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ABSTRACT 1 INTRODUCTION

In many domain applications, a continuous timeline of human lo-
cations is critical; for example for understanding possible locations
where a disease may spread, or the flow of traffic. While data sources
such as GPS trackers or Call Data Records are temporally-rich, they
are expensive, often not publicly available or garnered only in select
locations, restricting their wide use. Conversely, geo-located social
media data are publicly and freely available, but present challenges
especially for full timeline inference due to their sparse nature. We
propose a stochastic framework, Intermediate Location Computing
(ILC) which uses prior knowledge about human mobility patterns
to predict every missing location from an individual’s social media
timeline. We compare ILC with a state-of-the-art RNN baseline as
well as methods that are optimized for next-location prediction
only. For three major cities, ILC predicts the top 1 location for all
missing locations in a timeline, at 1 and 2-hour resolution, with
up to 77.2% accuracy (up to 6% better accuracy than all compared
methods). Specifically, ILC also outperforms the RNN in settings
of low data; both cases of very small number of users (under 50),
as well as settings with more users, but with sparser timelines. In
general, the RNN model needs a higher number of users to achieve
the same performance as ILC. Overall, this work illustrates the
tradeoff between prior knowledge of heuristics and more data, for
an important societal problem of filling in entire timelines using
freely available, but sparse social media data.
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Using full location timelines (all locations an individual has been
to) is essential to many societal applications including transporta-
tion management [22, 23], urban sensing [18], event detection [1]
and infectious disease dynamics [39]. Combined with additional
information about individuals, location timelines have been used to
predict depressive moods [6], point-of-interest and location recom-
mendation [3, 43], the spread of diseases [25], and contact tracing
for hot spots of infectious diseases [37].

Data sparsity can become a major challenge when predicting full
timelines using publically available data, and can take two forms.
First, the number of users with enough data (full-timelines) to train
the model can be low. Second, increasing the number of users re-
sults in inclusion of users with extremely sparse location timelines.
Therefore, this problem of inference of complete location timelines
is inherently different from mobility prediction, which must priori-
tize accuracy of the prediction for the next location. Accordingly,
mobility prediction models are often built on data sources such as
travel surveys, Call Data Records (CDRs) and Global Positioning
System (GPS) trackers which are high-resolution (provide location
every few seconds or minutes). However, it is not realistic to have
such data in a broad array of contexts; the cost of collecting such
datasets, limited attributes associated with individual records, and
lack of public availability makes them unsuitable for carrying out
large-scale studies for a target population where the impact of lo-
cation over time is to be studied in relation to various secondary
issues. Further, in several emerging real-world modeling applica-
tions such as infectious disease transmission models, knowing a
person’s location at such a high temporal frequency is unnecessary.
Instead, locations of where they travel to over the course of a day at
a lower resolution (such as every few hours), provide the relevant
insight [15]. Therefore, we focus on the challenging problem of
constructing the entire mobility timeline of an individual at equal
intervals of time from the geo-location associated with social media
data, which is generated at-will and therefore can be very sparse.

The main challenge here is that the data used is truly sparse in
relation to entire timelines; for example, in six months of social me-
dia sourced from the Twitter Application Programming Interface,
only 5.4% (which is what we use in this study) have a Tweet with
linked-location at each of the daytime hours in a day (independent
of day of the week, over all weeks in the six months). Further, we do
not assume any specific information such as from the text/content
of posts, or network of users is available. To overcome these chal-
lenges, we use several known heuristics about location visitation
patterns of individuals. We also combine patterns both from an
individuals’ history, as well as leverage the patterns of similar com-
munity members [19, 32, 42]. Further, we relax criteria about day
and week-specificity of location patterns which enables us to use
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and predict timelines from thousands of social media users with
such sparse data — our method does not require rich training data
to learn complex patterns of mobility, and works for a realistic
number of users. Finally, our work does not assume any additional
information about the demographics, social networks or content of
tweets of users, allowing for the adoption in situations where such
additional data sources are not available. In accordance with the
sparse nature of the data, these combined approaches enable us to
infer multiple consecutive missing locations from a user’s timeline,
and construct a continuous location timeline for individuals using
only sparse geo-tags from their Tweets.

