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ABSTRACT

This research investigates the feasibility of utilizing origami fold-
ing techniques to create an optimized jumping mechanism. As a
theoretical example, we study the dynamic characteristics of a
Jjumping mechanism consisting of two masses connected by a
Tachi-Miura Polyhedron (TMP) origami structure with nonlin-
ear stiffness characteristics. We show how the desired “strain-
softening” effects of the TMP structure can lead to design of
Jjumping mechanisms with optimized performance. The kinemat-
ics of TMP origami structure is reviewed and a modified model
of its reaction-force displacement curve is presented. We derive
the equations of motion of the jumping process and use their nu-
merical solutions extensively for design optimization. Through
this process we are able to obtain optimum geometrical configu-
rations for two different objectives: The maximum time spent in
the air and the maximum clearance off the ground. Results of this
study can lead to emergence of a new generation of more efficient
Jjumping mechanisms with optimized performance in the future.

Keywords: Jumping mechanism, Origami, Non-linear stiffness,
Optimization

1. INTRODUCTION

Among the myriad of great achievements in human history, in-
vention of robots is a major breakthrough. Robots have affected
and revolutionized so many aspects of our mundane life. From
industrial [1-3] and military [4] applications to education [5,6]
and healthcare [7,8] services, they have been and will continue
improving the quality of our lives. Among the various existing
categories of robots, mobile robots are particularly important be-
cause they can perform tasks that are inaccessible or unsafe for
humans [9], such as volcano exploration, coal extraction, and
disaster rescue [10]. Mobile robots can be classified into five
different categories according to their ground-contact-based
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modes of locomotion: wheeled robots, tracked robots, snake ro-
bots, legged robots, and wheel-legged robots [10]. Among them,
the legged robots are particularly advantageous due to their rela-
tive superiority in maneuvering and their capability to access
vastly different terrains [11] like mountain lands, sands, and even
rugged terrains [10].

However, the dynamics of legged robots, in general, is more
complicated compared to the wheeled, tracked, or snake robots
especially due to their impacts with the ground [12]. They also
require complex nonlinear control strategies. Therefore, re-
searchers have been encouraged to study single-legged robotic
systems as well [12,13]. Despite the relative simplicity of their
configuration, single-legged robots are found to be extremely ad-
vantageous in different applications [12]. The locomotion in this
kind of robotic systems is achieved by jumping [14], which is a
relatively simple mode of locomotion that can be beneficial in
terrains that are inaccessible to wheeled or tracked systems [12].
Recently, there have been a surge of interest in single-legged ro-
botic systems and several researchers have studied different fac-
ets of jumping mechanisms and their locomotion [15-18].

One of the most important and crucial topics in the field of
jumping robots is the energy storage technique. In all of the ex-
istent jumping mechanisms, the jumping phase of motion is
achieved by an instant release of the stored energy in the system
[15]. Therefore, energy storage has an undeniably important role
in the performance of the jumping robots [13]. Researchers have
proposed various methods for storing energy in robotic systems:
From traditional springs [19-21] (compression, extension, or tor-
sional springs), and compressed air [22], to custom-designed
elastic elements [23-25]. The latter approach of energy storage
essentially uses the nonlinear spring elements to introduce
unique and desirable nonlinear dynamic characteristics to jump-
ing robots.
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Nonlinear spring elements have been used in several jump-
ing robots and their effect on the overall dynamic performance
has been studied in several researches. For example, in the study
by Yamada et al., the snap-through buckling of a closed elastica
has been examined as a means of energy storage [25,26]. In an-
other study, Fiorini and Burdick investigated a jumping mecha-
nism with a nonlinear stiffness achieved by implementing a lin-
ear spring in a 6-bar geared mechanism [27]. Furthermore, the
authors of this paper have recently rigorously examined the ef-
fects of using a generic nonlinear spring in a jumping mechanism
[13] both numerically and analytically. We showed that utilizing
nonlinear springs with “strain-softening” characteristics, can in-
crease the initial stored energy and consequently create higher
jumps in terms of center of gravity and ground clearance, while
sacrificing only a negligible amount of efficiency [13]. More
importantly, results of this study were generic so that they can be
applied to different types of nonlinear spring mechanisms. This
leads to the research question of this study: Can we use origami
structure to materialize the desired nonlinear stiffness character-
istics in a jumping mechanism?

