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Abstract—NModeling and simulation have been widely used in
both cardiac research and clinical study to investigate cardiac
disease mechanism and develop new treatment design. Electrical
conduction among cardiac tissue is commonly modeled with a
partial differential equation, i.e., reaction-diffusion equation,
where the reaction term describes cellular excitation and
diffusion term describes electrical propagation. Cellular
excitation can be modeled by either detailed human cellular
models or simplified models such as the FitzHugh-Nagumo
model; electrical propagation can be simulated using either bio-
domain or mono-domain tissue model. However, existing cardiac
models have a great level of complexity, and the simulation is
often time-consuming. This paper develops a new
spatiotemporal model as a surrogate model of the time-
consuming cardiac model. Specifically, we propose to investigate
the auto-regressive convolutional neural network (AR-CNN)
and convolutional long short-term memory (Conv-LSTM) to
model the spatial and temporal structure for the metamodeling.
Model predictions are compared to the one-dimensional
simulation data to validate the prediction accuracy. The
metamodel can accurately capture the properties of the
individual cardiac cell, as well as the electrical wave morphology
in cardiac fiber at different simulation scenarios, which
demonstrates its superior performance in modeling and the
long-term prediction.

I. INTRODUCTION

Spatio-temporal meta-modeling for the nonlinear partial
differential equations plays an important role in different
applications. Typical practice is to develop a surrogate model
to replace the time-consuming physical model for efficient
modeling and simulation. Spatio-temporal meta-modeling has
been widely applied in various applications [1]. However, to
the best of our knowledge, few studies have been done to
develop metamodels for cardiac modeling and simulation.

Spatio-temporal meta-modeling of cardiac electrical
dynamics is challenging due to the complexity and the
multiscale characteristic of a cardiac model. The mathematical
model of heart integrates cellular models with tissue model to
describe the electrical propagation among cardiac muscles.
Cardiac cell model describes the cell membrane potential as a
function of time, which is commonly defined as action
potential (AP) [2]. by an ordinary differential equation. The
spatiotemporal propagation of electrical waves in cardiac
tissue is modeled by a reaction-diffusion equation where the
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reaction term describes the cellular excitation and the diffusion
term represents cell-to-cell interactions. There are generally
two groups of cardiac cell models, i.e., detailed models and
simplified models. In detailed models, AP is formulated as a
function of ion channel gating which is further modeled by a
set of ordinary differential equations and supporting equations.
Detailed cardiac models often include hundreds of equations,
and the simulation can be very time-consuming. To reduce the
computational cost, simplified models such as FitzHugh—
Nagumo (FHN) model are developed [3], which consists of
two coupled equations to capture cardiac depolarization and
repolarization. Although the FHN model shows great
advantages in reducing computational time. when it goes to
higher organizational scale, e.g.. tissue and organ scales, the
simulation is still very time-demanding. Furthermore, the FHN
equation cannot be used directly in many cases since it
involves some unobservable variables (e.g. gating variables),
which cannot be measured directly in the experiments.

Metamodeling has been a popular approach that helps
reduce model complexity, estimate the unobservable
variables, and overcome computational challenges [4].
Metamodels are constructed in various studies to learn the
hidden dynamics in spatio-temporal processes. It is worth
mentioning that the cardiac electrical propagation is a spatio-
temporal process with cellular AP changing in a nonlinear
fashion in the temporal domain and electrical waves
propagating in the spatial domain. This spatio-temporal
process is regulated by a nonlinear partial differential equation
(PDE). The objective of this study is to develop a
computationally efficient metamodel to replace the time-
consuming simulation model of cardiac electrical propagation.
This can be realized by learning the hidden dynamics of the
spatio-temporal process from simulation data generated by the
cardiac models.

Studies have been done in the literature to learn covariance
structures of spatio-temporal data driven by PDEs. Gaussian
Process (GP) model has been a popular choice to extract
information from high-dimensional data [5]. For example,
Raissi et al developed a framework based on GP to represent
the underlying laws of physics expressed by time-dependent
and nonlinear PDEs from experimental data [6]. Sigrist et al.
defined a GP through a stochastic partial differential equation
to cope with large spatio-temporal data set [7]. Alvarez et al.
developed a hybrid approach using GP and differential
equations to combine data-driven modeling with a physical
model of the system [8]. Despite the fact that previous studies
have contributed a significant amount of knowledge in the
PDE-driven metamodeling, existing techniques cannot be
directly applied to model the spatio-temporal propagation of
electrical waves in the cardiac system due to the following two



reasons: 1) most of the current techniques are limited to linear
or stationary process, but many PDE equations such as
electrical propagation in heart tissue can be nonstationary and
nonlinear; 2) many of algorithms such as GP models are not
computationally efficient, which cannot be used for real-time
prediction in meta-modeling.