We compare the performance of our model with several models
which, although optimized for next-location prediction, are state-
of-the-art, and show that intermediate location computing (ILC)
has increased accuracy for inferring entire timelines from sparse
data. In particular, while deep learning models have good predic-
tive accuracy, we investigate the tradeoff in performance based on
amount of sparsity, both in terms of number of users or amount
of data per user. By using readily available data to estimate a full
mobility timeline at relevant resolutions, this work opens many
new opportunities to understand and predict human movement for
many domain areas. To the best of our knowledge, this work is the
first to use sparse social media data to infer full individual-level
location timelines. The specific contributions of this work are:

e Developing a framework for filling in entire location time-
lines at reasonable time steps, with personalized forward
and backward timeline prediction.

e Prediction of the timeline from truly sparse, but freely avail-
able and easily accessible data; with smart use of community
data to improve timeline prediction when applicable.

o First use of deep learning for inferring timelines from sparse
data and assessment of amount of data needed for a deep
learning approach to surpass other models.

2 RELATED WORK

Here we summarize related work in two main categories to clarify
differences in data and methodological approaches in other work.

Geo-location data types and sparsity. As the goal of predicting
next location is different than the goal here, the types of data used
in such studies include smartphone data including GPS tracking,
Wi-Fi, Bluetooth and phone usage [11], partial GPS tracks from
automobiles [21], and Foursquare check-in data [30]. These mod-
els are generally designed for temporally rich data-sets and thus
assume that the training data is abundant and collected at frequent
time intervals. Even in the case of Foursquare data, though it can be
sparse, only dense sequences of data (minimum sequence length of
5 locations) have been used in predictive efforts [12]. Hence, studies
have been concerned with data collected at such densities, or small
time intervals (e.g. every 1, 15 or 30 minutes), and individual records
below a threshold number of data points are discarded from the
study entirely [5, 12, 14, 30, 33]. While this restriction increases
confidence in the stay duration of individuals at a location, this
typically (appropriately) limits the problem of prediction to only
a single missing location in the future. Given the inconsistency
of intervals between location tags in an individual’s social media
timeline and lack of stay duration information, such models can not
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directly be applied in the context of sparse social media data [38].
A method to capture daily habits of individuals using sparse data
has been proposed in [28] (varying the amount of phone GPS data
“seen” by the algorithm). However, the method initially requires
training on users with abundant data histories and hence cannot
be replicated with data sources such as from Twitter, where both
the training and testing datasets are sparse.

Broadly, related social media efforts have been focused on pre-
dicting the location of a given social media post, and not missing
locations from a timeline [19]. Such studies have also included
users with sufficient data and with certain assumptions (e.g. only
on those Twitter users who both themselves and their friends are
extremely active on Twitter, with at least 100 geo-tagged Tweets
in 1 month and assumes that once a user Tweets from a location,
they remain at that location until they Tweet again) [32]. Other
research which use social media in the domain of mobility focus
on Point-of-Interest (POI) and location recommendation, and pro-
vide the insight that similar user behavior can be useful [42]. This
method uses behavior of similar individuals and distances between
pairs of locations to predict the next POI location for an individual.
Thus we incorporate this feature of user similarity into the ILC
approach to address sparsity issues, and also compare our method
to the proposed method for full timeline inference.

Mobility sequence prediction methods. There are many model and
pattern based methods that have been used to infer movement of
individuals. While the focus of these methods has mainly been
to predict the next sequence of locations, and cannot be directly
compared to our goal of filling in an entire timeline, they have still
provided important knowledge about human mobility that can be
used in the timeline problem.

