
CGI2018 manuscript No.
(will be inserted by the editor)

Point Based Rendering Enhancement via Deep Learning

Giang Bui · Truc Le · Brittany Morago · Ye Duan

December 16, 2018

Abstract Current state-of-the-art point rendering techniques
such as splat rendering generally require very high resolu-
tion point clouds in order to create high quality photo realis-
tic renderings. These can be very time consuming to acquire
and oftentimes also require high-end expensive scanners.
This paper proposes a novel deep learning based approach
that can generate high resolution photo realistic point ren-
derings from low resolution point clouds. More specifically,
we propose to use co-registered high quality photographs as
the ground truth data to train the deep neural network for
point based rendering. The proposed method can generate
high quality point rendering images very efficiently and can
be used for interactive navigation of large scale 3D scenes
as well as image-based localization. Extensive quantitative
evaluations on both synthetic and real datasets show that the
proposed method outperforms state-of-the-art methods.

1 Introduction

Large scale 3D scene modeling and visualization are fun-
damental building blocks for active research fields such as
Virtual Reality, Augmented Reality, Autonomous Driving,
etc. Despite decades of research in this area, how to model
the real world efficiently and accurately remains a very chal-
lenging task.

The advancement of 3D depth sensors, such as LIDAR
(Light Detection And Ranging) scanners, has provided an
effective alternative to the traditional CAD-based and image-
based approaches for 3D modeling. When rendering 3D re-
constructions directly from an acquired point cloud, the dis-
crete resolution leads to either holes in the reconstruction,

Giang Bui, Truc Le, Ye Duan
University of Missouri, Columbia

Brittany Morago
University of North Carolina Wilmington

or, with more advanced hole-filling point-based rendering
methods, leads to low-frequency appearance, as no detail
information is available between the point samples. One ex-
isting way to circumvent this problem is texture splatting,
but that technique requires access to high-resolution camera
images taken alongside the (coarser) 3D scan.

In this paper, we propose an alternative approach: the
adaptation of a CNN (Convolutional Neural Network) bor-
rowed from existing work on image super-resolution, to take
a coarse point-based rendering and up-sample it to a plau-
sible high-resolution image. We demonstrate that the pro-
posed method can generate high quality point rendering im-
ages very efficiently and can be used for interactive naviga-
tion of large scale 3D scenes as well as image based local-
ization with significantly reduced overhead.

The rest of the paper is structured as follows. Section 2
discusses the related work. Section 3 describes the proposed
method. The experimental results are presented in Section 4
followed by our conclusion in Section 5.

2 Related Works

Point-based splat rendering is a technique for rendering a
smooth surface with approximated linear piece-wise splats.
In order to cover the gaps between the points, a circular disc
is assigned to each sample point with a normal vector ni
and radius ri which are computed based on local geome-
try. The surface splats serve as linear approximation to a
smooth surface if constructed properly. Zwicker et al. [52]
proposed a signal-theorectically motivated approach to re-
construct smooth and correctly band-limitted images from
splats. Botsch et al. introduced a multi-pass rendering ap-
proach which averages colors and normals of overlapping
splats [2]. However, those approaches may generate blurred
images due to gradient suppression. Sibbing et al. [38] pro-

2 Giang Bui et al.

posed two post-processing methods to further improve the
results of splat rendering. Intensity Completion preserves
the intensities of the non-gap pixels, and automatically finds
color transitions between the non-gap and gap pixels while
Gradient Completion requires additional gradient informa-
tion from intermediate images to reconstruct image more
faithfully. Moreover, when additional texture images are avail-
able along with projection matrices, they also proposed Tex-
ture Splat Rendering which improves the rendered image
by propagating as much information as possible from a set
of texture images. That is to say, instead of using a single
color for a whole splat, they used a projection matrix to
project the fragments of the splat into a texture image and
obtain the color information. However, obtaining the pro-
jection matrices of texture images requires non-trivial 2D-
3D registration, and storing all the texture images together
with a large point cloud requires a lot of memory. Similar
to Intensity Completion and Gradient Completion of [38],
we also propose to conduct post-processing image enhance-
ment based on the 3-pass splat rendering results of [2]. Com-
pared with Intensity Completion and Gradient Completion
methods, our results are much better. Compared with Tex-
ture Splat Rendering, our method does not need to store ex-
tra texture images while still generating better image qual-
ity. Fig. 1 shows a side-by-side comparisons between the
proposed method and the photograph, 3-pass rendering [2],
Intensity Completion, Gradient Completion, Texture Splat
Rendering. More examples are shown in Fig. 4 and 5.

Image Super Resolution (SR) is a set of methods to re-
construct a high-resolution image from either a single or
multiple images. The image super-resolution methods can
be classified into 3 categories: interpolation-based method,
reconstruction-based method, and example-based method.
According to [48], example-based methods show superior
performance by modeling the mapping from low-resolution
(LR) to high-resolution (HR) image patches. This map then
is applied to a new LR image to obtain the most likely HR
output [6,4,51]. These methods either exploit internal sim-
ilarities of the same image [5,10,11,15] or learn mapping
functions from external training image pairs [51,47,6,17,
21,36,42,43,49]. Glasner et al. [11] proposed a method to
combine example-based SR constraints and classical SR con-
straints in a unified framework which allows for inter-patch
search. The parent of the search results is copied to an ap-
propriate location in the high-resolution image. Freedman et
al. [10] proposed a method to adopt a local search by using
the multi-step coarse-to-fine algorithm. Since the extracted
patches from multiple scale images may not always be suf-
ficiently expressive to cover the textural appearance varia-
tions, Huang et al. [15] extended the self-similarity based SR
method by allowing geometric variations in patch searching
scheme. The sparse-coding-based methods [51,47] are the
representative external example-based SR methods. Yang et

al. [51] proposed a super-resolution algorithm that learns a
pair of over-complete dictionaries with the assumption that
both the input and output patches have the same mixing co-
efficients of their corresponding dictionary.