Recently, deep neural networks such as convolutional
neural networks [9] and recurrent neural networks [10] are
developed to model the complex nonlinear spatial structures
and temporal structures, respectively. Furthermore, the use of
GPU computing is also able to greatly speed up the prediction
time, which can be used for real-time purposes. Specifically,
physics-driven deep learning methodology has been proposed
in the literature, which includes PDE-net [11]. Physics-
informed deep learning [12]. and Deep Galerkin Method [13].
However, these methods either assume the PDE network
structure is known or it is derived from a pure-data driven
approach, which causes limited long-term prediction accuracy.
Moreover, their use in modeling of the cardiac electrical
propagation simulation has not been studied yet. Therefore, we
propose to develop neural network model-based meta-
modeling techniques for cardiac modeling and simulation.

The rest of the paper is organized as follows. Section II
introduces the methodology used for meta-modeling, and
Section III provides a case study to show the performance of
the proposed method, which is followed by Section IV
Conclusion.

II. METHODOLOGY

In this section, the simplified model of cardiac electrical
propagation will be firstly introduced in Section II. A, which
is used to generate spatio-temporal simulation data. Further,
the metamodel of the cardiac model is presented in section II.
B. We propose to use two neural network architectures, i.e.,
regularized autoregressive model convolutional neural
network (AR-CNN), and regularized convolutional long short-
term memory (Conv-LSTM). In addition, optimization
procedures are given in section C.

A. Cardiac Model

In this study. FHN model is used to calculate the AP of
individual cardiac cell, and mono-domain tissue model is
adopted to simulate the electrical wave propagation on a one-
dimensional (1D) cell string [3]. Define the AP of any cardiac

cell on the 1D cell string as u. then the change of u in the
spatial and temporal domain follows a PDE defined as follows.
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where t is time, u is a fast variable that describes the
membrane potential, i.e., action potential (AP), v is a slow
variable that corresponds to the gating variable, a, b, c,, c,,
and d are model parameters, which are set to 0.13; 0.013,
0.26, 0.1, 1.0, respectively. D is the conduction velocity
which is chosen as 1.0, and s is the spatial location of a cell
in the 1D cell string. I, is a stimulation current that triggers
cell excitation and electrical propagations. In this study,
spatial location and frequency of I, are set to different values

to generate stimulation data. For more details about the
simulation setup. please refer to the simulation section.

B. Proposed Model

One of the challenges of using (1) and (2) directly is that v
is not observable. It is often not possible to directly use (1) and
(2) for model prediction. In this section, we will develop the
spatio-temporal autoregressive model for the complex spatio-
temporal dynamics to simulate the partial differential equation
(PDE) that governs the system. We begin with the spatio-
temporal function (s, t) and assume that this function follows

certain spatio-temporal dynamic propagation as % =
2

f(p,z—i,%) + I;;, where I; is the external stimulation.

Here, we assume that the external stimulation I affects the

U(s,t) in a linear fashion. This information is also reflected in

(1) from our physics models.

In reality, we only have discrete measurements at time t =
1,--,T. We use y,(s) to represent the profile measurement
u(s,t) attime t. To discretize the PDE on the time dimension,
we will use the Euler’s method ppy,(s) = u.(s) +
2

f (,ut(s),%,%) + I,(s) [14]. To discretize the PDE
on the spatial dimension, we use yu; to represent the vector
(,u (1,t),-, u(S, t))T. We assume that the observed data y, =
dpe

—_—
~
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U (s). In another word, both % and % can be represented

Us + e;, where e, ~ N(0,0%) is the noise. Since

by the convolutional operations with k; = [1,—1] and k, =
[1, —2,1]. It is worth noting that the direct estimation on g4,
based on the Euler’s equation is not possible due to the
unknown dynamic propagation f(-). This inspires us to
emulate the p, directly from the data by using nonlinear
parametric models with convolutional operators g to represent
the complex nonlinear spatio-temporal system dynamic as (1):

Merr = Me + GOV, V65 0), Ve = Begr + Leyr H e, (1)

where 6 are the model parameters. Here g(-) links the
difference p;y; — u, from the original data y,,:-,y.. To
estimate 6, we propose a penalized regression model to
minimize [(@) as follows:

