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Abstract

Although the benefit of participatory sensing for collecting local data over large areas has long
been recognized, it has not been widely used for various applications such as disaster preparation
due to a lack of geospatial localization capability with respect to a distant object. In such
applications, objects of interest need to be robustly localized and documented for supporting data-
driven decision-making in site inspection and resource mobilization. However, participatory
sensing is inappropriate to localize a distant object due to the absence of ranging sensors in citizens’
mobile devices; thus, the localization accuracy varies to a large extent. To address this issue, this
study presents a novel geospatial localization method for distant objects based on participatory
sensing. The proposed geospatial localization process consists of multiple computational
modules—a geographic coordinate conversion, mean-shift clustering, deep learning-based object
detection, magnetic declination adjustment, line of sight equation formulation, and the Moore-
Penrose generalized inverse method—to improve the localization accuracy in participatory sensing
environments. The experiments were conducted in Houston and College Station in Texas to
evaluate the proposed method, and the experimental results demonstrated a reasonable localization
accuracy, recording the distance errors of 1.5m to 27.8m when the distance from observers to the

objects of interest were 17m to 296m. The proposed method is expected to contribute to rapid data
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collection over large urban areas, thereby facilitating disaster preparedness that needs to identify
locations of distant objects at risk.
Keywords —

Geospatial Localization; Participatory Sensing; Urban Built Environments

1 Introduction

Participatory sensing has recently emerged to facilitate data collection over large areas with
little incremental cost [1,2]. As its name suggests, participatory sensing involves voluntary
participations of citizens and community groups in the process of sensing and documenting
personal observations. Although the benefit of participatory sensing has long been recognized in
various applications including disaster early warning systems [3-5], its utilization is still in its
infancy due to practical challenges regarding data reliability and automatic data processing in
generating useful information. For example, in the context of disaster preparedness using
participatory sensing, it would be necessary to localize vulnerable distant objects from a citizen’s
mobile device promptly, because their accurate location information helps municipal agencies
identify the location and take appropriate actions to prevent potential accidents before extreme
weather events. Most municipalities have systems to collect near real-time information of critical
infrastructures (e.g., transportation-related infrastructures such as bridges or roads for further
inspection), but municipal agencies may not cover local vulnerabilities over large urban areas. The
participatory sensing has the potential to be used as a supplementary tool for data collection over
large urban areas. Here, it is difficult for local residents to obtain and report the accurate

geographic location of distant objects of interest due to the absence of a proper ranging device.
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Most previous studies have primarily considered the locations of citizens where data were
collected due to a lack of a geospatial localization capability for distant objects of interest [6-8].
Such approaches could be valid when accurate location information for distant objects is
unnecessary for their applications such as monitoring flooding areas. On the other hand, if an
application requires accurate location information for a distant object, a novel localization method
needs to be devised to overcome the limitation of citizens’ mobile devices—the absence of ranging
Sensors.

Although some studies proposed distant object localization methods using mobile devices [9-
14], the dependence on prior information (e.g. BIMs), a heavy computational load for 3D
reconstruction, or ranging devices remains as a major obstacle for leveraging participatory sensing.
Moreover, the localization accuracy is likely to be exacerbated as the collected data may contain
noise by nature and be irrelevant since participatory sensing basically relies on citizens who are
not experts [15]. Particularly, three types of noise involved in the collected data—human error,
measurement error, and the geospatial proximity of urban objects—would significantly impair the
reliability of geospatial localization. These challenges, therefore, militates against the use of
participatory sensing for various applications such as the localization of distant objects.

To address these challenges, this paper proposes a novel geospatial localization method to
identify the geospatial location of distant objects from crowdsourced data collected by citizens’
smartphones. On a condition that each crowdsourced data sample contains the followings—an
image having an object of interest, a geographic location in a spherical coordinate system, and a
compass bearing in the direction toward the object of interest, the proposed method can localize
distant objects building upon sequential computational modules. The premise of such data

availability is founded on the fact that most smartphones can be easily used to collect their



71

72

73

74

75

76

77

78

79

80

81

82

&3

84
85

geographic locations, compass bearings, and images, as conducted in many previous studies
regarding participatory sensing [6,12,16]. Each module in the proposed method is designed to
address the data reliability issue in utilizing crowdsourced data for geospatial localization. This
study contributes to a methodological aspect and understanding for geospatial localization in
participatory sensing by presenting how distant objects in urban areas can be robustly localized
from multiple observations through the novel localization process. In experiments, the proposed
method demonstrates the capability of each module to improve the reliability of geospatial
localization using crowdsourced data, addressing three types of noise such as human error,
measurement error, and the geospatial proximity of urban objects. This study is expected to
promote the utilization of crowdsourced data to improve collective readiness in urban areas with
respect to extreme weather events, as shown in Fig. 1. The following section introduces previous
studies related to participatory sensing for disaster management and geospatial localization

methods, and then the detailed computational process for localization is discussed.

The proposed geospatial localization method
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Fig. 1 Conceptual diagram of participatory sensing for improving disaster preparedness
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2 Background
2.1 Data utilization for management applications in urban areas

Over the past decades, many studies have investigated data-driven methods for various
applications in urban built environments such as disaster management and infrastructure asset
management. For example, structural damage monitoring methods regarding disaster impact
analysis have been widely studied, using imaging devices such as LiDAR (Light Detection and
Ranging) [17,18], optical cameras [19,20] and embedded sensors [21]. These methods provided
valuable insights for how to analyze the damage and response of structures from image or signal
data during and after disaster situations. In emergency response and recovery phases, a mobile ad-
hoc network, radio frequency identification (RFID), a geographic information system (GIS), and
a mobile workstation chariot were utilized for facilitating communication between first responders
(e.g. structural engineers and fire fighters), building damage assessment, and resource allocation
[22-25].

