Constraint-Based Type-Directed Program Synthesis

Peter-Michael Osera
Department of Computer Science
Grinnell College
United States of America
osera@cs.grinnell.edu

Abstract

We explore an approach to type-directed program synthe-
sis rooted in constraint-based type inference techniques. By
doing this, we aim to more efficiently synthesize polymor-
phic code while also tackling advanced typing features such
as GADTs that build upon polymorphism. Along the way,
we also present an implementation of these techniques in
SCYTHE, a prototype live, type-directed programming tool
for the Haskell programming language and reflect on our
initial experience with the tool.

CCS Concepts « Software and its engineering — Se-
mantics; Automatic programming; « Theory of compu-
tation — Logic and verification.

Keywords Functional Programming, Program Synthesis,
Type Inference, Type Theory

ACM Reference Format:

Peter-Michael Osera. 2019. Constraint-Based Type-Directed Pro-
gram Synthesis. In Proceedings of the 4th ACM SIGPLAN Interna-
tional Workshop on Type-Driven Development (TyDe °19), August
18, 2019, Berlin, Germany. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3331554.3342608

1 Introduction

Functional programmers frequently comment how richly-
typed functional programs just “write themselves”.! For ex-
ample, consider writing down a function that obeys the type:

f :: a -> Maybe a -> a
Because the return type of the function, a, is polymorphic
we can only produce a value from two sources:
1. The first argument to the function (of type a).

10nce you get over the complexity of the types!

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
TyDe 19, August 18, 2019, Berlin, Germany

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6815-5/19/08...$15.00
https://doi.org/10.1145/3331554.3342608

2. The result of pattern matching on the second argument
(in the Just case, its argument will have type a).

These restrictions highly constrain the set of valid programs
that will typecheck, giving the impression that the function
writes itself as long as the programmer can navigate the type
system appropriately. To do this, they must systematically
check the context to see what program elements are rele-
vant to their final goal and try to put them together into
a complete program. However, such navigation is usually
mechanical and tedious in nature. It would be preferable if a
tool automated some or all of this type-directed development
process.

Such luxuries are part of the promise of type-directed pro-
gram synthesis tools. Program synthesis is the automatic
generation of programs from specification. In this particular
case, the specification of our program is its rich type cou-
pled with auxiliary information, e.g., concrete examples of
intended behavior.

1.1 From Typechecking to Program Synthesis

Type-directed synthesis techniques search the space of pos-
sible programs primarily through a reinterpretation of the
programming language’s type system [6, 19, 22]. Tradition-
ally, type systems are specified by defining a relation between
a context, expression, and type, e.g., I' F e : 7 declares that e
has type 7 under context I'. From this specification, we would
like to extract a typechecking algorithm for the language.
However, because relations do not distinguish between in-
puts and outputs, it is sometimes not clear how to extract
such an algorithm. Bi-directional typechecking systems [21]
alleviate these concerns by making it explicit which compo-
nents of the system are inputs and outputs of the system,
typically by distinguishing the cases where we check that a
term has a type from the cases where we infer that a term
has a type. In the former case, the type acts as an input to
the system where in the latter case, it is an output.

In both cases, the term being typechecked serves as an
input to the typechecking algorithm. However, with type-
directed program synthesis, we instead view the term as
an output and the type as an input. For example, consider
the standard function application rule found in most type
systems:

rF€12T1—>T2 Fl—ezzrl

F'Feje:n

TyDe 19, August 18, 2019, Berlin, Germany

While we can observe that the function application should be
typed at the result type of the function ey, it isn’t clear which
parts of the relations are inputs and outputs and the order
in which the checks ought to be carried out. A bidirectional
interpretation of this rule makes the inputs and outputs
explicit:

T'regr=>1 >0 I'rey &1

l'rerey =1 >

Here, the relationT + e; = 71 — 75 means that we infer that
the type of e; is 77 — 75. The relation I' - e, < 71 means
that we check that the type of e, is indeed 7;. With this, the
procedure for type checking a function application is clear:
infer a function type 7; — 17 for e; and then check that e,
has that input type 71; the type of the overall application is
then inferred to be the output type 7.

With type-directed synthesis, we turn typechecking into
term generation by reinterpreting the inputs and outputs of
the typechecking relation.

FFT1—>T2$€1 Fl—r1=>eg

Tty = e e

The relation T - 7 = e asserts that whenever we have a goal
type T we can generate a term e of that type. Now our term
generation rule for function application says that whenever
we have a goal type 2, we can generate a function application
e; e; where the output of the function type agrees with the
goal. We can apply this pattern to the other rules of the
type system to obtain a complete term generation system
for a language. We can further augment the system with
type-directed example decomposition [6, 19] or richer types
such as refinements [22] to obtain true program synthesis
systems.

This type-theoretic interpretation of program synthesis
gives us immediate insight into how to synthesize programs
for languages with rich type systems. Because rich types
constrain the set of possible programs dramatically, program
synthesis with types can lead to superior synthesis perfor-
mance. On top of this, the type-directed synthesis style di-
rectly supports type-directed programming, a hallmark of
richly-typed functional programming languages.

1.2 The Perils of Polymorphism

However, in supporting rich types, in particular polymor-
phism, we run into a pair of problems that deserve special
attention.

e The type enumeration problem: when dealing with
polymorphic types, we must first instantiate them.
However, there may be many possible instantiations
of a polymorphic type. For example, consider the map
function of type (a -> b) -> [a] -> [b]. Even if
we know that we need to create a value of type [Bool],

Peter-Michael Osera

there is nothing directly constraining the type variable
a.
Current systems that handle polymorphic synthesis
simply enumerate and explore all the possible types
that can be created from the context. However, this
may lead to an excessive exploration of type combi-
nations that do not work, e.g., choosing a to be Int
but not having any functions of type Int -> Bool
available in the context. Furthermore, it may lead to
repeated checking of terms that are, themselves, poly-
morphic, e.g., the empty list []1 :: [a] for any type a.
We would like to develop a system that systematically
searches the space of polymorphic instantiations while
minimizing the work done as much as possible.
Reasoning about richer types: polymorphic types
are relatively easy to handle in an ad hoc fashion. How-
ever, polymorphic types form the basis for a variety of
advanced type features such as generalized algebraic
datatypes (GADTs) and typeclasses that are commonly
used in advanced functional programming languages.
Rather than developing ad hoc solutions for all these
related features, it would be useful to have a single
framework for tackling them all at once.

1.3 Outline

In this paper we present a solution to the problems described
above: a constraint-based approach to type-directed pro-
gram synthesis. Constraint-based typing is used primarily to
specify type inference systems which generate constraints
between types in the program and then solves those con-
straints to discover the types of unknown type variables. In
the spirit of type-directed program synthesis, we flip the
inputs and outputs of the constraint-based typing system
to arrive at a synthesis system that tracks type constraints
throughout the synthesis process. This embodies a new strat-
egy for synthesis—“infer types while synthesizing”—that
allows for efficient synthesis of polymorphic code while also
giving us a framework to tackle GADTs and other advanced
type features built on polymorphism.

