease length l is also kept low to avoid violating the second ge-
ometric constraint.  

The difference between the two optimized designs are the 
number of unit cells N.  More unit cells in a TMP bellow means 
a larger initial displacement of the upper mass, therefore more 

 
Table 3. Optimized TMP bellow designs for Airtime and Clearance Objectives 

 N α [°] d [mm] l [mm] m [mm] Airtime 
[sec] 

Normalized 
Clearance  

Airtime Optimum 10 30 20 28.5 20 0.502 179%  
Clearance Optimum 4 30 20 28.5 20 0.320 183%  

 

 
 

Figure 5: Pareto front obtained in the optimization results. 
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strain energy is stored for jumping and a longer airtime.  How-
ever, increasing the N values also increases overall structure 
height, which can negate the performance of normalized Clear-
ance. Such a trade-off between Airtime and Clearance can be il-
lustrated in the pareto front shown in Figure 5.  

 
5. CONCLUSION AND DISCUSSION 
In this study we investigate the idea of utilizing origami folding 
techniques to enhnace the performance of a jumping mechanism. 
We study the feasibility of using Tachi-Miura Polyhedron (TMP) 
origmai struture as the energy storing unit in a mechanism 
consisting of two masses, through analyzing the dynamic 
characteristics of the system. The TMP origami structure exhibits 
nonlinear stiffness characteristics. We show how the desired 
“strain-softening” effects of the TMP structure can lead to design 
of jumping mechanisms with optimized performance. We 
present a review of the kinematics of TMP origami structure and 
derive a modified model of its reaction force-displacement 
curve. We derive the equations of motion of the jumping process 
and use their numerical solutions extensively for design 
optimization. The optimum geometric configurations for two 
different objectives are derived: The maximum time spent in the 
air (a.k.a airtime) and the maximum clearance off the ground. 
Although this study has been conducted on a specific origami 
pattern (TMP bellow), the results show that origami folding 
techniques can add more tools to the repertoire of robotic 
researchers to create jumping mechansisms with higher 
performance. Therefore, the outcome of this research can lead to 
emergence of a new generation of more efficient jumping 
mechanisms with optimized performance in the future. 
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