Depending on the data type, available information for an object of interest varies. The field data
types can be largely divided into text, signal, and imagery. Text is generally a secondary data
representing human’s judgment in linguistic expressions with regards to an object of interest.
Signal data can represent the physical quantity with respect to stress, pressure, strain, temperature,
voltage, current, or magnetic force; thus, such data can be transformed into useful information
including structural performance and physical condition for assessing infrastructure vulnerability
[21] and detecting abnormalities in facilities [26] under disaster events. Signal data has been used
to provide location information for safe excavations of underground utility pipelines [27] or
planning evacuation of people trapped inside buildings under disaster situations [28]. On the other

hand, image data can represent the visual appearance of the real world that represents the shapes
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and textures of objects; thus, a person can understand a physical characteristic of objects or a scene
context. Based on image data, the condition and serviceability of buildings and infrastructures
have been investigated for post-disaster damage assessment [29] or maintenance and repair of
infrastructures [30]. Although image data is a two-dimensional representation of the real-world, it
can provide three-dimensional information by reconstructing depth information. For the
reconstruction of depth information, the structure-from-motion algorithm has been widely used;
the reconstructed 3D information has provided valuable information for managing transportation
infrastructure assets [31], recovering the structural drawing images of damaged buildings [19], and
assessing residential building damages [20]. However, the reconstruction accuracy is relatively
lower than the accuracy of 3D information collected by 3D imaging devices such as LIDAR. The
3D imaging devices can collect 3D images (or point clouds) through their active sensor which
emits radiation to measure depth information at a point of an object or scene. Based on accurate
3D information, various research projects and applications have been established in the
Architecture, Engineering, Construction, and Facility Management (AEC/FM) industry [32], such
as damage assessment for building properties [18] and reinforced concrete frames [33]. Building
on various types of data, a few studies have utilized simulation methods to analyze emergency
response of citizens during natural disasters to establish proactive action plans [34-37]. Despite
their benefits, there has been a dearth of study dedicated to developing an effective data collection
method having scalability over large areas. Although sensor networks and imaging devices can
provide information to be effectively scaled up, it is not trivial to install sensor networks in existing
infrastructures and collect image data with limited human resources; collected data should be
processed with computationally expensive algorithms to detect target objects and analyze their

vulnerabilities. The lack of scalable data collection methods motivates this study to investigate an
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alternative method that can efficiently scale up the data collection capability over large areas with

the help of people and existing sensors.

2.2 Participatory sensing

Participatory sensing has been utilized to identify local information from citizens for various
applications such as disaster risk reduction [38,39]. Stemming from citizen science projects,
participatory sensing generally consists of five steps such as (1) recruiting participants, (2)
educating participants how to collect and analyze local data, (3) collecting local data, (4) analyzing
the collected local data, and (5) reporting the local data using participants’ mobile devices. It has
attracted considerable research interests in academia as an alternative data collection tool, because
of its scalability over large areas based on citizens’ mobile devices [1,2,39]. In the general process
of participatory sensing, citizens voluntarily and intentionally upload local information through
social media or smartphone application. Leveraging social media as a new data storage and
collection platform, previous studies have presented a way of collecting and utilizing
crowdsourced data such as images and texts regarding natural disasters for emergency
management, through transforming crowdsourced data into key information to enhance situational
awareness during natural disasters [6,40,41]. Particularly, crowdsourced data has shown its
usefulness for monitoring flood damage in urban areas [39,42-44]. Providing such flood damage
maps has the advantage of understanding the flood damages over large areas at once, which
facilitates establishing a prompt recovery plan. A few studies proposed a way to improve disaster
response by monitoring local situations during heavy rainfalls through social media data for
warning local residents at risk [7,8]. Crowdsourced data has been mostly collected from social

media, composed of several data types such as images, texts, and geographic locations [6,7,40-44].
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In some cases, image data was collected by Closed Circuit Television (CCTV) [8] and GIS data
was collected through volunteered geographic information mapping platforms such as
OpenStreetMap (OSM) [39].

However, there have been little discussion about improving disaster preparedness based on
participatory sensing, though its potential of reducing disaster-induced damage has long been
recognized [3-5]. To reduce the impact of natural disasters, it is critical for citizens to be well-
prepared based on the local information about potential hazardous objects and areas. Such
information enables citizens to be informed about where not to go and where not to stay for their
safety during extreme weather events and allows governmental agencies to mobilize their limited
resources at vulnerable areas to prevent losses and accidents from occurring. Thus, it is necessary
to identify vulnerable objects in local areas prior to a natural disaster arrives. For example,
windstorms—the second most frequent natural hazards—could lead to crane collapse in urban
construction sites which often causes secondary damage to neighboring critical infrastructure such
as roads or power grids and serious injury and death to nearby people [45]. Here, participatory
sensing has significant potential for rapidly investigating such local vulnerabilities over large
urban areas with little incremental cost. To this end, participatory sensing should be equipped with
the geospatial localization capability, thereby enabling to localize target objects that need to be

reported at the right time.

2.3 Previous studies of geospatial localization

Herein, the definition of geospatial localization refers to the process of localizing an object or

area in world coordinate systems such as the Global Positioning system and the Universal
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Transverse Mercator system. Geospatial localization methods for a distant object using
smartphones have been studied in the last decade for various purposes such as indoor/outdoor
navigations and models/databases update [46]; most previous studies have utilized images to
estimate the geospatial location of a distant object in urban areas, while using a users’ geographic
location as a reference location. Previous geospatial localization methods can be categorized as
indirect methods and direct methods [46]. In either category, the localization methods involve
reconstructing or finding camera pose information since it is crucial to infer the geometric
relationship between 2D images and the 3D real world. Following this fundamental principle,
localization methods have also been studied in the civil engineering domain for construction site
or built environment management applications. Balali et al. [31] presented traffic sign recognition
and localization method using 3D reconstruction and machine learning techniques. Ham and Yoon
[9] proposed a distant object localization method that employs user’s motion information and
image contents, by integrating different types of information collected by embedded sensors in
smartphones such as an accelerometer, magnetic field, gyroscope, and camera sensors. Ha et al.
[14] utilized a building information model (BIM) and a convolutional neural network to localize a
scene shown in a mobile head-mounted display. Kim et al. [10] developed a hazard avoidance
system using a wearable device which displays the direction of a closest construction vehicle
nearby a user and its hazard level, by localizing construction entities through stationary cameras
with a predetermined monitoring environment. Although these studies have reported promising
localization accuracies, their method requires additional information such as BIM or dedicated
cameras for monitoring, which are not generally available for localization purposes in most urban
areas. Otherwise, 3D reconstruction is inevitable to infer a 3D real-world geometry of 2D scenes

for localization. However, 3D reconstruction algorithms such as structure-from-motion are
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computationally expensive to timely localize multiple objects in large areas. Recently, a few
studies proposed geospatial localization methods for urban environments using photographers’
locations, shooting angles and images [11-13], but their methods showed unstable localization
accuracies (discussed in more detail in Section 5). To improve and stabilize the geospatial
localization accuracy, this study presents a novel way to localize distant objects using multiple

observations collected by citizens’ smartphones, described in the following section.

