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Abstract  9 

Although the benefit of participatory sensing for collecting local data over large areas has long 10 

been recognized, it has not been widely used for various applications such as disaster preparation 11 

due to a lack of geospatial localization capability with respect to a distant object. In such 12 

applications, objects of interest need to be robustly localized and documented for supporting data-13 

driven decision-making in site inspection and resource mobilization. However, participatory 14 

sensing is inappropriate to localize a distant object due to the absence of ranging sensors in citizens’ 15 

mobile devices; thus, the localization accuracy varies to a large extent. To address this issue, this 16 

study presents a novel geospatial localization method for distant objects based on participatory 17 

sensing. The proposed geospatial localization process consists of multiple computational 18 

modules—a geographic coordinate conversion, mean-shift clustering, deep learning-based object 19 

detection, magnetic declination adjustment, line of sight equation formulation, and the Moore-20 

Penrose generalized inverse method—to improve the localization accuracy in participatory sensing 21 

environments. The experiments were conducted in Houston and College Station in Texas to 22 

evaluate the proposed method, and the experimental results demonstrated a reasonable localization 23 

accuracy, recording the distance errors of 1.5m to 27.8m when the distance from observers to the 24 

objects of interest were 17m to 296m. The proposed method is expected to contribute to rapid data 25 
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collection over large urban areas, thereby facilitating disaster preparedness that needs to identify 26 

locations of distant objects at risk.  27 
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 30 

1 Introduction 31 

Participatory sensing has recently emerged to facilitate data collection over large areas with 32 

little incremental cost [1,2]. As its name suggests, participatory sensing involves voluntary 33 

participations of citizens and community groups in the process of sensing and documenting 34 

personal observations. Although the benefit of participatory sensing has long been recognized in 35 

various applications including disaster early warning systems [3-5], its utilization is still in its 36 

infancy due to practical challenges regarding data reliability and automatic data processing in 37 

generating useful information. For example, in the context of disaster preparedness using 38 

participatory sensing, it would be necessary to localize vulnerable distant objects from a citizen’s 39 

mobile device promptly, because their accurate location information helps municipal agencies 40 

identify the location and take appropriate actions to prevent potential accidents before extreme 41 

weather events. Most municipalities have systems to collect near real-time information of critical 42 

infrastructures (e.g., transportation-related infrastructures such as bridges or roads for further 43 

inspection), but municipal agencies may not cover local vulnerabilities over large urban areas. The 44 

participatory sensing has the potential to be used as a supplementary tool for data collection over 45 

large urban areas. Here, it is difficult for local residents to obtain and report the accurate 46 

geographic location of distant objects of interest due to the absence of a proper ranging device. 47 
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Most previous studies have primarily considered the locations of citizens where data were 48 

collected due to a lack of a geospatial localization capability for distant objects of interest [6-8]. 49 

Such approaches could be valid when accurate location information for distant objects is 50 

unnecessary for their applications such as monitoring flooding areas. On the other hand, if an 51 

application requires accurate location information for a distant object, a novel localization method 52 

needs to be devised to overcome the limitation of citizens’ mobile devices—the absence of ranging 53 

sensors.  54 

Although some studies proposed distant object localization methods using mobile devices [9-55 

14], the dependence on prior information (e.g. BIMs), a heavy computational load for 3D 56 

reconstruction, or ranging devices remains as a major obstacle for leveraging participatory sensing. 57 

Moreover, the localization accuracy is likely to be exacerbated as the collected data may contain 58 

noise by nature and be irrelevant since participatory sensing basically relies on citizens who are 59 

not experts [15]. Particularly, three types of noise involved in the collected data—human error, 60 

measurement error, and the geospatial proximity of urban objects—would significantly impair the 61 

reliability of geospatial localization. These challenges, therefore, militates against the use of 62 

participatory sensing for various applications such as the localization of distant objects. 63 

To address these challenges, this paper proposes a novel geospatial localization method to 64 

identify the geospatial location of distant objects from crowdsourced data collected by citizens’ 65 

smartphones. On a condition that each crowdsourced data sample contains the followings—an 66 

image having an object of interest, a geographic location in a spherical coordinate system, and a 67 

compass bearing in the direction toward the object of interest, the proposed method can localize 68 

distant objects building upon sequential computational modules. The premise of such data 69 

availability is founded on the fact that most smartphones can be easily used to collect their 70 
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geographic locations, compass bearings, and images, as conducted in many previous studies 71 

regarding participatory sensing [6,12,16]. Each module in the proposed method is designed to 72 

address the data reliability issue in utilizing crowdsourced data for geospatial localization. This 73 

study contributes to a methodological aspect and understanding for geospatial localization in 74 

participatory sensing by presenting how distant objects in urban areas can be robustly localized 75 

from multiple observations through the novel localization process. In experiments, the proposed 76 

method demonstrates the capability of each module to improve the reliability of geospatial 77 

localization using crowdsourced data, addressing three types of noise such as human error, 78 

measurement error, and the geospatial proximity of urban objects. This study is expected to 79 

promote the utilization of crowdsourced data to improve collective readiness in urban areas with 80 

respect to extreme weather events, as shown in Fig. 1. The following section introduces previous 81 

studies related to participatory sensing for disaster management and geospatial localization 82 

methods, and then the detailed computational process for localization is discussed. 83 

 84 

Fig. 1 Conceptual diagram of participatory sensing for improving disaster preparedness 85 
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2 Background  86 

2.1 Data utilization for management applications in urban areas 87 

Over the past decades, many studies have investigated data-driven methods for various 88 

applications in urban built environments such as disaster management and infrastructure asset 89 

management. For example, structural damage monitoring methods regarding disaster impact 90 

analysis have been widely studied, using imaging devices such as LiDAR (Light Detection and 91 

Ranging) [17,18], optical cameras [19,20] and embedded sensors [21]. These methods provided 92 

valuable insights for how to analyze the damage and response of structures from image or signal 93 

data during and after disaster situations. In emergency response and recovery phases, a mobile ad-94 

hoc network, radio frequency identification (RFID), a geographic information system (GIS), and 95 

a mobile workstation chariot were utilized for facilitating communication between first responders 96 

(e.g. structural engineers and fire fighters), building damage assessment, and resource allocation 97 

[22-25]. 98 

Depending on the data type, available information for an object of interest varies. The field data 99 

types can be largely divided into text, signal, and imagery. Text is generally a secondary data 100 

representing human’s judgment in linguistic expressions with regards to an object of interest. 101 

Signal data can represent the physical quantity with respect to stress, pressure, strain, temperature, 102 

voltage, current, or magnetic force; thus, such data can be transformed into useful information 103 

including structural performance and physical condition for assessing infrastructure vulnerability 104 

