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ABSTRACT
In many domain applications, a continuous timeline of human lo-
cations is critical; for example for understanding possible locations
where a diseasemay spread, or the flow of traffic.While data sources
such as GPS trackers or Call Data Records are temporally-rich, they
are expensive, often not publicly available or garnered only in select
locations, restricting their wide use. Conversely, geo-located social
media data are publicly and freely available, but present challenges
especially for full timeline inference due to their sparse nature. We
propose a stochastic framework, Intermediate Location Computing
(ILC) which uses prior knowledge about human mobility patterns
to predict every missing location from an individual’s social media
timeline. We compare ILC with a state-of-the-art RNN baseline as
well as methods that are optimized for next-location prediction
only. For three major cities, ILC predicts the top 1 location for all
missing locations in a timeline, at 1 and 2-hour resolution, with
up to 77.2% accuracy (up to 6% better accuracy than all compared
methods). Specifically, ILC also outperforms the RNN in settings
of low data; both cases of very small number of users (under 50),
as well as settings with more users, but with sparser timelines. In
general, the RNN model needs a higher number of users to achieve
the same performance as ILC. Overall, this work illustrates the
tradeoff between prior knowledge of heuristics and more data, for
an important societal problem of filling in entire timelines using
freely available, but sparse social media data.
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1 INTRODUCTION
Using full location timelines (all locations an individual has been
to) is essential to many societal applications including transporta-
tion management [22, 23], urban sensing [18], event detection [1]
and infectious disease dynamics [39]. Combined with additional
information about individuals, location timelines have been used to
predict depressive moods [6], point-of-interest and location recom-
mendation [3, 43], the spread of diseases [25], and contact tracing
for hot spots of infectious diseases [37].

Data sparsity can become a major challenge when predicting full
timelines using publically available data, and can take two forms.
First, the number of users with enough data (full-timelines) to train
the model can be low. Second, increasing the number of users re-
sults in inclusion of users with extremely sparse location timelines.
Therefore, this problem of inference of complete location timelines
is inherently different from mobility prediction, which must priori-
tize accuracy of the prediction for the next location. Accordingly,
mobility prediction models are often built on data sources such as
travel surveys, Call Data Records (CDRs) and Global Positioning
System (GPS) trackers which are high-resolution (provide location
every few seconds or minutes). However, it is not realistic to have
such data in a broad array of contexts; the cost of collecting such
datasets, limited attributes associated with individual records, and
lack of public availability makes them unsuitable for carrying out
large-scale studies for a target population where the impact of lo-
cation over time is to be studied in relation to various secondary
issues. Further, in several emerging real-world modeling applica-
tions such as infectious disease transmission models, knowing a
person’s location at such a high temporal frequency is unnecessary.
Instead, locations of where they travel to over the course of a day at
a lower resolution (such as every few hours), provide the relevant
insight [15]. Therefore, we focus on the challenging problem of
constructing the entire mobility timeline of an individual at equal
intervals of time from the geo-location associated with social media
data, which is generated at-will and therefore can be very sparse.

The main challenge here is that the data used is truly sparse in
relation to entire timelines; for example, in six months of social me-
dia sourced from the Twitter Application Programming Interface,
only 5.4% (which is what we use in this study) have a Tweet with
linked-location at each of the daytime hours in a day (independent
of day of the week, over all weeks in the six months). Further, we do
not assume any specific information such as from the text/content
of posts, or network of users is available. To overcome these chal-
lenges, we use several known heuristics about location visitation
patterns of individuals. We also combine patterns both from an
individuals’ history, as well as leverage the patterns of similar com-
munity members [19, 32, 42]. Further, we relax criteria about day
and week-specificity of location patterns which enables us to use
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and predict timelines from thousands of social media users with
such sparse data – our method does not require rich training data
to learn complex patterns of mobility, and works for a realistic
number of users. Finally, our work does not assume any additional
information about the demographics, social networks or content of
tweets of users, allowing for the adoption in situations where such
additional data sources are not available. In accordance with the
sparse nature of the data, these combined approaches enable us to
infer multiple consecutive missing locations from a user’s timeline,
and construct a continuous location timeline for individuals using
only sparse geo-tags from their Tweets.

We compare the performance of our model with several models
which, although optimized for next-location prediction, are state-
of-the-art, and show that intermediate location computing (ILC)
has increased accuracy for inferring entire timelines from sparse
data. In particular, while deep learning models have good predic-
tive accuracy, we investigate the tradeoff in performance based on
amount of sparsity, both in terms of number of users or amount
of data per user. By using readily available data to estimate a full
mobility timeline at relevant resolutions, this work opens many
new opportunities to understand and predict human movement for
many domain areas. To the best of our knowledge, this work is the
first to use sparse social media data to infer full individual-level
location timelines. The specific contributions of this work are:
• Developing a framework for filling in entire location time-
lines at reasonable time steps, with personalized forward
and backward timeline prediction.
• Prediction of the timeline from truly sparse, but freely avail-
able and easily accessible data; with smart use of community
data to improve timeline prediction when applicable.
• First use of deep learning for inferring timelines from sparse
data and assessment of amount of data needed for a deep
learning approach to surpass other models.

2 RELATED WORK
Here we summarize related work in two main categories to clarify
differences in data and methodological approaches in other work.

Geo-location data types and sparsity. As the goal of predicting
next location is different than the goal here, the types of data used
in such studies include smartphone data including GPS tracking,
Wi-Fi, Bluetooth and phone usage [11], partial GPS tracks from
automobiles [21], and Foursquare check-in data [30]. These mod-
els are generally designed for temporally rich data-sets and thus
assume that the training data is abundant and collected at frequent
time intervals. Even in the case of Foursquare data, though it can be
sparse, only dense sequences of data (minimum sequence length of
5 locations) have been used in predictive efforts [12]. Hence, studies
have been concerned with data collected at such densities, or small
time intervals (e.g. every 1, 15 or 30 minutes), and individual records
below a threshold number of data points are discarded from the
study entirely [5, 12, 14, 30, 33]. While this restriction increases
confidence in the stay duration of individuals at a location, this
typically (appropriately) limits the problem of prediction to only
a single missing location in the future. Given the inconsistency
of intervals between location tags in an individual’s social media
timeline and lack of stay duration information, such models can not

directly be applied in the context of sparse social media data [38].
A method to capture daily habits of individuals using sparse data
has been proposed in [28] (varying the amount of phone GPS data
“seen” by the algorithm). However, the method initially requires
training on users with abundant data histories and hence cannot
be replicated with data sources such as from Twitter, where both
the training and testing datasets are sparse.

Broadly, related social media efforts have been focused on pre-
dicting the location of a given social media post, and not missing
locations from a timeline [19]. Such studies have also included
users with sufficient data and with certain assumptions (e.g. only
on those Twitter users who both themselves and their friends are
extremely active on Twitter, with at least 100 geo-tagged Tweets
in 1 month and assumes that once a user Tweets from a location,
they remain at that location until they Tweet again) [32]. Other
research which use social media in the domain of mobility focus
on Point-of-Interest (POI) and location recommendation, and pro-
vide the insight that similar user behavior can be useful [42]. This
method uses behavior of similar individuals and distances between
pairs of locations to predict the next POI location for an individual.
Thus we incorporate this feature of user similarity into the ILC
approach to address sparsity issues, and also compare our method
to the proposed method for full timeline inference.

Mobility sequence prediction methods. There are many model and
pattern based methods that have been used to infer movement of
individuals. While the focus of these methods has mainly been
to predict the next sequence of locations, and cannot be directly
compared to our goal of filling in an entire timeline, they have still
provided important knowledge about human mobility that can be
used in the timeline problem.