Besides traditional super-resolution methods [6,4,50,51,
47,10,11], convolutional neural networks (CNNs) have re-
cently demonstrated remarkable performance in the image
SR field thanks to their ability to exploit the contextual infor-
mation through their receptive field to recover missing high
frequency components. Inspired by traditional sparse coding
based SR [51], Dong et al. [8] proposed a shallow SRCNN
consisting of three layers which correspond to patch repre-
sentation, non-linear mapping, and reconstruction. Kim et
al. [20] proposed a deeply recursive CNN that utilizes a very
large image context compared to previous SR methods with
a single recursive layer. Kim et al. [19] proposed a resid-
ual network structure with 16 layers by concatenating 64
3 × 3 kernels. For these approaches, the SR methods work
directly on the high-resolution (HR) space by first applying
a simple interpolation method (e.g. bicubic interpolation) to
up-sample the LR image to the desired size, then feeding it
through a deep neural network to obtain a visually satisfying
result. While most of the deep learning based super image
super resolution (SISR) methods work directly on the HR
space, other methods cope with the LR space and only go
back to the HR space at the very last several layers. Bishop
et al. [37] presented the first CNN in which extracted feature
maps are performed in LR space and an efficient sub-pixel
convolution is used to upscale the final LR feature maps to
the HR image. Improving over the SRCNN , Dong et al. [9]
introduced a fast version of SRCNN, named FSRCNN ,
which can reach up to 43 fps with a generic GPU. Ledig et
al. [24] proposed SRResNet by employing the ResNet ar-
chitecture from He at al. [14] that successfully solves time
and memory issues with good performance. By removing
the batch normalization layers from SRResNet, Lim et al.
[27] showed superior performance over the state-of-the-art
methods and won the NTIRE2017 Super-Resolution Chal-
lenge [41].

Recently, there has been a lot of interest in Generative
Adversarial Networks (GANs) [12] which can learn to pro-
duce samples that imitate the dataset according to the dis-
criminator network. Mathieu et al. [31] supplemented a squared
error loss with both GAN and image gradient-based simi-
larity to improve image sharpness of video prediction. The
ability to produce high-quality images of GANs is also demon-
strated in the works of Denton et al. [7] and Radford et al.
[34]. In the work of Johnson et al. [18] and Ledig et al. [24],
the authors proposed a conceptual loss function based on the
VGG network [39] obtained results that are more convinc-
ing than the ones obtained with traditional low level mean
square error (MSE). In this paper, we employ the GAN net-

Point Based Rendering Enhancement via Deep Learning 3

work for point based rendering enhancement, which will be
explained in more details in the following section.

3 Proposed Method

Fig. 2 shows the overview of our proposed method. The al-
gorithm takes a splat image as input and feeds it through
a neural network to obtain a high quality image. As shown
in Fig. 1, the deep learning result is almost indistinguish-
able from the photograph taken by cameras. Beside of fill-
ing holes, it can generate more natural results while splat
rendering has blurring effect, intensity completion and gra-
dient completion can not fill the big holes due to the lack of
constrains.

3.1 Input data

There are several ways to obtain a color point cloud of a 3D
reconstructed scene. A traditional approach is to use SfM
(Structure from Motion) [3,13,40] to generate a point cloud
from a collection of densely sampled images. The generated
point cloud can be used for many tasks such as image local-
ization [16,26], classification and segmentation [33,35,45,
29]. Another common approach is to use LIDAR laser scan-
ners that produce highly accurate coordinate measurements.
The RGB-color information can either come from imagery
collected at the time of the LIDAR survey. By placing a laser
scanner at several sample locations, a large-scale 3D color
point cloud can be obtained with relative ease. In this paper,
we focus on LIDAR point cloud.

3.2 Splat rendering

Point-based splat rendering has been proven to be a flexi-
ble and efficient technique for rendering 3D objects due to
its simplicity. The key idea is to approximate a surface by
piece-wise planar ellipses, or splats, in the object space and
render them to the image space. This technique is widely
used in the literature and often needs an associated normal,
a color, and a radius ri for each point pi to render the points
as small discs. That information can be obtained from neigh-
bors around points. There are two common approaches to
obtain this information, radius search and k-nearest neigh-
bors search (KNN). Both can be efficiently retrieved using
a k-d tree. However, radius search is not suitable for the
case of LIDAR data due to its non-uniform distribution. The
points tend to be very dense on surfaces close to the scanning
location and become sparse on ones further away. In contrast
to radius search, KNN is a naturally adaptive method better
suited for this situation. Once the neighborhood information
is obtained, the point cloud’s normals can be approximated

by Principal Component Analysis (PCA) which selects an
eigenvector corresponding to the smallest eigenvalue of the
covariance matrix [23].