[21] and detecting abnormalities in facilities [26] under disaster events. Signal data has been used 105 

to provide location information for safe excavations of underground utility pipelines [27] or 106 

planning evacuation of people trapped inside buildings under disaster situations [28]. On the other 107 

hand, image data can represent the visual appearance of the real world that represents the shapes 108 
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and textures of objects; thus, a person can understand a physical characteristic of objects or a scene 109 

context. Based on image data, the condition and serviceability of buildings and infrastructures 110 

have been investigated for post-disaster damage assessment [29] or maintenance and repair of 111 

infrastructures [30]. Although image data is a two-dimensional representation of the real-world, it 112 

can provide three-dimensional information by reconstructing depth information. For the 113 

reconstruction of depth information, the structure-from-motion algorithm has been widely used; 114 

the reconstructed 3D information has provided valuable information for managing transportation 115 

infrastructure assets [31], recovering the structural drawing images of damaged buildings [19], and 116 

assessing residential building damages [20]. However, the reconstruction accuracy is relatively 117 

lower than the accuracy of 3D information collected by 3D imaging devices such as LiDAR. The 118 

3D imaging devices can collect 3D images (or point clouds) through their active sensor which 119 

emits radiation to measure depth information at a point of an object or scene. Based on accurate 120 

3D information, various research projects and applications have been established in the 121 

Architecture, Engineering, Construction, and Facility Management (AEC/FM) industry [32], such 122 

as damage assessment for building properties [18] and reinforced concrete frames [33]. Building 123 

on various types of data, a few studies have utilized simulation methods to analyze emergency 124 

response of citizens during natural disasters to establish proactive action plans [34-37]. Despite 125 

their benefits, there has been a dearth of study dedicated to developing an effective data collection 126 

method having scalability over large areas. Although sensor networks and imaging devices can 127 

provide information to be effectively scaled up, it is not trivial to install sensor networks in existing 128 

infrastructures and collect image data with limited human resources; collected data should be 129 

processed with computationally expensive algorithms to detect target objects and analyze their 130 

vulnerabilities. The lack of scalable data collection methods motivates this study to investigate an 131 
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alternative method that can efficiently scale up the data collection capability over large areas with 132 

the help of people and existing sensors. 133 

 134 

2.2 Participatory sensing 135 

 Participatory sensing has been utilized to identify local information from citizens for various 136 

applications such as disaster risk reduction [38,39]. Stemming from citizen science projects, 137 

participatory sensing generally consists of five steps such as (1) recruiting participants, (2) 138 

educating participants how to collect and analyze local data, (3) collecting local data, (4) analyzing 139 

the collected local data, and (5) reporting the local data using participants’ mobile devices. It has 140 

attracted considerable research interests in academia as an alternative data collection tool, because 141 

of its scalability over large areas based on citizens’ mobile devices [1,2,39]. In the general process 142 

of participatory sensing, citizens voluntarily and intentionally upload local information through 143 

social media or smartphone application. Leveraging social media as a new data storage and 144 

collection platform, previous studies have presented a way of collecting and utilizing 145 

crowdsourced data such as images and texts regarding natural disasters for emergency 146 

management, through transforming crowdsourced data into key information to enhance situational 147 

awareness during natural disasters [6,40,41]. Particularly, crowdsourced data has shown its 148 

usefulness for monitoring flood damage in urban areas [39,42-44]. Providing such flood damage 149 

maps has the advantage of understanding the flood damages over large areas at once, which 150 

facilitates establishing a prompt recovery plan. A few studies proposed a way to improve disaster 151 

response by monitoring local situations during heavy rainfalls through social media data for 152 

warning local residents at risk [7,8]. Crowdsourced data has been mostly collected from social 153 

media, composed of several data types such as images, texts, and geographic locations [6,7,40-44]. 154 
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In some cases, image data was collected by Closed Circuit Television (CCTV) [8] and GIS data 155 

was collected through volunteered geographic information mapping platforms such as 156 

OpenStreetMap (OSM) [39]. 157 

However, there have been little discussion about improving disaster preparedness based on 158 

participatory sensing, though its potential of reducing disaster-induced damage has long been 159 

recognized [3-5]. To reduce the impact of natural disasters, it is critical for citizens to be well-160 

prepared based on the local information about potential hazardous objects and areas. Such 161 

information enables citizens to be informed about where not to go and where not to stay for their 162 

safety during extreme weather events and allows governmental agencies to mobilize their limited 163 

resources at vulnerable areas to prevent losses and accidents from occurring. Thus, it is necessary 164 

to identify vulnerable objects in local areas prior to a natural disaster arrives. For example, 165 

windstorms–the second most frequent natural hazards–could lead to crane collapse in urban 166 

construction sites which often causes secondary damage to neighboring critical infrastructure such 167 

as roads or power grids and serious injury and death to nearby people [45]. Here, participatory 168 

sensing has significant potential for rapidly investigating such local vulnerabilities over large 169 

urban areas with little incremental cost. To this end, participatory sensing should be equipped with 170 

the geospatial localization capability, thereby enabling to localize target objects that need to be 171 

reported at the right time. 172 

 173 

2.3 Previous studies of geospatial localization 174 

Herein, the definition of geospatial localization refers to the process of localizing an object or 175 

area in world coordinate systems such as the Global Positioning system and the Universal 176 



 

9 

 

Transverse Mercator system. Geospatial localization methods for a distant object using 177 

smartphones have been studied in the last decade for various purposes such as indoor/outdoor 178 

navigations and models/databases update [46]; most previous studies have utilized images to 179 

estimate the geospatial location of a distant object in urban areas, while using a users’ geographic 180 

location as a reference location. Previous geospatial localization methods can be categorized as 181 

indirect methods and direct methods [46]. In either category, the localization methods involve 182 

reconstructing or finding camera pose information since it is crucial to infer the geometric 183 

relationship between 2D images and the 3D real world. Following this fundamental principle, 184 

localization methods have also been studied in the civil engineering domain for construction site 185 

or built environment management applications. Balali et al. [31] presented traffic sign recognition 186 

and localization method using 3D reconstruction and machine learning techniques.  Ham and Yoon 187 

[9] proposed a distant object localization method that employs user’s motion information and 188 

image contents, by integrating different types of information collected by embedded sensors in 189 

smartphones such as an accelerometer, magnetic field, gyroscope, and camera sensors. Ha et al. 190 

[14] utilized a building information model (BIM) and a convolutional neural network to localize a 191 

scene shown in a mobile head-mounted display. Kim et al. [10] developed a hazard avoidance 192 

system using a wearable device which displays the direction of a closest construction vehicle 193 

nearby a user and its hazard level, by localizing construction entities through stationary cameras 194 

with a predetermined monitoring environment. Although these studies have reported promising 195 

localization accuracies, their method requires additional information such as BIM or dedicated 196 

cameras for monitoring, which are not generally available for localization purposes in most urban 197 

areas. Otherwise, 3D reconstruction is inevitable to infer a 3D real-world geometry of 2D scenes 198 

for localization. However, 3D reconstruction algorithms such as structure-from-motion are 199 
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computationally expensive to timely localize multiple objects in large areas. Recently, a few 200 

studies proposed geospatial localization methods for urban environments using photographers’ 201 

locations, shooting angles and images [11-13], but their methods showed unstable localization 202 

accuracies (discussed in more detail in Section 5). To improve and stabilize the geospatial 203 

localization accuracy, this study presents a novel way to localize distant objects using multiple 204 

observations collected by citizens’ smartphones, described in the following section.  205 