Several variations of Markov models, LZ predictors and pre-
diction by partial matching (PPM), as well as a non-linear spatio-
temporal prediction framework, have been investigated [2, 13, 14,
34, 36]. These methods focus on modeling the probability of visita-
tion to a future location by probability or frequency of past visits
and popular sequences in existing trajectories, each evaluating it’s
performance on prediction of a next location. Although that is not
our goal, we can still make use of such probabilities in our data
by incorporating components of the basic Markov model into the
ILC model, though in a manner that promotes filling in all missing
data, not just next location prediction. Besides, we also explicitly
assess performance of each of these these methods on sparse social
media data in comparison to our proposed approach where possible,
including NextPlace non-linear predictor [34], Markov Order-0 and
Markov Order-1 models [36].

More recently, recursive neural networks (RNNs) have been used
to predict individual level mobility timelines [12, 27, 40]. RNN ar-
chitectures have been used to predict where a user will check-in
next [27] and for next location recommendation [40]. Another RNN
architecture to predict next location in the timeline of an individual
has been proposed in [12]. The model is again focused on predict-
ing next location more accurately, and incorporates modules in the
architecture in order to capture more complex multi-scale patterns.
As well, despite the fact that this work aims to predict location value
in a user’s timeline when data is sparse, the work only focuses on
predicting the locations in the subset of timelines of users where
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Figure 1: A: Number of included Tweets by day of the week
(pink: weekdays, blue: weekends). B: Number of Tweets by
hour of day (pink: daytime, blue: nighttime). C: Frequency
distribution of total data points per user before filling in the
timeline. All graphs include all data from all 3 cities.
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Figure 2: A&B: Frequency distribution of number of as-
signed locations over all values of k (closest hour of week)
for all posts per user (A: resolution ri = 1 hour, B: ri = 2). C&D:
Frequency distribution of number of assigned locations per
user over all values of h (closest hour of day) (C: ri = 1, D:
ri = 2). All graphs include data from all 3 cities (excluding
users who had no tweet in daytime hours). Users fulfilling
inclusion criteria are highlighted in pink.

richer data is available (described in the previous section), and does
not address the challenge of inferring the complete timeline of a
user. While these new methods provide a fresh approach to address-
ing the problem of mobility prediction by allowing the model to
learn different behaviors on its own as opposed to previous meth-
ods where the behaviors of individuals were manually specified,
they are not specifically tailored for predicting complete timelines.
However, given the potential for high performance of deep learning
models, we do assess what the tradeoff would be, for performance
on our task, in terms of data availability (e.g. with what amount
of data would a standard deep model perform better than a model
incorporating known movement heuristics a priori).

3 METHODS
3.1 Datasets
In order to obtain enough data for training and testing, we used 6
months of publicly available geo-located data from the Twitter API

(1st January – 30th June 2014) for the cities of New York, Washing-
ton, DC and San Francisco. We collected all the Tweets containing
a ‘point’ geo-location within defined bounding boxes for all three
cities. The resulting data set consisted of 18,164,503 Tweets by
443,945 users from New York City, 3,385,308 Tweets by 125,873
users from Washington, DC and 1,817,411 Tweets by 111,441 users
from San Francisco.

3.2 Filtering and Preprocessing
3.2.1 Spoofed locations. We identified and excluded any Twitter
accounts that represented impossible movements based on Tweet
locations and times. A threshold speed of 0.5 miles/minute was used
to filter out such Tweets, based on previous work outlining realistic
movement patterns [24], and all accounts with more than 5% of
their Tweets violating the above criteria were excluded. A total of
16,582, 3,342 and 2,750 accounts (from each city, respectively) who
were removed due to having more than 5% of their Tweets marked
as coming from a spoofed location.

3.2.2 Grids. We assessed three grid sizes; 1 × 1, 0.5 × 0.5 and 0.1
× 0.1 miles. For each, we assigned every geo-located Tweet in the
dataset to a grid. These grid sizes are based on previous research
which has identified perception of how large a neighborhood bound-
ary is for temporary movements such as walking (1 mile) [29, 31].
Multiple grid sizes were added to assess the impact of grid size
on the performance of the method. A total of 841, 143 and 736
grids(grid size= 1 × 1 miles), 3,364, 572 and 2,944 grids (grid size=
0.5 × 0.5 miles) and, 84,100, 14,300 and 73,600 grids (grid size= 0.1
× 0.1 miles) were created for NYC, DC and SF respectively.

3.2.3 Temporal Sampling. Tweet timestamps were adjusted for
time zone and daylight savings. Included Tweets were distributed
across all days of the week evenly (Fig. 1A). For each individual
present in the dataset we created separate timelines at resolutions
of ri = 1 and 2 hours. Given the time stamp t of a Tweet, and value
ri , kw := (h,d)w , is computed where k is the closest sampled hour
at an interval of i hours from the start of the week, h is the closest
sampled hour at an interval of ri from the start of the day, d is the
day of the week and w is the week number since the start of the
data. For example, for ri = 1, the time of a Tweet made at t = 19 : 05
on Tuesday would be assigned k = 43 i.e 24+19 and (h,d) = (19, 2)
(assuming week starts on Monday). For ri = 2, for the same Tweet,
k = 22 i.e. 12 + 10 and (h,d) = (10, 2).

3.2.4 Stay Duration. To estimate the stay duration, we interpolated
data points from users who made consecutive tweets from the same
locationwithin a 6-hour or shorter time period. Themaximum value
of 6 hours for the interpolation was a conservative estimate chosen
based on research showing how long people generally remain in
their most visited locations, and that an individual generally spends
most of their time in most visited locations [8, 16, 20].

3.2.5 Home Location. Individuals are more likely to stay at their
home location for longer periods and individuals generally don’t
change locations at night time [17]. Consistent with previous stud-
ies and Fig. 1B, we consider a location x as the home location of
an individual on a day of week d , if the individual most frequently
tweets from location x between 10 pm of the day of the week d and
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8 am of the day of the week d+1. Given the sparse nature of the data,
for days of the week wherein an individual had no Tweets between
10 pm and 8 am, the home location was assigned where they most
frequently Tweeted from between 10 pm and 8 am, irrespective of
day of the week. We refer to points in an individual’s timeline with
location information, either originally from a user or interpolated
from a home or stay duration, as assigned locations.

3.2.6 Personal vs Non-personal accounts. A Twitter account, e.g.
@SearchAmerican, that belongs to an organization, as opposed to
an individual, is likely to be used by multiple individuals in the
organization and hence does not represent the movement patterns
of a single individual. To examine the distribution of personal vs.
non-personal accounts in our dataset, we used Amazon Mechanical
Turk (AMT) labelling on 7,000 randomly selected accounts. Each
account label was manually annotated twice by AMT workers as ei-
ther personal or non-personal accounts. Accounts with conflicting
labels were annotated a third time through AMT and the maxi-
mum vote used. 98% of the 7000 randomly selected accounts were
identified as personal accounts. Cohen’s kappa score of the annota-
tors was 93.0% [9]. Given the overwhelming majority of accounts
were identified as personal, it was assumed that most non-personal
accounts must have been removed during the ‘spoofed location’
filtering stage. The 2% non-personal accounts from the 7,000 set
were removed from the study but it was deemed unnecessary to
label the remaining accounts. After this stage, no information (e.g.
the Twitter handle) which could link back to an individual Twitter
account holder was retained.