In section 2, we develop a constraint-based program syn-
thesis based on a basic constraint-based type inference sys-
tem. In section 3, we extend the system to account for GADTs.
In section 4, we discuss our prototype implementation of
this approach in our program synthesis tool, ScyTHE. And fi-
nally in section 5 and section 6 we close by discussing future
extensions and related work.

2 Constraint-based Program Synthesis

We first develop a constraint-based program synthesis sys-
tem for a core functional programming language featuring
algebraic datatypes and polymorphism. To do this, we first
present a standard Hindley-Milner style type inference sys-
tem for the language and then show how to re-interpret it

Constraint-Based Type-Directed Program Synthesis

o = Va_ii.r

T =a|a|Tr_ii|r1—>r2
e x | K| Ax.e | e e

m = Kﬁk—>e

b = x=e

C = {mi~1}

0 = - | [r/al0 | [z/a]0

r = - | x0,T | KVa;'.C=> 7}

case e of m;’

k

TyDe ’19, August 18, 2019, Berlin, Germany

Type Schemes
Monotypes
Expressions
Match Branches
Top-level Bindings

Constraints
Type Environments
— T a;',T Contexts

Figure 1. Basic syntax of the object language.

as a program synthesis system, augmented with example
propagation in the style of MyTH [19].

Figure 1 gives the syntax of the object language. Types
are composed of top-level type schemes o which introduce
universally quantified type variables. The language of mono-
types 7 enclosed in type schemes include type variables a,
function types, and saturated algebraic datatypes T T_jj . The
constraint-generation process also generates unification vari-
ables a, B, v, . . ., that are eventually substituted away during
the inference process. The context I' records both the type
of variables and constructors K, enforcing that all construc-
tors are (possibly) polymorphic functions whose co-domain
is their associated algebraic datatype. The co-domain is re-
stricted to the universally quantified type variables of the
declaration; in section 3, we lift this restriction to enable
generalized algebraic datatypes.

The expression language is a standard typed, functional
language with algebraic datatype constructors and pattern
matching restricted to one-level peeling of head constructors
from their arguments. Like Haskell, we treat constructors
like function application and allow for partial application of
constructor values. Conspicuously absent from the expres-
sion language are let-bindings. This is because we do not
synthesize let-bindings (that are not top-level) during the
synthesis process. As we shall see shortly, there is no type-
or-example-directed way to synthesize such bindings in the
general case, so we elide them from our object language.

Throughout this paper, we refer to sequences of objects
either using ellipses, e.g., e . . . e, or using overbar notation
Ek where we use index variables i, j, k, . . . to represent the
lengths of these sequences. We denote nested sequences (i.e.,
sequences of sequences) using nested overbars and both sub-
scripts and superscripts to separate the lengths. For example,
—1
eJl:J refers to a sequence (of size i) of sequences (of size j)
of expressions e denoted e]’:. Finally, whenever possible we
use the metavariables i, j, and k to denote the lengths of the
following sequences:

e i:types, e.g., Va_l-i. T, T r_l-i,

e j: examples, e.g., {S; —)(j}j, and

INFER-VAR

fresh a;’ xVa;'.teT

INFER-APP
fresh o

I'kFx: [ai/ai]lf = -

're:qg=C Tre:mp=0C

rl—eleglb‘{ﬂClUCgU{ﬁ"'Tz—)a}
INFER'CASE
fresha;’, B

Tte:r=C C'=CU{r~Ta'}

— j
Tk ail;b]’ 1T =>Cj

chaseeofb_jj :ﬁzC’UFj}U{ﬁfvrjj}
INFER-LAM

fresha xa,Tre:1=C

I'tAx.e:a—>1=C

l"i—a_,-i;mzrﬁc

INFER-MATCH
k

N =k —i T)
KVa;'. 7" > Ta; €T xp:laifail e ,Tre:t=C

I“I—a_ii;Kﬁkee:T:C

INFER-BIND
Frte:t=C unify(C) =0
;' ¢ fuvs(0) fresha;’

Thf=e:Va' [a/a] 0c
Figure 2. Type inference system.

e k: arguments (to constructors), e.g., K ak.

2.1 Type Inference

Figure 2 gives the type inference rules for the system. As
is standard, our constraint-based type inference system op-
erates in two phases: type-and-constraint generation and
constraint solving. The primary judgment of the system
I' + e : 7 = C infers that expression e has type 7 under
context I and generates constraints C. Constraints in this
system 7; ~ 1, assert equalities between types, in particular,

TyDe 19, August 18, 2019, Berlin, Germany

giving concrete types to unification variables « that are gen-
erated for unknown types during the inference process. For
example, in the case of an un-annotated lambda (INFER-LAM),
we do not immediately know the type of the argument to the
lambda x. Thus, we create a fresh unification variable o and
use that variable as the type of the argument. In inferring the
type of the body of the lambda, we will generate constraints
C that refine the type of a.

In addition to assigning unification variables to types, con-
straints also serve the purpose of asserting expected equali-
ties between types of sub-expressions. When inferring the
type of a function application (INFER-APP), we assert that
the type of the head expression is indeed a function type
and the argument expression’s type is the domain of that
function type (7; ~ 72 — a). When inferring the type of a
case scrutinee (INFER-CASE), we assert that the type of the
scrutinee is indeed an algebraic datatype with fresh unifi-
cation variables in place of its arguments (r ~ T @;'). And
finally, we add constraints when inferring the overall type
of a case expression stating that all of the branches have the
same type (,BTT/)

Polymorphic types interact with the inference system in
two ways. The first is let-generalization which occurs at top-
level bindings f = e. After generating constraints C for the
body of the binding, we solve them using a standard unifica-
tion algorithm to find a type substitution 6 for each of the
unification variables found in C (INFER-BIND). Those unifi-
cation variables with no substituting types (Va;' ¢ fuvs(6))
become universal type variables in the final type scheme
of f. The second way lies in inferring the monotypes we
use to instantiate the type schemes of variables. Rather than
requiring that the user provides the instantiation via a type
application form or guessing the instantiation upfront, we
instantiate a type scheme with fresh unification variables @;’
that will be later constrained based on how the the variable
x is used by the program (INFER-VAR).

2.2 Constraint-based Synthesis

Figure 3 gives the syntactic extensions to the core language to
support type-and-example-directed program synthesis in the
style of MYTH [6, 19]. We extend the language with example
values y that the user provides as additional specification to
the synthesizer. Intuitively, example values are specifications
of values at a particular type that can be decomposed into
specifications for those values’ components. For example,
each of the values v; of a saturated constructor example
K v; can become examples for synthesizing each of K’s
arguments.

However, it is not immediately clear how to decompose
values at function type, i.e., lambdas, in a similar way. Like
MyTH, we introduce input-output pairs v = y as a dis-
tinguished example value at function type. Such examples
are easily decomposed and align with our intuition that we

Peter-Michael Osera

would like to specify the behavior of a function through a
collection of input-output examples (either realized as test
cases or documentation).