Origami — the ancient Japanese art of paper folding — has
recently expanded the design and fabrication repertoire of engi-
neers[28]. It has found lots of applications from kinetic archi-
tectures [29] and self-folding robots [30] to surgery devices [31]
and DNA machines [32]. In addition, researchers have been
studying origami folding techniques as a method for achieving
tunable nonlinear stiffness recently such as negative and quasi-
zero stiffness [28,33-35] and multi-stability [36,37].

Therefore, in this paper, we investigate the feasibility of us-
ing origami as the energy storage element in the jumping mech-
anism and achieve the desired “strain-softening” nonlinear stiff-
ness. To this end, we first analyze the stiffness properties of a
re-entrant origami structure based on Tachi-Miura polyhedron
(TMP) [38] and investigate the effect of its design parameters on
the structure’s overall force-displacement relationship. Then, we
examine a basic jumping mechanism consisting of two masses
connected by the TMP structure—which acts as a nonlinear
spring element in the system—and analyze its dynamic jumping
behavior. Finally, we try to optimize the design of this origami
jumper based on two different performance criteria: 1) jumping
air-time and 2) clearance of the bottom mass.

The rest of the paper is organized as follows: In Section 2,
we review the governing kinematic relations of TMP structure
and its force-displacement curve under quasi-static loading. Fur-
thermore, we modify the mathematical model of its force-dis-
placement curve based on the nonlinear constitutive model of ro-
tational springs proposed by Liu and Paulino [39]. In Section 3,
we derive the equations of motion of the jumping mechanism for
the pre-jump and post-jump phases of motion. Section 4 focuses
on design optimization of the origami structure based on the
abovementioned performance criteria. To this end, we solve the
derived equations of motion numerically and use the results ex-
tensively. Section 5 concludes the paper with a summary and
discussion.

2. TACHI-MIURA POLYHEDRON (TMP) BELLOW

In this study, we use a variation of the Tachi-Miura polyhedron
(TMP) origami bellow studied by Yasuada and Yang [36] as the
basis for our jumping mechanism. The TMP bellow is essen-
tially a linear assembly of identical unit cells and each cell con-
sists of two connected origami sheets (aka. the front sheet and
back sheet shown in Figure 1(a,b)). The geometric design of two
origami sheets can be uniquely defined based on two fold lines
(I, m), the side length (d), and a sector angle («). For clarity,
we refer the fold lines that remain parallel to the horizontal x-z
reference plane as the “main-folds” and all other fold lines are
the “sub-folds” (Figure 1(b)).

Despite the relatively complex geometry, TMP bellow is
rigid-foldable in that its folding motion does not induce any de-
formations in the facets. Therefore, we can assume the facets are
rigid, and the fold lines behave like perfect hinges with assigned
torsional stiffness. In this way, we can use the virtual work prin-
ciple and estimate the reaction force F of the TMP bellow along
its length direction (y-axis in Figurel(a)) as follows[38],

-32
F= ——|k,(N-D(6,-6, )+..
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In this equation, N is the number of unit cells in the TMP
bellow; k,, and kg are the equivalent torsional stiffness of the
main-folds and sub-folds, respectively; 8,, is the dihedral angle
associated with the main-folds, defined between the facets and
x-z reference plane as shown in Figure 1(c); 6 is the dihedral
angle between the facets along the sub-folds; and 6, is the angle
between x-axis and a main-fold. Denote u as the change in unit
cell height through folding and 6,,, as the main fold angle cor-
responding to the initial, resting configuration, the magnitude of
these angles can be calculated as

. u
6, =sin 1(sm 6,0 _ﬁj’ )
6, =2tan"' (tanaz cosb,, ), 3)
sin&
6, =cos™ .
s | sina @)

Figure 2(a) illustrates the force displacement curve of a
TMP bellow design based on /=m=d =30mm, o =40°,
0,, =65° and k,, =k, =0.03N.m/rad. Due to the nonlinear
geometric relationships induced by origami folding, the TMP
bellow shows a strong nonlinearity. In particular, it shows a
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Figure 1: Design of the Tachi-Miura Polyhedron (TMP) bellow. (a) The overall external geometry of a TMP bellow; this one consists
of eight unit cells, and one of them is highlighted in gray. (b) The crease design of the front sheet and back sheet that makes up two
unit cells. The main-folds are highlighted by red color. (c) The external geometry of a folded front sheet, showing the different angles

used in the kinematics and mechanics analysis.