Several variations of Markov models, LZ predictors and pre-
diction by partial matching (PPM), as well as a non-linear spatio-
temporal prediction framework, have been investigated [2, 13, 14,
34, 36]. These methods focus on modeling the probability of visita-
tion to a future location by probability or frequency of past visits
and popular sequences in existing trajectories, each evaluating it’s
performance on prediction of a next location. Although that is not
our goal, we can still make use of such probabilities in our data
by incorporating components of the basic Markov model into the
ILC model, though in a manner that promotes filling in all missing
data, not just next location prediction. Besides, we also explicitly
assess performance of each of these these methods on sparse social
media data in comparison to our proposed approach where possible,
including NextPlace non-linear predictor [34], Markov Order-0 and
Markov Order-1 models [36].

More recently, recursive neural networks (RNNs) have been used
to predict individual level mobility timelines [12, 27, 40]. RNN ar-
chitectures have been used to predict where a user will check-in
next [27] and for next location recommendation [40]. Another RNN
architecture to predict next location in the timeline of an individual
has been proposed in [12]. The model is again focused on predict-
ing next location more accurately, and incorporates modules in the
architecture in order to capture more complex multi-scale patterns.
As well, despite the fact that this work aims to predict location value
in a user’s timeline when data is sparse, the work only focuses on
predicting the locations in the subset of timelines of users where
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Figure 1: A: Number of included Tweets by day of the week
(pink: weekdays, blue: weekends). B: Number of Tweets by
hour of day (pink: daytime, blue: nighttime). C: Frequency
distribution of total data points per user before filling in the
timeline. All graphs include all data from all 3 cities.
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Figure 2: A&B: Frequency distribution of number of as-
signed locations over all values of k (closest hour of week)
for all posts per user (A: resolution r; = 1 hour, B: r; = 2). C&D:
Frequency distribution of number of assigned locations per
user over all values of & (closest hour of day) (C: r; = 1, D:
r; = 2). All graphs include data from all 3 cities (excluding
users who had no tweet in daytime hours). Users fulfilling
inclusion criteria are highlighted in pink.

richer data is available (described in the previous section), and does
not address the challenge of inferring the complete timeline of a
user. While these new methods provide a fresh approach to address-
ing the problem of mobility prediction by allowing the model to
learn different behaviors on its own as opposed to previous meth-
ods where the behaviors of individuals were manually specified,
they are not specifically tailored for predicting complete timelines.
However, given the potential for high performance of deep learning
models, we do assess what the tradeoff would be, for performance
on our task, in terms of data availability (e.g. with what amount
of data would a standard deep model perform better than a model
incorporating known movement heuristics a priori).

3 METHODS
3.1 Datasets

In order to obtain enough data for training and testing, we used 6
months of publicly available geo-located data from the Twitter API
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(1st January — 30th June 2014) for the cities of New York, Washing-
ton, DC and San Francisco. We collected all the Tweets containing
a ‘point’ geo-location within defined bounding boxes for all three
cities. The resulting data set consisted of 18,164,503 Tweets by
443,945 users from New York City, 3,385,308 Tweets by 125,873
users from Washington, DC and 1,817,411 Tweets by 111,441 users
from San Francisco.

3.2 Filtering and Preprocessing

3.2.1 Spoofed locations. We identified and excluded any Twitter
accounts that represented impossible movements based on Tweet
locations and times. A threshold speed of 0.5 miles/minute was used
to filter out such Tweets, based on previous work outlining realistic
movement patterns [24], and all accounts with more than 5% of
their Tweets violating the above criteria were excluded. A total of
16,582, 3,342 and 2,750 accounts (from each city, respectively) who
were removed due to having more than 5% of their Tweets marked
as coming from a spoofed location.

3.2.2  Grids. We assessed three grid sizes; 1 X 1, 0.5 X 0.5 and 0.1
% 0.1 miles. For each, we assigned every geo-located Tweet in the
dataset to a grid. These grid sizes are based on previous research
which has identified perception of how large a neighborhood bound-
ary is for temporary movements such as walking (1 mile) [29, 31].
Multiple grid sizes were added to assess the impact of grid size
on the performance of the method. A total of 841, 143 and 736
grids(grid size= 1 X 1 miles), 3,364, 572 and 2,944 grids (grid size=
0.5 X 0.5 miles) and, 84,100, 14,300 and 73,600 grids (grid size= 0.1
% 0.1 miles) were created for NYC, DC and SF respectively.