The synthesis system takes as input a context I', a goal
type 7, and a set of examples, and produces a program of that
type that agrees with the set of examples. Ultimately, the
system decomposes the examples, assigning sub-values to
generated binders—from lambdas and case expressions—as
the synthesizer generates them. These are recorded along-
side the examples that generated them, leading to the notion
of an example world W as a pair of a (value) environment S
and a example goal y for that world. When checking that a
program agrees with these examples, we evaluate the pro-
gram closed with each example world’s environment and
check that the resulting value is consistent with that world’s
example goal. We write the application of an environment S
to an expression e using juxtaposition: Se.

Figure 4 describes the complete synthesis system over the
language. In the spirit of bidirectional typechecking [21], we
divide type-directed synthesis into two processes which are
realized as a pair of judgments in the system:

1. Refinement, T + 7> W = e, decomposes a set of input
examples according to their types.

2. Generation, I' + 7 = e enumerates terms in a type-
directed fashion in the absence of examples.

The separation is, in fact, a division of the syntax of the
language into introduction forms and elimination forms for
refinement and generation, respectively. From a type infer-
ence perspective, type information flows into introduction
forms (i.e., we check against their expected types based on
their shape) and out of elimination forms (i.e., we infer their
types based on their sub-components). From a synthesis per-
spective, this means we can use the shape of an introduction
form to determine how to decompose examples whereas we
have no such affordances in the general case for elimination
forms. Thus, we must resort to raw term enumeration for
those forms.

As a final note, the system as described does not support
recursive functions (note that in Figure 4, REFINE-LAM does
not bind anything for the function itself) in order to make
clear the details of constraint propagation in the synthesis
process. Recursion can be easily integrated into the system
in the same manner as MYTH by treating the set of input-
output examples for a function as a partial function and
using that function value as a binding for the function-being-
synthesized. This requires that the example set is trace com-
plete so that any call to the function has a known value [19]
and is how the ScYTHE system discussed in section 4 imple-
ments recursion.

2.3 Refinement

The non-polymorphic refinement rules are largely identi-
cal to those found in MyTH. The function of each rule is to

Constraint-Based Type-Directed Program Synthesis

TyDe 19, August 18, 2019, Berlin, Germany

v = ¢ | Ax.e | Koi' Values

X = ¢ | Kx' | v=y Examples

X = Vega; . xy Top-level Examples
S = [v;/ xi]l A Environments

W =[S)(j]] Example Worlds

r = - | ca,T Contexts

Figure 3. Syntactic extensions for type-and-example-directed program synthesis.

describe how to decompose a set of example worlds accord-
ing to the goal type’s example form. For lambdas (REFINE-
LAM), we decompose a collection of worlds containing input-
output examples by assigning the lambda’s binder x the
input and synthesizing the body of the lambda with the
output as the goal. For constructors (REFINE-DATA), if all
the examples share the same head K, then we can safely
synthesize that constructor and divide up the examples’ ar-
guments into examples for each of that constructor’s ar-
guments. For example, suppose that we have a construc-
tor K : Int — Bool — Int — T with example worlds
W = wq, wy, ws:

wi; =S5+ K0Truel
wy = Sy > K 2 False 3
w3z =853+ K 4True5

By REFINE-DATA, we will synthesize K ll; l; B; with three
synthesis sub-goals for each of K’s arguments. Each of the
sub-goals contains example worlds Wy, W,, and W5 respec-
tively:

W =505H235H4
W, = S; True, S, — False, S3 +— True

%251H1,52H3,53|—)5

Notably with refinement, the fully specified goal type is
required as input to the procedure, so there is no need to
reason about type constraints at this point in the system?.

Unlike other type-directed forms, case-expressions do not
immediately imply a particular type. Indeed the type of a
case-expression is exactly the type shared by its match bodies.
Nevertheless, we can refine examples through case expres-
sions as described by the REFINE-CASE rule:

1. Generate a scrutinee expression e at some concrete
datatype T 7;.

2. For each constructor K of T, create a match for that
constructor using the example worlds {S; — ij} c
W where the scrutinee would evaluate to a value with

ZNote that even with goal types elided, the examples make inference of
the goal type trivial due to canonicity of types. However, we may want to
consider type-directed synthesis in the absence of any examples which we
discuss in more detail in section 5.

head constructor K (written using the filtering operator
WX defined in Figure 5).

When generating a scrutinee, we use the term-generation
judgment C;T' + 7 = e;C’ which produces a set of type
constraints C’ under which e typechecks at type 7. However,
because we assume the concrete datatype of type T 7;' up-
front, we know that the type does not contain any unification
variables and thus we can ignore C’ for now. In theory this
means that an implementation of the system must explore
all possible combinations of datatypes to arguments which
is the exact problem we are trying to solve with constraint-
based synthesis! But in practice, we heavily restrict the kinds
of expressions that appear as scrutinees already, e.g., to direct
arguments of the synthesized function, so such type search
is tolerable in practice.

The helper judgment I + e;r_ii;K; 7> W = m is responsi-
ble for synthesizing match branches from the scrutinee and
candidate constructor. Its sole rule (REFINE-MATCH) extracts
and binds the evaluated-to constructor values’ arguments in
the filtered example worlds and continues synthesis of the
match’s body.

Finally, we connect refinement and term generation with
the REFINE-GUESS rule which generates a term e and then
checks to see if, for each example world S +— y, that the
closed term Se is equivalent to the goal example y according
to the standard evaluation rules of the language (e =g v
whenever e —* v). The only non-standard case that can
arise is the comparison of a lambda (a v) to an input-output
example (a y). We thus define:

Axr.e =g v = yiff (Ax:ir.e) v =4 y.

That is, we run the input of the input-output pair through
the lambda and check to see the resulting value is equivalent
to the output of the pair.

Polymorphism in Refinement We must consider poly-
morphic types at two points within refinement. First, unlike
the presentations of the case rule in prior work [19], construc-
tors now have (potentially) polymorphic types. However,
because the type T 7;' is fully concrete, we can immediately
instantiate the constructor’s polymorphic type (6 = [ml])
and use that type substitution on each of the types of the
arguments of the constructor.

TyDe 19, August 18, 2019, Berlin, Germany

REFINE-GUESS .
CTrr=e¢C Sie =g)(jj
consistent(C’)

REFINE-LAM '
fresh x x:1, T F 0> {[v;/x]S; — ij} =>e

FI—TI>{Sj|—>)(jj}=>e

F'tn—=n>{S—uv=y}=e
REFINE-DATA _
L . —_—i
KVa; . 7eF > Ta' el 0 =ri/a; |

k

L

—.j' K
Wk={5j1—>)(]’€} T'FOr > Wy = e

—)
—k
—i j —k
rI-TTilD{ij—)KX]]c }:}K@k
REFINE-CASE

j
. . —k .
CT+TT7' = eC K;: ail.rljc —Ta;' €T

— j
FteT K> W = m;

'+ 7>W = case e of m;/

T+ e;r_ii;K;TDW =>m
REFINE-MATCH A
KvVa! 75 >Ta el WK=15- Y

———]
JE— —k
0 = [T,-/ai]l Sie —* K v{c fresh xp*
T E—

JEE— — -k
xp:bre LTk {[v /xi] Sj= x } =€

TreT: KitoW =KXk > e

REFINE-POLY
T
F'rro{Si—xyi}t=e

. —
TrVa . o> {S; > Vepag:. y } = e

—_—
[

fresha;’ xVa;'.C' =1 €T 0 = [a;/a;]
C"=CcubC'"U{r ~0r'} consistent(C”")
CTrr=x;C”

GEN-VAR

GEN-APP
fresha CTra—-1t=e;C
Cl;F Foa = €2;C2

CiTFT = € 63;,Cy

GEN-UNIFY
CErn~n C.Tro=e(C

CTro =eC

Figure 4. Type-and-example program synthesis rules.