Next, we estimate a radius for each point. Since the point
normal is assigned to that of the plane it belongs to, we
still have to determine the radius r so that we can render
a gap-free surface. We do not want it to be too big as this
will likely require many overlapping regions be rendered
which is computationally inefficient. We propose a heuris-
tic approach which is similar to [38]. First, for each sample
point pi with corresponding normal ni, we determine the k
nearest neighbors using KNN and define Ri as the furthest
distance from a neighbor to the sample point. Therefore, the
sphere at pi with radiusRi covers the whole k nearest neigh-
bors. In the second step, we form a circle at pi with radius
Ri, normal ni and project all neighbors whose normals are
consistent (the angle deviation is less than 5◦) to that of the
sample point onto it. Lastly, we divide the circle of projected
points into 12 sectors and for each non-empty sector, we
only keep the closest projection point. The radius assigned
to each point is guaranteed that any point is covered by at
least one of splats of other points. Since the point distribu-
tion is quite uniform, scaling that radius with smaller factor
can reduce the effect of blurring and still guarantee the gap
between any point is covered. For that reason, we set the
splat radii ri to be the scale factor of 0.7 of the maximum
distance of those points. Although computing the splat ra-
dius depends on how many of the nearest neighbors are con-
sidered, we have found that it is not sensitive to parameter
k. Empirically we set k = 30 for all models in the dataset.

Since each splat is a solid color (determined from its cen-
ter point), sharp edges may exist between splats. Following
[38], we implement a 3-pass rendering technique to blend
the color and normal between neighboring splats. In the first
pass called visibility splatting, the splats are rendered with-
out color information in order to fill the depth buffer. In the
second blending pass, after the object is slightly shifted to-
wards the viewer by ε (0.05), a simple depth test is used to
remove all the splats that are far behind the visible surfaces.
For each virtual image pixel, the second pass sums up the
colors and normals of the splats that lie in the proximity of
the visible surface and perspectively project onto the respec-
tive pixel. Finally, the normalization pass normalizes the
sum-up colors and normals by dividing them by the accu-
mulated weights. Although the 3-pass rendering technique
can give visually pleasant rendering images, it smooths out
the gradient information and hence blurs the image due to
the use of blending techniques. In what follows, we will de-
scribe the use of a deep-learning based approach as a post-
processing step to alleviate these unwanted effects.

4 Giang Bui et al.

Fig. 1: From left to right, different rendering techniques: (1) Photograph. (2) Splat rendering. (3) Intensity completion. (4)
Gradient completion. (5) Texture splat rendering. (6) (Ours) Deep-Learning based rendering with splat rendering of (2) as
input.

Fig. 2: Proposed method pipeline.

3.3 Deep-Learning based Super-Resolution with
Generative Adversarial Network

Following Goodfellow et al. [12], in the context of genara-
tive adversarial networks, we solve the adversarial min-max
problem:

min
θG

max
θD

EHRI ∼ ptrain(IHR)
[
logDθD (I

HR)
]

+

ELRI ∼ pG(ILR)
[
log(1−DθD (GθG(I

LR))
]
(1)

where GθG and DθD are generator and discriminator net-
works which are parameterized by θG and θD respectively.
In our problem, the generator network G is the network to
predict a HR image given a LR image. The general idea be-
hind this formulation is that it allows one to train a gener-

ative model G with the goal of fooling a differentiable dis-
criminatorD that is trained to distinguish super-resolved im-
ages from real images. That is to say, with this approach our
generator can learn to predict outputs that are highly similar
to real images and thus difficult to classify by D.

3.3.1 Generator network structure

Our network, named deep network for super-resolution with
deeply supervised nets (SRDSN), is illustrated in Fig. 3 (top
row). The network takes a splat rendering of the LR image
as input and progressively predicts the intermediate HR im-
age. We supervise all the intermediate results to alleviate the
effect of vanishing/exploding gradients. Our network con-
tains two parts: (i) cascade network and (ii) deeply super-
vised network.

Point Based Rendering Enhancement via Deep Learning 5

Fig. 3: SRDSN-GAN. (Top) Generator Network Structure. The network consists of multiple blocks with deep supervision,
every intermediate result is penalized by a Euclidean loss function l. The layout of each network block has a corresponding
number of feature maps followed by kernel size indicated for each convolutional (e.g. 64@3x3 stands for 64 3x3 kernels).
Our final network consists of four blocks (M = 4) and 20 layers (d = 20) within each block. (Bottom) Discriminator
Network Structure with corresponding number of feature maps (n) and stride (s). The network takes a set of natural images
to measure the similarity of the generator output image and ground truth image. For the SRDSN-GAN network, the training
loss (Eq. 5) is computed by both the Generator Network and the Discriminator Network.

Cascade network: The network has multiple similar struc-
ture blocks. Each block, consisting of d convolutional layers
followed by a PReLU (Parametric ReLUs) layer except for
the last one, takes an image (1 or 3 channels) to produce an
intermediate HR image. This intermediate result is the input
to the next block and is supervised by a deeply supervised
network.

Deeply supervised network: We supervise all the out-
puts of the network blocks using a deeply supervised nets
(DSN) structure [25]. The DSN can be considered as a net-
work regularization that informs intermediate layers about

the final objective, rather than relying on the final layer to
back-propagate the information to its predecessors. A sim-
ilar idea of supervising intermediate layers for a convolu-
tional neural network can be found in [46] and [20].