1(6) = ZI=1( | Yes1 — Hesr — Lewr 1P+ AﬂLlR#Hl) 2)

where [I-]| is the L, norm operator, and A are tuning parameters
controlling the spatio-temporal smoothness and sparsity of the
anomaly. The Matrix R is the regularization matrix that
controls the smoothness of the mean function ;. For example,
one popular choice for R is that R = DTD, where D is the
second order differential operator as D=
ll -2 1

1 -2 1
To optimize the loss function, we propose to use the
backpropagation architecture to optimize the parameters 6%
in each iteration. For more details about how to derive the
gradient is discussed in the next subsection. Finally, stochastic
gradient techniques can be used to update the model parameter



6 [15] based on a mini-batch of samples in the k" iteration as

follows:
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C. Model Architecture and Optimization Techniques

gao - 3

In this section, we will discuss two different neural
architectures that are inspired by the common PDE function
architectures.

1) Convolutional Neural Network-based Autoregressive
Model (AR-CNN)

Model Architecture: As mentioned above, the PDEs can
be normally emulated by the CNNs. Here, we propose to learn
tWO CNNs g4, g to emulate py as ey = fe + g1 (y:;0) and

= g-(¥:; ). Here, g,(+) is a denoising CNN, which aims
to remove the noise from the measurement data y;. g,(-) is a
prediction CNN, which aims to learn the differential dynamic
from the spatio-temporal data. This architecture is motivated
by the Euler’s equation, as introduced in Section II. B [14].

For the CNN architecture, we propose to apply the same
padding after each convolutional layer, where the size of the
output is kept the same after each spatial convolutional layer.
To simulate the PDE boundary conditions, we propose to use
the replication padding, where the input tensor is padded using
replication of the input boundary.

Inference and Optimization Techniques: Here, we propose to
learn the g, (+) and g, (+) from the following loss functions

T
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The gradient of the function can be derived as:
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where both g; (y,; 8) and g5(y,; #) can be computed by the
back-propagation through the network. It is possible to use the
weight-sharing techniques to let g, (,; 8) and g, (y,; ) share
a few layers to reduce the number of parameters needed to train
the model. In the noiseless case, we can simply set g, (y,; 8) =

Y. + 1. since e, = 0 in (1). Finally, the stochastic gradient
descent algorithm (3) can be used for the parameter update.

Long-term Prediction: We will discuss how to enable the
long-term prediction for AR-CNN model. Here we denote
He, (to + At) as the prediction of u(t, + At) at time ¢,. For
longer term prediction, the following method can be used. We
know that fi(t,) = 91(yt0; 6) +1I, and A(to+i+1)=
Iyyyiva + A(to +1) + g2 (ytw; 6‘). Therefore, we can derive
the following formula for the long-term prediction.

At—-1
fe, (to + At) = g4 (}’t‘,; 9) + Z X gz(ﬁtaﬂ'; 9) + 1 iae
i=

2) Convolutional Long Short-Term Memory Nehworks
Model (Conv-LSTM)

LSTM is one type of recurrent neural network that is
designed to learn the long-term dependencies. They are widely
used in a large variety of problems such as time-series
prediction [16] and natural language processing [17].
However, the LSTM method is not suitable to model the
spatio-temporal propagation since it uses the fully connected
transition matrices on the hidden state, which cannot take
advantage of the spatial neighborhood structure during the
temporal transition and could potentially lead to the overfitting
[18]. In contrast, Conv-LSTM method is proposed in [18] to
model this local propagation via the convolutional operator as
follows:

ir = 0(Wyi * Xy + Wy * Hey + Wy 0 Cog + by)

fo = 0(Wap * Xy + Wy * He_y + Wep 0 Coy + by)
Ci=fr© Ci—q +i; otanh(Wye * X; + Wy * Hy_y + b,)
0y = 0(Wyo * X¢ + Wi * He—g + W © Cp + by)

H; = o0;°tanh((;)

Here, ‘*’denotes the convolution operator and ‘o’ denotes the
Hadamard product. h; = (C;, Hy) are the memory state of
Conv-LSTM at time ¢. In another word, LSTM is a function to
link the data and previous system state as:

IOe—1,he-1), Me = fyo(0)) + pe—y + 1.

Again, motivated by the Euler's equation, the LSTM model
fyo(*) 1s used to model the difference between p, and p;_,.
Furthermore, another convolution neural network f,,, can be
used to link o, and future prediction y,.