 206 

3 Participatory sensing-based geospatial localization 207 

 208 

Fig. 2. Overview of the proposed geospatial localization method. 209 

 210 

The proposed geospatial localization method, as shown in Fig. 2, is designed to localize static 211 

distant objects using crowdsourced data in which each data sample includes an image having an 212 

object of interest, a geographic location in a spherical coordinate system, and a compass bearing 213 

in the direction toward the object of interest. Fig. 3 illustrates the data acquisition process —image 214 

acquisition and sensor data documentation: Participants take a picture of a distant object, and then 215 

record an embedded sensor data (geographic location and compass bearing) through a smartphone 216 

application while pointing the smartphone toward the distant object. Any smartphone application 217 
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can be used if it can be used to collect the three types of data—a geographic location, a compass 218 

bearing, and an image. Collected images are used for filtering irrelevant data in the preprocessing 219 

step; geographic locations and compass bearings are used to cluster adjacent data samples and to 220 

formulate line equations that represent directions toward a distant object; the intersection points 221 

among the line questions determines the estimated locations of a distant object; the final location 222 

of a distant object is determined by finding the cluster center of a cluster having the majority of 223 

the estimated locations. 224 

 225 

Fig. 3. Data acquisition process with a smartphone. 226 

 227 

The three types of data can be easily collected by multimodal sensors embedded in consumer-228 

level smartphones. However, in participatory sensing, the reliability of crowdsourced dataset is 229 

typically inconsistent since it is likely to involve noisy data, which impairs the accuracy of the 230 

analytic results [47]. For geospatial localization of distant objects, three types of noise would be 231 

involved in crowdsourced dataset such as (1) human error, (2) measurement error, and (3) the 232 

geospatial proximity of urban objects: Human error occurs when a citizen takes a photograph of 233 

wrong objects which are not of interest and thus records an unnecessary compass bearing. It is also 234 

human error that citizens mishandle their smartphones when measuring a geographic location or a 235 
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compass bearing. Measurement error signifies the difference between a measured value and its 236 

true value; this error likely occurs when a geographic location and a compass bearing are measured 237 

by a citizen’s mobile device, due to the inaccuracy and imprecision of mobile sensors embedded 238 

in consumer-level smartphones. The geospatial proximity of urban objects represents a case when 239 

different urban objects in a close distance are simultaneously reported. In this case, irrelevant data 240 

that is not indicating an object of interest might be included in the localization process, therefore, 241 

resulting in inaccurate localization results.  242 

 243 

3.1 Preprocessing the crowdsourced data: conversion, clustering, and filtering the 244 

crowdsourced data  245 

The preprocessing part consists of three modules for two objectives: the conversion of a 246 

geographic location from spherical coordinates to two-dimensional Cartesian coordinates and the 247 

selection of data relevant to a specific distant target object from entire crowdsourced dataset. At 248 

the first preprocessing module, an initial geographic location data in spherical coordinates 249 

(Latitude/Longitude in degrees-minutes-seconds and Altitude in meters) is converted into the 250 

Universal Transverse Mercator (UTM) system, which represents the location in two-dimensional 251 

Cartesian coordinates (Easting/Northing in meters) within a UTM zone. By doing so, the 252 

formulation of a line equation toward a distant object can be simplified in the two-dimensional 253 

space, using a single geographic location with a compass bearing. In this way, the localization of 254 

a distant object can be done by finding the point of intersection of multiple line equations in the 255 

UTM system (discussed in Section 3.2). 256 

The purpose of the second preprocessing module is to select relevant data for a specific urban 257 

object by the mean-shift clustering with respect to the citizens’ location, based on the assumption 258 
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that a geo-cluster of crowdsourced data corresponds to a single object of interest in a large urban 259 

area. To this end, the mean-shift clustering algorithm Yizong [48] is employed in this module. 260 

Among various clustering algorithms, the mean-shift clustering was selected due to the simplicity 261 

in optimizing its parameters. Moreover, the mean-shift clustering does not require to specify the 262 

number of clusters before clustering. It accurately separates data points into a random number of 263 

clusters based on the spatial distribution of data points. This characteristic is important in the 264 

context of participatory sensing since the number of distant objects is generally unknown in 265 

advance.  Given a set of location data points, the mean-shift algorithm finds a local mode—the 266 

maximum of a kernel density function—of data points in a circular window; if the mode is found, 267 

the window is centered on the mode, and this process iterates until a mode converges. Location 268 

data points traversed by the window towards a same converged mode constitute a cluster; data 269 

points in a cluster are used to localize a specific distant object. Fig. 4 shows an example of the 270 

mean-shift clustering for location data points of citizens in the UTM system. 271 

 272 

 273 

 274 

Fig. 4. Examples of the mean-shift clustering results (Circles: observers’ locations, 275 

Diamonds: cluster centers). 276 
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 277 

Although crowdsourced data can be clustered by distance, a cluster may have some data 278 

samples irrelevant to an object of interest. To filter out such irrelevant data samples, the third 279 

preprocessing module employs an object detection model for image analysis. Among various 280 

object detection models, the region-based fully convolutional network (R-FCN) [49] is leveraged, 281 

which is a type of deep neural networks to detect objects of interest in images. Deep neural 282 

networks have received considerable attention in recent years, because of its high performance in 283 

various tasks such as computer vision, speech recognition, and natural language processing [50]. 284 

Generally, deep neural networks extract data representations from input data in successive layers 285 

and use the extracted data representations to label a category for the input data. Specifically, R-286 

FCN, which is dedicated to object detection in images, consists of three major components 287 

including a 50-layer residual network, a regional proposal network, and position-sensitive pooling 288 

layers; through these components, R-FCN searches a target object at every pixel location based on 289 

the scores of extracted visual features in multiple grids. However, its accuracy is not easily 290 

guaranteed unless a large amount of training data is provided for each target class or a special 291 

training process is applied. Because training image data for target classes are not sufficiently 292 

available, this study adopts transfer learning in the training process to secure the high detection 293 

accuracy of R-FCN. Under the transfer learning scheme, R-FCN model pretrained with a large 294 

amount of data in a different domain is retrained with training data regarding target object classes 295 

in this study. Based on the detection results in a cluster, irrelevant data are removed to enhance the 296 

geospatial localization accuracy of the proposed method.  297 

 298 
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3.2 Geospatial Localization 299 

The principle of the proposed geospatial localization is to find the point of intersection of 300 

multiple line equations that direct to a distant object of interest; the point is regarded as the distant 301 

object’s location. To do so, geographic locations of smartphones and compass bearings are used 302 

to cluster adjacent data samples; and data samples in a cluster are then used to formulate line 303 

equations that represent the directions toward a distant object. However, the value of a compass 304 

bearing should be adjusted considering magnetic declination before line formulation since the 305 

initial compass bearings correspond to the direction toward the magnetic north of the Earth, rather 306 

than the true north. Magnetic declination (also called magnetic variation) refers to the angle 307 

difference between the true north and the magnetic north, which varies in extent at different 308 

locations by the Earth’s magnetic field. Since the magnetic sensor in smartphones outputs the value 309 

of a compass bearing based on the magnetic north, the deviation associated with the recorded 310 

compass bearings would lead to the inaccurate localization results for a distant object. To represent 311 

the accurate angle toward the true north, the compass bearings are adjusted by magnetic declination 312 

at each geographic location, referring to the International Geomagnetic Reference Field Model 313 