Generator output: Denote x as the input of low-resolution
image, and ŷm,m = 1, 2, . . . ,M, as predicted M interme-
diate outputs. The output of the generator network is aver-
aged over all the intermediate outputs ŷ =

∑M
i=1 αiŷm with

αi indicates the relative importance of the intermediate out-
put, e.g. setting αm = 2 ≤ m < M makes the model turn
into a predictor with only a single output at the top.

6 Giang Bui et al.

3.3.2 Adversarial Network Architecture

For the discriminator network, we modify the network pro-
posed by Ledig [24] to simplify the network architecture.
We remove the batch normalization layers from the network
as Lim et al. [27] presented in their work. It is better to re-
move them since batch normalization layers get rid of range
flexibility from networks by normalizing the features. We
also replace the LeakyRELU layers by PReLU layers to
allow the network to adaptively learn the coefficients of neg-
ative parts. The network consists of 8 convolution layers
with increasing feature depths with factors of 2 and decreas-
ing the feature resolutions each time the feature depth is
doubled. The discriminator network (shown in Fig. 3 (bot-
tom row)) is trained to solve for the min-max optimization
problem described in Equation 1.

3.3.3 Loss function

Given training pair images
{
(xn, yn)

}N
n=1

, our goal is to
optimize both the generator network GθG and the discrimi-
nator network DθD simultaneously. Similar to [24], our loss
function consists of a mean square error (MSE) loss (Eq.
2), V GG [39] loss (Eq. 3), and adversarial loss components
(Eq. 4).

lMSE (θG) =
1

N

N∑
n=1

‖GθG(xn)− yn‖
2 (2)

lV GG/i,j (θG) =
1

N

N∑
n=1

‖vggi,j(yn)− vggi,j(GθG(xn))‖
2

(3)

where vggi,j(.) is the feature map obtained by the j − th
convolution before the i − th max-pooling layer within the
VGG network.

lGen (θD) =

N∑
n=1

−logDθD (GθG (xn)) (4)

The final loss function needs to be minimized is

L (θG, θD) =γ1lMSE (θG) + γ2lV GG/i,j (θG)

+ γ3lGen (θD)
(5)

where γi(i = 1, 2, 3) are given weighting parameters.
It is worth mentioning that single lMSE can give a satis-

factory results as demonstrated in other deep learning super-
resolution approaches [9,8,19,20]. However, it results in lack-
ing details around edge regions. By incorporating with the
perceptual loss lV GG and adversarial loss lGen with an ap-
propriate scale factor, the final loss can give more percep-
tual and natural results. Empirically, we choose γ1 = 1,
γ2 = 1.0e− 5 and γ3 = 1.0e− 3.

4 Experiments

4.1 Training Dataset

Deep learning techniques usually require many pairs of LR
and HR images for training. In our problem, the LR images
are 3-pass splat rendering (splat rendering for short) images
whereas the HR images are texture mesh images. We syn-
thesize the LIDAR scans on the 3D mesh models where we
can control the location, rotation angle and focus of the LI-
DAR and camera. In this paper, we use 78 mesh models from
Google SketchUp. To simulate the LIDAR scan, we first nor-
malize a model so that it can be fit in an unit sphere and set
a point on that sphere and in front of the main facet of a
building as the virtual LIDAR scanner’s position. We create
a grid of cells by sub-dividing the space based on the polar
and azimuthal angles of the spherical coordinates 1 where
rays are cast from the LIDAR’s position. We keep the first
intersection between the rays and the mesh model as a 3D
point along with color.

In addition to using the synthetic dataset, we also eval-
uate the method on a real LIDAR dataset. We used a Le-
ica laser scanner to capture a large scene along with pho-
tographs on a university campus.

Next, we need to generate a set of pairs of LR-HR im-
ages which are 3-pass renderings and mesh images respec-
tively. For the synthetic LIDAR data, we use a technique
similar to [16] which is used to generate camera locations
along with parameters around the 3D model. For each lo-
cation, we render the point model with splats and keep its
rendering as the LR image. We then render the correspond-
ing mesh model and keep its rendering as the corresponding
HR image. For the real data, we use the natural images as
HR images, and generate splat images with the same cam-
era parameters used in the HR image. In total, we created a
dataset consisting of 2000 image pairs of synthetic data and
200 image pairs of real data. Both synthetic data and real
data are used for training but we keep two types of data for
testing. Set1 contains 100 synthetic image pairs and Set2
contains 20 real image pairs. All the images have the same
size of 768× 1024.

4.2 Implementation details

Data samples: To prepare the training data, we sample 400K
patches from splat rendering images with a stride of 10 and
crop the corresponding HR patches from the ground truth
images. For a synthetic dataset, it is trivial to crop a corre-
sponding HR patch of a LR patch since we can control the

1 Note the sub-dividing in the spherical coordinates (which is used
in real LIDAR) is the primary reason for the produced scattered point
clouds because there is a higher density in the center region than in the
outer region.

http://www.sketchup.com/

Point Based Rendering Enhancement via Deep Learning 7

camera parameters of virtual views. However, we can not do
the same for real datasets due to the numerical error involved
when recovering the camera’s intrinsic and extrinsic param-
eters of natural images. To overcome this issue, for each im-
age, we recover the rotation and translation, and then gener-
ate the splat and texture splat images. Since the texture splat
rendering has high quality, we can do dense-SIFT matching
between the texture splat image and the natural image. We
extract all the patches at the matched SIFT feature locations
with SIFT’s orientations and scales in both the splat images
and the natural images to form image pairs for training.