3 Participatory sensing-based geospatial localization

Preprocessing

Data
acquisition —»
by citizens
) Mean-shi . ; ) Formulating the )

Determine chisterin 1fct)r Solving determined/overdetermined Iin::: i uat?ogns of Magnetic

the final s & systems to find a point of - 9 <+—  declination

: the estimated . : e camera :
location : intersection among multiple lines S adjustment
locations directions
L ] )
| |
Postprocessing Geospatial Localization

Fig. 2. Overview of the proposed geospatial localization method.

The proposed geospatial localization method, as shown in Fig. 2, is designed to localize static
distant objects using crowdsourced data in which each data sample includes an image having an
object of interest, a geographic location in a spherical coordinate system, and a compass bearing
in the direction toward the object of interest. Fig. 3 illustrates the data acquisition process —image
acquisition and sensor data documentation: Participants take a picture of a distant object, and then
record an embedded sensor data (geographic location and compass bearing) through a smartphone

application while pointing the smartphone toward the distant object. Any smartphone application
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can be used if it can be used to collect the three types of data—a geographic location, a compass
bearing, and an image. Collected images are used for filtering irrelevant data in the preprocessing
step; geographic locations and compass bearings are used to cluster adjacent data samples and to
formulate line equations that represent directions toward a distant object; the intersection points
among the line questions determines the estimated locations of a distant object; the final location
of a distant object is determined by finding the cluster center of a cluster having the majority of

the estimated locations.

Step 1 — Image Acquisition

MmO ==

Object

Image

Sensor data

« Geographic
Location «

¢ Compass
Bearing

Distant

Ground Object

Fig. 3. Data acquisition process with a smartphone.

The three types of data can be easily collected by multimodal sensors embedded in consumer-
level smartphones. However, in participatory sensing, the reliability of crowdsourced dataset is
typically inconsistent since it is likely to involve noisy data, which impairs the accuracy of the
analytic results [47]. For geospatial localization of distant objects, three types of noise would be
involved in crowdsourced dataset such as (1) human error, (2) measurement error, and (3) the
geospatial proximity of urban objects: Human error occurs when a citizen takes a photograph of
wrong objects which are not of interest and thus records an unnecessary compass bearing. It is also

human error that citizens mishandle their smartphones when measuring a geographic location or a
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compass bearing. Measurement error signifies the difference between a measured value and its
true value; this error likely occurs when a geographic location and a compass bearing are measured
by a citizen’s mobile device, due to the inaccuracy and imprecision of mobile sensors embedded
in consumer-level smartphones. The geospatial proximity of urban objects represents a case when
different urban objects in a close distance are simultaneously reported. In this case, irrelevant data
that is not indicating an object of interest might be included in the localization process, therefore,

resulting in inaccurate localization results.

3.1 Preprocessing the crowdsourced data: conversion, clustering, and filtering the

crowdsourced data

The preprocessing part consists of three modules for two objectives: the conversion of a
geographic location from spherical coordinates to two-dimensional Cartesian coordinates and the
selection of data relevant to a specific distant target object from entire crowdsourced dataset. At
the first preprocessing module, an initial geographic location data in spherical coordinates
(Latitude/Longitude in degrees-minutes-seconds and Altitude in meters) is converted into the
Universal Transverse Mercator (UTM) system, which represents the location in two-dimensional
Cartesian coordinates (Easting/Northing in meters) within a UTM zone. By doing so, the
formulation of a line equation toward a distant object can be simplified in the two-dimensional
space, using a single geographic location with a compass bearing. In this way, the localization of
a distant object can be done by finding the point of intersection of multiple line equations in the
UTM system (discussed in Section 3.2).

The purpose of the second preprocessing module is to select relevant data for a specific urban

object by the mean-shift clustering with respect to the citizens’ location, based on the assumption
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that a geo-cluster of crowdsourced data corresponds to a single object of interest in a large urban
area. To this end, the mean-shift clustering algorithm Yizong [48] is employed in this module.
Among various clustering algorithms, the mean-shift clustering was selected due to the simplicity
in optimizing its parameters. Moreover, the mean-shift clustering does not require to specify the
number of clusters before clustering. It accurately separates data points into a random number of
clusters based on the spatial distribution of data points. This characteristic is important in the
context of participatory sensing since the number of distant objects is generally unknown in
advance. Given a set of location data points, the mean-shift algorithm finds a local mode—the
maximum of a kernel density function—of data points in a circular window; if the mode is found,
the window is centered on the mode, and this process iterates until a mode converges. Location
data points traversed by the window towards a same converged mode constitute a cluster; data
points in a cluster are used to localize a specific distant object. Fig. 4 shows an example of the

mean-shift clustering for location data points of citizens in the UTM system.
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Fig. 4. Examples of the mean-shift clustering results (Circles: observers’ locations,

Diamonds: cluster centers).
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Although crowdsourced data can be clustered by distance, a cluster may have some data
samples irrelevant to an object of interest. To filter out such irrelevant data samples, the third
preprocessing module employs an object detection model for image analysis. Among various
object detection models, the region-based fully convolutional network (R-FCN) [49] is leveraged,
which is a type of deep neural networks to detect objects of interest in images. Deep neural
networks have received considerable attention in recent years, because of its high performance in
various tasks such as computer vision, speech recognition, and natural language processing [50].
Generally, deep neural networks extract data representations from input data in successive layers
and use the extracted data representations to label a category for the input data. Specifically, R-
FCN, which is dedicated to object detection in images, consists of three major components
including a 50-layer residual network, a regional proposal network, and position-sensitive pooling
layers; through these components, R-FCN searches a target object at every pixel location based on
the scores of extracted visual features in multiple grids. However, its accuracy is not easily
guaranteed unless a large amount of training data is provided for each target class or a special
training process is applied. Because training image data for target classes are not sufficiently
available, this study adopts transfer learning in the training process to secure the high detection
accuracy of R-FCN. Under the transfer learning scheme, R-FCN model pretrained with a large
amount of data in a different domain is retrained with training data regarding target object classes
in this study. Based on the detection results in a cluster, irrelevant data are removed to enhance the

geospatial localization accuracy of the proposed method.
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3.2 Geospatial Localization