“strain softening” behavior in compression. That is, the TMP
exhibits a high stiffness under small compressive deformation,
but its stiffness decreases as the deformation increases. Previous
study by the authors has shown that such nonlinearity is desired
because it can store more energy upon compression compared to
the traditional linear spring, leading to a higher jump [13]. More-
over, after careful examinations, we discover that the reaction
force generated by the sub-folds shows a stronger nonlinearity
than the main-folds. Therefore, we will intentionally weaken
main-folds and stiffen up the sub-folds to strengthen the desired
non-linearity. This allows us to neglect the contribution of the
main-folds to the overall reaction force, and simplify equation (1
) into the following:

30k, cos® % sin 0,

=——"3° | N(6,-0
Nd cos 0, ( s SO) )

cos a sin g

However, this reaction force equation does not consider the
deformation limits due to rigid folding. That is, TMP bellow can
only be folded in-between its compression limit at 6, = 0° (fully
compressed) and extension limit at &g =90° (fully stretched).
However, in reality when the TMP is compressed near & = 0°,
its facets would come into contact with each other and resist fur-
ther compression. On the other hand, when the TMP is extended
near 6; =90°, both the front and back sheets are stretched flat

so that the overall tension stiffness would increase significantly.
To incorporate these deformation limits by folding, we adopt the
method developed by Liu and Paulino [37] and set two folding
angle limits: 6, = 20° for compression and 6, = 70° for tension.
When 6 <6, the reaction force equation (5) is modified into
the following:

=32
Fe -2 v -0+
Nd cos 0,
(6)
cos’ % sin@
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Similarly, when 6 > 6,, the reaction force becomes,
Fe 2% NG, -0, )+..
Nd cos b, 0
(7

3 6
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26, cos & cos b

Figure 2(b) illustrate the modified reaction force, which is
used for the subsequent dynamic analysis and optimization.
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Figure 2: The force-displacement curve of a TMP bellow. (a)
The contribution of main-folds and sub-folds to the overall reac-
tion force, and the sub-folds show the desired “strain softening”
behavior in compression. (b) The modified reaction force curve
considering the deformation limit due to folding. (¢) The reaction
force curve corresponding to different a angles, while all other
design variables remain the same as those used in (a).

Figure 2(c) illustrates the effect of the sector angle @ on the
force-displacement curve. When other design variables are
fixed, increasing the o angle would decrease the reaction force
in the structure when compressed. This leads to less stored strain
energy. For this reason we would expect smaller alpha angles to
lead to better jumping performance.

3. THE DYNAMICS OF TMP JUMPER

The TMP jumping mechanism (shown in Figure 3) consists of
two identical masses connected by a TMP bellow, which serves
as the energy storage element in the mechanism. It is worth not-
ing again that the TMP exhibits nonlinear stiffness properties. In
order to only focus on the effects of nonlinear stiffness on the
jumping performance of the origami structure, in this study, we
assume that damping is zero. One should notice although this

my

=1

Nonlinear Damping
spring element
mj
7,

Figure 3: The jumping mechanism based on TMP bellow and its
equivalent system. Here the nonlinear spring shows the force-
displacement curves defined in equations (5-7).

might affect the dynamics quantitatively, it does not alter the
qualitative behavior of the structure, as long as it exhibits mono-
stable hardening characteristics. To initiate jumping, this mech-
anism is actuated via an external force acting on the upper mass,
which deforms the TMP bellow and thus stores energy in the sys-
tem.

The dynamics of jumping can be divided into two distinct
phases: 1) pre-jump phase and 2) post-jump phase. To focus on
the effects of the TMP bellow on the dynamic performance of the
jumping mechanism, we assumed that the masses are equal:
m, =m, =M. In the following two subsections we investigate
the motion in these two phases and derive the equations of mo-
tion for pre-jump and post-jump phases, respectively.