Data augmentation: Inspired by [44], we augment the
training data in two ways: (i) Rotation: rotate images by
90o, 180o and 270o; (ii) Flipping: flip images horizontally or
vertically. These steps together lead to an augmented train-
ing set that is a factor of 8 times larger than the original data
set.

Training details: We implement our network using the
deep learning framework TensorFlow [1]. For simplicity, we
represent our proposed SRDSN network as SRDSN(d, M)
where d is the number of convolutional layers in a block and
M is the number of blocks in the model. We first train the
SRDSN with MSE loss. Empirically, we choose the follow-
ing hyper-parameters: batch size (64), patch size (48), con-
volutional filters and bias randomly initialized as described
in [9]. We adopt the adjustable gradient clipping [19] to
boost the convergence rate while suppressing exploding gra-
dients. Specifically, the gradients are clipped to [− θ

γ ;
θ
γ], where

γ is the current learning rate and θ = 0.01 is the gradi-
ent clipping parameter. Furthermore, we use the Adam op-
timizer [22] with an initial learning rate of 10−4. Next, we
train SRDSN-GAN. We increase the patch size to 244 and re-
duce the batch size to 8 due to the GPU memory limitation.
All the other parameters are kept the same as the SRDSN.
Training takes four days on a PC using a Nvidia TitanX
GPU.

It is worth mentioning that in training, we use image
patches (e.g. 256x256) for both generator and discrimina-
tor networks. In testing, we feed image of arbitrary size to
the generator only. Thus, our method can work on any size
of input image.

4.3 Comparison with state-of-the-art rendering techniques

For quantitative comparison, we use the Peak signal-to-noise
ratio (PSNR) and The Structural SIMilarity (SSIM) indices.
As mentioned in Section 4.1, it is trivial to compute those
indices for the synthetic testing set for comparison. For real
data sets, we follow the same methodology of generating
real training data sets. To compute PSNR and SSIM of
a rendered image with its corresponding natural image, we
perform Dense-SIFT feature matching. We extract the patches
on both of the images at matched locations and compute

theirPSNR and SSIM respectively. ThePSNR and SSIM
of the two images are the average of all PSNR and SSIM
at patch level. Table 1 shows PSNR and SSIM indices on
the designed testing sets. For synthetic testing set Set1, tex-
ture splat rendering obtains an average PSNR of 33.18 and
an average SSIM of 0.96, SRDSN 33.35 and 0.97 whereas
SRDSN-GAN 33,57 and 0.97. For the real testing set Set2,
although the texture splat image can render quite well at high
texture regions, it performs worse than SRDSN − GAN
in terms of PSNR and SSIM (26.24 and 0.86) because
it cannot fill the holes in the data. Both the SRDSN and
SRDSN − GAN can fill holes in the image since they
learn missing information from the training data. The av-
erage PSNR and SSIM of SRDSN − GAN on Set2
are 27.32 and 0.89 whereas ones of SRDSN are 25.44 and
0.84. Some visual examples of the two testing sets are shown
in Fig. 4 and Fig. 5.

4.4 Interactive 3D Scene Navigation

The proposed method can be used to support interactive nav-
igation of large scale 3D scenes represented by colored point
clouds. Since the generator network (SRDSN) is quite deep
(up to 80 layers), it cannot render every frame in real-time.
We have designed a novel rendering pipeline to avoid this is-
sue. Imagine that we are navigating a very large point cloud
such as an urban scene. Instead of doing super-resolution
for every frame, we just do super-resolution on several syn-
thetic views which cover the whole scene. Those images are
selected visually during the interactive navigation. The high-
resolution versions of those synthetic views are kept as tex-
ture images along with the Model, View, and Projection ma-
trices (known as MVP). Using those matrices and texture
images, we can perform texture splat rendering which can
be done in real time using ordinary computers. We repeat
this process every time users enter a new scene. Single frame
super-resolution is very fast with modern GPU’s as shown in
Table 2. Moreover, this process can be done off-line which is
transparent to users. Thus, the cost of rendering is reduced
to the cost of texture splat rendering. Table 3 shows more
details of rendering times for different sizes of point clouds.
An example of real time 3D scene navigation can be seen on
the video https://www.youtube.com/watch?v=94I4IV0i mc.

4.5 Image matching with synthetic views

In this section, we demonstrate the ability to extract SIFT
features [30] for matching from generated synthetic images.
Since we have all the mesh images of all the SketchUp mod-
els, we choose 5 mesh images for each model to match with
the synthetic images. In total, we have 390 mesh images for

https://www.youtube.com/watch?v=94I4IV0i_mc

8 Giang Bui et al.

Fig. 4: Comparisons with other methods on synthetic testing set (Set1) for the three examples. From left to right and top
to bottom: OpenGL Point Rendering, Texture Mesh, Intensity Completion, Gradient Completion, Splat Rendering, Texture
Splat, SRDSN, and SRDSN-GAN.

Point Based Rendering Enhancement via Deep Learning 9

Table 1: Quantitative comparison of the approaches on the testing sets.

Method Set1 Set2
PSNR SSIM PSNR SSIM

Splat rendering 23.5 0.84 22.98 0.78
Intensity Completion [38] 24.78 0.89 22.72 0.78
Gradient Completion [38] 28.56 0.96 25.12 0.84

Texture splat rendering 33.18 0.96 26.24 0.86
SRDSN 33.35 0.97 25.44 0.84

SRDSN-GAN 33.37 0.97 27.32 0.89

Fig. 5: Comparisons with other methods on real testing set (Set2) for the three examples. From left to right and top to
bottom: OpenGL Point Rendering, Photograph, Intensity Completion, Gradient Completion, Splat Rendering, Texture Splat,
SRDSN, and SRDSN-GAN.