Peter-Michael Osera

e=pviffe —"0v
Axt.e =g v = yiff (Axit.e) v =4 y.
WEK=(S—»yeW | Se—"Kuv, --- v}
unify(C) = 0 (standard unification algorithm)
CEC' iff Vr ~ t/ € C’. 6t = Or'whereunify(C) = 6.
consistent(C) iff 30. unify(C) = 6

Figure 5. Auxiliary definitions for the synthesis system.

Secondly, top-level bindings are at type schemes o, so
we must provide examples at polymorphic type for them.
However, there is no type-directed syntactic form for poly-
morphic types! Furthermore, even an explicit term-level type
abstraction, e.g., Aa. y, does not provide much help! This is
because the type abstraction does not introduce values of
the type variable a, and we need such values to write down
complete examples.

We therefore introduce a new top-level example value
form X in Figure 3, the polymorphic example Wi.fjj,
which introduces a set of polymorphic constants c; at type
variables a;. This example form was first introduced in Os-
era’s thesis [17] in the context of synthesizing within Sys-
tem F, and we have adapted it to this Haskell-like setting.
For example, we might specify for a goal type of Va.a —
Maybe a — a:

Vey:a, c:a. ¢; = Nothing = ¢4,

¢ = Just ¢, = cs.

In these two examples, we introduce polymorphic constants
c¢; and ¢, of type a and use them throughout the input-output
examples for the standard fromMaybe function.’

We refine polymorphic examples introduced at top-level
bindings (REFINE-POLY) by simply stripping the top-level
forall and synthesizing at the contained sub-example value.
The binding information for the polymorphic constant is
only useful for typechecking the examples themselves; they
are not necessary for the synthesis process as the example
values are simply carried around as values bound to variables
in an example world’s environment.

2.4 Generation

Like refinement, term generation takes as input a goal type.
However, during the course of generation, we may need to
instantiate types schemes when generating variables. Rather
than committing to a choice of a complete instantiation of
a type scheme upfront (which requires us to systematically

3The astute reader ought to notice that these examples are virtually the
definition of fromMaybe already! We reflect on this fact in more detail in
section 4.

Constraint-Based Type-Directed Program Synthesis

search the space of possible types), we infer the instantia-
tion as we generate the complete term. If type-and-example-
directed program synthesis captures the idea of “evaluating
during enumeration” [19], then our approach of integrat-
ing type inference into the term generation adds the idea of
“inferring during enumeration”.

To do so, we “invert” the appropriate rules from our type
inference system (Figure 2) to create a term generation sys-
tem that infers types during the generation process. This
judgment, written C;I" + 7 = e;C’, takes a collection of
constraints C, a context I', and type 7 as input as produces
a program e and an updated constraint set C’ as output. In
effect, we thread a set of type constraints throughout the
generation process which makes concrete the idea that a
choice of a component in one part of an expression might in-
fluence choices in the rest of the expression. It is worthwhile
to note that our rules are not an exact inversion of the type
inference system defined in Figure 2 because the generation
process is given a concrete goal type to work with as input.

While refinement handles the introduction forms of the
language, generation concerns the elimination forms, of
which there are only variables and function application. With
variable generation (GEN-VAR), we speculatively choose a
variable to generate and then create a new constraint record-
ing that the goal type must be equivalent to the type scheme
of the variable instantiated with fresh unification variables
(r ~ [ai/ ail]r’). And with function application generation
(GEN-APP), we first speculatively generate a function under
the constraint that its domain matches our eventual argu-
ment type and the co-domain matches our goal type. We then
generate function arguments under the constraints accrued
from generating the function.

While the initial goal type for generation is a concrete
type, we will quickly introduce unknown types, i.e., unifica-
tion variables, through the process. We eliminate unification
variables through unification of the constraints during the
generation process (GEN-UNIFY). If our goal type is some
71 (presumably a unification variable) and our current con-
straint set allows us to conclude that it is equivalent to 7,
(C E 7y ~ 1p) then we can synthesize at this type 7 instead.

As we generate constraints, we need to take care that these
constraints are consistent. An inconsistent set of constraints
asserts that in-equal types are equal, e.g., Int ~ Bool. If at
any point we arrive at a set of inconsistent constraints, we
know that the currently generated term is not well-typed
and should be rejected. In our formal system, this amounts
to using the consistent helper relation to check that when-
ever we output a constraint set from a rule that it is indeed
consistent. consistent(C) simply asserts that a unifier (i.e.,
type substitution) exists for C as described in Figure 5.

TyDe 19, August 18, 2019, Berlin, Germany

H : [Bool]
/ \
M : o; — [Bool] H: o
N |
B:0, > (¢; > [Bool]) HE:a, N:[Int]

| | |

map By >y |

|
isEven

Figure 6. Example generation derivation of map.

For example, consider generating a program of type [Bool]
under the context:

I = map : Vab.(a — b) — [a] — [D],
isEven : Int — Bool,
[: [Int]

with goal type [Bool]. Figure 6 graphically shows one poten-
tial generation of a program of this type.

Starting at the root, we first apply the GEN-APP rule which
generates a fresh unification variable a; and two gener-
ation sub-goals at types a; — [Bool] and a;. We apply
GEN-APP again at the first sub-goal which generates another
unification variable a; and two more sub-goals at types
ay — (a; — [Bool]) and ;.

At the first of these new sub-goals, we can apply GEN-VAR
and choose the map variable. This generates the constraint

a; — a1 — [Bool] ~ (y1 = y2) = [y1] — [y2]

for fresh unification variables y; and y,. Now we can return
to the sub-goal with goal type @, and apply GEN-UNIFY to
continue generating at type y; — Y, since our constraint
implies that a; ~ y1 — 2. This allows us to apply GEN-VAR
and choose the isEven variable, adding the constraint

Y1 — 2 ~ Int — Bool.

Finally, we can return to the sub-goal with goal type a4, apply
GEN-UNIFY to generate at type [Int] (because a; ~ [y1] ~
[Int]), and the choose [via GEN-VAR, generating a final, trivial
constraint [Int] ~ [Int].

Because we are ensuring that our generated constraint sets
are consistent at every step, the order in which we explore
generation sub-goals doesn’t matter. However, the order
heavily influences how much backtracking we will need to
perform because of “bad” choices of terms. For example, if
rather than synthesizing map first, we instead try to synthe-
size its arguments, we may make many spurious choices if
there are non-list types in the context. Thus, even though
our constraint-based synthesis system allows us to consider

TyDe 19, August 18, 2019, Berlin, Germany

r «:= .- | K:Va_ii.C:'ﬁkaTa_ii,l“ Contexts

Figure 7. Syntactic extensions for GADT synthesis.

types in a more incremental fashion, we must still be con-
scious of performance during implementation. In this partic-
ular case, it makes sense to attempt to synthesize functions
before their arguments since the function is more likely to
prune the search space of types than synthesizing one of its
arguments.