O¢, ht

Inference and Optimization Techniques: Here, the loss
functions can be defined in (2).
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computational complexity dramatically for large t. Normally,
truncated backpropagation can be applied to cut the gradient
flow in the latest few measurements to decrease the
computational complexity.
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Long-term Prediction: Similarly, we would like to discuss
how to enable long-term prediction for the Conv-LSTM
model. Unlike the AR-CNN model, the predicted value
fig, (to + 1) requires all values y;, i = 1, to. We divide the
long-term prediction into two phases: the warm-up phase and
the prediction phase. In the warm-up phase, we will start with
Yo or some value from y;r, i’ < t, to learn a more accurate
memory state representation h; from the original data. In the
warm-up phase, the y; is known for i = 1, -+ t,. therefore, y;
can be used as input for the Conv-LSTM model. In the
prediction phase, y; is not known for i = t, + 1,---, t, + At.
In this case, we propose to use the future prediction fi; fori =
to+t,,tg +At. This long-term prediction can also
combine the stimulation information I,. If we don’t know
where and when the future stimulation is, we can set I; = 0.

Algorithm: Long-term prediction for Conv-LSTM

Warm up:

0i+1, hiy1 = 9, hy),

five = fyo(oi) i+ Ly, D=1,
Prediction:

0i+1, hiy1 = g(fi, hy),

fiv1 = fro(0:) + fi; + Liyq, 1=1to+ 1, + AL

III. CASE STUDY

A case study is done using simulation data of electrical
wave propagation on a one-dimensional cell cable. The
performance of the proposed model is evaluated and
compared. which are presented in this Section.

A. Simulation Setup

First, we performed simulations on a one-dimensional cell
array (200 cells) using the FHN model and the mono-domain
tissue model. Samples (i.e.. cell membrane potentials)
generated by simulations are used to learn the metamodel.
Specifically, two simulation protocols are considered, which
are described as follows:

o (Case I: One stimulation at a variable frequency of 1/12
to 1/4 Hz in a 1/40Hz increment is given to the left end
of the cell array, which triggers electrical waves
propagate to the other end of the cable. In addition, more
experiments were done by moving the stimulation to the
right of the cable in a step of 10 cells. For example,
stimulation is given at the 180™ cell in a frequency of
1/12Hz (See Fig. 1 left).

e (Case2: Two periodic stimulations at a variable frequency
of 1/12 to 1/4 Hz in a 1/40Hz increment are given at
different locations. The two stimulations are at a variable
distance of 20 cells to 200 cells with a 20-cell increment.
For example, the stimulations are given at the 20 cell
and the 100 cells (see Fig. 1 right).

We have generated 105 samples in case 1 and 275 samples
in case 2. Each sample contains 5000 measurements in 1ms

time step. Here, we show two examples of the generated
spatio-temporal processes in Fig. 1. Finally, we divide 80%
samples for training and the rest 20% for testing.

T T LY A 200 *T TN \ |
2000 3000 4000 5000 o 1000 2000 3000 4000 5000
Time Time

o 1000
Fig 1. Simulated data for 2 different scenarios in the testing samples

B. Result Comparison

To evaluate the performance of the proposed method, we
compared the prediction accuracy of the proposed models on
the cell action potential (AP), i.e., u(s,t). mean square error
(MSE) of the predicted mean for At ms were computed as
o Z B 1, (B0 + AT) — i, (£ + AD)|[2 . where T
is the length of the sequence in the testing data. N is the
number of testing samples, and n, is the length of the spatial
dimensions. For the benchmark method, we will compare with
the widely used auto-regressive model, where the

autoregressive time series model (AR) is applied in each
spatial location independently.

The prediction accuracy of both AR-CNN and Conv-
LSTM models are calculated and compared using testing data
from both the two cases. For case 1, a stimulation at a
frequency of 1/2Hz is given to the 180th cell of the cable,
which generates a series of electrical waves propagating to
both ends of the cable. For case 2, a more complicated scenario
is considered, where two stimulations are given at the 40% cell
and the 80® cell in a frequency of 1/2Hz. Two electrical waves
are generated and propagate toward each other and to both
ends of the cable respectively. The result of the MSE of
At=5ms, 10ms, 50ms, 100ms, and 200ms is shown in Table 1.
We would also like to report the computational time for the
proposed AR-CNN and Conv-LSTM method, which takes
only 0.7ms and 0.8ms for each prediction, which is
computationally efficient.