The principle of the proposed geospatial localization is to find the point of intersection of
multiple line equations that direct to a distant object of interest; the point is regarded as the distant
object’s location. To do so, geographic locations of smartphones and compass bearings are used
to cluster adjacent data samples; and data samples in a cluster are then used to formulate line
equations that represent the directions toward a distant object. However, the value of a compass
bearing should be adjusted considering magnetic declination before line formulation since the
initial compass bearings correspond to the direction toward the magnetic north of the Earth, rather
than the true north. Magnetic declination (also called magnetic variation) refers to the angle
difference between the true north and the magnetic north, which varies in extent at different
locations by the Earth’s magnetic field. Since the magnetic sensor in smartphones outputs the value
of a compass bearing based on the magnetic north, the deviation associated with the recorded
compass bearings would lead to the inaccurate localization results for a distant object. To represent
the accurate angle toward the true north, the compass bearings are adjusted by magnetic declination
at each geographic location, referring to the International Geomagnetic Reference Field Model
[51]. Based on the adjusted compass bearing along with geographic location of smartphone, a line
equation toward a distant object of interest is formulated. In principle, the estimated locations of a
distant object can be obtained by solving multiple line equations, even if the number of line
equations is greater than the number of unknowns (x,y)—FEasting and Northing. When the
number of line equations is 2, a determined system of the line equations is solved by using an
inverse matrix of line equations. Otherwise, when the number of line questions is greater than 2,
an over-determined system of the line equations is solved by using the Moore-Penrose generalized

inverse method [52] to obtain a unique solution for a distant object’s location. The detailed process
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of the geospatial localization is explained in Appendix.

3.3 Postprocessing the estimated locations

The proposed method can produce multiple estimated locations for a single urban object by
selecting different combinations of data samples or using different numbers of lines for
localization. Here, the localization accuracy of each estimated location is likely to vary to a large
extent due to data uncertainty and inconsistency from multimodal sensors embedded in mobile
devices. To stabilize the localization accuracy, a statistical inference method is employed to
determine the location of a distant object building upon multiple estimations. The underlying
assumption is that when multiple estimated locations are generated for a distant object, their
geographic distribution most likely converge on the ground truth location of the distant object
since each estimated location is an approximation of the ground truth location. In this context, the
cluster center of the estimated locations is likely closer to the ground truth location than most
estimated locations. To localize a distant object based on this assumption, the statistical inference
first produces many estimated locations using the proposed localization method described in
Section 3.2. Since multiple observations can be reported for a single distant object, the maximum
number of possible estimated locations is calculated by counting the number of A~combinations

out of n data samples, Zk(’;), where k = [2, 3, ..., n] is the number of line equations used in

geospatial localization and #n is the number of data samples in a selected cluster. For example,
when 7 is 10, 20, and 30, the maximum number of combinations of estimated locations by taking
k line equations is 1013, 1,048,555, and 1,073,741,793, respectively. For computational efficiency,
a set of k can be differently determined considering the number of data samples—n. After

generating multiple estimated locations, the mean-shift clustering algorithm divides the estimated
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locations into several clusters. Here, the final location of a distant object is determined as the center
of a cluster having the largest number of the estimated locations, which helps eliminate outlier

locations estimated based on erroneous data.

4 Experiments

In our experiments, as a proof concept, before the data collection, participants were instructed
regarding the data collection process (i.e., what to document, how to take photos involving target
objects, how to record the direction information using a dedicated smartphone application while
pointing the smartphone toward the objects). In our experiments, it was observed that it takes
around ~10 seconds per instance. Although reporting the direction information after taking a photo
would be burden as it requires additional effort, but it was observed that such activity did not lead
to significant discomfort or resistance to participants during our experiments.

The proposed geospatial localization method was tested on a computer with the configuration
of the Intel 17-6700 CPU and the GTX1080 8GB GPU in the Ubuntu 16.04 operating system. Two
classes of objects—a fire hydrant and a tower crane in urban areas—were selected as distant
objects of interest to evaluate the proposed method. A tower crane was selected since it has been
considered as one of the most vulnerable objects in dense urban areas with respect to severe wind-
related events. Moreover, as one of critical infrastructure distributed in urban areas, fire hydrants
were also selected in the case studies to evaluate the effectiveness of the proposed mean-shift
clustering module. Datasets used in the experiments are shown in Tables 1-5. To collect data
regarding the distant objects using smartphones, participants first captured images containing the

distant objects of interest and then measured compass bearings by pointing their smartphone at the
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objects. Following this process, the data samples of two fire hydrants and a tower crane were
collected using a cell phone (Samsung Galaxy Note5) in College Station and Houston in Texas,
respectively. Fig. 5 shows the ground truth locations of the target urban objects in the two different
regions. To evaluate the localization accuracy, the difference between the ground truth location of
the distant objects and a final estimated location was measured; the object detection performance
in the preprocessing step was presented in form of mean average precision (mAP), which is an
evaluation index of many visual task challenges such as the Common Objects in Context (COCO)
challenge and the ImageNet Large Scale Visual Recognition (ILSVRC) challenge. The magnetic
declinations of +2°58' in College Station and +2°23' in Houston were used for adjusting the

compass bearings of the collected data in the entire experiments.
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378

379  Fig. 5. The ground truth locations in the UTM coordinate system of two fire hydrants in College
380 Station, TX and a tower crane in Houston, TX (FH: fire hydrant, CR: tower crane). The enlarged

381 regions display the data collection areas and the green dots represents the data sample locations.
382

383
384 Table 1. Data samples for fire hydrant #1 in College Station, Texas.
Compass Latitude Longitude