Table 2: Running time of SRDSN with different image sizes

480× 640 768× 1024 1080× 1920 2016× 3940
Running time(ms) 259 780 1356 4324

10 Giang Bui et al.

Table 3: Rendering time (fps) of interactive 3D scene navigation with different resolutions.

hhhhhhhhhhhhNo of points
Resolution

460× 640 768× 1024 1080× 1920 2016× 3940

500K 87 67 64 56
1000K 58 40 38 30
2000K 44 36 31 26
3000K 37 30 28 23
4000K 29 24 21 16

the synthetic data. For the real LiDAR data, we chose 10 im-
ages taken using a variety of modern devices: Nikon D90,
Nikon D3100, and cell phones to form the real data.

Similar to [38], we measure the average numbers of SIFT
features extracted from the images. In order to measure the
repetitiveness and the distinctiveness of extracted features,
we use the SIFT ratio test: two SIFT features f1, f2, one
in a mesh image and one in a synthetic image, are consid-
ered as a match if their descriptors pass the SIFT ratio test
||des(f1) − des(f2)|| < 0.7 ∗ ||des(f1) − des(f ′2)|| for all
features f ′2 also extracted in the synthetic image. We match
each query photo against all synthetic views rendered from
the same scene. For each feature on a synthetic view, we
back project to the 3D point cloud. The resulting 2D-3D
correspondences are then used to estimate the pose of each
query image. The Avg. Inliers columns of Fig. 4 describe the
number of SIFT features that are used to compute the cam-
era pose position. We notice that our proposed method out-
performs other methods on synthetic data sets in number of
extracted features, number of inliers, and number of repet-
itive features whereas its performance on our real data set
is a little bit worse than texture splat rendering as shown in
Table 4. Remember that for the real data set, we do not have
a mesh model, thus we use texture splat images as ground
truth images.

4.6 Location recognition using synthetic views.

Following [38], in this section, we also demonstrate that
such generated synthetic views can be used to recognize new
images taken from viewpoints substantially different from
the photos included in the scans. We collect 200 synthetic
from 3 synthetic models to form Set 1 and 50 images taken
by the camera within our campus (Set 2), together with their
locations. For each query image, we extract SIFT features
and match against all the synthetic views from the same
scan. We assume that the query image has a tagged GPS
location so that we can limit it to one scan. Since the cor-
respondence from synthetic views and the point cloud are
known, we can establish the 2D-3D correspondences which
are then used for pose estimation using the five-point algo-
rithm [32] with RANSAC. Similar to [38], we consider a
match to be an inlier to an estimated pose if the reprojection

error is below 4 pixels, and regard a novel image as local-
ized if we can find a pose with at least 12 inliers. Those meta
parameters are chosen empirically.

Fig. 6 shows the result of the experiment. As we can
see, all of the methods perform well on both datasets. Splat
super-resolution obtains the highest recognition rates which
are 98% and 92% on (Set 1) and (Set 2) respectively. These
are 16% and 20% improvements over the base-line method
splat rendering.

5 Conclusion

In this paper, we have proposed a novel framework for point-
based rendering by incorporating the deep learning based
super-resolution technique with point rendering methods. The
network takes a splat rendering image as input and generates
the corresponding high-quality image. Our network which is
based on the deeply supervised stacked model with genera-
tive adversarial network has demonstrated superior perfor-
mance in terms of accuracy compared to other methods.

To generate a photo realistic rendering of the real 3D
world is a holy grail in computer graphics and remains a
challenge even after several decades of research. Our pro-
posed method is a small step in this direction. In the fu-
ture we would like to build on the idea proposed in this
paper, i.e. using realistic high quality natural images as the
ground truth data to train the neural network to learn to gen-
erate rendering images indistinguishable from the real im-
ages. Currently, the proposed method is working in the 2D
image space. We would like to extend the proposed network
to work directly in 3D and be able to generate high reso-
lution 3D point clouds using low resolution colored point
clouds and single and/or multiple high quality images as
input. That would be very useful for 3D scene modeling.
Another direction we would like to pursue is to investigate
shallower networks that can achieve similar results but with
a much faster speed so that it can generate the output in real-
time.

Point Based Rendering Enhancement via Deep Learning 11

Table 4: Feature extraction evaluation

Method Set1 Set2
Avg. SIFT Avg. Repeatabilites Avg. Inliners Avg. SIFT Avg. Repeatabilites Avg. Inliners

splat rendering 1224 28.26 10.62 2845 13.67 8.45
Intensity completion 1135 31.36 10.38 2754 12.93 9.34
Gradient completion 1345 43.40 19.41 3255 34.83 14.45

Texture splat 1456 61.91 21.35 3524 43.53 18.53
Splat super-resolution 1554 64.74 23.49 3552 47.91 19.45

Fig. 6: The percentage of query images that can be localized using synthetic views with different rendering techniques.

Acknowledgment

We would like to thank Sebastian Lipponer for providing
open source code [28] of which our splat rendering imple-
mentation is mainly based on. We also thank him for all
the suggestions during the implementation. We would like
to thank Qing Lei and Xu Wang for helping us to generate
the video. We also like to thank Roger Kiew, Fan Gao and
Chuhang Wang for helping us to generate the training data.