3.2.3 Temporal Sampling. Tweet timestamps were adjusted for
time zone and daylight savings. Included Tweets were distributed
across all days of the week evenly (Fig. 1A). For each individual
present in the dataset we created separate timelines at resolutions
of r; = 1 and 2 hours. Given the time stamp ¢ of a Tweet, and value
ri, kw = (h, d)w, is computed where k is the closest sampled hour
at an interval of i hours from the start of the week, h is the closest
sampled hour at an interval of r; from the start of the day, d is the
day of the week and w is the week number since the start of the
data. For example, for r; = 1, the time of a Tweet made at t = 19 : 05
on Tuesday would be assigned k = 43 i.e 24+19 and (h, d) = (19, 2)
(assuming week starts on Monday). For r; = 2, for the same Tweet,
k =22ie. 12+ 10 and (b, d) = (10, 2).

3.24 Stay Duration. To estimate the stay duration, we interpolated
data points from users who made consecutive tweets from the same
location within a 6-hour or shorter time period. The maximum value
of 6 hours for the interpolation was a conservative estimate chosen
based on research showing how long people generally remain in
their most visited locations, and that an individual generally spends
most of their time in most visited locations [8, 16, 20].

3.2.5 Home Location. Individuals are more likely to stay at their
home location for longer periods and individuals generally don’t
change locations at night time [17]. Consistent with previous stud-
ies and Fig. 1B, we consider a location x as the home location of
an individual on a day of week d, if the individual most frequently
tweets from location x between 10 pm of the day of the week d and
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8 am of the day of the week d+1. Given the sparse nature of the data,
for days of the week wherein an individual had no Tweets between
10 pm and 8 am, the home location was assigned where they most
frequently Tweeted from between 10 pm and 8 am, irrespective of
day of the week. We refer to points in an individual’s timeline with
location information, either originally from a user or interpolated
from a home or stay duration, as assigned locations.

3.2.6  Personal vs Non-personal accounts. A Twitter account, e.g.
@SearchAmerican, that belongs to an organization, as opposed to
an individual, is likely to be used by multiple individuals in the
organization and hence does not represent the movement patterns
of a single individual. To examine the distribution of personal vs.
non-personal accounts in our dataset, we used Amazon Mechanical
Turk (AMT) labelling on 7,000 randomly selected accounts. Each
account label was manually annotated twice by AMT workers as ei-
ther personal or non-personal accounts. Accounts with conflicting
labels were annotated a third time through AMT and the maxi-
mum vote used. 98% of the 7000 randomly selected accounts were
identified as personal accounts. Cohen’s kappa score of the annota-
tors was 93.0% [9]. Given the overwhelming majority of accounts
were identified as personal, it was assumed that most non-personal
accounts must have been removed during the ‘spoofed location’
filtering stage. The 2% non-personal accounts from the 7,000 set
were removed from the study but it was deemed unnecessary to
label the remaining accounts. After this stage, no information (e.g.
the Twitter handle) which could link back to an individual Twitter
account holder was retained.

3.2.7 Description of Included Users. We define a relaxed inclusion
criteria to ensure that the performance of all methods is being tested
on users with sparse timelines. From here onward we define two
notations: xx (u) is the assigned location for a user u, at time k,,
with k,, as above. ky, can also be interchangeably written as (A, d)y,
with h, d and w as above, or as ¢, which represents the index of k,
in the sampled timeline. Inclusion criteria were defined as follows:
given the timeline of a user, the user must have at least 1 assigned
location for each h during daytime hours (8am-10pm;non-nighttime
hours as defined in the section "Home Location"), irrespective of d
and w. This means that at a resolution of r; = 1 hour, all users were
included in our analysis who, after interpolation of stay duration
had at least 15 assigned location data points (8am-10pm) in the
entire duration of the dataset over all distinct h. For r; = 2, the
number was 8 assigned location data points. This resulted in 29,491,
4,947 and 1,119 users (r; = 1) and 45,710, 8,083 and 2,395 users (r; =2)
from New York, Washington, DC and San Francisco respectively.
Defining a relaxed inclusion criteria based on distinct h instead of
distinct k enabled us to include orders of magnitude more users
(Fig. 2) and allowed us to include up to 45% user (in NYC) who made
a tweet during daytime hours. The above selected users had on
average 82.8% (r; = 1) and 72.0% (r; = 2) of their daytime timelines
with no assigned location.