Tareet  Bearing (° ©) ©)
FHI1-1 146.7 30.59485 96.3279
FH1-2 172.4625 30.59478  96.3277833
FH1-3 194.2875 30.59495  96.3278333
FH1-4 208.74375 30.59493  96.3277833
FHI1-5 226.29375 30.5949 96.3276833
FH1-6 221.90625 30.59497  96.3275833
FH1-7 210.6 30.59503  96.3276333
FHI1-8 197.94375 30.59515 96.32765
FH1-9 182.98125 30.5951 96.3277333
FHI1-10 171.28125 30.5952 96.3278333
FHI-11 155.7 30.59512 96.3279833
FHI1-12 145.29375 30.59513 96.3281
FHI1-13 150.075 30.59505  96.3280167
FHI1-14 19.29375 30.5946 96.3279167
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FH1-15 5.85 30.59445  96.3278667
FH1-16 24.75 30.59438  96.3280167
FH1-17 71.2125 30.5947 96.32805
FH1-18 115.93125 30.59485 96.32795
385
386 Table 2. Data samples for fire hydrant #2 in College Station, Texas.
Compass Latitude  Longitude
farget  Bearing() () ©)
FH2-1 212.56875 30.64152 96.2963333
FH2-2 213.75 30.64153 96.29625
FH2-3 223.81875 30.6415  96.2962333
FH2-4 235.4625 30.64147  96.2960167
FH2-5 242.71875 30.64142 96.29595
FH2-6 255.43125 30.64125  96.2959667
FH2-7 245.8125 30.6413 96.2961
FH2-8 261.5625 30.64117 96.29595
FH2-9 269.8875 30.6411  96.2959667
FH2-10 279.61875 30.64095 96.296
FH2-11 295.03125 30.64078  96.2960167
FH2-12 306.05625 30.6407 96.29615
FH2-13 328.78125 30.64057  96.2964167
FH2-14 344.75625 30.6406  96.2966167
FH2-15 354.9375 30.64062  96.2967167
FH2-16 15.69375 30.64062  96.2969667
FH2-17 45.16875 30.64065  96.2971833
FH2-18 57.99375 30.64083 96.2972
FH2-19 79.36875 30.64097  96.2972167
FH2-20 96.58125 30.64112  96.2972167
FH2-21 106.59375 30.64125  96.2972833
FH2-22 119.53125 30.64135  96.2971167
FH2-23 133.425 30.6415  96.2970667
FH2-24 146.8125 30.6415 96.297
FH2-25 174.09375 30.64155  96.2967667
387
388 Table 3. Noisy data samples for fire hydrant #2 in College Station, Texas.
Target B(e:;ll'lillll)gs(i) Latitude (°) Loné’:,l)t ude
Noisy FH2-1 155.30625 30.6411 96.2972167
Noisy FH2-2 ~ 287.94375  30.6410667  96.2972167
Noisy FH2-3 8.325 30.6410833  96.2971833
Noisy FH2-4 52.70625 30.6410833  96.2971833
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389

390

391

Noisy FH2-5
Noisy FH2-6
Noisy FH2-7
Noisy FH2-8
Noisy FH2-9
Noisy FH2-10
Noisy FH2-11
Noisy FH2-12
Noisy FH2-13
Noisy FH2-14
Noisy FH2-15
Noisy FH2-16
Noisy FH2-17
Noisy FH2-18
Noisy FH2-19
Noisy FH2-20
Noisy FH2-21

222.24375
43.70625
5.56875
84.31875
325.74375
268.81875
319.6125
340.0875
6.24375
32.5125
48.31875
74.64375
112.21875
135.9
145.125
184.95
240.975

30.6410833
30.6412667
30.6412
30.6412667
30.64125
30.64135
30.6415333
30.6415333
30.6415167
30.6415167
30.6415167
30.6415333
30.6415333
30.6415333
30.64155
30.6413833
30.6413

96.2971833
96.2972
96.29675
96.2966667
96.2967167
96.2970667
96.29655
96.2966
96.2966
96.2966167
96.2966167
96.2966167
96.2966333
96.2966333
96.2966167
96.2968667
96.29705

Table 4. Data samples for a tower crane in Houston, Texas.

Target Compasi Bearing Latiotude Longitude
) ) )
CR1-1 137 29.77783 95.39295
CR1-2 177 29.77945  95.3928833
CR1-3 160 29.77923 95.39285
CR1-4 162 29.77918  95.3928667
CR1-5 165 29.77895  95.3928333
CR1-6 176 29.77877  95.3926167
CR1-7 191 29.77858 95.39245
CR1-8 164 29.77855  95.3928833
CR1-9 167 29.77972 95.3929
CRI1-10 163 29.77992  95.3928667
CRI1-11 161 29.78017  95.3929333
CRI1-12 177 29.77977  95.3923167
CR1-13 188 29.77982  95.3918333
CR1-14 112 29.77785 95.39495
CR1-15 100 29.7778 95.39465
CRI1-16 106 29.77783  95.3945167
CR1-17 104 29.77787  95.3944833
CR1-18 101 29.77787  95.3941667
CRI1-19 101 29.77793  95.3939667
CR1-20 107 29.7779 95.3936
CR1-21 102 29.7779 95.3933333
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Table 5. Ground truth coordinates of urban objects in the UTM system

Object Latitude (°) Longitude (°)
FH1 30.594726 96.3279041
FH2 30.641061 96.2967157
CR1 29.777722 95.3926044

The eighteen data samples of the first fire hydrant, as shown in Table 1 and the right column of
Fig. 6, were collected by smartphones at a distance ranging from 17m to 54m (average distance:
~34m); for the second fire hydrant, a dataset of the twenty five data samples in Table 2 and the
left column of Fig. 6 were collected at a distance ranging from 47m to 84m (average distance:
~62m). In addition, 21 noisy data samples having incorrect compass bearings were collected
nearby the fire hydrant #2, to evaluate the localization performance of the proposed method in
challenging conditions for participatory sensing. At the first preprocessing module, the spherical
coordinates of the data samples were converted to the UTM coordinates. In the case study, the
search window size during the mean-shift clustering was empirically determined to be 400m in
diameter. It was observed that the mean-shift clustering module for selecting relevant data samples
successfully separate the data samples into two clusters, each of which related to a different object,
as shown in Fig. 7. To filter irrelevant data samples at the preprocessing module, the object
detection model was trained with the setting of 53 training samples for fire hydrants, 230 training
samples for tower cranes, and 10,000 training iterations; the number of test samples was 49 for
fire hydrants and 57 for tower cranes. During the experiments, each image size was changed for
enhancing computational efficiency such that the sizes of the training and test images were
adjusted to have their shortest image side of 800 and 1,080, respectively, while keeping the aspect
ratio considering the GPU memory limit (e.g., an image of 3000%2000 is adjusted to 1200x800).