Compliance with Ethical Standards

Conflict of Interest: Giang Bui declares that he has no con-
flict of interest. Truc Le declares that he has no conflict of
interest. Brittany Morago declares that she has no conflict of
interest. Ye Duan declares that he has no conflict of interest.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Ten-
sorflow: Large-scale machine learning on heterogeneous systems,

2015. url h ttp. tensorflow. org/. Software available from tensor-
flow. org

2. Botsch, M., Hornung, A., Zwicker, M., Kobbelt, L.: High-quality
surface splatting on today’s gpus. In: Proceedings Eurograph-
ics/IEEE VGTC Symposium Point-Based Graphics, 2005., pp.
17–141. IEEE (2005)

3. Brown, M., Lowe, D.G.: Unsupervised 3d object recognition and
reconstruction in unordered datasets. In: 3-D Digital Imaging and
Modeling, 2005. 3DIM 2005. Fifth International Conference on,
pp. 56–63. IEEE (2005)

4. Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through
neighbor embedding. In: Computer Vision and Pattern Recogni-
tion, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer
Society Conference on, vol. 1, pp. I–I. IEEE (2004)

5. Cui, Z., Chang, H., Shan, S., Zhong, B., Chen, X.: Deep network
cascade for image super-resolution. In: European Conference on
Computer Vision, pp. 49–64. Springer (2014)

6. Dai, D., Timofte, R., Van Gool, L.: Jointly optimized regres-
sors for image super-resolution. In: Computer Graphics Forum,
vol. 34, pp. 95–104. Wiley Online Library (2015)

7. Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative im-
age models using a laplacian pyramid of adversarial networks. In:
Advances in neural information processing systems, pp. 1486–
1494 (2015)

8. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution us-
ing deep convolutional networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence pp. 295–307 (2015)

12 Giang Bui et al.

9. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution
convolutional neural network. In: European Conference on Com-
puter Vision, pp. 391–407. Springer (2016)

10. Freedman, G., Fattal, R.: Image and video upscaling from local
self-examples. ACM Transactions on Graphics (TOG) 30(2), 12
(2011)

11. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single
image. In: 2009 IEEE 12th International Conference on Computer
Vision, pp. 349–356. IEEE (2009)

12. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adver-
sarial nets. In: Advances in neural information processing sys-
tems, pp. 2672–2680 (2014)

13. Hartley, R., Zisserman, A.: Multiple view geometry in computer
vision. Cambridge university press (2003)

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for
image recognition. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 770–778 (2016)

15. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution
from transformed self-exemplars. In: 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 5197–
5206. IEEE (2015)

16. Irschara, A., Zach, C., Frahm, J.M., Bischof, H.: From structure-
from-motion point clouds to fast location recognition. In: Com-
puter Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, pp. 2599–2606. IEEE (2009)

17. Jia, K., Wang, X., Tang, X.: Image transformation based on learn-
ing dictionaries across image spaces. IEEE transactions on pattern
analysis and machine intelligence 35(2), 367–380 (2013)

18. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time
style transfer and super-resolution. In: European Conference on
Computer Vision, pp. 694–711. Springer (2016)

19. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution
using very deep convolutional networks. arXiv preprint
arXiv:1511.04587 (2015)

20. Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional net-
work for image super-resolution. arXiv preprint arXiv:1511.04491
(2015)

21. Kim, K.I., Kwon, Y.: Single-image super-resolution using sparse
regression and natural image prior. IEEE transactions on pattern
analysis and machine intelligence 32(6), 1127–1133 (2010)

22. Kingma, D., Ba, J.: Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014)

23. Kobbelt, L., Botsch, M.: A survey of point-based techniques in
computer graphics. Computers & Graphics 28(6), 801–814 (2004)

24. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A.,
Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., et al.: Photo-
realistic single image super-resolution using a generative adver-
sarial network. arXiv preprint arXiv:1609.04802 (2016)

25. Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-
supervised nets. In: Artificial Intelligence and Statistics, pp. 562–
570 (2015)

26. Li, Y., Snavely, N., Huttenlocher, D.P.: Location recognition using
prioritized feature matching. In: European conference on com-
puter vision, pp. 791–804. Springer (2010)

27. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep
residual networks for single image super-resolution. In: Computer
Vision and Pattern Recognition Workshops (CVPRW), 2017 IEEE
Conference on, pp. 1132–1140. IEEE (2017)

28. Lipponer, S.: Surface splatting. https://github.com/
sebastianlipponer/surface_splatting (2015)

29. Liu, Y., Xiong, Y.: Automatic segmentation of unorganized noisy
point clouds based on the gaussian map. Computer-Aided Design
40(5), 576–594 (2008)

30. Lowe, D.G.: Distinctive image features from scale-invariant key-
points. International journal of computer vision 60(2), 91–110
(2004)

31. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale
video prediction beyond mean square error. arXiv preprint
arXiv:1511.05440 (2015)

32. Nistér, D.: An efficient solution to the five-point relative pose
problem. IEEE transactions on pattern analysis and machine in-
telligence 26(6), 756–770 (2004)

33. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on
point sets for 3d classification and segmentation. Proc. Computer
Vision and Pattern Recognition (CVPR), IEEE 1(2), 4 (2017)