3 Synthesis with GADTs

Traditional algebraic types require that the output type of its
constructors have the form T @;’ where the a;s are univer-
sally quantified type variables from the type of the construc-
tor. Generalized algebraic data types (GADTs) lift this restric-
tion so that the type arguments of T may be any type, not
just type variables. While a seemingly insignificant change,
GADTs strike a powerful balance between power and com-
plexity on the spectrum of rich type systems.

The quintessential example of GADTs-in-action is the
tagless interpreter given below in Haskell:

data Exp a where

Lit :: a -> Exp a
Plus :: Exp Int -> Exp Int -> Exp Int
Eq :: Exp Int -> Exp Int -> Exp Bool
If :: Exp Bool -> Exp a -> Exp a -> Exp a
eval :: Exp a -> a
eval (Lit x) =X
eval (Plus el e2) = eval el + eval e2
eval (Eq el e2) = eval el == eval e2

eval (If el e2 e3)
if eval el then eval e2 else eval e3

Here, we parameterize the type of Exp a by the type a that
the expression evaluates to. This allows us to give eval the
rich type Exp a -> a which in turn allows us to write eval
without any case analyses on the values it produces.

How do GADTs complicate typechecking and consequently
type-directed program synthesis? For example, consider the
Plus case of eval. If Plus was a regular algebraic datatype
(say, with type Exp -> Exp -> Exp), the body would not
typecheck because (+) produces a value of numeric type
whereas the function expects a value of type a. To enable
the body of Plus to typecheck, the typechecker must de-
duce that because the input is a constructor that produces
an Exp Int, then a ~ Int and thus we must typecheck the
body at type Int. In effect, consuming a GADT via a pattern
match introduces local type constraints into the environment
that we must consider when typechecking each branch [25].

With some minor changes, we can adapt the constraint-
based framework we developed previously to accommodate

Peter-Michael Osera

GADTs:. In particular, we follow the presentation of Out-
SIDEIN [25] and represent GADTs as standard polymorphic
constructors coupled with constraints C on the type vari-
ables that appear in the output type of the constructor. This
allows us to avoid a step of unification during type inference
and synthesis to discover these constraints on our own. As
an example, we can rewrite the declaration of Exp above in
this style:

data Exp a where
Lit :: a -> Exp a
Plus :: (a ~ Int) =>
Exp Int -> Exp Int -> Exp a

Eq :: (a ~ Bool) =>
Exp Int -> Exp Int -> Exp a
If :: Exp Bool -> Exp a -> Exp a -> Exp a

With this style, our GADT constructor definitions obey the
same restriction as regular algebraic datatypes—the type
arguments of the output type are type variables—but the
addition of type constraints allow us greater freedom as to
what types the constructors produce.

Figure 8 gives the updated synthesis rules with generalized
algebraic datatypes. Because GADTs only affect datatype
declarations and constructors, we only need to update the
rules for refinement; raw term generation is left untouched.

We update the refinement judgment to carry around the
set of constraints C gained through case analysis of GADT
values. Unlike term generation, additional constraints gained
through GADT analysis are scoped to their matches. Be-
cause of this, we only need to thread constraints down the
refinement judgment as an input and not gather updated
constraints as an output. Most rules simply pass their con-
straints to their sub-refinement calls as in the case of lambdas
(REFINE-GADT-LAM) or to raw term generation (REFINE-GADT-
GUESS). At the top-level, we begin refinement with the empty
set of constraints (REFINE-GADT-BINDING).

Now when generating a case expression (REFINE-GADT-
CASE), we also extract the constraints associated with each
constructor C; and add it to the constraint set associated
with synthesizing that constructor’s match body. Notably,
we instantiate the additional constraints C; with the type
environment generated by unifying the type of the scru-
tinee with the output type of the constructors, written 6C;.
Constraints are utilized during refinement when synthesiz-
ing constructors (REFINE-GADT-DATA). We ensure that we
only synthesize a constructor if the current set of constraints
C implies all of the (instantiated) constraints bundled with
the constructor’s type. Note that this stands in contrast to
inconsistencies detected during case generation. If the con-
straints of a constructor are inconsistent with the current
set of constraints when synthesizing a match alternative
then the alternative is unreachable and can be elided as an
optimization.

Constraint-Based Type-Directed Program Synthesis

‘C;I‘ Fr>W=e ‘
REFINE-GADT-LAM .
Cix:ry, Ty > {[v/x]S; = Xj]} =e

fresh x

CTrn = 0> {S— v :XJ-]} = Ax.e
REFINE-GADT-DATA)
KNVa;'.C' =" >Ta' el
0=[r/a;] CEOC

Wk:{st)(IIc} C;T+ Ot > Wi = e

. —.kj
CIrTT o {S; > Kyl } =K

REFINE-GADT-CASE

J
. —k .
Kj:va,-’.Cj = Z'Ii - Ta_,' el
— j
Clren; Kyt W =m;j

CGT+T7T = el

C;Fl—rl>W=>caseeoijj
REFINE-GADT-GUESS _
, P ——
CT'trt=e¢eC Sie =g xj
consistent(C”)

S —]
CGlrre{Si—yxyi}=e
REFINE-GADT-UNIFY
CEa~rt CTriopW=e

C;Trab W =>e

CTrenh Kt W=m
REFINE-GADT-MATCH
KNG .C' =% > Ta'erl

—J

WIS ={S;— x}

—’
Sje —* K U{C

0 =Trija;] fresh X"

J
—k ——k
CUOC; x0T rr>{[u /xi] S x;) =€

C;l"l—e;r_ii;K;TDW:I»Kﬁk — e’

REFINE-GADT-BINDING

fresh x
ftvs(r) C @' sopar, Tree {7y} >e

T+Va'.t> VCk:akk.)(_jj =x=e

Figure 8. Extensions to synthesis system for GADTs.

Finally, like with term generation, we need to use the con-
straints in refinement to refine the goal type when appropri-
ate. The unification rule for refinement (REFINE-GADT-UNIFY)
operates identically to its generation counterpart but at type
variables: at a type variable a, we can use a’s assigned type
as recorded by C instead.

As an example of the system in action, consider how con-
straints are generated and utilized while synthesizing part

TyDe ’19, August 18, 2019, Berlin, Germany

of the eval function introduced at the beginning of this sec-
tion. After an initial application of REFINE-GADT-BINDING
and REFINE-GADT-LAM, we arrive at the following refinement
state:

evale=M:a>W
I'=eval :Ya.Expa — a,e:Expa
C=-.

At this point, we can apply the REFINE-GADT-CASE rule to
synthesize a case analysis on e. Let’s just focus on the Plus
constructor which has type:

Vb. (b ~ Int) = Exp Int — Exp Int — Exp b.