To detect each object class having a relatively different size in images, the range of anchor box
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sizes (i.e., the size of a candidate region used to find a target object in a region proposal network
[53]) was changed from 1282 2567 and 5122 pixels to 82, 162, 322, 64% 1282, and 2567 pixels.
With this experimental setting, mAPs of 95.62% and 74.67% were reported by the object detection
model for fire hydrants and tower cranes, respectively. Based on the trained detection model, the
presence of target objects in images were identified, and then only relevant data samples were fed
into the geospatial localization. To estimate the location of each object, the line equations of the
remaining data samples were formulated; among the line equations, two lines were randomly
selected 300 times to produce 300 estimated locations by solving equation (3) in Section 3.2. At
the postprocessing step, the search window size of the mean-shift clustering was empirically set
to 40m in diameter in the case study. The center of a cluster with the largest number of the
estimated locations was determined as the final location and then the distance error was measured,
by calculating the distance between the final location and the ground truth location, as shown in
Fig. 8. The location of a tower crane in urban construction sites in Houston, TX, was also estimated
to evaluate the performance of the proposed method in a case when observer-to-object distances
were relatively longer. For the tower crane, 21 data samples were collected at a distance ranging
from 68m to 296m (average distance: ~186m). Table 6 shows the experimental results of the
proposed geospatial localization method in the case study, which were obtained by averaging 300
localization results. The distributions of the distance error for each object were represented in form
of histograms, as shown in Fig. 9. To investigate the impacts of noisy data, the number of line
equations, and the number of data samples, additional experiments were conducted. Two lines
equations were selected to generate 300 estimated locations in all experiments, except for the
experiment regarding the number of data samples. All reported errors were calculated by averaging

300 localization results, and the average computation time per each localization was 0.106s.
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Fig. 6. Examples of the R-FCN-based object detection results.
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Fig. 7. An example of mean-shift clustering results (Circles: observers’ locations, Diamonds:

cluster centers, Bottom left cluster: fire hydrant #1, Upper right cluster: fire hydrant #2).
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Fig. 8. Examples of the final estimated location (CT: a cluster center with the largest number of

the estimated locations) and the ground truth (GT) of the fire hydrant #2 among the estimated

locations (Circles).

Table 6. Examples of geospatial localization results in the case studies. The distance error values

were obtained by averaging the geospatial localization results of 300 trials.

Number of Average
Target obiect data distance from  Distance error of the
s ! sam 1 es ObSCI'VCI'S toa pr()p()sed method
P distant object
Fire };#}{drant 13 7 oim
Fire i}zldrant 25 om .
Tower crane 22 186m 27.8m
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Fig. 9. Histograms regarding the distance error of the proposed method after 300 trials for each
object.

To investigate the effect of the proximity between adjacent target objects, additional data
samples were collected with respect to ten urban objects in Downtown Houston, as shown in Fig.
10. The proximity between these objects ranges from 128m to 261m. Sensitivity analysis was
conducted to assess the effect of the window sizes of the mean-shift clustering at the preprocessing
and postprocessing. The experimental results on the additional data set were shown in Fig. 11 and

Table 7, obtained from averaging 300 localization experiments.
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Fig. 10. The ground truth locations of ten urban objects (yellow pins) in Downtown Houston,
TX. The enlarged regions display the data collection areas and the green dots represents the data

sample locations.
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Fig. 11. Sensitivity Analysis for the window sizes of the mean-shift clustering at the

preprocessing (Left) and the postprocessing (Right).

Table 7. Geospatial Localization results for ten objects in Downtown Houston, when the window

sizes were 70m, and 300m for the preprocessing and postprocessing, respectively.

Distant Object

Obj.1

Obj.2

Obj.3

Obj.4  Obj.5

Obj.6

Obj.7

Obj.8

Obj.9  Obj.10

Photographer-
to-object
average
distance (m)

38.1

26.8

31.3

200 228

28.0

23.8

38.7

245 222

Average
distance error
of a final
estimated
location (m)

8.0

1.5

4.0

43 4.7

3.0

11.5

24

2.8 3.8

Standard
Deviation of
Distance
errors (m)

0.8

0.8

1.3

1.3 1.4

1.4

0.6

0.7

0.6 0.8

Average
distance error
of each
estimated
location (m)"

21.2

18.7

37.0

153 242

30.9

27.0

17.7

8.7 11.5

*Before the postprocessing
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5 Discussion

In the case study, the experiments demonstrated the effectiveness of the proposed method for
localizing a distant object based on multiple observations. The recorded localization errors of 9.1m,
2.5m, and 27.8m for the target objects indicates that the proposed method has the potential to be
used for localizing a distant object in participatory sensing, when citizens reports an event or an
object of interest around them in urban areas. Table 8 shows that the errors of the proposed method
were significantly lower than the average distance error of the estimated locations. The main
reason for such performance improvement was attributed to the proposed mean-shift clustering
module to determine the final location for a distant object among hundreds of the estimated
locations obtained just by solving a system of line equations toward a distant object. In our case
study, it was observed that distance errors of each estimated location (as shown as circles in Fig.
8) varied to a large extent. With the proposed mean-shift clustering module, the localization
accuracy was able to be improved, and it was observed that the value of accuracy improvement is
high when there are a lot of noisy data (i.e., outliers) in the dataset for the target object. As such,
it is likely to yield a significant localization error of an estimated location at which the proposed
mean-shift clustering module is not applied. Moreover, it was observed that the postprocessing
module yielded relatively better and consistent localization results, even when noisy data was
included in the localization process, as shown in Table 8. In the context of participatory sensing,
such accuracy improvement is noteworthy since the reliability of crowdsourced data has been
considered as one of the top challenges [54]. The performance improvement in localization might
be explained using the central limit theorem of probability theory. The central limit theorem refers
to the convergence of probability distributions of one or more random variables to a normal

distribution, when the number of random variables increases [55]. In this context, an estimated
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location of an object of interest can be regarded as a random variable of a normal distribution in
which its parameter x (mean) represents the ground truth location of the urban object. Thus, by
determining the center of a cluster having the largest number of the estimated locations as the final
location of an urban object, it was observed that the localization accuracy can be considerably
improved in the case study. When the number of crowdsourced data is sufficient, it was observed
that a similar localization accuracy was able to be obtained by using 10 or more line equations
without the postprocessing module, as shown in Table 9. However, to obtain the best localization
accuracy, it is recommended to use the postprocessing module since it can reduce the impact of
noisy data, as shown in Table 9; the object detection model, R-FCN, should filter out noisy data
to improve the localization accuracy in the preprocessing step. If the number of false positives is
increased due to low performance of object detectors, the chance of involving noisy data in the
process of the geospatial localization will be increased. Similarly, if the number of false negatives
is increased due to the object detection failures (i.e., lack of the object detection model’s
performance), the correct data samples will not likely be included in the process of the geospatial
localization. Therefore, the lack of the object detector’s performance would lead to the escalation
of localization error. It was observed that localization accuracy was deteriorated when noisy data
were included, or the number of data samples was small, as presented in Table 8 and Table 10.
Regarding the impact of the number of data samples, it was observed that the localization accuracy
was relatively high and tended to converge when the number of data samples increased, as shown

in Table 10 and Table 11.