[51]. Based on the adjusted compass bearing along with geographic location of smartphone, a line 314 

equation toward a distant object of interest is formulated. In principle, the estimated locations of a 315 

distant object can be obtained by solving multiple line equations, even if the number of line 316 

equations is greater than the number of unknowns (𝑥, 𝑦)—Easting and Northing. When the 317 

number of line equations is 2, a determined system of the line equations is solved by using an 318 

inverse matrix of line equations. Otherwise, when the number of line questions is greater than 2, 319 

an over-determined system of the line equations is solved by using the Moore-Penrose generalized 320 

inverse method [52] to obtain a unique solution for a distant object’s location. The detailed process 321 
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of the geospatial localization is explained in Appendix. 322 

 323 

3.3 Postprocessing the estimated locations 324 

The proposed method can produce multiple estimated locations for a single urban object by 325 

selecting different combinations of data samples or using different numbers of lines for 326 

localization. Here, the localization accuracy of each estimated location is likely to vary to a large 327 

extent due to data uncertainty and inconsistency from multimodal sensors embedded in mobile 328 

devices. To stabilize the localization accuracy, a statistical inference method is employed to 329 

determine the location of a distant object building upon multiple estimations. The underlying 330 

assumption is that when multiple estimated locations are generated for a distant object, their 331 

geographic distribution most likely converge on the ground truth location of the distant object 332 

since each estimated location is an approximation of the ground truth location. In this context, the 333 

cluster center of the estimated locations is likely closer to the ground truth location than most 334 

estimated locations. To localize a distant object based on this assumption, the statistical inference 335 

first produces many estimated locations using the proposed localization method described in 336 

Section 3.2. Since multiple observations can be reported for a single distant object, the maximum 337 

number of possible estimated locations is calculated by counting the number of k-combinations 338 

out of n data samples, ∑ (𝒏
𝒌

)𝒌 , where k = [2, 3, …, n] is the number of line equations used in 339 

geospatial localization and n is the number of data samples in a selected cluster. For example, 340 

when n is 10, 20, and 30, the maximum number of combinations of estimated locations by taking 341 

k line equations is 1013, 1,048,555, and 1,073,741,793, respectively. For computational efficiency, 342 

a set of k can be differently determined considering the number of data samples—n. After 343 

generating multiple estimated locations, the mean-shift clustering algorithm divides the estimated 344 



 

17 

 

locations into several clusters. Here, the final location of a distant object is determined as the center 345 

of a cluster having the largest number of the estimated locations, which helps eliminate outlier 346 

locations estimated based on erroneous data. 347 

 348 

4 Experiments 349 

In our experiments, as a proof concept, before the data collection, participants were instructed 350 

regarding the data collection process (i.e., what to document, how to take photos involving target 351 

objects, how to record the direction information using a dedicated smartphone application while 352 

pointing the smartphone toward the objects). In our experiments, it was observed that it takes 353 

around ~10 seconds per instance. Although reporting the direction information after taking a photo 354 

would be burden as it requires additional effort, but it was observed that such activity did not lead 355 

to significant discomfort or resistance to participants during our experiments.  356 

The proposed geospatial localization method was tested on a computer with the configuration 357 

of the Intel i7-6700 CPU and the GTX1080 8GB GPU in the Ubuntu 16.04 operating system. Two 358 

classes of objects—a fire hydrant and a tower crane in urban areas—were selected as distant 359 

objects of interest to evaluate the proposed method. A tower crane was selected since it has been 360 

considered as one of the most vulnerable objects in dense urban areas with respect to severe wind-361 

related events. Moreover, as one of critical infrastructure distributed in urban areas, fire hydrants 362 

were also selected in the case studies to evaluate the effectiveness of the proposed mean-shift 363 

clustering module. Datasets used in the experiments are shown in Tables 1-5. To collect data 364 

regarding the distant objects using smartphones, participants first captured images containing the 365 

distant objects of interest and then measured compass bearings by pointing their smartphone at the 366 
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objects. Following this process, the data samples of two fire hydrants and a tower crane were 367 

collected using a cell phone (Samsung Galaxy Note5) in College Station and Houston in Texas, 368 

respectively. Fig. 5 shows the ground truth locations of the target urban objects in the two different 369 

regions. To evaluate the localization accuracy, the difference between the ground truth location of 370 

the distant objects and a final estimated location was measured; the object detection performance 371 

in the preprocessing step was presented in form of mean average precision (mAP), which is an 372 

evaluation index of many visual task challenges such as the Common Objects in Context (COCO) 373 

challenge and the ImageNet Large Scale Visual Recognition (ILSVRC) challenge. The magnetic 374 

declinations of +258' in College Station and +223' in Houston were used for adjusting the 375 

compass bearings of the collected data in the entire experiments. 376 

 377 



 

19 

 

 378 

Fig. 5. The ground truth locations in the UTM coordinate system of two fire hydrants in College 379 

Station, TX and a tower crane in Houston, TX (FH: fire hydrant, CR: tower crane). The enlarged 380 

regions display the data collection areas and the green dots represents the data sample locations. 381 

 382 

 383 

Table 1. Data samples for fire hydrant #1 in College Station, Texas. 384 

Target 
Compass 

Bearing (°) 

Latitude 

(°) 

Longitude 

(°) 

FH1-1 146.7 30.59485 96.3279 

FH1-2 172.4625 30.59478 96.3277833 

FH1-3 194.2875 30.59495 96.3278333 

FH1-4 208.74375 30.59493 96.3277833 

FH1-5 226.29375 30.5949 96.3276833 

FH1-6 221.90625 30.59497 96.3275833 

FH1-7 210.6 30.59503 96.3276333 

FH1-8 197.94375 30.59515 96.32765 

FH1-9 182.98125 30.5951 96.3277333 

FH1-10 171.28125 30.5952 96.3278333 

FH1-11 155.7 30.59512 96.3279833 

FH1-12 145.29375 30.59513 96.3281 

FH1-13 150.075 30.59505 96.3280167 

FH1-14 19.29375 30.5946 96.3279167 
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FH1-15 5.85 30.59445 96.3278667 

FH1-16 24.75 30.59438 96.3280167 

FH1-17 71.2125 30.5947 96.32805 

FH1-18 115.93125 30.59485 96.32795 

 385 

Table 2. Data samples for fire hydrant #2 in College Station, Texas. 386 

Target 
Compass 

Bearing (°) 

Latitude 

(°) 

Longitude 

(°) 