3.2.7 Description of Included Users. We define a relaxed inclusion
criteria to ensure that the performance of all methods is being tested
on users with sparse timelines. From here onward we define two
notations: xkw (u) is the assigned location for a user u, at time kw ,
with kw as above. kw can also be interchangeably written as (h,d)w ,
with h, d andw as above, or as q, which represents the index of kw
in the sampled timeline. Inclusion criteria were defined as follows:
given the timeline of a user, the user must have at least 1 assigned
location for eachh during daytime hours (8am-10pm;non-nighttime
hours as defined in the section "Home Location"), irrespective of d
andw . This means that at a resolution of ri = 1 hour, all users were
included in our analysis who, after interpolation of stay duration
had at least 15 assigned location data points (8am-10pm) in the
entire duration of the dataset over all distinct h. For ri = 2, the
number was 8 assigned location data points. This resulted in 29,491,
4,947 and 1,119 users (ri = 1) and 45,710, 8,083 and 2,395 users (ri =2)
from New York, Washington, DC and San Francisco respectively.
Defining a relaxed inclusion criteria based on distinct h instead of
distinct k enabled us to include orders of magnitude more users
(Fig. 2) and allowed us to include up to 45% user (in NYC) who made
a tweet during daytime hours. The above selected users had on
average 82.8% (ri = 1) and 72.0% (ri = 2) of their daytime timelines
with no assigned location.

3.3 Individual Timelines
In this section, we first discuss prediction of a missing location in
a user’s timeline at time k , if location information of the user is
available at both k + 1 and k − 1. As described in earlier work, the

movement of individuals is not entirely random and certain features
can be extracted to predict an individual’s location based on his
past behavior [35]. Moreover, people often move in groups, and
individuals with similar interests follow similar movement patterns
[26]. Accordingly, here we model the behavior of individuals as
a combination of: i) personal behavior represented as (subscript
I ), and ii) community behavior (subscript C). Personal behavior is
further modeled using three behaviors: i) Next Location subscript
(I ,a), ii) Previous Location subscript (I ,b), and iii) Independent
Location subscript (I , c). Each of these three behaviors are further
treated as either i) day of the week and hour of the day specific
(superscriptWS), ii) workday (weekday) or non-workday (weekend)
and hour of the day specific (superscript RS), and iii) only hour of
the day specific (superscript HS). These three stratifications were
created because of the extremely sparse nature of the dataset in
which we rarely observe users who have at least 1 location value
present for all days of the week and hours of the day. For the
following section we define: any P represents a list of locations
and their corresponding probabilities for a given user at a given
time. P(xkw == j) thus represents the probability corresponding to
location j at time kw , and P(xkw ) represents the list of all possible
locations and their corresponding probabilities at time kw .

3.3.1 Next Location. Given the location x(k+1)w (u) is missing, and
given the location xkw (u) = i , we calculate the conditional proba-
bilities of all the possible locations of a user u at time (k + 1)w . This
probability is calculated by taking into account that people often
follow specific patterns of mobility. For example, in the evening at
7pm, given that an individual is at a grocery store, the next loca-
tion of an individual will likely be his home. Given that the same
individual is at home at 7pm, the individual could either choose
to stay home or to go out (e.g. to a restaurant or bar). Given that
the time period is assumed to be 1 week, as contended in previous
work, these conditional probabilities are specific for each sampling
time on a given day and day of the week, irrespective of the date
[5]. Then, for all possible locations j, PWS

(I,a)(x(k+1)w′ = j) of a user,
given xkw′ = i , is defined as:∑

w
(x(k+1)w == j |xkw == i)∑

w
(xkw == i)

For RS we calculate similar proportions, but relax the conditions
by additionally accounting for days which are of the same type,
i.e workday or non-workday, when calculating the proportions.
PRS
(I,a)(x(h+1,d ′)w′ = j) is thus defined as:∑

w

∑
d=DT (d′)

(x(h+1,d )w == j |x(h,d )w == i)∑
w

∑
d=DT (d′)

(x(h,d )w == i)

where DT (d ′) returns the list of type of days i.e weekdays or
weekends, as d ′. PHS

(I,a) completely removes the condition of the
proportion being specific to the day of the week (instead of d =
DT (d ′), we consider all d).

3.3.2 Previous Location. As a reciprocal of Next Location predic-
tion wherein we used xkw to predict x(k+1)w , here we predict xkw
conditioning over the location value at x(k+1)w . P

RS
(I,b) and PHS

(I,b)
are calculated similarly using relaxed conditions of day of the week,
as defined for PRS

(I,a) and P
HS
(I,a).
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3.3.3 IndependenttLocattfion.Severallocattfionswhfichanfindfivfidual
vfisfittarespecfificttotthedayandttfimeregardlessofwheretthefindfi-
vfidualfiscomfingfromorwherettheyplanttogonextt.Forexample,
foraweeklymeettfingoraclassatt11amonTuesday,anfindfivfidual
wfillbefintthelocattfionoftthemeettfingorttheclassfirrespecttfiveof
hfisprevfiousornexttlocattfion.Tofincorporattetthesepatttterns,we
calculatteprobabfilfittfiesfor“IndependenttLocattfion”:ttheprobabfilfitty
ofauserbefingfinanylocattfionjattttfimek:=(h,d),PWS

(I,c)
.Thfis

fisdefinedasttheproporttfionofttfimesttheuserwasattlocattfionjatt
ttfimek,fintthedattasett.PRS

(I,c)
ofauserbefingfinanylocattfionjatt

ttfimek:=(h,d)fisdefinedasttheproporttfionofttfimesttheuserwas
attlocattfionjdurfinghourhanddaysofttheweeksfimfilarttodfi.e
(weekdayorweekend).And,PHS

(I,c)
fisdefinedasttheproporttfionof

ttfimesttheuserwasattlocattfionjdurfinghourhfintthedattasett.
Combfinfinglfisttsofallprobabfilfittfiesfintthefindfivfidual’s(WS)be-

havfiorgfives:

PWSI =(λa∗P
WS
(I,a)+λb∗P

WS
(I,b)+P

WS
(I,c))/3

whereλaandλbarefinformattfionlossfacttorsdefinedlatterfintthe
InttermedfiatteLocattfionComputtfingsecttfion.Probabfilfittfiesofvfisfitttto
eachlocattfion,fromallbehavfiors,aresummedttogeneratteasfingle
lfisttoflocattfionsandtthefircorrespondfingprobabfilfittfies:

PI=(P
WS
I +PRSI +PHSI )/3

3.4 CommunfittyBehavfior
Indfivfidualswfitthsfimfilarfintterestts,ortthoseworkfingorlfivfingfintthe
samedemographfichaveahfigherchanceofvfisfittfingsfimfilarlocattfions
[5].Hence,wemaxfimfizettheuseoftthedattabyalsofincludfing
finformattfionabouttfindfivfidualswhohaveshownttofollowsfimfilar
mobfilfittypatttterns.Foreachfindfivfidual,wefidenttfifyfindfivfidualswho
havesfimfilarmobfilfittypatttterns,vfiaasfimfilarfittyfacttor.Thfisfacttor,
s(u1,u2),fisdefinedasttheprobabfilfittytthattanottherfindfivfidualu2
wfillbefintthesamelocattfionastthefindfivfidualunderconsfiderattfion
u1attanygfiventtfime:

w k(xkw(u1)==xkw(u2))

w k(!NULL(xkw(u1))&!NULL(xkw(u2)))

Usfingtthesfimfilarfittyfacttordefinedabove,wecalculattedcommunfitty
behavfior(probabfilfittylfisttforlocattfionsattattfimek)usfingtthettopm
usersfintthedattasettwfitthtthehfighesttsfimfilarfittyfacttorforagfiven
findfivfidualvfia:

PC(xkw =j)=
m

u=1

s(u)∗(xkw(u)==j)

Combfinfingfindfivfidualandcommunfittybehavfiortthengfives:

P(xkw =j)=(1−βk)∗PI(xkw =j)+βk∗PC(xkw =j)

whereβkdefinestthehouranddayofweekspecfificefecttofcom-
munfittybehavfioronanfindfivfidual.Toaccounttforvaryfingbehavfior
ofanfindfivfidualdurfingaweek,wegenerattedseparattelfisttsofsfimfi-
larusersforweekdaysandweekends.Wealsoexamfinedarangeof
valuesform(0,1,2,5,10,20,50),ttofidenttfifytthemfinfimumnumber
ofsfimfilarusersformaxfimfizfingpredficttfionaccuracy.