Table 8. Geospatial localization results for fire hydrant #2 when different numbers of noisy data
were added to the original 25 data samples. (a-Number of noisy data, b-Distance error of the
proposed method (m), c-Average distance error of each estimated locations (m))
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527
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529

530
531
532

al21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

b|96 82 82 74 7.0 7.0 69 62 5759 5757484536 35 34261818 2.7

C [124.6 123.1 126.1 120.3 124.3 126.9 119.4 122.1 92.9 92.4 91.3 88.1 93.3 95.0 93.5 101.3 37.5 30.6 26.5 22.4 18.6

Table 9. Geospatial localization results for fire hydrant #2 using different numbers of lines to

estimate a final location. (Group A-25 data samples, Group B-25 data samples plus 21 noisy

data samples, a-Distance error of the proposed method (m), b-Average distance error of each
estimated locations (m), c-Number of lines used for localization)

¢l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

a| 27 24 23 24 25 26 28 29 3.0 3.0 31 32 32 32 33 33 33 33 33

Group A
|

b|125 64 55 50 46 44 42 40 39 38 3.7 3.6 35 35 35 34 34 34 34

a| 95 168 18.1 18.5 19.1 19.7 20.5 21.2 21.7 22.1 22.5 22.7 22.9 23.0 23.1 23.2 23.323.4 235

Group B
|

b [118.0 33.9 28.9 27.1 26.3 25.6 25.2 24.9 24.7 24.5 24.4 24.3 24.2 24.2 24.1 24.1 24.124.1 24.1

Table 10. Sensitivity analysis for urban objects when the number of data samples, ¢, varies. (a-
Distance error of the proposed method (m), b-Average distance error of each estimated locations
(m), e-Number of data samples used in geospatial localization)

Fire Fire
¢ | hydrant #1 hy(;;ant Tower Crane

89 98 |29 4.1 (478 120.0
55 126190 129|133 158.8
76 125162 17.71239  120.7
14.1 235|139 9.8 [15.2 219908.0
124 162|108 16.8 593 2121
11.2 179]1.6 9.8 |32.1 262.0
136 246|135 79 [29.8 1798
102 17.713.9 149 432 8391.8
11.1 228 3.5 10.0 351 2043
112 142 |16.0 92 |53.1 5765.5
13104 16.1 6.1 10.2|19.2 4934.1
14102 194 |24 13.0|41.0 39598.8
151109 173 |1.6 11.5|49.6 34563.0
16 | 10.1 18.0 [ 1.7 12.0 |26.2 27962.0
17| 104 189 |28 11.8|20.5 282733

e =NIN-JE- SR Bo VL RN N

31



533

534
535

536

537

538

539

540

541

18 9.1 17.7 125 127|351 2134
19 - - |27 13.1 ]384 21216.8
20 - - 3.0 13.7|37.8 177224
21 - - |33 145(27.8 17341.6
22 - - 122 120 - -

23 - - |23 13.0] - -

24| - - |26 128 - -

25 - - 127 125 - -

Table 11. Sensitivity analysis of the number of data samples for ten objects in Downtown Houston.
(a — The number of data samples)

Distance error of the proposed method (m)
Obj.1 Obj.2 Obj.3 Obj4 Obj.5 Obj.6 Obj.7 Obj.8 Obj.9 0Ob;.10

6.1 5.2 15.0 1.5 2.8 10.2 9.2 8.7 3.6 9.7
7.0 11.1 9.8 54 13.3 11.6 3.0 11.4 3.7 52
5.7 4.7 1.7 6.8 9.4 53 14.3 6.8 34 15.3
11.2 4.4 7.8 4.0 3.8 18.2 10.6 10.4 1.7 7.5
15.2 11.7 34 9.8 5.8 9.2 11.3 5.3 2.0 0.6
11.6 2.0 2.9 8.0 3.6 2.1 9.3 2.7 2.8 3.8
9.7 2.6 2.7 10.8 7.4 4.8 14.3 33 - 23
8.8 0.6 7.0 59 1.6 5.9 11.5 3.8 - 3.8
8.8 3.1 7.8 7.8 3.9 7.6 - 1.6 - -

8.9 5.1 7.0 3.9 - 3.5 - 24 - -

8.8 2.6 43 4.2 - 4.2 - 2.0 - -

10.9 3.9 5.6 5.1 - - - - - -
9.2 3.1 4.8 4.9 - - - - - -
9.2 4.2 3.6 - - - - - - -
9.0 3.0 3.2 - - - - - - -

She-Sai-Nrigniviai-g g e

8.2 - 4.4 - - _ ; ; ; ;
9.5 - 3.6 - - . - - - -
8.9 - - _ _ _ ; ; ; ;
8.5 - - . . . - - - -

The experimental results of the ten objects in Downtown Houston, presented in Table 7 and Fig.
10, showed that the proposed method is sensitive to the proximity between target objects. It was
observed that when the window size of the mean-shift clustering at the preprocessing step was not
properly selected, the localization error increased; when the window size was too large, the final

locations could not be estimated due to the wrong selection of data samples, as observed in the left
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graph in Fig. 11. It was observed that the window size at the postprocessing did not significantly
affect the localization accuracy when the size was more than 60m. These results imply that the
wrong selection of data samples for localization could result in a significant localization error or
localization failure. Thus, the window size at the preprocessing step needs to be carefully
determined.