3.1 Pre-Jump Phase

In this phase, the jumping mechanism is actuated by an ex-
ternal force on the upper mass, which moves it to a certain initial
displacement (d). Then the external force is removed and the
reaction force from TMP bellow accelerates the upper mass up-
ward. This pre-jump phase of motion continues until the bottom
mass leaving the ground. One can derive the governing equation
of motion for this phase as:

MY, =—F(Y, -1,)~ Mg, ®)

where M is the mass of the upper body; F(Y, —/,) is the reac-
tion force of the TMP bellow defined in equation (5); /, is the
initial, resting length of the TMP; ¥, and Y, are the acceleration
and position of the upper mass (relative to the ground), respec-
tively.

3.2 Post-Jump Phase
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Figure 4: A typical time response of the TMP origami jumper. The schematic plots at the upper left corner illustrates the origami
jumper at resting configuration, initial configuration when the upper mass is compressed, and post jump phase, respectively. The
two objective functions of the design optimization: Airtime and Clearance are highlighted. Notice the internal oscillation during the

post jump phase influences the Clearance performance.

If the jumping mechanism can overcome the gravitational
force after the deformation of the TMP bellow becomes positive,
the jump can occur. In other words, once the restoring force of
the TMP bellow on the lower mass exceeds its weight (aka.
F(Y, iy —1y) = Mg), the jumping mechanism enters the second
phase of motion. Here Y, stands for the critical upper mass
displacement when the jump occurs.

Once the bottom mass has left the ground, the governing
system of coupled equations of motion can be described as:

MY, = F(Y, - Y, ~1,)- Mg,

N )
MY, =-F(Y, =Y, =1,) - Mg.

The initial conditions of equation (9) can be extracted from
the solution of the pre-jump phase equation (8). Figure 5 shows
a typical time response of an origami jumper, in which one can
clearly identify the two different phases of jumping. Moreover,
once the origami jumper is airborne, it also exhibits an internal
oscillation with respect to its center of mass. In the next section,
we use the numerical solution of equation (8) and (9) to optimize
the performance of the jumping mechanism.

4. TMP DESIGN OPTIMIZATION

The goal of this optimization is to identify the TMP bellow
design that can lead to the best jumping performance. To this
end, we describe the jumping performance based on two differ-
ent objectives: Airtime and Clearance (illustrated in Figure 4).
Airtime is the total time that the jumping mechanism spends in
the air; and Clearance is the peak height achieved by the lower
mass. We normalize the Clearance by the rest height of TMP bel-
low and use the normalized values as the optimization objective
function.

There are five design variables that that can be tailored to
optimize the jumping performance. The definition and range of
these variables are listed in Table 1, and Figure 1 illustrates how
they relate to the overall geometry of TMP bellow. Moreover,
three geometric constraints are imposed. The first constraint en-
sures that the design of TMP bellow is properly defined and there
are no conflicting crease lines. The second constraint defines a
minimum main-fold length for the ease of manufacturing and as-
sembly. The third constraint sets an upper limit on the unit cell
length. The additional 15mm in the third constraint is for an ex-
tended tab to facilitate the assembly of two sheets.

Table 1. The design variables and geometric constraints
used in the design optimization.

N : Unitcell # 4<N<10
d: Side length

20mm < d < 40mm
30° <a <70°

20mm </ <40mm

a : Sector angle

[ : Fold length

m: Fold length 20mm < m < 40mm

2l —dcota+2mcosa >0

d
2tana

Constraint 1:

Constraint 2: —[ <—-10mm

Constraint 3: 2(l+m+%tan(%—aj+15jﬁ300mm

In this study, the three constraints on design variables are
defined based on the fabrication capabilities available to the au-
thors. Increasing the variables beyond the upper limits would
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require additional fabrication equipment; while reducing them
below the lower limit would makes assembly too difficult. Re-
gardless, we can still obtain valuable insights on the correlations
between the design variables and jumping performance within
these constraints.

Table 2. Other design variables used in the optimization.

M : End masses m, =m, =M =0.25kg

0y, - Resting main-fold 0

M,

=65
angle

90°-0

FR : Initial folding ratio FR = 9—M>< 100% = 75%

o

kg : Sub-fold stiffness kg =0.0383 N.m/rad

Besides the geometric design variables of TMP bellow, the
magnitudes of some other variables are defined for the optimiza-
tion (Table 2). One of them is the stress-free, resting folding an-
gle of the main-folds 6,,,. However, a very large resting folding
angle is difficult to achieve in experiments. Based on repeated
trial-and-errors using TMP prototypes of different geometric de-
signs, 6,,, =65 is found to be a realistic value. Another im-
portant variable is the initial folding ratio, which is essentially
the initial condition of the dynamic simulation discussed below.
Again, after repeated trial-and-error, it is found that an initial
folding ratio of 75% is preferred because it can achieve the max-
imum stored energy for jumping without inducing any signifi-
cant plastic deformation. The crease torsional stiffness coeffi-
cient & is estimated based on the experimental data gathered from
different shim stock, which will be used to stiffen the sub-folds.