3.5 InttermedfiatteLocattfionComputtfing

Gfiventthesparsenattureofsocfialmedfia,finmosttfinsttancestthereare
multtfipleconsecuttfivemfissfinglocattfiondattapofinttsfinanfindfivfidual’s
ttfimelfine.Thustthefissueofpredficttfinglocattfionattkwfifefittherorbotth

(k+1)wand(k−1)waremfissfingwfillarfise.Hencewefinttroducetthe
concepttofInttermedfiatteLocattfionComputtfing.Forsfimplficfitty,we
wfillonlydefinettheprocedurettofidenttfifytthefinttermedfiattelocattfion
attsampledttfime(k−1)w(whfichfisusedttocalculatteofP

WS
(I,a)
).A

sfimfilarapproachcanbeusedttofidenttfifytthelocattfionattttfime(k+1)w
(whfichfisusedttocalculattePWS

(I,b)
).

Broadly,ourproblemfistthattalocattfionexfisttsattttfime(k−n)w
suchtthattnolocattfiondattaforanfindfivfidualfispresenttbettweenkw
and(k−n)w.Toaddresstthfis,weuselocattfiondattaatt(k−n)w
ttofitterattfivelypredficttfinttermedfiattelocattfionsoftthefindfivfidualatt
ttfimes(k−n+1)wunttfilwereach(k−1)w.Wedefinetthefuncttfion
Intter(L1,L2),whfichforaspecfificttfimepofintt,ttakesfinttwolfisttsL1
andL2,andretturnstthelocattfionwhfichhastthemaxfimumproba-
bfilfittyfinlfisttL1,andfifnolocattfionexfistts,retturnstthelocattfionwfitth
maxfimumprobabfilfittyfinlfisttL2.HereL1fisP(I,a)andL2fisP(I,c).
Insfimpletterms,atteachsttep,wefirsttfidenttfifytthemosttprobable
locattfionusfingNexttLocattfion.Ifnolocattfiondattaexfistts,weresortttto
fidenttfifyfingtthemosttprobablelocattfionusfingIndependenttLocattfion.
Gfiventthattlocattfionsatt(k+1)wand(k−1)wpredficttedusfing

tthfismetthodareonlyprobablelocattfionsandsuccessfivepredficttfions
wfilldecreasecerttafintty,wemulttfiplybyanfinformattfionlossfacttor
λttoaccounttforlossfinfinformattfionfincalculattfingfinttermedfiatte

locattfions.Thfisfacttorλfisdefinedas:λ=(1−α)(n−1),wherenfis
tthenumberofsttepsrequfiredttoreachtthenearesttavafilablepofintt
wfitthanavafilablelocattfion,andαfisaconsttanttfinformattfionlosson
eachsttep.
Thfisapproachttofidenttfifylossfinfinformattfionfinsequenttfialpredfic-

ttorshasbeenusedfintthepastt,parttficularlyfindynamficbelfiefmodels
[41].Thebasficfideafistthattatteachsequenttfialpredficttfionttherefisa
probabfilfittyofαtthatttthepredficttfionwfillbefincorrectt.Itterattfingtthfis
foradattapofinttpresenttnsttepsawaymakesttheoverallprobabfilfitty

ofcorrecttpredficttfion(1−α)(n−1).InttheexamplegfivenfinFfig.3,
whenfinallycalculattfingtthelocattfionattkw,gfiventthatttthevalueof

nfortthelefttsfidefis3,PWS
(I,a)
fismulttfiplfiedby(1−α)(3−1).Sfimfilarly

gfiventthattnforttherfighttsfidefis2,PWS
(I,b)
fismulttfiplfiedby(1−α)(2−1).

TheexamplefinFfig.3demonsttrattestthesttepsperformedttocomputte
tthefinttermedfiattelocattfionsfor(WS).Weusetthesamemetthodtto
calculattefinttermedfiattelocattfionsfor(RS)and(HS)probabfilfittfies.
Thecomplettemetthodttoconsttructtcomplettemobfilfittyttfimelfineof

agfivenuserfissummarfizedalgorfitthm1.Intthealgorfitthm,asdefined
above,wereplacekwwfitthq,ttorepresentttthefindexofeachttfime
sttepfintthettfimelfine.FurtthergfivenattfimelfineTofanfindfivfidual,tthe
locattfionxqfisttheqelementtfinT,fi.eT[q].

3.6 TrafinfingandTesttfingDattaand
Opttfimfizattfion

Toselectttthettrafinfingdattaforttheenttfirepredficttfionwe,randomly
andunfiformlyacrossalldfisttfincttvaluesofk,sampled70%oftthe
dattafromeachuser.Ittshouldbenottedtthatttthettesttsettconttafins
tthe30%locattfiondattaofeachuserwhfichwasnottusedfincalcu-
lattfingtthecondfittfionalprobabfilfittfiesorttrafinfingtthemodel.Furtther,
tthedattaspansonlytthedayttfimehourswherefinanfindfivfidualfis
changfinglocattfionmosttfrequenttly.Theperformanceoftthemodel
wascalculattedonlyontthfisttesttdattaasnottttobfiasttheperformance
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Algorithm 1 Constructing complete mobility timeline using ILC
Input: Timeline T of user u, community behavior, PC , of similar
users at each time step, effect of community behavior β and λa and
λb for each q
Output: Complete timeline Tcomplete
1: Tcomplete ← T
2:
3: for each behaviour S in [WS,RS,HS] do
4: T S

a ← T S
b ← T

5: for q in 1 : lenдth(T S
a ) do

6: if NULL(T S
a [q]) then

7: T S
a [q] ← inter (PSI,a (xq |xq−1 = T

S
a [q − 1]), PSI,a (xq ))

8: end if
9: end for
10: for q in lenдth(T S

b ) : 1 do
11: if NULL(T S

b [q]) then
12: T S

b [q] ← inter (PSI,b (xq |xq+1 = T
S
b [q + 1]), P

S
I,a (xq ))

13: end if
14: end for
15: end for
16:
17: for each xq in T do
18: if NULL(xq ) then
19: for each behaviour S in [WS,RS,HS] do
20: if NULL(xq−1) then
21: PSI,a (xq ) ← PSI,a (xq |xq−1 = T

S
a [q − 1])

22: else
23: PSI,a (xq ) ← PSI,a (xq |xq−1 = T [q − 1])
24: end if
25: if NULL(xq+1) then
26: PSI,b (xq ) ← PSI,b (xq |xq+1 = T

S
b [q + 1])

27: else
28: PSI,b (xq ) ← PSI,b (xq |xq+1 = T [q + 1])
29: end if
30: PSI (xq ) = (λa ∗ PS

(I,a)(xq ) + λb ∗ PS
(I,b)(xq ) +

PS
(I,c)(xq ))/3

31: end for
32: PI = (P

WS
I (xq ) + P

RS
I (xq ) + P

HS
I (xq ))/3

33: Tcomplete [q] ← arд.max((1−βq )∗PI (xq )+βq∗PC (xq ))
34: end if
35: end for

Return Tcomplete

of the method towards sampled times where an individual is static
(nighttime hours).