(We a-rename the constructor’s bound type variable to b
in order to distinguish it from the type variable from the
overall type of the function a). Unifying the return type of
Plus with e yields the type substitution 8 = [a/b] which then
yields the final constraint a ~ Int which is added to the set
of constraints when synthesizing the body of Plus’s match at
goal type a. This constraint is then passed to term generation
which is then used by GEN-UNIFY to change the type of the
goal from a to Int which then justifies synthesizing an appli-
cation of the (+) function. When we go to generate recursive
function calls to ewval, the constraint is also utilized when
instantiating the polymorphic type of eval to Exp a — a
with a ~ Int.

3.1 Metatheory

There are two properties that we ought to consider of the
synthesis system we have developed so far:

e Soundness states that synthesized programs are con-
sistent with their specification.

e Completeness states that we are able to synthesize
all programs that meet a particular specification.

Here, we briefly discuss these two properties. A summary of
the complete system as well as detailed proofs can be found
in the extended version of this paper [18].

Soundness The kinds of specification we consider in this
system are types and examples. Thus, we can consider sound-
ness with respect to each:*

Lemma 3.1 (Type Soundness). IfC;T + > W = e then
CTlre:r.

Proof Sketch. By induction on the synthesis derivation. Intu-
itively, we synthesize terms in a type-directed manner (the
synthesis rules are derived directly from the typing rules of
the system), so we expect these terms to be well-typed. [

Lemma 3.2 (Example Soundness). IfC;T + t>W = e then
forallS— y e W, Se =g y.

“Note that, for brevity’s sake, we only state the relevant properties for
expression refinement. Similar statements must be made for each of the
remaining judgments of the system—match synthesis and term generation.

TyDe 19, August 18, 2019, Berlin, Germany

Proof Sketch. By induction on the synthesis derivation. Dur-
ing refinement, we decompose examples in such a way that
example satisfaction of sub-components results in example
satisfaction of the whole program. During term generation,
the REFINE-GADT-GUESS rule ensures example satisfaction
directly for generated terms. (]

Completeness This property states that our synthesis sys-
tem is capable of generating all possible programs given a
fixed goal type and set of examples.

Lemma 3.3 (Completeness). IfC;T'Fre:tandl' v W : 7
thenC;T 7> W = e.

However, our system does not obey this property in the
name of efficiency! For example, note that GEN-APP does not
allow for the generation of case expressions in the position
of arguments.

But such cases are not terribly interesting with respect
to completeness; a case nested in an argument position of
an application could instead be “bubbled up” to encase the
entire application (at the cost of code redundancy). Are there
more interesting programs that the system is incapable of
synthesizing? We leave this exploration to future work.

4 Integrating Constraint-based Synthesis
in Scythe

We have implemented constraint-based synthesis for poly-
morphic types as described in section 2 in an in-development
program synthesis tool called SCYTHE. SCYTHE supports live,
type-directed development for the Haskell programming lan-
guage by extending prior work on GHC for typed holes [7].
The typed holes facility of GHC allows users to annotate
their program with holes. During typechecking, GHC will
report the inferred type of each hole and suggest possible
variables from the context to fill these holes. The search
process currently in GHC is fairly naive, only suggesting
individual components whose type matches the goal. ScyTHE
provides a far more in-depth search of the space of possible
programs using the program synthesis techniques described
in this work.

To do this, ScYTHE leverages the unmodified GHC API
to interact with existing Haskell code with a high degree
of compatibility. It uses GHC to load external libraries and
parse, typecheck, interpret, and manipulate Haskell code.
On the surface, this seems difficult to do since the type-and-
example-directed program synthesis process interweaves a
number of compilation processes, in particular, typecheck-
ing and partial evaluation. However with some engineering
techniques and compromises, we can adopt off-the-shelf
compiler APIs to provide this rich kind of editing experience,
similar to the efforts of Merlin for OCaml [2].

As an example of the system in operation, here is the
declaration of the fromMaybe example from subsection 2.3
as realized in the prototype version of SCYTHE:

Peter-Michael Osera

- | {e

-= fromMaybe :: a -> Maybe a -> a
-= fromMaybe al Nothing = al

-= fromMaybe a1l (Just a2) = a2
-- @@

-= ctx=(Just, Nothing)

- @}

fromMaybe :: a -> Maybe a -> a

fromMaybe s1 ml = _

Scythe looks for special {@. . . @} sections in Haddock com-
ments which denote ScYTHE example blocks. These example
blocks contain type-and-example information as well as op-
tions to control the synthesizer such as the ctx option that
allows the user to specify the components to consider during
synthesis. Note that like Haskell, ScyTHE infers the universal
quantifier for polymorphic example values; all variables of
the form ak where a is a type variable introduced by the
function signature and k is a natural number are considered
to be polymorphic constants of type a.

After finding the hole, ScYTHE offers the following single
suggestion to complete it:

> (ok) case ml1 of
> Nothing -> s1
> Just a1l -> al

4.1 Experience with Polymorphic Synthesis

To date, we have performed a preliminary investigation of
how type-and-example-driven polymorphic synthesis per-
forms within ScYTHE over small toy functions. We reflect on
our experiences and lessons learned so far from this investi-
gation that are motivating our future work in this area.

Difficulties with Examples Polymorphic example values
give us great flexibility in how we specify goals of poly-
morphic type. However, as discussed in subsection 2.3, a
collection of polymorphic example values can quickly be-
come the actual function definition itself! This demonstrates
the power of combining polymorphism with example-based
reasoning, but it makes the story for a tool like SCYTHE less
compelling at first glance.

This is certainly true when we are forced to give many
examples in order to appease the synthesizer. Early synthe-
sizers such as MYTH had the problematic requirement of
trace completeness that enough examples are provided so
that the synthesizer can carry out execution of any recur-
sive function call made during the synthesis process without
having the entire function formed.

However, ScYTHE lifts this restriction by not immediately
rejecting candidate programs that fail due to a lack of ex-
amples. A detailed discussion of this feature is beyond the
scope of this paper, but the importance of this fact is that
ScYTHE can produce meaningful output with little-to-no ex-
amples! As a result, polymorphic example values become

Constraint-Based Type-Directed Program Synthesis

- | {e

-- stutter :: [al -> [a]

= stutter [al, a2] = [al, al, a2, a2]
- @e

-= recArg=0

— @}

stutter :: [a] -> [a]

stutter 1 = _

> (ok) case 11 of

> [1-> 11

> (:) a1l 12 => (:) al ((:) al (stutter 12))
-~ | {e

-= append :: [a] -> [a] -> [al

-= append [al, a2] [a3, a4, ab] =
-= [al, a2, a3, a4, a5]

- @@

-= recArg=0

—— @}

append :: [a] -> [a] —> [a]

append 11 12 = _

> (ok) case 11 of
> [1->12
> (:) a1l 13 -> (:) al (append 13 12)

Figure 9. Example ScYTHE runs for stutter and append

much more appealing to use. For example, Figure 9 shows
how the system only requires a single example to synthesize
the stutter and append functions over lists. Note how the
examples (1) in contrast to fromMaybe, don’t so obviously im-
ply the implementation of the function and (2) resemble the
examples that you might naturally write in documentation.

