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Abstract. The set of equations to be solved for parameter estimation
in model updating has no unique solution when, as will often be the case
in structural applications, the dimensionality of the model exceeds the
number of target parameters estimated from experiments. One approach
for enlarging the target space is to create closed-loop systems that, in
addition, can be designed with pole sensitivities favorable for updating
the model. The present paper will focus on designing gains for model
updating using a recently proposed virtual implementation of output
feedback, which allows computation of several closed-loop systems from
a single open-loop realization and removes the constraint of closed-loop
stability. The gains are designed through an eigenstructure assignment
procedure, in which the model parameters of interest in the updating are
divided into two different classes; one where the pole sensitivities with
respect to the parameters are to be enhanced and one where they are to
be reduced. A numerical example with a structural system is presented
that demonstrates the merit of the proposed gain design procedure.
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1 Introduction

Parameter estimation for updating numerical models of structural systems is of-
ten resolved in an optimization setting, where some cost function expressing the
discrepancy between experimental target poles and model-predicted ones is min-
imized [1]. Intrinsic deficiencies in this approach are that the structural system
is never within the model space manifold and that the experimentally identified
poles constituting the target vector are subject to estimation uncertainties [2].
What also hinder the applicability when strictly using poles to form the target
vector are that the number of poles that can be identified is typically low and,
in addition, that these have limited sensitivity to the parameters of interest.

A recognized procedure for enlargement of the target space is to test the
structure in question under known perturbations and/or changed boundary con-
ditions [3–5]. Another approach, which avoids testing under modified structural
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conditions, is to operate in closed loop and increase the target space by design-
ing multiple systems using different gains [6–8]. However, despite the noticeable
merits of the approach, which also include allowing for eigenstructure assign-
ment to tailor pole sensitivities, the applicability has thus far been hampered by
the practical overhead associated with real-time testing in closed loop.

The applicability of closed-loop model updating has, however, recently been
promoted by a proposed virtual implementation, where closed-loop eigenchar-
acteristics are computed directly from processing of open-loop input-output
data [9,10]. Besides eliminating the practical overhead associated with real-time
operation, the virtual implementation also removes the constraint of closed-loop
stability and allows computation of several closed-loop eigenstructures based on
a single open-loop realization. The latter obviously implies that the target space
can be readily increased by use of different gains, thus the task becomes the
design and selection of these. Ultimately, the goal is to increase the Fisher infor-
mation on the parameters to be updated, which can be achieved qualitatively by
designing gains through optimizing some cost function promoting pole sensitiv-
ity or, as is currently being explored [11–14], quantitatively by simply generating
an amount of random gains that highly overdetermine the set of equations to be
solved in the updating.

In the present paper, we will follow the qualitative path of gain design for
model updating, and we choose to divide the system parameters into three
classes; 1) those with large uncertainties, 2) those with less but still notable
uncertainties, and 3) those which are (almost) known exactly. While it is obvi-
ous that the parameters in the first class and the third class are, respectively,
included and discarded in the model updating, a question opens up regarding the
parameters in the second class. Whether or not to include these in the updating
boils down to a tradeoff between the error introduced by discarding them (and
hence treating them at their nominal values) and, if included, the increased size
of the free parameter space to be handled in the optimization. In this study, we
opt for the former and, in the gain design, minimize the sensitivity of the poles
with respect to these parameters.

The paper is organized as follows: in section 2, the basic principles of static
output feedback, including the virtual implementation and eigenstructure assign-
ment, are briefly presented. Section 3 discusses the design of gains and section 4
outlines the model updating formulated as an optimization problem. The points
made in the theoretical part of the paper will be demonstrated in a numerical
example in section 5, while some concluding remarks are provided in section 6.

2 Output feedback

We consider a linear and time-invariant structural system, P, which is described
in discrete time by the state-space formulation

x(k + 1) = Adx(k) +Bdu(k) (1a)

y(k) = Cx(k), (1b)
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where x(k) ∈ Rn, u(k) ∈ Rr, and y(k) ∈ Rm are the state, input, and output
vectors, while Ad ∈ Rn×n, Bd ∈ Rn×r, and C ∈ Rm×n are the system matrices
for which it is assumed that {Ad, Bd} is controllable and {Ad, C} observable.
Also worth of explicit note is that eq. (1b) holds directly when measurements are
displacements, velocities, or non-collocated accelerations, and it can also be used
in the case of collocated acceleration measurements if the direct transmission
term is subtracted from the measurements. One of the mentioned conditions
will be assumed to hold in this paper.