Using the training data, we calculated PI and PC lists for every
individual, at each time resolution. These probabilities are then
used to optimize the value of βk and α . For simplicity, we optimize
a fixed value independent of a user or a sampling time for α , but βk
is user, day of the week and hour of the day specific as we would
expect the contributions of community behavior to vary at different
times and for different people. To select the optimal values of βk ,
we vary βk from 0 and 1 ( intervals of 0.05) and select the βk , for a

Figure 3: Intermediate Location Computing algorithm illus-
tration. A: Timeline of an individual for a week w , between
k − 3 and k + 2. Location data for the individual is missing
for k − 2 to k + 1. Shaded area shows the location to be pre-
dicted. B: Intermediate locations (red) calculated after first
iteration. C: Intermediate locations after second iteration. D:
Effect of information loss on PWS

(I,a) and PWS
(I,b).

given k , that maximizes prediction accuracy on the training data. α
was optimized in a similar way, but only using PI (inclusion of PC
would have resulted in concurrent optimization of both α and βk ).
The value of α as 0.1 performed well on the training set, and was
used in study.

3.7 Evaluation Versus Baseline Models
For fair comparison and to ensure that the variation in performance
is only due to the inference power of the models and not due to
variation in training data, all baseline models were trained using
the same training data for each user (post processed form of data)
as used for ILC, and the performance of the models was tested on
the same test set.

3.7.1 Home-Work location Model. It has been shown that periodic
behavior accounts for up to 70% of an individual’s movement [7].
Given that the periodic behavior Hence, the first baseline model
assumes users follow a simple periodic behavior, switching be-
tween two locations: their inferred home and work locations. Using
the training dataset, we computed and assigned a single home
(nighttime) and a work (daytime) location for each individual by
identifying the most frequent location a user is present in between
10pm and 8am, and between 8am and 10pm.

3.7.2 Markov Models. Markov models have been widely used to
predict individual levelmobility patterns [4, 36]. AnOrder-0Markov
model identifies the most frequent location a user is in during a
given hour of the day, regardless of where the user came from or
is going[36]. The Order-1 Markov model, given the location x of
an individual at time k , identifies the most frequent location the
individual visits at time k +1 if they were at x during time k . Due to
sparsity of data, multiple missing locations are predicted iteratively.
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i.e. each subsequent location at k + n is predicted using the previ-
ously predicted location at k + n − 1. For fair comparison, we use a
fall-back version for both Markov models which first computes the
(WS) likelihoods. If no location data exists, the model falls back to
(RS) likelihood, and then to (HS) likelihood.

3.7.3 Collaborative Point-of-Interest Recommendation Model. The
Point of Interest (POI) recommendation model was initially pre-
sented in [42], to recommend locations of interests of individuals
using data from Location Based Social Networks (LBSNs). The
model, in addition to using geographical distance between loca-
tions, first identifies close users both based on the social network
(friends/followers) of an individual as well as those who follow
similar movement patterns, and uses their location to predict the
individuals location. In line with the conclusion of the original
work, that social ties are not strong predictors, and given that we
are not assuming that the location data for the social network of
individuals is available, we model the movement of an individual
using the geographical distances between locations and location
data of users who follow similar movement patterns. Geographical
influence is modelled based on a power-law distribution between
successive data points, while location of similar users is calculated
similar to the community behavior part of our method.

3.7.4 NextPlace: Spatio-Temporal Non-linear Model. This spatio-
temporal non-linear “NextPlace” prediction model uses a non-linear
framework for predictions and unlike Markov models, which pre-
dict the next location at time k + 1 using historical movement
patterns, or the community based methods, which use location data
of similar users, uses the history of trips to the same location to pre-
dict when an individual will be in the same location the next time.
[34] The method first identifies the start time and stay duration of
each trip, then embeds the timeseries in a multidimensional space
by adding multiple instances of the timeseries with delays to ac-
count for non-linearity. Then, the start times and stay durations of
the user’s next visit are averaged to predict when and for how long
the next visit to the location will happen. In our implementation,
we used the delay as the smallest temporal unit in our study (i.e 1
and 2 hours for ri=1 and 2). Given the sparsity of data, we define the
start time when an individual makes a tweet from a location, and
stay duration is either inferred as described in the preprocessing
section of paper, or assumed to be either 1 or 2 hours based the
value of ri .

3.8 Recursive Neural Network
RNNs and specifically LSTMs (Long Short-Term Memory blocks)
have been gaining popularity due to their strength in identifying
and utilizing complex sequences of information to make future
predictions. For the domain of mobility prediction, this provides a
contrast to other work in which the heuristics for mobility mod-
elling are self specified. Hence, here we also study the utility of
an RNN architecture in constructing entire mobility timelines of
individuals in the context of sparse location data. Fig. 4 shows the
architecture of the network. We use a basic architecture, similar to
those used in previous mobility and sequence prediction work [12],
but adapted for full timeline location inference. Specifically, instead
of using separate inputs for current and historical trajectories of

Figure 4: Architecture of Recursive Neural Network.

location, due to the sparse nature of data we input a single trajec-
tory of all locations. Secondly and more importantly, here instead
of only using a historical sequence of locations (left padded input),
[x(k−n)w ,... x(k−2)w , x(k−1)w ] to predict xkw , we also use the fu-
ture sequence of location (right padded input), [x(k+1)w , x(k+2)w ,...
x(k+n)w ], to maximize the utility of sparsely available data and
predict a location value for ever missing time step (not just next
step). Thus, the architecture comprises of left and right padded
input layers which are fed to embedding layers to convert sparse
inputs into dense representations. The outputs from the embedding
layers are then input to recurrent units comprising of an array of
LSTM units. The LSTM outputs are then passed through a fully
connected layer and concatenated before being passed through a
fully connected layer to interpret the output and make prediction.
All fully connected layers use rectified linear unit activation except
for output layer which uses softmax activation. The model uses
categorical cross entropy loss function and uses Adam optimizer
to update weights in the network. The model is trained using the
training dataset. 10% of the training set is set aside for validation.
After each epoch, the performance of the model is tested on the
validation dataset. The training is stopped when no improvement
in prediction accuracy of validation data is observed. Though ar-
chitectures can be further augmented with other types of modules
to model further complexities, the comparison here is meant to
evaluate the pure heuristic versus deep learning approaches.

4 RESULTS
4.1 Comparative Performance of Methods
The ILC, RNN, Home-Work and Markov-0 models predicted a lo-
cation value for every missing data point in the dataset (Table 1).
Amongst the remaining methods, the NextPlace algorithm ‘filled-in’
the least number of missing data points. ILC and RNN outperformed
all baseline models across all cities (Table 1).
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Table 1: Overall prediction accuracy (%) and average percentage of filled timelines(written in {}) for baseline models and Top 1
and Top 3 locations predicted by the intermediate location computing model.

City ri Top 1 Top 3 RNN Home-Work Markov O(0) Markov O(1) POI NextPlace

NYC ri=1 72.69{100} 82.35{100} 73.09{100} 65.54{100} 64.65{100} 26.39{32.70} 15.59{56.04} 0.17{18.07}
ri=2 64.78{100} 77.38{100} 59.33{100} 59.28{100} 57.98{100} 32.56{48.69} 19.11{76.75} 0.21{28.93}

DC ri=1 75.08{100} 83.61{100} 74.58{100} 66.91{100} 65.76{100} 27.75{32.29} 31.27{70.60} 0.11{17.23}
ri=2 68.85{100} 79.57{100} 63.27{100} 62.35{100} 60.64{100} 34.13{48.79} 34.56{82.56} 0.19{28.36}

SF ri=1 77.20{100} 86.28{100} 76.26{100} 67.74{100} 67.21{100} 16.78{30.12} 35.49{60.24} 0.15{17.57}
ri=2 70.78{100} 82.06{100} 64.78{100} 63.66{100} 62.91{100} 19.52{43.72} 32.69{67.69} 0.22{28.50}

Table 2: Prediction accuracy (%) for Top 1 (T1) and Top 3 (T3)
locations predicted by the ILC model by grid size. (д) repre-
sents a grid size of д × д miles.