FH2-1 212.56875 30.64152 96.2963333 

FH2-2 213.75 30.64153 96.29625 

FH2-3 223.81875 30.6415 96.2962333 

FH2-4 235.4625 30.64147 96.2960167 

FH2-5 242.71875 30.64142 96.29595 

FH2-6 255.43125 30.64125 96.2959667 

FH2-7 245.8125 30.6413 96.2961 

FH2-8 261.5625 30.64117 96.29595 

FH2-9 269.8875 30.6411 96.2959667 

FH2-10 279.61875 30.64095 96.296 

FH2-11 295.03125 30.64078 96.2960167 

FH2-12 306.05625 30.6407 96.29615 

FH2-13 328.78125 30.64057 96.2964167 

FH2-14 344.75625 30.6406 96.2966167 

FH2-15 354.9375 30.64062 96.2967167 

FH2-16 15.69375 30.64062 96.2969667 

FH2-17 45.16875 30.64065 96.2971833 

FH2-18 57.99375 30.64083 96.2972 

FH2-19 79.36875 30.64097 96.2972167 

FH2-20 96.58125 30.64112 96.2972167 

FH2-21 106.59375 30.64125 96.2972833 

FH2-22 119.53125 30.64135 96.2971167 

FH2-23 133.425 30.6415 96.2970667 

FH2-24 146.8125 30.6415 96.297 

FH2-25 174.09375 30.64155 96.2967667 

 387 

Table 3. Noisy data samples for fire hydrant #2 in College Station, Texas. 388 

Target 
Compass 

Bearing (°) 
Latitude (°) 

Longitude 

(°) 

Noisy FH2-1 155.30625 30.6411 96.2972167 

Noisy FH2-2 287.94375 30.6410667 96.2972167 

Noisy FH2-3 8.325 30.6410833 96.2971833 

Noisy FH2-4 52.70625 30.6410833 96.2971833 
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Noisy FH2-5 222.24375 30.6410833 96.2971833 

Noisy FH2-6 43.70625 30.6412667 96.2972 

Noisy FH2-7 5.56875 30.6412 96.29675 

Noisy FH2-8 84.31875 30.6412667 96.2966667 

Noisy FH2-9 325.74375 30.64125 96.2967167 

Noisy FH2-10 268.81875 30.64135 96.2970667 

Noisy FH2-11 319.6125 30.6415333 96.29655 

Noisy FH2-12 340.0875 30.6415333 96.2966 

Noisy FH2-13 6.24375 30.6415167 96.2966 

Noisy FH2-14 32.5125 30.6415167 96.2966167 

Noisy FH2-15 48.31875 30.6415167 96.2966167 

Noisy FH2-16 74.64375 30.6415333 96.2966167 

Noisy FH2-17 112.21875 30.6415333 96.2966333 

Noisy FH2-18 135.9 30.6415333 96.2966333 

Noisy FH2-19 145.125 30.64155 96.2966167 

Noisy FH2-20 184.95 30.6413833 96.2968667 

Noisy FH2-21 240.975 30.6413 96.29705 

  389 

Table 4. Data samples for a tower crane in Houston, Texas. 390 

Target 
Compass Bearing 

(°) 

Latitude 

(°) 

Longitude 

(°) 

CR1-1 137 29.77783 95.39295 

CR1-2 177 29.77945 95.3928833 

CR1-3 160 29.77923 95.39285 

CR1-4 162 29.77918 95.3928667 

CR1-5 165 29.77895 95.3928333 

CR1-6 176 29.77877 95.3926167 

CR1-7 191 29.77858 95.39245 

CR1-8 164 29.77855 95.3928833 

CR1-9 167 29.77972 95.3929 

CR1-10 163 29.77992 95.3928667 

CR1-11 161 29.78017 95.3929333 

CR1-12 177 29.77977 95.3923167 

CR1-13 188 29.77982 95.3918333 

CR1-14 112 29.77785 95.39495 

CR1-15 100 29.7778 95.39465 

CR1-16 106 29.77783 95.3945167 

CR1-17 104 29.77787 95.3944833 

CR1-18 101 29.77787 95.3941667 

CR1-19 101 29.77793 95.3939667 

CR1-20 107 29.7779 95.3936 

CR1-21 102 29.7779 95.3933333 

 391 
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Table 5. Ground truth coordinates of urban objects in the UTM system 392 

Object Latitude (°) Longitude (°) 

FH1 30.594726 96.3279041 

FH2 30.641061 96.2967157 

CR1 29.777722 95.3926044 

 393 

The eighteen data samples of the first fire hydrant, as shown in Table 1 and the right column of 394 

Fig. 6, were collected by smartphones at a distance ranging from 17m to 54m (average distance: 395 

~34m); for the second fire hydrant, a dataset of the twenty five data samples in Table 2 and the 396 

left column of Fig. 6 were collected at a distance ranging from 47m to 84m (average distance: 397 

~62m). In addition, 21 noisy data samples having incorrect compass bearings were collected 398 

nearby the fire hydrant #2, to evaluate the localization performance of the proposed method in 399 

challenging conditions for participatory sensing. At the first preprocessing module, the spherical 400 

coordinates of the data samples were converted to the UTM coordinates. In the case study, the 401 

search window size during the mean-shift clustering was empirically determined to be 400m in 402 

diameter. It was observed that the mean-shift clustering module for selecting relevant data samples 403 

successfully separate the data samples into two clusters, each of which related to a different object, 404 

as shown in Fig. 7. To filter irrelevant data samples at the preprocessing module, the object 405 

detection model was trained with the setting of 53 training samples for fire hydrants, 230 training 406 

samples for tower cranes, and 10,000 training iterations; the number of test samples was 49 for 407 

fire hydrants and 57 for tower cranes. During the experiments, each image size was changed for 408 

enhancing computational efficiency such that the sizes of the training and test images were 409 

adjusted to have their shortest image side of 800 and 1,080, respectively, while keeping the aspect 410 

ratio considering the GPU memory limit (e.g., an image of 3000×2000 is adjusted to 1200×800). 411 

To detect each object class having a relatively different size in images, the range of anchor box 412 
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sizes (i.e., the size of a candidate region used to find a target object in a region proposal network 413 

[53]) was changed from 1282, 2562, and 5122 pixels to 82, 162, 322, 642, 1282, and 2562 pixels. 414 

With this experimental setting, mAPs of 95.62% and 74.67% were reported by the object detection 415 

model for fire hydrants and tower cranes, respectively. Based on the trained detection model, the 416 

presence of target objects in images were identified, and then only relevant data samples were fed 417 

into the geospatial localization. To estimate the location of each object, the line equations of the 418 

remaining data samples were formulated; among the line equations, two lines were randomly 419 

selected 300 times to produce 300 estimated locations by solving equation (3) in Section 3.2. At 420 

the postprocessing step, the search window size of the mean-shift clustering was empirically set 421 

to 40m in diameter in the case study. The center of a cluster with the largest number of the 422 

estimated locations was determined as the final location and then the distance error was measured, 423 

by calculating the distance between the final location and the ground truth location, as shown in 424 