Let P operate under the influence of static output feedback of the form

u(k) = −Gy(k) + v(k) (2)

with some excitation v(k) ∈ Rr and gain G ∈ Rr×m, which we, for simplicity,
restrict to be real from the outset. Substituting eq. (2) into eq. (1a) yields the
closed-loop formulation

x(k + 1) = (Ad −BdGC)x(k) +Bdv(k) (3)

from which the closed-loop state matrix, Ā = Ad −BdGC, is defined.

2.1 Virtual implementation

The transfer matrix of P in open loop, H(z) ∈ Cm×r, is defined as

H(z) = C(sI −Ad)−1Bd, (4)

so with the feedback law specified in eq. (2), we establish

y(z) = H(z) (−Gy(z) + v(z)) , (5)

which results in the closed-loop transfer matrix

H̄(z) = (I +H(z)G)
−1
H(z). (6)

It is appreciated that closed-loop eigenstructures can be identified directly from
an open-loop realization. In fact, by using eq. (6) with different gains, one can,
in principle, generate as many closed-loop systems as required from just a single
open-loop realization.

We close this part by noting that the virtual implementation follows directly
when the identification of the open-loop system is conducted in frequency do-
main. If, however, a time-domain identification scheme is used, one must trans-
form to z-domain to compute eq. (6) and then return to time-domain to finish
the identification. An approach for this, which is based on mapping observer
Markov parameters to H(z), is provided in [10]. Here, it is also brought to at-
tention that the closed-loop system can have unstable poles, because these will
be filtered when doing the inverse z-transformation to return to time-domain.
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2.2 Pole and eigenvector placement

Let ΛM = {λ1, λ2, . . . , λp} denote a subset of p ≤ n poles that are to be placed,
then, for λj ∈ ΛM, it follows from eq. (3) that

(Ad −BdGC − λjI)ψj = 0, (7)

or, in partitioned form,

[
Ad − λjI −Bd

] [ψj
bj

]
= 0 (8)

with bj = GCψj . The number of vectors that satisfy eq. (8) equals the nullity of[
Ad − λjI −Bd

]
and is no less than the number of inputs, r.

Defining Ψ =
[
ψ1 ψ2 . . . ψp

]
∈ Cn×p, Φ = CΨ ∈ Cm×p, and Z = [b1 . . . bp] ∈

Cr×p, it follows that
GΦ = Z, (9)

hence showing that the gain, G, is found by inversion when Φ has full rank and
is square; with the latter obviously requiring that the number of placed poles, p,
equals the number of outputs, m. Since transposition of a square matrix does not
change its eigenvalues, operating with left-side eigenvectors and the appropriate
transposes is also valid and allows placement of r poles.

3 Gain design

Since Ā ∈ Rn×n, the poles to be placed for the closed-loop system with gain Gi
come in the self-conjugate subset

ΛM (Gi) = {λ1, . . . , λl, λ∗1, . . . , λ∗l } (10)

where superscript ∗ denotes complex conjugate and p = 2l. The number of poles
selected for each gain can differ, but here we simplify the notation by taking l
to be the same for all the gains.

The system parameters are gathered in θ = {θα, θβ , θγ}, where we, as de-
scribed in section 1, have defined three groups of which two of them, namely,
θα ∈ Rsα and θβ ∈ Rsβ , are included in the design of the gains. θα contains the
parameters associated with large uncertainties and θβ those with less but still
notable uncertainties, thus the model updating is carried out in a setting where
only the nα parameters collected in θα are estimated.

Assume that q gains are gathered in the compound matrix

G =
[
GT1 . . . G

T
q

]T ∈ Rqr×m, (11)

which is designed to maximize the sensitivity of

ΛM = {ΛM (G1) , . . . , ΛM (Gq)} ∈ Cql (12)
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with respect to θα and minimize the sensitivity of ΛM with respect to θβ . Let

J =

Jα (G1) Jβ (G1)
...

...

Jα (Gq) Jβ (Gq)

 =


∂ΛM(G1)

∂θα

∂ΛM(G1)
∂θβ

...
...

∂ΛM(Gq)
∂θα

∂ΛM(Gq)
∂θβ

 ∈ Cql×(sα+sβ) (13)

be an extended Jacobian, which is partitioned into the sensitivities with respect
to θα, gathered in Jα ∈ Cql×sα , and the sensitivities with respect to θβ , gathered
in Jβ ∈ Cql×sβ . For details on the computation of the sensitivities, the reader is
referred to [8].