The Power of Free Theorems The guarantees of polymor-
phic types are well-known [26] and are one of the primary
motivations for our work in automating type-directed pro-
gramming with synthesis techniques. Parametricity tells us
that the very shape of a polymorphic type determines very
precisely the set of programs that inhabit that type. We wit-
ness this in SCYTHE when we provide no examples to the
system and rely on raw-term enumeration.’ For example,
here is the output from ScYTHE when no examples are given
for fromMaybe:

> (?) case ml of

> Nothing -> si
> Just a1l -> al
> (?) case ml of

> Nothing -> si

By default ScyTHE limits the depth of nested function application and cases
to avoid exponential blow-up in the search space.

TyDe ’19, August 18, 2019, Berlin, Germany

> Just al -> si

> (?7) sl

The question marks in the output denote that while each
reported program has the right type, they have not been
found to be consistent with any examples (since we have
not provided any!). However, there are so few programs to
report due to polymorphism, the user can simply review each
implementation to see if it matches the behavior they want
for the function. This stands in contrast to the shallower
search that GHC’s hole-filling mechanism conducts which
only suggests s1 as a valid completion.

It might be the case that some polymorphic function of
interest is too complicated to be specified with examples.
This example shows that synthesis techniques like those
used by ScyTHE still have the potential to provide meaningful
feedback, even when only types drive the synthesis process.

5 Further Extensions

A constraint-based approach to program synthesis opens
the doors to a number of additional features that can greatly
expand the scope and power of the system. We briefly re-
flect on them, suggesting next steps forward based on the
techniques developed in this paper.

Existential Types One glaring omission from the system
described in Figure 4 is the lack of existential types. In
Haskell, existential types are encoded as universal types
in constructors that are not mentioned in the output type of
the constructor. The classic example of this are a type used
to box elements of a heterogeneous list:

data Obj where Obj :: Show a => a -> Obj

From this, we can create our heterogeneous list from a reg-
ular list of Obj, e.g,, [Obj 1, Obj "hi", Obj Truel]. With
this set up, we have no way of extracting the values from
their Obj wrappers—the 0bj effectively seals the type vari-
able a from the outside world—but the typeclass constraint
allows us to traverse and show the values.

When working with GADT types as in REFINE-GADT-CASE
and REFINE-GADT-DATA, we must take care to identify which
of the type variables are truly universal (that appear in the
output type of the constructor) versus those that are existen-
tial (that do not appear in the output type of the constructor).
For example, if we were pattern matching on a value with
type Obj, its sole match would contain a binder for the ex-
istentially bound variable a. However, we must ensure that
we do not unify that variable with a concrete type as its type
is really sealed! This can be accomplished by calculating via
a free variable check which type variables are universal or
existential and then skolemizing the existential variables so
that they cannot participate in the unification process.

On top of this, we must also decide how to deal with exam-
ples at existential type. Can we get away with representing

% As of GHC version 8.6.4.

TyDe 19, August 18, 2019, Berlin, Germany

existential types with polymorphic constants and relying on
skolemization to assign those constants appropriate types
during synthesis or do we need a new example form for
existential values?

Typeclass Constraints GADTs are only one way that type
constraints are introduced in a Haskell program. More com-
mon are typeclass constraints, for example, the standard as-
sociation list 1lookup function of type

lookup :: Eq a => a -> [(a, b)] -> Maybe b

constrains its first argument of type a to be an instance of
the eq typeclass which in turns provides the method (==) to
compare as with. Typeclasses are ubiquitous in Haskell code,
especially in highly polymorphic code that mixes typeclass
constraints with multiparamteter typeclasses and functional
dependencies [10].

While seemingly unrelated at first glance, Vytiniotis et
al. demonstrate how the problems of typeclass constraints
and GADTs inference can be solved through their constraint-
based type inference system, OuTsipeIN(X) and implication
constraints [25]. In order to add typeclass constraints to our
synthesis system, we will likely need to adapt more of their
constraint representation and solving techniques.

Partial Type Information One of the goals of this paper
is taking the first steps towards understanding how to marry
together constraint-based type inference techniques with
program synthesis. However, oddly enough, even though
we’ve adopted a constraint-based approach to synthesis in
this work, we still have made the problems of type inference
and program synthesis rather separate! In particular, because
we require that the top-level binding of our synthesis prob-
lem possesses a fully annotated type, we only need to per-
form type inference in a very limited setting—instantiating
polymorphic types during term generation—which greatly
simplified our approach.

A more ambitious marriage of constraint-based type in-
ference and program synthesis would not only leverage
constraint-based reasoning techniques in synthesis but truly
intertwine type inference and program synthesis. This would
involve removing restrictions of having concrete types every-
where in the system (e.g., the scrutinee of REFINE-CASE) and
reasoning more about how to incrementally refine goal types
in tandem with program discovery. Such a change would
likely impact performance of the synthesizer significantly
but give greater flexibility to the user in terms of specifying
a program of interest when the types become complicated.

6 Related Work

Program Synthesis with Types Program synthesis, the
automatic generation of programs from specification, is an
enormous field encompassing the programming languages,
formal verification, software engineering, and most recently
the machine learning communities [8]. Many approaches

Peter-Michael Osera

are used to tackle this problem in a variety of contexts from
general-purpose programming to highly-specific domains.
Utilizing types as a guiding principle for synthesis is a small,
yet important, piece of the puzzle, especially as it pertains to
richly-typed functional programming languages and type-
directed programming. These approaches span the simply-
typed, general-purpose domain [1, 19], components [4, 5, 9,
12], and more richly-typed domains [6, 22]. Many of these
prior efforts handle polymorphism but in an ad hoc manner
or using an “enumerate all possible types” approach. The
approach that we present in the paper is the first, to our
knowledge, to attempt an “infer while enumerate” approach
to type instantiation.

Type Inference and GADTs Our adaption of type infer-
ence is heavily rooted in the constraint-based approached
proposed by Odersky et al. with their HM(X) framework [14]
as well as the presentation of constraint-based typing found
in TAPL [20].

GADT type inference, while an undecidable problem [24],
has enjoyed continuous refinement in order to develop in-
ference algorithms that are tractable but also produce useful
results [3, 10, 11, 13, 23-25]. While our system does not per-
form GADT type inference directly, its approach to GADT
type checking and constraint passing is inspired by Vytinio-
tis’s OuTsIDEIN(X) framework [25].

Live Programming Our exploration of constraint-based,
type-directed program synthesis lives in the context of live
programming support for type-directed programming. This
exploration has begun to take shape in the PL community in
several forms. First is the support for language servers which
provide efficient compilation services to live programming
tools [2]. The second is support for hole-based development
that was exclusively found in dependently-typed program-
ming languages such as Coq, Agda, and Idris, but are now
found in languages like Haskell [7]. The third is theoretical
explorations of hole-based, interactive development [15, 16].