To determine that the performance of the proposed method is good enough for the possible
application, there is a need to define how much accuracy needs to be satisfied. However, to the
best of the authors’ knowledge, it is not trivial to determine the tolerable error ranges for
localization that can be universally applied for the possible application. Rather, we compared the
proposed method with prior works on finding the geographic location of distant objects only using
embedded sensors in smartphone for the possible application. The required level of localization
accuracy would vary depending on the purpose of application. In this context, we have selected
the prior works that have the same/similar purpose with the proposed work. There have been prior
studies dedicated to geospatial localization for distant objects or events using smartphones [11-
13]. The localization method proposed by Manweiler et al. [11] has reported the distance errors
ranging from 5m to 150m when the photographing distances to objects of interest ranged from
28m to 160m. Chen et al. [12] has reported the experimental results of their localization method
comparing with the outcomes of Ouyang et al. (2013). The former reported the distanced errors
from 8m to 35m when the distances to objects of interest were from 2m to 50m, while the latter
recorded the distance error from 9m to 37m in the same experimental conditions. In this context,
the experimental results of this case study indicate that the proposed method produces a reasonable
localization accuracy, recording the distance errors of 1.5m to 27.8m (6.6m on average) when the

distances to the objects of interest were 17m to 296m. The standard deviations of the distance
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errors, as shown in Table 7, shows the reliability of the localization results. Given the application
of the proposed geospatial localization in this paper (i.e., enhanced disaster preparedness in urban
built environments), the localization errors from the case studies seem to be acceptable for
identifying distant objects at risk (when considering human range of sight). Based on the reported
locations, site inspectors will be able to focus on selective areas for site inspection in order to
facilitate disaster preparedness. Ultimately, in the author’s opinions, the accuracy of the proposed
method is expected to contribute to rapid data collection over large urban areas, thereby facilitating
disaster preparedness that needs to identify locations of distant objects at risk.

The proposed localization method shows a potential of participatory sensing for various
applications that needs to identify the locations of interest. For example, although municipal
agencies manage public infrastructure assets based on GIS, conventional data collection such as
site inspection with limited manpower may be suboptimal for monitoring numerous existing
infrastructure assets in order to update the GIS within a short period time. Another example is that
when an extreme weather event such as a hurricane is forecasted to come to a certain area, it is
hard to inspect potentially vulnerable objects with limited manpower over large areas before the
extreme weather strikes. In this respect, accurate location information from participatory sensing
has a potential to facilitate disaster preparedness, because it allows municipal agencies to focus on
selective locations for site inspection. A participatory sensing-based localization method for a

distant object can be used in various applications, not limited to disaster preparedness.

6 Conclusion

Increasing occurrence of natural disasters has necessitated changes in conventional data collection
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practices for preparedness, especially for urban areas where populations and vulnerable assets are
concentrated. In this regard, this study was undertaken to devise a novel geospatial localization
method that can be used to report distant objects vulnerable to extreme weather events for disaster
preparedness. Building on the sequential computational algorithms in the proposed geospatial
localization method —geographic coordinate conversion, the mean-shift clustering, deep learning-
based object detection, magnetic declination adjustment, line of sight equation formulation, and
the Moore-Penrose generalized inverse method—, distant objects in urban areas were able to be
robustly localized with a reasonable accuracy. The experimental results show the potential of the
proposed method in the context of participatory sensing, where the reliability of collected data
varies to a great extent. The proposed method can be coupled with existing applications such as
Google Street View or Google Map, and they would be a good avenue for visualizing the
localization result by the proposed method. One of the significant findings to emerge from this
study is that multiple observations from non-experts can be used to improve the geospatial
localization accuracy, even when many noisy data are included. This finding has important
implications for the understanding of how crowdsourced data should be processed to better
understand local information in extensive urban areas. By leveraging the location information of
local vulnerabilities to extreme weather events, practitioners can better understand where the focus
i1s needed to reduce potential damage induced by severe weather in urban areas. One of the
limitations lies in the preprocessing step. Still, there is a possibility that noisy data are included in
the data cluster selected at the preprocessing step. An approach to tackle this issue could be to
develop a robust filtering module to exclude noisy data that lack the accuracy of measured values
such as compass bearings or geographic coordinates. The scope of this paper is the geospatial

localization of distant (static) objects before extreme weather events in the context of disaster
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preparedness, not damaged areas or moving objects during the events. To determine areas of
interest, the proposed localization process might be applied to localize the areas. However, in this
case, localization accuracy would be degraded due to inconsistent compass bearing because it is
hard to determine a single point of interest representing the areas where a compass bearing should
be measured. Thus, there is a need for more studies to robustly leverage the proposed geospatial
localization to be used for localizing distant areas. In addition, there is a need for leveraging other
sources of information (e.g., Google Street view that match collected photos involving target
objects) to infer the direction information toward the target objects, which helps reduce
participants’ burden for reporting the direction information during the data collection. These are

currently being explored as part of our ongoing research.
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Appendix

The process of the geospatial localization
With the adjusted compass heading, a line equation toward a distant object of interest can be

formulated as follows:

y=tan(90° -6 — &) (x —x;) + ¥, (1)

where x: Easting, y: Northing, 8: compass bearing, €: magnetic declination, x;: the Easting of

a data sample, and y; : the Northing of a data sample.

By equation (1), every data sample has its own line equation with respect to a distant object of
interest. In principle, the estimated location of a distant object can be obtained by solving multiple
line equations, even if the number of line equations is greater than the number of unknowns
(x, y)—Easting and Northing. To obtain a unique solution, multiple line equations are computed

as a linear combination as follows:

a, a, by
a a

L3l
anl anZ bn

where x: Easting, y: Northing, a,; is a coefficient of x, a,,, is a coefficient of y, and b,, is a
constant.

Equation (2) can be represented as a system of linear equations, as follows:

AL=b 3)
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a1 Qg2 by

a1 Q3

where A = ], b =|"7|, an1 is a coefficient of x, a,; is a coefficient of y,

n1 An2 b,

and b,, is a constant

The estimated location of L can be derived by solving equation (3). When n > 2, the matrix A
becomes singular and thus is not invertible. In such cases, a pseudoinverse matrix A" derived by
the Moore-Penrose generalized inverse [52] is used to obtain a unique solution for equation (3), as

follows:

ATAL = Atb 4)

L =A% )
where A" satisfies the four properties of (1) AATA=A, (2) A"TAA™=A", (3) (AA")"=AA", and
(4) (A*A)"™=A"A, when the elements of A are real numbers. By equation (5), the location of a
distant object can be estimated building upon multiple line equations, if the number of line

equations is 2 or above.

44