City ri T1(0.5) T3(0.5) T1(0.1) T3(0.1)

NYC ri=1 65.64 75.71 54.23 64.07
ri=2 59.29 71.65 46.06 57.96

DC ri=1 67.32 77.65 54.27 64.10
ri=2 60.19 72.59 46.85 58.23

SF ri=1 70.86 80.97 57.37 67.26
ri=2 63.37 75.47 48.07 59.81
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Figure 5: Cumulative fraction of users vs. prediction accu-
racy for ILC and baseline models, ri = 1, (A) and 2 (B).
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Figure 6: Prediction accuracy of ILC (no community data)
and RNN with number of users used to train the model for
NYC ri = 1. Values calculated at # of users=5,10,50,100,200 us-
ing mean of 10 replications. At ~50 users RNN performance
comes close to ILC, and by 200 users the RNN model sur-
passes ILC. Accuracy values for training with all available
users are in Table 1.

For ri = 1, RNN slightly outperformed ILC in only NYC when
considering the overall performance of methods on test data points
(Table 1). When analyzing prediction accuracy per user in the test

set, RNN slightly outperformed ILC (Fig. 5). For ri = 2 ILC out-
performed RNN across all cities both when considering overall
accuracy on test data and accuracy per user. Additionally, for ri = 2,
despite RNN outperforming Home-Work location model when con-
sidering overall prediction accuracy on test data (Table 1), it per-
formed slightly worse than Home-Work location method when
considering accuracy per user (Fig. 5B).

Amongst the heuristic-based baseline models, simpler models
outperformed more complex models. This was mainly because they
were able to predict a location value for larger number of missing
data points. The Order-0 Markov and Home-Work location model
resulted in similar prediction accuracy and outperformed the re-
maining baseline models. In contrast to previous work, the Order-1
Markov model had a lower prediction accuracy as compared to
Order-0 Markov, largely because it was only able to predict a loca-
tion value for one-third of the data points in timelines at ri=1 and
one-half of the data points in timelines at ri=2. The time-dependent
POI recommendation model outperformed Order-1 Markov model
in SF and DC and underperformed in NYC. This is consistent with
the fact that as shown in Fig. 7B, SF and DC had higher similarity
between locations of individuals as compared to NYC. Additionally,
the POI model was able to predict a much larger portion of users’
timelines as compared to the Markov-1 model, yet accuracy values
for both methods were close. The NextPlace method based on a non-
linear spatio-temporal framework had the least predictive power
given the fact that it relies largely on stay duration information.
Given the lack of this information in social media, the model was
scarcely able to predict missing location values.

While the baseline heuristic based methods have been optimized
for different data types, in general, ILC specifically addresses the
challenge of sparse data by incorporating a wide range of com-
ponents. The simpler components help predict a location value
for each missing point, while the more complex components help
identify complex movement behaviours.

Comparing ILC with RNN shows that RNNs are powerful meth-
ods that can out perform traditional heuristic based methods. How-
ever, we see that in low data settings, heuristics can be used to
outperform the deep learning approach (e.g. when predicting at
less frequent time intervals, or when a lower number of users are
available to train the model). This is evident in Fig. 6, where despite
RNN outperforming ILC in NYC at ri = 1, if trained on a fewer
number of users, it under performs. Also in Fig. 5 we see that the
RNN requires data from more users to achieve the same accuracy as
ILC, when considering ri=2. However with increases in the amount
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Ffigure7:A:Predficttfionaccuracy(%)vs.numberofsfimfilar
users(m).Modelbasedonfindfivfidualandcommunfittybehav-
fior(black),andcommunfittybehavfioronlyfi.eβ=1(red).
Allvalueswerecomputtedforrfi=2andusfing Washfingtton,
DCdatta.B:Aggregattedsfimfilarfittyfacttorsofclosesttusers
(mu=1s(u))vs.fracttfionofusersbycfitty.X-axfisnormalfizedby
dfivfidfingbytthemaxfimumaggregattedsfimfilarfittyfacttorfora
userfintthedattasett.

ofttrafinfingdatta,ttheRNNouttperformsILC.Thfisfisduettotthefactt
tthatttthfisfimplementtattfionofILConlyusesamaxfimumsequence
lengtthofttwottfimestteps,RNNscanlearnlargerandmorecomplex
sequencesoflocattfions.AddfittfionallyRNNscanalsolearnlonger
sequencesoflocattfiondattaofsfimfilarusersandhelpfimprovepre-
dficttfion.Decfisfionbettweenselecttfingoneoverttheottherfisbasedon
tthegoaloftthesttudyandttheavafilabfilfittyofdatta.Ifsparsedattafora
largenumberofusersfisavafilable,tthenanRNNapproachshouldbe
preferred.Buttfiftthegoaloftthesttudyfisttomaxfimfizetthenumberof
usersforwhfichcomplettettfimelfinescanbeconsttructtedbysamplfing
tthefirlocattfionsattlessfrequenttttfimefinttervals,orfiftthenumberof
avafilableusersfislow,tthenaheurfisttficbasedmetthodlfikeILCshould
bepreferredgfiventthattfittdoesnottneeddattattolearnpatttterns.

4.2 EfecttofCommunfittyBehavfior

Wefoundtthattttheefecttofcommunfittybehavfiorfisconsfisttenttly
hfigheronanfindfivfidual’smobfilfittypatttternsdurfingweekendsas
comparedttoweekdays(βkhfigheronweekendsacrossallcfittfiesand
rfi).Theaveragevalueforβkdurfingweekdaysrangedfrom0.449
(NYC,rfi=1)tto0.466(DC,rfi=2),whfiledurfingweekendsranged
from0.456(NYC,rfi=1)tto0.492(DC,rfi=2).
Weobservetthattfinclusfionofcommunfittydattahelpsttheperfor-

manceoftthemetthodandtthemafinfimprovementtfisseenwhen
tthefirsttsfimfilaruserfisaccounttedfor(Ffig.7A).Moreover,aftterm
=20,accuracyfimprovementtsbegfinttoplatteauwfitthmorem(tthe
finclusfionofmclosesttfindfivfidualsttocomputtecommunfittybehavfior
wfillworkbesttforfindfivfidualswhohavehfighsfimfilarfittyvalueswfitth
ottherfindfivfidualsandarenottouttlfiersfinttermsoftthefirmobfilfitty)
justtfifyfingttheuseofm=50finourmetthod.

4.3 PerformanceofILCfinDfiferenttSettttfings

WeobservetthattforILCperformancedecreasesastthefintterval(rfi)
fincreasesfrom1tto2hours(Table1),andastthegrfidsfizedecreases
(Table2),whfichfisfinlfinewfitthtthefindfingsof[10]tthattattlarger
ttfimefinttervalsandsmallergrfidsfizesttherefisahfigherassocfiatted
uncerttafintty.SfimfilarttrendfisobservedforRNNasfincreasefinrfi
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from1tto2hoursdecreasesttheoverallttrafinfingdattafortthemodel.

Ffigure8:A:Predficttfionaccuracy(%)forTop1vs.numberof
dfisttfincttlocattfionsvfisfittedforrfi=1(A)and2(B).