Fig. 8. The location of a tower crane in urban construction sites in Houston, TX, was also estimated 425 

to evaluate the performance of the proposed method in a case when observer-to-object distances 426 

were relatively longer. For the tower crane, 21 data samples were collected at a distance ranging 427 

from 68m to 296m (average distance: ~186m). Table 6 shows the experimental results of the 428 

proposed geospatial localization method in the case study, which were obtained by averaging 300 429 

localization results. The distributions of the distance error for each object were represented in form 430 

of histograms, as shown in Fig. 9. To investigate the impacts of noisy data, the number of line 431 

equations, and the number of data samples, additional experiments were conducted. Two lines 432 

equations were selected to generate 300 estimated locations in all experiments, except for the 433 

experiment regarding the number of data samples. All reported errors were calculated by averaging 434 

300 localization results, and the average computation time per each localization was 0.106s. 435 
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 436 

Fig. 6. Examples of the R-FCN-based object detection results. 437 

 438 

 439 

 440 

 441 

Fig. 7. An example of mean-shift clustering results (Circles: observers’ locations, Diamonds: 442 

cluster centers, Bottom left cluster: fire hydrant #1, Upper right cluster: fire hydrant #2). 443 

 444 
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 445 

Fig. 8. Examples of the final estimated location (CT: a cluster center with the largest number of 446 

the estimated locations) and the ground truth (GT) of the fire hydrant #2 among the estimated 447 

locations (Circles). 448 

 449 

Table 6. Examples of geospatial localization results in the case studies. The distance error values 450 

were obtained by averaging the geospatial localization results of 300 trials. 451 

Target object 

Number of 

data 

samples 

Average 

distance from 

observers to a 

distant object 

Distance error of the 

proposed method 

Fire hydrant 

#1 
18 34m 9.1m 

Fire hydrant 

#2 
25 62m 2.5m 

Tower crane 22 186m 27.8m 

 452 
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 453 

Fig. 9. Histograms regarding the distance error of the proposed method after 300 trials for each 454 

object. 455 

 456 

To investigate the effect of the proximity between adjacent target objects, additional data 457 

samples were collected with respect to ten urban objects in Downtown Houston, as shown in Fig. 458 

10. The proximity between these objects ranges from 128m to 261m. Sensitivity analysis was 459 

conducted to assess the effect of the window sizes of the mean-shift clustering at the preprocessing 460 

and postprocessing. The experimental results on the additional data set were shown in Fig. 11 and 461 

Table 7, obtained from averaging 300 localization experiments. 462 

 463 
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 464 

Fig. 10. The ground truth locations of ten urban objects (yellow pins) in Downtown Houston, 465 

TX. The enlarged regions display the data collection areas and the green dots represents the data 466 

sample locations. 467 

 468 

 469 



 

28 

 

 470 

Fig. 11. Sensitivity Analysis for the window sizes of the mean-shift clustering at the 471 

preprocessing (Left) and the postprocessing (Right). 472 

 473 

Table 7. Geospatial Localization results for ten objects in Downtown Houston, when the window 474 

sizes were 70m, and 300m for the preprocessing and postprocessing, respectively. 475 

Distant Object Obj.1 Obj.2 Obj.3 Obj.4 Obj.5 Obj.6 Obj.7 Obj.8 Obj.9 Obj.10 

Photographer-

to-object 

average 

distance (m) 

38.1 26.8 31.3 20.0 22.8 28.0 23.8 38.7 24.5 22.2 

Average 

distance error 

of a final 

estimated 

location (m) 

8.0 1.5 4.0 4.3 4.7 3.0 11.5 2.4 2.8 3.8 

Standard 

Deviation of 

Distance 

errors (m) 

0.8 0.8 1.3 1.3 1.4 1.4 0.6 0.7 0.6 0.8 

Average 

distance error 

of each 

estimated 

location (m)* 

21.2 18.7 37.0 15.3 24.2 30.9 27.0 17.7 8.7 11.5 

*Before the postprocessing 476 
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5 Discussion 477 

In the case study, the experiments demonstrated the effectiveness of the proposed method for 478 

localizing a distant object based on multiple observations. The recorded localization errors of 9.1m, 479 

2.5m, and 27.8m for the target objects indicates that the proposed method has the potential to be 480 

used for localizing a distant object in participatory sensing, when citizens reports an event or an 481 

object of interest around them in urban areas. Table 8 shows that the errors of the proposed method 482 

were significantly lower than the average distance error of the estimated locations. The main 483 

reason for such performance improvement was attributed to the proposed mean-shift clustering 484 

module to determine the final location for a distant object among hundreds of the estimated 485 

locations obtained just by solving a system of line equations toward a distant object. In our case 486 

study, it was observed that distance errors of each estimated location (as shown as circles in Fig. 487 

8) varied to a large extent. With the proposed mean-shift clustering module, the localization 488 

accuracy was able to be improved, and it was observed that the value of accuracy improvement is 489 

high when there are a lot of noisy data (i.e., outliers) in the dataset for the target object. As such, 490 

it is likely to yield a significant localization error of an estimated location at which the proposed 491 

mean-shift clustering module is not applied. Moreover, it was observed that the postprocessing 492 

module yielded relatively better and consistent localization results, even when noisy data was 493 

included in the localization process, as shown in Table 8. In the context of participatory sensing, 494 

such accuracy improvement is noteworthy since the reliability of crowdsourced data has been 495 

considered as one of the top challenges [54]. The performance improvement in localization might 496 

be explained using the central limit theorem of probability theory. The central limit theorem refers 497 

to the convergence of probability distributions of one or more random variables to a normal 498 

distribution, when the number of random variables increases [55]. In this context, an estimated 499 
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location of an object of interest can be regarded as a random variable of a normal distribution in 500 

which its parameter μ (mean) represents the ground truth location of the urban object. Thus, by 501 

determining the center of a cluster having the largest number of the estimated locations as the final 502 

location of an urban object, it was observed that the localization accuracy can be considerably 503 

improved in the case study. When the number of crowdsourced data is sufficient, it was observed 504 

that a similar localization accuracy was able to be obtained by using 10 or more line equations 505 

without the postprocessing module, as shown in Table 9. However, to obtain the best localization 506 

accuracy, it is recommended to use the postprocessing module since it can reduce the impact of 507 

noisy data, as shown in Table 9; the object detection model, R-FCN, should filter out noisy data 508 

to improve the localization accuracy in the preprocessing step. If the number of false positives is 509 

increased due to low performance of object detectors, the chance of involving noisy data in the 510 

process of the geospatial localization will be increased. Similarly, if the number of false negatives 511 

is increased due to the object detection failures (i.e., lack of the object detection model’s 512 

performance), the correct data samples will not likely be included in the process of the geospatial 513 

localization. Therefore, the lack of the object detector’s performance would lead to the escalation 514 

of localization error. It was observed that localization accuracy was deteriorated when noisy data 515 

were included, or the number of data samples was small, as presented in Table 8 and Table 10. 516 