TABLEL TABLE I: LONG-TERM PREDICTION ACCURACY IN THE
NOISELESS CASE
Case 1
At (ms) AR-CNN Conv-LSTM AR
5 2.8e-5 (1e-5) 39e-5(le-5) 2 7e-4 (Te-5)
10 9 0e-5 (3e-5) 4.1e-5 (1e-5) 1.1e-3 (3e4)
50 1.9e-3 (le-3) 5.0e-4 (2e-4) 0.023 (0.03)
100 5e-3 (1e-3) 1.0e-3 (6e-4) 0.064 (0.02)
200 1e-2 (4e-3) 4e-3 (6.2e-4) 0.140 (0.04)
Case 2
At AR-CNN Conv-LSTM AR
5 3.8e-5 (2e-5) 3 9e-5(le-5) 2 7e-4 (7e-5)
10 8.5e-5 (9e-5) 4.0e-5 (1e-5) 1.1e-3 (3e4)
50 1.6e-3 (2e-3) 5.0e-4 (2e-3) 0.02 (0.03)
100 59e-3 (1e-3) 1.0e-3 (Te-4) 0.06 (0.02)
200 0.013 (8e-3) 1.5e-3 (6e-4) 0.14 (0.04)

From Table I, we can conclude that in both cases, conv-
LSTM out-performs AR-CNN and AR model. When At is
small (ie. At=5ms), AR-CNN model outperforms conv-



LSTM model by a small margin. This is because the spatial
information dominates the predictions in the short-term
prediction. However, if we increase the At to 10ms, the MSE
of conv-LSTM does not change too much for both Case 1 and

Case 1 Case 2
0,015 i | 0025 !
0.0121 i i
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Fig. 2. Comparison of the mean squared error (MSE) of 250ms ahead

prediction of AR-CNN and Conv-LSTM.
2. However., the mean squared error (MSE) of AR-CNN
method doubles. This shows the importance of adding the
temporal information in the prediction. Finally, AR performs
the worst since it does not have the capacity to consider the
complex nonlinear spatial or temporal information. Further,
the MSE of AR-CNN and CLSTM method with At from 1ms
to 250ms are shown in Fig. 2. The MSE of AR is not shown in
Fig. 2 since its performance is not comparable to the other two
model as shown in Table I.

Fig. 3 shows the predicted electrical waves on the cell array
at At =200ms ahead at time t, = 3000 (i.e. t, is shown as
origin 0 in Fig. 3). i.e. u,, (to + At) for both case 1 and case
2. As seen in Case 1, both the Conv-LSTM and the AR-CNN
models can provide an accurate estimation of the first three
waves. However, Conv-LSTM model shows a better
performance in predicting the magnitude of the fourth wave. It
is worth noting that the AR-CNN model generates prolonged
wave tails in each cycle as compared to the Conv-LSTM
model and the true data. This could be the reason that AR-
CNN model fails to capture the 4th wave because when the
wave begins, the 3* wave by the AR-CNN model has not
finished. Due to the refractoriness of the cardiac cell, new
excitation cannot be initiated. For Case 2 (see Fig. 3 right). the
left and right waves merge at the 60% cell. Only the Conv-
LSTM method can accurately capture this merge event by
predicting the magnitude and shape of each peak event
accurately. Similar to Case 1, the AR-CNN model shows some
refractoriness to frequent stimulations and fails to capture the
peaks around cell 50 and cell 120.

Case 1
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Fig 3. Comparison of the wave pattern at At=200ms predicted by AR-CNN
and Conv-LSTM vs true data.

We also demonstrate one example for long-term prediction
of At =1ms to 1500ms time-ahead prediction by showing the
AP of the 60th cell at time t, =3000ms, i.e., g¢, (s = 60, t +

At), At = 1,---,1500 on the cell cable in Fig. 4, where the
horizontal axis shows time (i.e. origin 0 in the horizontal axis
is to) and the vertical axis shows the cell AP. For case 1, the
proposed algorithm can predict the first two waves in 1000ms,

Case 2
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Fig 4. Comparison of the 1500ms-time ahead prediction of AR-CNN,
Conv-LSTM, and true data. The origin 0 is the start of prediction time £,

where Conv-LSTM (red dash line) shows better accuracy as
compared to AR-CNN (blue dot line). For the third activation,
Conv-LSTM still shows better performance than AR-CNN,
although both models show larger discrepancy to the true data.
It is worth mentioning that both models can learn the recurrent
patterns of electrical excitations. The Conv-LSTM model
captures a smaller cycle length as compared to the true cycle
length, whereas the AR-CNN model learns a larger stimulation
cycle as compared to the data. In addition, the AR-CNN model
has prolonged AP durations (see Fig. 4 Case 1 for prolonged
wave tails). This is consistent with the results observed in the
previous section, where the AR-CNN model shows longer
wave tails in the spatial domain (see Fig. 3 case 1). The
proposed Conv-LSTM model can provide accurate predictions
of AP in two consecutive cellular excitations in 1000ms, which
is favorable to the AR-CNN model.