Acknowledgments

We thank the TyDe 2019 reviewers for their valuable feed-
back in improving this manuscript and the students of the
Grinnell Pioneer PL research group that have worked on
SCYTHE in its various forms over the last few years: Bogdan
Abaev, List Berkowitz, Kevin Connors, Shelby Frazier, Reily
Grant, Andrew Mack, Griffin Mareske, Ankit Pandey, Dhruv
Phumbhra, Jonathan Sadun, Zachary Segall, and Zachary
Susag.

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1651817. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author and do not
necessarily reflect the views of the National Science Founda-
tion.

Constraint-Based Type-Directed Program Synthesis

References

(1]
(2]

(5]

(6]

—
~
—

(10]

(11]

[12]

Lennart Augustsson. 2004. [Haskell] Announcing Djinn, Version 2004-
12-11, a Coding Wizard.

Frédéric Bour, Thomas Refis, and Gabriel Scherer. 2018. Merlin: A
Language Server for OCaml (Experience Report). Proceedings of the
ACM on Programming Languages 2, ICFP (July 2018), 103:1-103:15.
https://doi.org/10.1145/3236798

Sheng Chen and Martin Erwig. 2016. Principal Type Inference for
GADTs. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL 2016). ACM
Press, St. Petersburg, FL, USA, 416-428. https://doi.org/10.1145/
2837614.2837665

Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W.
Reps. 2017. Component-Based Synthesis for Complex APIs. In Pro-
ceedings of the 44th ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages (POPL 2017). ACM Press, Paris, France, 599-612.
https://doi.org/10.1145/3009837.3009851

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesiz-
ing Data Structure Transformations from Input-Output Examples. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI 2015). ACM Press, Portland,
OR, USA, 229-239. https://doi.org/10.1145/2737924.2737977
Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve
Zdancewic. 2016. Example-Directed Synthesis: A Type-Theoretic In-
terpretation. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2016). ACM,
St. Petersburg, FL, USA. https://doi.org/10.1145/2914770.2837629
Matthias Pall Gissurarson. 2018. Suggesting Valid Hole Fits for Typed-
Holes (Experience Report). In Proceedings of the 11th ACM SIGPLAN
International Symposium on Haskell (Haskell 2018). ACM Press, St.
Louis, MO, USA, 179-185. https://doi.org/10.1145/3242744.3242760
Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program
Synthesis. Foundations and Trends in Programming Languages 4, 1-2
(2017), 1-119. https://doi.org/10.1561/2500000010

Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. 2013.
Complete Completion Using Types and Weights. In Proceedings of the
34th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2013), Vol. 48. ACM Press, New York, NY, USA,
27-38. https://doi.org/10.1145/2499370.2462192

Mark P. Jones. 1995. Functional Programming with Overloading and
Higher-Order Polymorphism. In Advanced Functional Programming,
First International Spring School on Advanced Functional Programming
Techniques-Tutorial Text. Springer-Verlag, Berlin, Heidelberg, 97-136.
Georgios Karachalias, Tom Schrijvers, Dimitrios Vytiniotis, and Si-
mon Peyton Jones. 2015. GADTs Meet Their Match: Pattern-Matching
Warnings That Account for GADTs, Guards, and Laziness. In Proceed-
ings of the 20th ACM SIGPLAN International Conference on Functional
Programming (ICFP 2015). ACM Press, Vancouver, BC, Canada, 424-436.
https://doi.org/10.1145/2784731.2784748

Susumu Katayama. 2012. An Analytical Inductive Functional Program-
ming System That Avoids Unintended Programs. In Proceedings of
the ACM SIGPLAN 2012 Workshop on Partial Evaluation and Program
Manipulation (PEPM 2012). ACM Press, Philadelphia, Pennsylvania,
USA, 43. https://doi.org/10.1145/2103746.2103758

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

TyDe ’19, August 18, 2019, Berlin, Germany

Gabriela Moreira, Cristiano Vasconcellos, and Rodrigo Ribeiro. 2018.
Type Inference for GADTs, Outsidein and Anti-Unification. In Pro-
ceedings of the XXII Brazilian Symposium on Programming Languages
(SBLP 2018). ACM Press, Sao Carlos, Brazil, 51-58. https://doi.org/10.
1145/3264637.3264644

Martin Odersky, Martin Sulzmann, and Martin Wehr. 1999. Type
Inference with Constrained Types. Theory and Practice of Object
Systems 5, 1 (Jan. 1999), 35-55. https://doi.org/10.1002/(SICI)1096-
9942(199901/03)5:1<35::AID-TAPO4>3.0.CO;2-4

Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. 2019.
Live Functional Programming with Typed Holes. Proceedings of the
ACM on Programming Languages 3, POPL (Jan. 2019), 1-32. https:
//doi.org/10.1145/3290327

Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and
Matthew A. Hammer. 2017. Hazelnut: A Bidirectionally Typed Struc-
ture Editor Calculus. In Proceedings of the 44th ACM SIGPLAN Sympo-
sium on Principles of Programming Languages (POPL 2017). ACM Press,
Paris, France, 86-99. https://doi.org/10.1145/3009837.3009900
Peter-Michael Osera. 2015. Program Synthesis with Types. PhD Thesis.
University of Pennsylvania, Philadelphia, PA.

Peter-Michael Osera. 2019. Constraint-Based Type-Directed Program
Synthesis. arXiv:1907.03105 [cs] (July 2019). arXiv:cs/1907.03105
Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-Example-
Directed Program Synthesis. In Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation (PLDI 2015). ACM Press, Portland, OR, USA, 619-630. https:
//doi.org/10.1145/2737924.2738007

Benjamin C. Pierce. 2002. Types and Programming Languages. MIT
Press, Cambridge, MA.

Benjamin C. Pierce and David N. Turner. 2000. Local Type Inference.
ACM Transactions on Programming Languages and Systems 22, 1 (Jan.
2000), 1-44. https://doi.org/10.1145/345099.345100

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Pro-
gram Synthesis from Polymorphic Refinement Types. In Proceedings of
the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2016). ACM Press, Santa Barbara, CA, USA,
522-538. https://doi.org/10.1145/2908080.2908093

Tom Schrijvers, Simon Peyton Jones, Martin Sulzmann, and Dimitrios
Vytiniotis. 2009. Complete and Decidable Type Inference for GADTs.
In Proceedings of the 14th ACM SIGPLAN International Conference on
Functional Programming (ICFP 2009). ACM Press, Edinburgh, Scotland,
341. https://doi.org/10.1145/1596550.1596599

Vincent Simonet and Francois Pottier. 2007. A Constraint-Based
Approach to Guarded Algebraic Data Types. ACM Transactions on
Programming Languages and Systems 29, 1 (Jan. 2007), 1-es. https:
//doi.org/10.1145/1180475.1180476

Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin
Sulzmann. 2011. OutsideIn(X) Modular Type Inference with Local
Assumptions. Journal of Functional Programming 21, 4-5 (Sept. 2011),
333-412. https://doi.org/10.1017/50956796811000098

Philip Wadler. 1989. Theorems for Free!. In Proceedings of the Fourth
International Conference on Functional Programming Languages and
Computer Architecture (FPCA 1989). ACM Press, Imperial College, Lon-
don, United Kingdom, 347-359. https://doi.org/10.1145/99370.99404