34. Radford, A., Metz, L., Chintala, S.: Unsupervised representation
learning with deep convolutional generative adversarial networks.
arXiv preprint arXiv:1511.06434 (2015)

35. Savva, M., Yu, F., Su, H., Aono, M., Chen, B., Cohen-Or, D.,
Deng, W., Su, H., Bai, S., Bai, X., et al.: Shrec16 track large-scale
3d shape retrieval from shapenet core55. In: Proceedings of the
eurographics workshop on 3D object retrieval (2016)

36. Schulter, S., Leistner, C., Bischof, H.: Fast and accurate image
upscaling with super-resolution forests. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3791–3799 (2015)

37. Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A.P., Bishop, R.,
Rueckert, D., Wang, Z.: Real-time single image and video super-
resolution using an efficient sub-pixel convolutional neural net-
work. In: Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pp. 1874–1883 (2016)

38. Sibbing, D., Sattler, T., Leibe, B., Kobbelt, L.: Sift-realistic render-
ing. In: International Conference on 3D Vision, pp. 56–63 (2013)

39. Simonyan, K., Zisserman, A.: Very deep convolutional networks
for large-scale image recognition. CoRR abs/1409.1556 (2014)

40. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring
photo collections in 3d. In: ACM transactions on graphics (TOG),
vol. 25, pp. 835–846. ACM (2006)

41. Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang,
L., Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M., et al.: Ntire
2017 challenge on single image super-resolution: Methods and re-
sults. In: Computer Vision and Pattern Recognition Workshops
(CVPRW), 2017 IEEE Conference on, pp. 1110–1121. IEEE
(2017)

42. Timofte, R., De Smet, V., Van Gool, L.: Anchored neighborhood
regression for fast example-based super-resolution. In: Proceed-
ings of the IEEE International Conference on Computer Vision,
pp. 1920–1927 (2013)

43. Timofte, R., De Smet, V., Van Gool, L.: A+: Adjusted anchored
neighborhood regression for fast super-resolution. In: Asian Con-
ference on Computer Vision, pp. 111–126. Springer (2014)

44. Timofte, R., Rothe, R., Van Gool, L.: Seven ways to improve
example-based single image super resolution. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 1865–1873 (2016)

45. Vinyals, O., Bengio, S., Kudlur, M.: Order matters: Sequence to
sequence for sets. arXiv preprint arXiv:1511.06391 (2015)

46. Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceed-
ings of the IEEE International Conference on Computer Vision,
pp. 1395–1403 (2015)

47. Yang, C.Y., Huang, J.B., Yang, M.H.: Exploiting self-similarities
for single frame super-resolution. In: Proceedings of the Asian
Conference on Computer Vision, pp. 497–510 (2011)

48. Yang, C.Y., Ma, C., Yang, M.H.: Single-image super-resolution:
A benchmark. In: European Conference on Computer Vision, pp.
372–386. Springer (2014)

49. Yang, J., Wang, Z., Lin, Z., Cohen, S., Huang, T.: Coupled dic-
tionary training for image super-resolution. IEEE Transactions on
Image Processing 21(8), 3467–3478 (2012)

50. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as
sparse representation of raw image patches. In: Computer Vision
and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on,
pp. 1–8. IEEE (2008)

https://github.com/sebastianlipponer/surface_splatting
https://github.com/sebastianlipponer/surface_splatting

Point Based Rendering Enhancement via Deep Learning 13

51. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution
via sparse representation. IEEE Transactions on Image Processing
19(11), 2861–2873 (2010)

52. Zwicker, M., Pfister, H., Van Baar, J., Gross, M.: Surface splat-
ting. In: Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, pp. 371–378. ACM (2001)

Giang Bui received the B.S. and M.S. degrees from the Viet-
nam National University of Hanoi in 2004 and 2007, respec-
tively. He is currently pursuing the Ph.D degree at the Uni-
versity of Missouri, Columbia. He was a Research Assistant
with the Computer Graphics and Image Understanding Lab-
oratory under the supervision of Dr. Y. Duan. His research
interests include image and video processing, 3-D computer
vision, and machine learning.

Truc Le received his B.S. in Computer Science in 2012
from the University of Science, VNU-HCM of Vietnam. He
is currently pursuing the Ph.D degree at the University of
Missouri, Columbia in the Computer Graphics and Image
Understanding Laboratory under the supervision of Dr. Ye
Duan. His research interests include Computer Graphics, 3D
computer vision, and machine learning.

Brittany Morago received the B.S. degree in digital arts
and sciences from the University of Florida in 2010, and
the Ph.D. degree in computer science from the University
of Missouri, Columbia, in 2016. She is currently an Assis-
tant Professor with the Department of Computer Science,
University of North Carolina at Wilmington. Her research
interests include computer vision and graphics. She was a
recipient of the NSFGRF and GAANN fellowships.

Ye Duan received the B.A. degree in mathematics from Peking
University in 1991, and the M.S. degree in mathematics from
Utah State University in 1996, and the M.S. and Ph.D. de-
grees in computer science from the State University of New
York, Stony Brook, in 1998 and 2003, respectively. From
2003 to 2009, he was an Assistant Professor of Computer
Science with the University of Missouri, Columbia. He is
currently an Associate Professor of Computer Science with
the University of Missouri, Columbia. His research inter-
ests include computer graphics and visualization, biomedi-
cal imaging, and computer vision.

	Introduction
	Related Works
	Proposed Method
	Experiments
	Conclusion