In case 2, a more complex scenario was considered, where
two stimulations were given, and two electrical waves were
generated and propagate toward each other and to the left and
right end of the cell array. We investigated the performance
of the two models and the results are shown in Fig. 4 (i.e. t,
is shown as origin 0). Similarly, the AP of the 60th cell of the
cable predicted by Conv-LSTM and AR-CNN were plotted
and compared to the simulation data. 60th is selected because
two waves merge together at the location. As see in Fig. 4, it
is obvious that only the Conv-LSTM model is able to predict
the three waves correctly, whereas the AR-CNN method is
not able to capture this behavior. These findings show that
Conv-LSTM architecture has much better accuracy for the
long-term prediction in the complex cardiac system.

Further, we plot the spatio-temporal potential map for
200ms predicted by the AR-CNN method and Conv-LSTM
method for both Case 1 and Case 2 in Fig. 5 (t, is shown as
origin 0). As see in Fig. 5, the horizontal axis shows time, and
the vertical axis shows the cell index. Different colors show
different potential values, i.e.. g, (s, to + At) for different s
and At. For case 1 (i.e. see left column of Fig. 5), a sequence
of stimulations is given at the 180the cell prior t,. which
generate four waves propagate along cable. At At = 150ms,
a new stimulation is given, which triggers a new electrical
wave. The left column of Fig. 5 compares the predicted maps
and the true data, where both the two models show good
accuracy in predicting the first 3 waves (i.e., waves between
cell 0 to cell 150). However, AR-CNN model fails to capture



the 4 wave between cell 150 and cell 200. The is possibly
because AR-CNN model tends to lean prolonged AP durations
and extended electrical wave tails from training data. This will
further extend the excitation of each cell. Due to the

L] 50 100 150 0 50 100 150
Time Time:

Conv-LSTM Conv-LSTM

—
T—
B ——

100 100
Time Time

AR-CNN AR-CNN

50 100 150 [} 50 100
Time: Time

Fig 5. Comparison of 200ms-ahead prediction of AR-CNN, Conv-LSTM,
and true data in the two simulation scenarios. Left: Case 1, Right: Case 2.

refractoriness of cardiac cells, it is hard to generate new waves
when the previous ones have not finished.

In case 2, as aforementioned, two stimulations are given to
the 40% and the 80% cell, which generate electrical wave
propagate in both directions. Multiple waves are formed prior
to the starting time t,=0 and conduct along the cell cable. In
addition, new stimulations are given at At, where At =100ms,
which initiate two waves. Given the potential at t, and the
stimulation information, Conv-LSTM model and AR-CNN
models are applied to prediction the spatio-temporal
distribution of AP in 200ms. As seen in Fig. 5, similar results
are observed, where the Conv-LSTM model can capture all the
electrical waves in both temporal and spatial domains,
whereas, the AR-CNN model cannot predict the second wave
when new stimulations present (see cell 25-50 and cell 100-
125 at 120ms to 200ms for AR-CNN model in Fig. 5 right
column). This shows that the AR-CNN structure does not learn
the dynamics of the merging events. In addition, both models
tend to predict larger wave durations as compared to the true
data (see cell 25 and cell 50 at 100ms to 200ms in Fig. 5 right
column). This result is consistent with the observations in Fig.
3 case 2.

IV. CoNCLUSION

Modeling and simulation have been widely used in both
cardiac research and clinical study to investigate cardiac
disease mechanism. In this work, we proposed a physics-based
deep spatio-temporal regression approaches for more accurate
meta-modeling of the system with two architectures, the Conv-
LSTM model and the AR-CNN model. Both models have
shown great prediction accuracy in the short time-horizon

prediction, but the Conv-LSTM model shows a very good
long-term prediction accuracy. These findings could be
potentially used for befter monitoring, modeling, and
diagnosis of the clinical trial. For future work, we plan to study
the meta-modeling in a higher-dimensional (e.g. 2D or 3D)
and irregular spatial domain for better cardiac modeling.
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