Ffig.8showspredficttfionaccuracyversustthenumberofdfisttfinctt
locattfionsgrfidsbyfindfivfiduals,for1,and2-hourresoluttfions;accu-
racydecreaseswfitthanfincreasefintthenumberofdfisttfincttlocattfion
grfidsvfisfittedbyanfindfivfidual.Thefittttedlfinefisgenerattedusfinga
generalfizedaddfittfivemodel(GAM).

5 CONCLUSION

Intthfispaper,wepresenttametthodforpredficttfingmfissfinglocattfions
fromanfindfivfidual’smobfilfittyttfimelfinewfitthgoodaccuracy,usfing
onlysparselocattfionttagsfromsocfialmedfiadatta.Inorderttoaddress
tthechallengeofsparsedatta,tthemodelusesseveralheurfisttficsof
humanmovementtandfincorporattessfimfilaruserdatta.Theproposed
approachconsfisttenttlyouttperformsbaselfineheurfisttficbasedmetth-
odsacrossdattafromtthreemajorcfittfies,showfingsttabfilfittyoftthe
approach.WealsoshowhowILCfulfillsttfimelfinepredficttfionbetttter
tthananRNNfinsparsedattasettttfings,tthoughuseofheurfisttficsshould
befincorporattedfinttottheRNNarchfittectturedesfignfinfutturework
ttofurttheradvancettheapproach.
Werecognfizelfimfittattfionsoftthfiswork.Predficttfionsforanfindfivfid-

ualcanbebfiasedbasedontthefirTweettfingpatttterns(whfichcanbe
specfificttotthettypesofpeoplewhouseTwfitttter),altthoughtthefincor-
porattfionofcommunfittybehavfiorhelpsmfinfimfizetthfisbfias.Second,
eventthoughourworkadvancesprevfiousworkbypredficttfingfull
ttfimelfinesforalargenumberofusers,ttherearesttfillmanyusersfor
whomtthelocattfioncannottbepredficttedbyourmodel.Hence,despfitte
tthegeneralfizabfilfittyoftthemetthodandtthedattasett,tthemetthodology
wfillnottbeaccuratteforeverysfingleuser.Thfird,hereILConlyuses
onelocattfionpofinttfintthepasttfi.ek−1ttopredfictttthelocattfionattk
duettotthesparsenattureoftthedattaandprfiorfittfizattfionoffillfingfin
tthettfimelfine,buttwecanexpandttheapproachttousetthesequence
ofnlocattfionsfintthepasttttopredfictttthenexttlocattfion,wfitthmore
complexconsfiderattfions.Overall,tthfisresearchdemonsttrattesanew
approachfortthespecfificproblemoffillfingfinlocattfionttfimelfines
fromsparsesocfialmedfiadatta,wfitthouttassumfinganyfinformattfion
besfideslocattfiondattafisavafilable.Theresulttcanbeusedfinmany
real-worldapplficattfionstthattrequfirelocattfionttfimelfines.

ACKNOWLEDGMENTS

Supporttfortthfisprojecttwasprovfidedfinparttbyagranttfromtthe
NattfionalScfienceFoundattfion(1737987).WeacknowledgeProf.Ju-
lfianaFrefireofNewYorkUnfiversfittyandhergroupforassfisttance
wfitthdatta.

REFERENCES
[1]ShunsukeAokfi,KaoruSezakfi,NficholasJfingYuan,andXfingXfie.2017.AnEarly
EventtDettecttfionTechnfiquewfitthBusGPSDatta.InProceedfingsoftthe25tthACM



SIGSPATIAL ’18, November 6–9, 2018, Seattle, WA, USA Nabeel Abdur Rehman, Kunal Relia, and Rumi Chunara

SIGSPATIAL International Conference on Advances in Geographic Information
Systems. ACM, 49.

[2] Akinori Asahara, Kishiko Maruyama, and Ryosuke Shibasaki. 2012. A mixed
autoregressive hidden-markov-chain model applied to people’s movements. In
Proceedings of the 20th international conference on advances in geographic infor-
mation systems. ACM, 414–417.

[3] Jie Bao, Yu Zheng, and Mohamed F Mokbel. 2012. Location-based and preference-
aware recommendation using sparse geo-social networking data. In Proceedings
of the 20th international conference on advances in geographic information systems.
ACM, 199–208.

[4] Mitra Baratchi, Nirvana Meratnia, Paul JM Havinga, Andrew K Skidmore, and
Bert AKG Toxopeus. 2014. A hierarchical hidden semi-Markov model for model-
ing mobility data. In Proceedings of the 2014 ACM International Joint Conference
on Pervasive and Ubiquitous Computing. ACM, 401–412.

[5] Francesco Calabrese, Giusy Di Lorenzo, and Carlo Ratti. 2010. Human mobility
prediction based on individual and collective geographical preferences. In Intelli-
gent Transportation Systems (ITSC), 2010 13th International IEEE Conference on.
IEEE, 312–317.

[6] Luca Canzian and Mirco Musolesi. 2015. Trajectories of depression: unobtrusive
monitoring of depressive states by means of smartphone mobility traces analysis.
In Proceedings of the 2015 ACM international joint conference on pervasive and
ubiquitous computing. ACM, 1293–1304.

[7] Eunjoon Cho, Seth A Myers, and Jure Leskovec. 2011. Friendship and mobility:
user movement in location-based social networks. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM,
1082–1090.

[8] Yohan Chon, Hyojeong Shin, Elmurod Talipov, and Hojung Cha. 2012. Evaluating
mobility models for temporal prediction with high-granularity mobility data.
In Pervasive computing and communications (PerCom), 2012 IEEE international
conference on. IEEE, 206–212.

[9] Jacob Cohen. 1968. Weighted kappa: Nominal scale agreement provision for
scaled disagreement or partial credit. Psychological bulletin 70, 4 (1968), 213.

[10] Andrea Cuttone, Sune Lehmann, and Marta C González. 2018. Understanding
Predictability and Exploration in Human Mobility. EPJ Data Science (2018).

[11] Trinh Minh Tri Do and Daniel Gatica-Perez. 2012. Contextual conditional models
for smartphone-based human mobility prediction. In Proceedings of the 2012 ACM
conference on ubiquitous computing. ACM, 163–172.

[12] Jie Feng, Yong Li, Chao Zhang, Funing Sun, Fanchao Meng, Ang Guo, and Depeng
Jin. 2018. DeepMove: Predicting Human Mobility with Attentional Recurrent
Networks. In Proceedings of the 2018 World Wide Web Conference on World Wide
Web. International World Wide Web Conferences Steering Committee, 1459–
1468.

[13] Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núñez del Prado Cortez.
2010. Show me how you move and I will tell you who you are. In Proceedings of
the 3rd ACM SIGSPATIAL International Workshop on Security and Privacy in GIS
and LBS. ACM, 34–41.

[14] Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núñez del Prado Cortez.
2012. Next place prediction using mobility markov chains. In Proceedings of the
First Workshop on Measurement, Privacy, and Mobility. ACM, 3.

[15] M. C. Gonzalez, C. A. Hidalgo, and A. L. Barabasi. 2008. Understanding individual
human mobility patterns. Nature 453, 7196 (2008), 779–82. https://doi.org/10.
1038/nature06958

[16] Samiul Hasan, Christian M Schneider, Satish V Ukkusuri, and Marta C GonzÃąlez.
2013. Spatiotemporal patterns of urban human mobility. Journal of Statistical
Physics 151, 1-2 (2013), 304–318.

[17] Nabil Hossain, Tianran Hu, Roghayeh Feizi, Ann Marie White, Jiebo Luo, and
Henry A Kautz. 2016. Precise Localization of Homes and Activities: Detecting
Drinking-While-Tweeting Patterns in Communities.. In ICWSM. 587–590.