3.3 Individual Timelines

In this section, we first discuss prediction of a missing location in
a user’s timeline at time k, if location information of the user is
available at both k + 1 and k — 1. As described in earlier work, the
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movement of individuals is not entirely random and certain features
can be extracted to predict an individual’s location based on his
past behavior [35]. Moreover, people often move in groups, and
individuals with similar interests follow similar movement patterns
[26]. Accordingly, here we model the behavior of individuals as
a combination of: i) personal behavior represented as (subscript
I), and ii) community behavior (subscript C). Personal behavior is
further modeled using three behaviors: i) Next Location subscript
(I, a), ii) Previous Location subscript (I, b), and iii) Independent
Location subscript (I, ¢). Each of these three behaviors are further
treated as either i) day of the week and hour of the day specific
(superscript WS), ii) workday (weekday) or non-workday (weekend)
and hour of the day specific (superscript RS), and iii) only hour of
the day specific (superscript HS). These three stratifications were
created because of the extremely sparse nature of the dataset in
which we rarely observe users who have at least 1 location value
present for all days of the week and hours of the day. For the
following section we define: any P represents a list of locations
and their corresponding probabilities for a given user at a given
time. P(xg,, == j) thus represents the probability corresponding to
location j at time k., and P(xj. ) represents the list of all possible
locations and their corresponding probabilities at time k., .

3.3.1 Next Location. Given the location x(x 1) (u) is missing, and
given the location x_ (u) = i, we calculate the conditional proba-
bilities of all the possible locations of a user u at time (k + 1),,. This
probability is calculated by taking into account that people often
follow specific patterns of mobility. For example, in the evening at
7pm, given that an individual is at a grocery store, the next loca-
tion of an individual will likely be his home. Given that the same
individual is at home at 7pm, the individual could either choose
to stay home or to go out (e.g. to a restaurant or bar). Given that
the time period is assumed to be 1 week, as contended in previous
work, these conditional probabilities are specific for each sampling
time on a given day and day of the week, irrespective of the date
[5]. Then, for all possible locations j, P(I}'fi)(x(kﬂ)w, = j) of a user,
given xg_, = i, is defined as:

2 (X(k+1)yy == Jlxk,, == 1)
w

%(ka ==1i)

For RS we calculate similar proportions, but relax the conditions

by additionally accounting for days which are of the same type,
i.e workday or non-workday, when calculating the proportions.
P(}}’Sa)(x(hﬂ,d,)w, = j) is thus defined as:

2 X (Nrivad) == JlxXha),, == 1)
W d=DT(d")

2 2 (Xmay, ==1)

W d=DT(d")

where DT(d’) returns the list of type of days i.e weekdays or
weekends, as d’. Pg i) completely removes the condition of the
proportion being specific to the day of the week (instead of d =

DT(d’), we consider all d).

3.3.2  Previous Location. As a reciprocal of Next Location predic-
tion wherein we used xj , to predict x(x41),,, here we predict x|

(L,b)
are calculated similarly using relaxed conditions of day of the week,

as defined for P(I}’Sa) and P{II’ Su )

conditioning over the location value at x(x1),,- Pgsb) and PHS
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3.3.3 Independent Location. Several locations which an individual
visit are specific to the day and time regardless of where the indi-
vidual is coming from or where they plan to go next. For example,
for a weekly meeting or a class at 11am on Tuesday, an individual
will be in the location of the meeting or the class irrespective of
his previous or next location. To incorporate these patterns, we
calculate probabilities for “Independent Location™ the probability
of a user being in any location j at time k := (h,d), P(‘;rf). This
is defined as the proportion of times the user was at location jat
time k, in the dataset. Fg“’;) of a user being in any location j at

time k := (h,d) is defined as the proportion of times the user was
at location j during hour h and days of the week similar to d i.e