We numerically simulate the jumping behavior of the TMP
mechanism in MATLAB using ode45 solver for the different
jumping phases outlined in Section 3. In these simulations, we
assume the upper mass is lowered so that the TMP bellow is com-
pressed to the initial folding ratio of 75%, and then the upper
mass is released for jumping. We then use the ode45 solver to
obtain the pre-jump time response according to equation (8).
Based on this response, we can identify the moment when the
TMP bellow is stretched to the point that its resulting tension
force surpass the weight of lower mass. At this moment, the
lower mass leaves the ground so that we can use this as the initial
conditions for the post-jump phase. Ode45 solver is used again
to obtain the time response of the jumping phase so that the Air-
time and Clearance can be recorded.
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Figure 5: Pareto front obtained in the optimization results.

To optimize the TMP bellow design, we integrate the jump-
ing simulations and ModeFrontier using the NSGA-II optimiza-
tion algorithm. NSGA-II is a common genetic algorithm for
multi-objective optimization problems. We use a total population
size of 2500 individuals across 5 generations. Interested readers
can refer to [40] for a complete description of this optimization
method. The optimization results according to each objective
function are represented in Table 3.

From the results in Table 3, one can observe that the opti-
mized sector angle o is always at its lower limit. As we explained
in Section 2, a lower a angle corresponds to a stronger nonline-
arity in the force-displacement relationship of the TMP bellow
(Figure 2(c)), which is desired for better jumping performance.
The optimized unit cell side length d and the crease length /, m
are the same. Moreover, d and m are also at their lower limit.
The unit-cell side length d appears in the denominator of the re-
action force equation (9), so a small side length corresponds to a
bigger reaction force and therefore more stored strain energy for
jumping. The crease length m does not appear in the reaction
force equation explicitly, but its value is kept low to avoid vio-
lating the third geometric constraint. Similarly, the value of
crease length / is also kept low to avoid violating the second ge-
ometric constraint.

The difference between the two optimized designs are the
number of unit cells N. More unit cells in a TMP bellow means
a larger initial displacement of the upper mass, therefore more

Table 3. Optimized TMP bellow designs for Airtime and Clearance Objectives

o Airtime Normalized

N all] d[mm] I Tmm] m [mm] [sec] Clearance
Airtime Optimum 10 30 20 28.5 20 0.502 179%
Clearance Optimum 4 30 20 28.5 20 0.320 183%
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strain energy is stored for jumping and a longer airtime. How-
ever, increasing the N values also increases overall structure
height, which can negate the performance of normalized Clear-
ance. Such a trade-off between Airtime and Clearance can be il-
lustrated in the pareto front shown in Figure 5.

5. CONCLUSION AND DISCUSSION

In this study we investigate the idea of utilizing origami folding
techniques to enhnace the performance of a jumping mechanism.
We study the feasibility of using Tachi-Miura Polyhedron (TMP)
origmai struture as the energy storing unit in a mechanism
consisting of two masses, through analyzing the dynamic
characteristics of the system. The TMP origami structure exhibits
nonlinear stiffness characteristics. We show how the desired
“strain-softening” effects of the TMP structure can lead to design
of jumping mechanisms with optimized performance. We
present a review of the kinematics of TMP origami structure and
derive a modified model of its reaction force-displacement
curve. We derive the equations of motion of the jumping process
and use their numerical solutions extensively for design
optimization. The optimum geometric configurations for two
different objectives are derived: The maximum time spent in the
air (a.k.a airtime) and the maximum clearance off the ground.
Although this study has been conducted on a specific origami
pattern (TMP bellow), the results show that origami folding
techniques can add more tools to the repertoire of robotic
researchers to create jumping mechansisms with higher
performance. Therefore, the outcome of this research can lead to
emergence of a new generation of more efficient jumping
mechanisms with optimized performance in the future.
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