Regarding the impact of the number of data samples, it was observed that the localization accuracy 517 

was relatively high and tended to converge when the number of data samples increased, as shown 518 

in Table 10 and Table 11.  519 

 520 

Table 8. Geospatial localization results for fire hydrant #2 when different numbers of noisy data 521 

were added to the original 25 data samples. (a-Number of noisy data, b-Distance error of the 522 

proposed method (m), c-Average distance error of each estimated locations (m)) 523 
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a 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

b 9.6 8.2 8.2 7.4 7.0 7.0 6.9 6.2 5.7 5.9 5.7 5.7 4.8 4.5 3.6 3.5 3.4 2.6 1.8 1.8 2.7 

c 124.6 123.1 126.1 120.3 124.3 126.9 119.4 122.1 92.9 92.4 91.3 88.1 93.3 95.0 93.5 101.3 37.5 30.6 26.5 22.4 18.6 

 524 

Table 9. Geospatial localization results for fire hydrant #2 using different numbers of lines to 525 

estimate a final location. (Group A-25 data samples, Group B-25 data samples plus 21 noisy 526 

data samples, a-Distance error of the proposed method (m), b-Average distance error of each 527 

estimated locations (m), c-Number of lines used for localization) 528 

 

c 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

G
ro

u
p

 A
 

a 2.7 2.4 2.3 2.4 2.5 2.6 2.8 2.9 3.0 3.0 3.1 3.2 3.2 3.2 3.3 3.3 3.3 3.3 3.3 

b 12.5 6.4 5.5 5.0 4.6 4.4 4.2 4.0 3.9 3.8 3.7 3.6 3.5 3.5 3.5 3.4 3.4 3.4 3.4 

G
ro

u
p

 B
 

a 9.5 16.8 18.1 18.5 19.1 19.7 20.5 21.2 21.7 22.1 22.5 22.7 22.9 23.0 23.1 23.2 23.3 23.4 23.5 

b 118.0 33.9 28.9 27.1 26.3 25.6 25.2 24.9 24.7 24.5 24.4 24.3 24.2 24.2 24.1 24.1 24.1 24.1 24.1 

 529 

Table 10. Sensitivity analysis for urban objects when the number of data samples, c, varies. (a-530 

Distance error of the proposed method (m), b-Average distance error of each estimated locations 531 

(m), c-Number of data samples used in geospatial localization) 532 

c 

Fire 

hydrant #1 

Fire 

hydrant 

#2 

Tower Crane 

a b a b a b 

3 8.9 9.8 2.9 4.1 47.8 120.0 

4 5.5 12.6 9.0 12.9 13.3 158.8 

5 7.6 12.5 6.2 17.7 23.9 120.7 

6 14.1 23.5 3.9 9.8 15.2 219908.0 

7 12.4 16.2 0.8 16.8 59.3 212.1 

8 11.2 17.9 1.6 9.8 32.1 262.0 

9 13.6 24.6 3.5 7.9 29.8 179.8 

10 10.2 17.7 3.9 14.9 43.2 8391.8 

11 11.1 22.8 3.5 10.0 35.1 204.3 

12 11.2 14.2 6.0 9.2 53.1 5765.5 

13 10.4 16.1 6.1 10.2 19.2 4934.1 

14 10.2 19.4 2.4 13.0 41.0 39598.8 

15 10.9 17.3 1.6 11.5 49.6 34563.0 

16 10.1 18.0 1.7 12.0 26.2 27962.0 

17 10.4 18.9 2.8 11.8 20.5 28273.3 
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18 9.1 17.7 2.5 12.7 35.1 213.4 

19 - - 2.7 13.1 38.4 21216.8 

20 - - 3.0 13.7 37.8 17722.4 

21 - - 3.3 14.5 27.8 17341.6 

22 - - 2.2 12.0 - - 

23 - - 2.3 13.0 - - 

24 - - 2.6 12.8 - - 

25 - - 2.7 12.5 - - 

 533 

Table 11. Sensitivity analysis of the number of data samples for ten objects in Downtown Houston. 534 

(a – The number of data samples) 535 

  Distance error of the proposed method (m) 

a Obj.1 Obj.2 Obj.3 Obj.4 Obj.5 Obj.6 Obj.7 Obj.8 Obj.9 Obj.10 

2 6.1 5.2 15.0 1.5 2.8 10.2 9.2 8.7 3.6 9.7 

3 7.0 11.1 9.8 5.4 13.3 11.6 3.0 11.4 3.7 5.2 

4 5.7 4.7 1.7 6.8 9.4 5.3 14.3 6.8 3.4 15.3 

5 11.2 4.4 7.8 4.0 3.8 18.2 10.6 10.4 1.7 7.5 

6 15.2 11.7 3.4 9.8 5.8 9.2 11.3 5.3 2.0 0.6 

7 11.6 2.0 2.9 8.0 3.6 2.1 9.3 2.7 2.8 3.8 

8 9.7 2.6 2.7 10.8 7.4 4.8 14.3 3.3 - 2.3 

9 8.8 0.6 7.0 5.9 1.6 5.9 11.5 3.8 - 3.8 

10 8.8 3.1 7.8 7.8 3.9 7.6 - 1.6 - - 

11 8.9 5.1 7.0 3.9 - 3.5 - 2.4 - - 

12 8.8 2.6 4.3 4.2 - 4.2 - 2.0 - - 

13 10.9 3.9 5.6 5.1 - - - - - - 

14 9.2 3.1 4.8 4.9 - - - - - - 

15 9.2 4.2 3.6 - - - - - - - 

16 9.0 3.0 3.2 - - - - - - - 

17 8.2 - 4.4 - - - - - - - 

18 9.5 - 3.6 - - - - - - - 

19 8.9 - - - - - - - - - 

20 8.5 - - - - - - - - - 

 536 

The experimental results of the ten objects in Downtown Houston, presented in Table 7 and Fig. 537 

10, showed that the proposed method is sensitive to the proximity between target objects. It was 538 

observed that when the window size of the mean-shift clustering at the preprocessing step was not 539 

properly selected, the localization error increased; when the window size was too large, the final 540 

locations could not be estimated due to the wrong selection of data samples, as observed in the left 541 
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graph in Fig. 11. It was observed that the window size at the postprocessing did not significantly 542 

affect the localization accuracy when the size was more than 60m. These results imply that the 543 

wrong selection of data samples for localization could result in a significant localization error or 544 

localization failure. Thus, the window size at the preprocessing step needs to be carefully 545 

determined. 546 

To determine that the performance of the proposed method is good enough for the possible 547 

application, there is a need to define how much accuracy needs to be satisfied. However, to the 548 

best of the authors’ knowledge, it is not trivial to determine the tolerable error ranges for 549 

localization that can be universally applied for the possible application. Rather, we compared the 550 

proposed method with prior works on finding the geographic location of distant objects only using 551 

embedded sensors in smartphone for the possible application. The required level of localization 552 

accuracy would vary depending on the purpose of application. In this context, we have selected 553 

the prior works that have the same/similar purpose with the proposed work. There have been prior 554 

studies dedicated to geospatial localization for distant objects or events using smartphones [11-555 

13]. The localization method proposed by Manweiler et al. [11] has reported the distance errors 556 

ranging from 5m to 150m when the photographing distances to objects of interest ranged from 557 