The Fisher information on, respectively, θα and θβ is

Fα = JHα Σ
−1Jα (14a)

Fβ = JHβ Σ
−1Jβ , (14b)

where superscript H denotes conjugate transpose and where we have assumed
normality and that the covariance on the poles, Σ ∈ Cql×ql, is independent of
the parameters. If Σ is taken as the identity, we see that the Fisher information
is simply the dot product of the Jacobian by itself, which suggests that the gains
can be designed from

arg max
G

||Jα||∗ (15a)

arg min
G

||Jβ ||∗, (15b)

as ||(•)||∗ = trace
(√

(•)H(•)
)

is the nuclear norm of (•). A scalar cost function

is conveniently formulated as

arg min
G

||Jα||−1∗ + ||Jβ ||∗

subject to ∀i ∈ [1, q] : ‖Gi‖ ≤ ξ
(16)

from which the compound gain, G, is found under the noted constraint on the
gains’ norm. ξ must be selected such no undue error arises in the closed-loop pole
estimates, which, according to eq. (6), implies that I + H(z)Gi must be well-
conditioned. In the numerical example in section 5, ξ is selected heuristically.

We note that the gain design, for necessary practicality, is carried out by use
of a model of a structural reference state, which does not take into account the
current realization of the system parameters. It is also worth mentioning that
the outlined eigenstructure assignment procedure will, as elaborated in [8], typi-
cally yield a subset of unstable poles when one operates with homogeneous mea-
surands. While this is obviously an intractable condition for physical real-time
testing, eigenstructures with unstable poles are fully acceptable in the virtual
implementation.
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4 Model updating formulation

The parameters to be updated are θα ∈ Rsα , and the updating is formulated as
the following constrained optimization problem based on the use of q gains:

arg min
θα∈Rsα

∥∥∥Λ̂M − Λ̃M (θα)
∥∥∥

subject to ∀i ∈ [1, sα] : τi ≤ θ0α,i ≤ υi,
(17)

where τi, υi ∈ R are lower and upper bounds on the ith nominal parameter, θ0α,i,

while Λ̂M ∈ Cql and Λ̃M (θα) ∈ Cql are, respectively, the estimated target poles
and the corresponding model-predicted ones. Needless to say, the premise is to
enforce ql ≥ sα such the system of equations to be solved in the optimization
scheme is not underdetermined.

5 Numerical examination

We consider the shear building model depicted in fig. 1 and use the terms nominal
model and simulation model to refer to, respectively, the model to be updated
and the model used to simulate experiments. In the nominal model, all inter-
story stiffnesses and floor masses are, respectively, 500 and 1 in some consistent
set of units, and classical damping is assumed such each mode has a damping
ratio of 2 % in open loop. In the simulation model, perturbations are introduced
such the floor masses are {1.02, 0.96, 1, 0.98, 1.04} and the inter-story stiffnesses
are {505, 503, 493, 400, 501}, where we note that the low value of the fourth
inter-story stiffness could be due to, for example, structural damage.

In the simulations, noise excitation with unit standard deviation—low-pass-
filtered such that only the first three modes are consistently excited—is applied
as shown in fig. 1, and the output is taken, with a sampling frequency of 100 Hz,

y1(k)

y2(k)

y3(k)

1

2

3

4

5

u(k)

Fig. 1. Shear building with one input, u(k), and three displacement outputs, yi(k).
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as displacement response measured at floors 1, 3, and 5. The response is contam-
inated with 2 % additive white noise, and the open-loop system identification is
carried out using the Eigensystem Realization Algorithm [15].

In the gain design, the parameters θα and θβ are composed of, respectively,
the inter-story stiffnesses and the floor masses. We design two gains and select
three poles from the identification of each of the resulting closed-loop systems,
which provide the target vector Λ̂M ∈ C6. The corresponding poles of the model,
Λ̃M (θα) ∈ C6, are taken as those with the smallest discrepancy to the target
poles. From this outset, the cost function defined in eq. (17) is minimized with
the constraints set to lower and upper bounds of 70 % and 130 % on the nom-
inal inter-story stiffness parameters, θ0α. The minimization is conducted using
the “fmincon” algorithm in MATLAB R©, and it converges to the results pre-
sented in fig. 2. Evidently, we estimate the inter-story stiffness parameters with
a maximum absolute error of 3 %.

6 Conclusion

This paper explores the design of gains through eigenstructure assignment in a
recently proposed virtual implementation of static output feedback for param-
eter estimation. The gains are designed in an optimization setting, where pole
sensitivities with respect to highly uncertain parameters are maximized and pole
sensitivities with respect to parameters with small uncertainties are minimized.
In this way, only the parameters associated with large uncertainties are included
in the model updating while the rest are assigned their nominal values.

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Fig. 2. Updating results for the inter-story stiffness in the shear building model.
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A numerical examination of a shear building model is conducted to demon-
strate the governing concept. Here, the inter-story stiffness parameters are as-
sumed to have large uncertainties (due to, for example, damage) and the floor
masses small uncertainties. It is shown how the proposed gain design procedure
allows for parameter estimation with a maximum error of 3 % in a setting with
open-loop output signals corrupted with 2 % additive noise.
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