[18] Shenggong Ji, Yu Zheng, and Tianrui Li. 2016. Urban sensing based on human mo-
bility. In Proceedings of the 2016 ACM International Joint Conference on Pervasive
and Ubiquitous Computing. ACM, 1040–1051.

[19] David Jurgens, Tyler Finethy, James McCorriston, Yi Tian Xu, and Derek Ruths.
2015. Geolocation Prediction in Twitter Using Social Networks: A Critical Anal-
ysis and Review of Current Practice. ICWSM 15 (2015), 188–197.

[20] Daniel Kahneman, Alan B Krueger, David A Schkade, Norbert Schwarz, and
Arthur A Stone. 2004. A survey method for characterizing daily life experience:
The day reconstruction method. Science 306, 5702 (2004), 1776–1780.

[21] John Krumm and Eric Horvitz. 2006. Predestination: Inferring destinations from
partial trajectories. UbiComp 2006: Ubiquitous Computing (2006), 243–260.

[22] Yang Li, Dimitrios Gunopulos, Cewu Lu, and Leonidas Guibas. 2017. Urban Travel
Time Prediction using a Small Number of GPS Floating Cars. In Proceedings of
the 25th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM, 3.

[23] L. Liao, D. J. Patterson, D. Fox, and H. Kautz. 2007. Learning and inferring
transportation routines. Artificial Intelligence 171, 5-6 (2007), 311–331. https:
//doi.org/10.1016/j.artint.2007.01.006

[24] Todd Litman. 2003. Measuring transportation: traffic, mobility and accessibility.
Institute of Transportation Engineers. ITE Journal 73, 10 (2003), 28.

[25] Jiajun Liu, Kun Zhao, Saeed Khan, Mark Cameron, and Raja Jurdak. 2015. Multi-
scale population and mobility estimation with geo-tagged tweets. In Data En-
gineering Workshops (ICDEW), 2015 31st IEEE International Conference on. IEEE,
83–86.

[26] Liang Liu, Anyang Hou, Assaf Biderman, Carlo Ratti, and Jun Chen. 2009. Under-
standing individual and collective mobility patterns from smart card records: A
case study in Shenzhen. In Intelligent Transportation Systems, 2009. ITSC’09. 12th
International IEEE Conference On. IEEE, 1–6.

[27] Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. 2016. Predicting the Next
Location: A Recurrent Model with Spatial and Temporal Contexts.. In AAAI.
194–200.

[28] James McInerney, Jiangchuan Zheng, Alex Rogers, and Nicholas R Jennings. 2013.
Modelling heterogeneous location habits in human populations for location
prediction under data sparsity. In Proceedings of the 2013 ACM international joint
conference on Pervasive and ubiquitous computing. ACM, 469–478.

[29] Anne Vernez Moudon, Chanam Lee, Allen D Cheadle, Cheza Garvin, Donna
Johnson, Thomas L Schmid, Robert D Weathers, and Lin Lin. 2006. Operational
definitions of walkable neighborhood: theoretical and empirical insights. Journal
of Physical Activity & Health 3 (2006), S99.

[30] Anastasios Noulas, Salvatore Scellato, Neal Lathia, and Cecilia Mascolo. 2012.
Mining user mobility features for next place prediction in location-based services.
In Data mining (ICDM), 2012 IEEE 12th international conference on. IEEE, 1038–
1043.

[31] Andrew Rundle, Kathryn M Neckerman, Lance Freeman, Gina S Lovasi, Marnie
Purciel, James Quinn, Catherine Richards, Neelanjan Sircar, and Christopher
Weiss. 2009. Neighborhood food environment and walkability predict obesity in
New York City. Environmental health perspectives 117, 3 (2009), 442.

[32] Adam Sadilek, Henry Kautz, and Jeffrey P Bigham. 2012. Finding your friends and
following them to where you are. In Proceedings of the fifth ACM international
conference on Web search and data mining. ACM, 723–732.

[33] Adam Sadilek and John Krumm. 2012. Far Out: Predicting Long-Term Human
Mobility.. In AAAI.

[34] S. Scellato, M. Musolesi, C. Mascolo, V. Latora, and A. T. Campbell. 2011.
NextPlace: A Spatio-temporal Prediction Framework for Pervasive Systems. Per-
vasive Computing 6696 (2011), 152–169. <GotoISI>://WOS:000305891700010

[35] C. M. Song, Z. H. Qu, N. Blumm, and A. L. Barabasi. 2010. Limits of Predictability
in Human Mobility. Science 327, 5968 (2010), 1018–1021. https://doi.org/10.1126/
science.1177170

[36] L. B. Song, D. Kotz, R. Jain, and X. N. He. 2006. Evaluating next-cell predictors
with extensive Wi-Fi mobility data. Ieee Transactions on Mobile Computing 5, 12
(2006), 1633–1649. <GotoISI>://WOS:000241195600001

[37] Roberto CSNP Souza, Renato M Assunção, Derick M de Oliveira, Denise EF de
Brito, and Wagner Meira Jr. 2016. Infection Hot Spot Mining from Social Media
Trajectories. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, 739–755.

[38] Dan Tasse, Zichen Liu, Alex Sciuto, and Jason I Hong. 2017. State of the Geotags:
Motivations and Recent Changes.. In ICWSM. 250–259.

[39] A. Wesolowski, T. Qureshi, M. F. Boni, P. R. Sundsoy, M. A. Johansson, S. B.
Rasheed, K. Engo-Monsen, and C. O. Buckee. 2015. Impact of human mobility on
the emergence of dengue epidemics in Pakistan. Proc Natl Acad Sci U S A 112, 38
(2015), 11887–92. https://doi.org/10.1073/pnas.1504964112

[40] Cheng Yang, Maosong Sun, Wayne Xin Zhao, Zhiyuan Liu, and Edward Y Chang.
2017. A Neural Network Approach to Jointly Modeling Social Networks and
Mobile Trajectories. ACM Transactions on Information Systems (TOIS) 35, 4 (2017),
36.

[41] A. J. Yu and J. D. Cohen. 2008. Sequential effects: Superstition or rational behavior?
Adv Neural Inf Process Syst 21 (2008), 1873–1880. https://www.ncbi.nlm.nih.gov/
pubmed/26412953

[42] Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, and Nadia Magnenat Thalmann.
2013. Time-aware point-of-interest recommendation. In Proceedings of the 36th
international ACM SIGIR conference on Research and development in information
retrieval. ACM, 363–372.

[43] Jia-Dong Zhang, Chi-Yin Chow, and Yanhua Li. 2014. Lore: Exploiting sequential
influence for location recommendations. In Proceedings of the 22nd ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems.
ACM, 103–112.

https://doi.org/10.1038/nature06958
https://doi.org/10.1038/nature06958
https://doi.org/10.1016/j.artint.2007.01.006
https://doi.org/10.1016/j.artint.2007.01.006
<Go to ISI>://WOS:000305891700010
https://doi.org/10.1126/science.1177170
https://doi.org/10.1126/science.1177170
<Go to ISI>://WOS:000241195600001
https://doi.org/10.1073/pnas.1504964112
https://www.ncbi.nlm.nih.gov/pubmed/26412953
https://www.ncbi.nlm.nih.gov/pubmed/26412953

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Datasets
	3.2 Filtering and Preprocessing
	3.3 Individual Timelines
	3.4 Community Behavior
	3.5 Intermediate Location Computing
	3.6 Training and Testing Data and Optimization
	3.7 Evaluation Versus Baseline Models
	3.8 Recursive Neural Network

	4 Results
	4.1 Comparative Performance of Methods
	4.2 Effect of Community Behavior
	4.3 Performance of ILC in Different Settings

	5 Conclusion
	Acknowledgments
	References