28m to 160m. Chen et al. [12] has reported the experimental results of their localization method 558 

comparing with the outcomes of Ouyang et al. (2013). The former reported the distanced errors 559 

from 8m to 35m when the distances to objects of interest were from 2m to 50m, while the latter 560 

recorded the distance error from 9m to 37m in the same experimental conditions. In this context, 561 

the experimental results of this case study indicate that the proposed method produces a reasonable 562 

localization accuracy, recording the distance errors of 1.5m to 27.8m (6.6m on average) when the 563 

distances to the objects of interest were 17m to 296m. The standard deviations of the distance 564 
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errors, as shown in Table 7, shows the reliability of the localization results. Given the application 565 

of the proposed geospatial localization in this paper (i.e., enhanced disaster preparedness in urban 566 

built environments), the localization errors from the case studies seem to be acceptable for 567 

identifying distant objects at risk (when considering human range of sight). Based on the reported 568 

locations, site inspectors will be able to focus on selective areas for site inspection in order to 569 

facilitate disaster preparedness.  Ultimately, in the author’s opinions, the accuracy of the proposed 570 

method is expected to contribute to rapid data collection over large urban areas, thereby facilitating 571 

disaster preparedness that needs to identify locations of distant objects at risk. 572 

The proposed localization method shows a potential of participatory sensing for various 573 

applications that needs to identify the locations of interest. For example, although municipal 574 

agencies manage public infrastructure assets based on GIS, conventional data collection such as 575 

site inspection with limited manpower may be suboptimal for monitoring numerous existing 576 

infrastructure assets in order to update the GIS within a short period time. Another example is that 577 

when an extreme weather event such as a hurricane is forecasted to come to a certain area, it is 578 

hard to inspect potentially vulnerable objects with limited manpower over large areas before the 579 

extreme weather strikes. In this respect, accurate location information from participatory sensing 580 

has a potential to facilitate disaster preparedness, because it allows municipal agencies to focus on 581 

selective locations for site inspection. A participatory sensing-based localization method for a 582 

distant object can be used in various applications, not limited to disaster preparedness. 583 

 584 

6 Conclusion 585 

Increasing occurrence of natural disasters has necessitated changes in conventional data collection 586 
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practices for preparedness, especially for urban areas where populations and vulnerable assets are 587 

concentrated. In this regard, this study was undertaken to devise a novel geospatial localization 588 

method that can be used to report distant objects vulnerable to extreme weather events for disaster 589 

preparedness. Building on the sequential computational algorithms in the proposed geospatial 590 

localization method —geographic coordinate conversion, the mean-shift clustering, deep learning-591 

based object detection, magnetic declination adjustment, line of sight equation formulation, and 592 

the Moore-Penrose generalized inverse method—, distant objects in urban areas were able to be 593 

robustly localized with a reasonable accuracy. The experimental results show the potential of the 594 

proposed method in the context of participatory sensing, where the reliability of collected data 595 

varies to a great extent. The proposed method can be coupled with existing applications such as 596 

Google Street View or Google Map, and they would be a good avenue for visualizing the 597 

localization result by the proposed method. One of the significant findings to emerge from this 598 

study is that multiple observations from non-experts can be used to improve the geospatial 599 

localization accuracy, even when many noisy data are included. This finding has important 600 

implications for the understanding of how crowdsourced data should be processed to better 601 

understand local information in extensive urban areas. By leveraging the location information of 602 

local vulnerabilities to extreme weather events, practitioners can better understand where the focus 603 

is needed to reduce potential damage induced by severe weather in urban areas. One of the 604 

limitations lies in the preprocessing step. Still, there is a possibility that noisy data are included in 605 

the data cluster selected at the preprocessing step. An approach to tackle this issue could be to 606 

develop a robust filtering module to exclude noisy data that lack the accuracy of measured values 607 

such as compass bearings or geographic coordinates. The scope of this paper is the geospatial 608 

localization of distant (static) objects before extreme weather events in the context of disaster 609 
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preparedness, not damaged areas or moving objects during the events. To determine areas of 610 

interest, the proposed localization process might be applied to localize the areas. However, in this 611 

case, localization accuracy would be degraded due to inconsistent compass bearing because it is 612 

hard to determine a single point of interest representing the areas where a compass bearing should 613 

be measured. Thus, there is a need for more studies to robustly leverage the proposed geospatial 614 

localization to be used for localizing distant areas. In addition, there is a need for leveraging other 615 

sources of information (e.g., Google Street view that match collected photos involving target 616 

objects) to infer the direction information toward the target objects, which helps reduce 617 

participants’ burden for reporting the direction information during the data collection. These are 618 

currently being explored as part of our ongoing research. 619 
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Appendix 822 

The process of the geospatial localization 823 

With the adjusted compass heading, a line equation toward a distant object of interest can be 824 

formulated as follows: 825 

𝑦 = tan(90° − 𝜃 − 𝜀) ∙ (𝑥 − 𝑥1) + 𝑦1 (1) 

where 𝑥: Easting,  y: Northing, 𝜃: compass bearing, 𝜀: magnetic declination, 𝑥1: the Easting of 826 

a data sample, and 𝑦1: the Northing of a data sample.  827 

 828 

By equation (1), every data sample has its own line equation with respect to a distant object of 829 

interest. In principle, the estimated location of a distant object can be obtained by solving multiple 830 

line equations, even if the number of line equations is greater than the number of unknowns 831 

(𝑥, 𝑦)—Easting and Northing. To obtain a unique solution, multiple line equations are computed 832 

as a linear combination as follows: 833 

 834 

𝑥 [

𝑎11
𝑎21

⋮
𝑎𝑛1

] + 𝑦 [

𝑎12
𝑎22

⋮
𝑎𝑛2

] = [

𝑏1

𝑏2

⋮
𝑏𝑛

]  (2) 

where 𝑥: Easting,  y: Northing, 𝑎𝑛1 is a coefficient of 𝑥, 𝑎𝑛2 is a coefficient of 𝑦, and 𝑏𝑛 is a 835 

constant. 836 

Equation (2) can be represented as a system of linear equations, as follows: 837 

AL = b (3) 
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where A = [

𝑎11
𝑎21

⋮
𝑎𝑛1

  

𝑎12
𝑎22

⋮
𝑎𝑛2

], L = [
𝑥
𝑦], b = [

𝑏1

𝑏2

⋮
𝑏𝑛

], 𝑎𝑛1 is a coefficient of 𝑥, 𝑎𝑛2 is a coefficient of 𝑦, 838 

and 𝑏𝑛 is a constant 839 

 840 

The estimated location of L can be derived by solving equation (3). When n > 2, the matrix A 841 

becomes singular and thus is not invertible. In such cases, a pseudoinverse matrix A+ derived by 842 

the Moore-Penrose generalized inverse [52] is used to obtain a unique solution for equation (3), as 843 

follows: 844 

 845 

A+AL = A+b (4) 

L = A+b 
(5) 

where A+ satisfies the four properties of (1) AA+A=A, (2) A+AA+=A+, (3) (AA+)T=AA+, and 846 

(4) (A+A)T=A+A, when the elements of A are real numbers. By equation (5), the location of a 847 

distant object can be estimated building upon multiple line equations, if the number of line 848 

equations is 2 or above. 849 

 850 