(weekday or weekend). And, Pg"’;) is defined as the proportion of

times the user was at location j during hour h in the dataset.
Combining lists of all probabilities in the individual’s (WS) be-
havior gives:

PVS = (Ag P("ff) +Ap P{'}ff) + P{‘{f))ﬂ

where A; and A are information loss factors defined later in the
Intermediate Location Computing section. Probabilities of visit to
each location, from all behaviors, are summed to generate a single
list of locations and their corresponding probabilities:

P =(PYS + PR + PHS)/3

3.4 Community Behavior

Individuals with similar interests, or those working or living in the
same demographic have a higher chance of visiting similar locations
[5]- Hence, we maximize the use of the data by also including
information about individuals who have shown to follow similar
mobility patterns. For each individual, we identify individuals who
have similar mobility patterns, via a similarity factor. This factor,
s(ul,u2), is defined as the probability that another individual u2
will be in the same location as the individual under consideration
ul at any given time:
Zw k¥, (ul) == xg, (u2))
Yow Lk (INULL(xy, (u1))&!N ULL(xg,,(u2)))

Using the similarity factor defined above, we calculated community
behavior (probability list for locations at a time k) using the top m

users in the dataset with the highest similarity factor for a given
individual via:

PC(ka =J)= Z s(u) = (ka(u) =j)
=1

Combining individual and community behavior then gives:
P(xg,, =j) = (1= i) * Pr(xk,, = ) + P * Po(xg,, = )
where ;. defines the hour and day of week specific effect of com-
munity behavior on an individual. To account for varying behavior
of an individual during a week, we generated separate lists of simi-
lar users for weekdays and weekends. We also examined a range of
values for m (0, 1, 2, 5, 10, 20, 50), to identify the minimum number
of similar users for maximizing prediction accuracy.

3.5 Intermediate Location Computing

Given the sparse nature of social media, in most instances there are
multiple consecutive missing location data points in an individual’s
timeline. Thus the issue of predicting location at ki if either or both
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(k+1),, and (k — 1),, are missing will arise. Hence we introduce the
concept of Intermediate Location Computing. For simplicity, we
will only define the procedure to identify the intermediate location
at sampled time (k — 1), (which is used to calculate of P(‘}": f;’)}. A
similar approach can be used to identify the location at time (k+1),y
(which is used to calculate P&"‘r g))

Broadly, our problem is that a location exists at time (k — n),,
such that no location data for an individual is present between k,,
and (k — n),,. To address this, we use location data at (k — n),y,
to iteratively predict intermediate locations of the individual at
times (k — n + 1)y until we reach (k — 1)w. We define the function
Inter(L1, L2), which for a specific time point, takes in two lists L1
and L2, and returns the location which has the maximum proba-
bility in list L1, and if no location exists, returns the location with
maximum probability in list L2. Here L1 is P(1 gy and L2 is P ().
In simple terms, at each step, we first identify the most probable
location using Next Location. If no location data exists, we resort to
identifying the most probable location using Independent Location.

Given that locations at (k + 1),, and (k — 1),, predicted using
this method are only probable locations and successive predictions
will decrease certainty, we multiply by an information loss factor
A to account for loss in information in calculating intermediate
locations. This factor A is defined as: A = (1 — a)("_l), where n is
the number of steps required to reach the nearest available point
with an available location, and « is a constant information loss on
each step.

This approach to identify loss in information in sequential predic-
tors has been used in the past, particularly in dynamic belief models
[41]. The basic idea is that at each sequential prediction there is a
probability of a that the prediction will be incorrect. Iterating this
for a data point present n steps away makes the overall probability
of correct prediction (1 — a)("=1), In the example given in Fig. 3,
when finally calculating the location at k,y, given that the value of
n for the left side is 3, P&"‘r g) is multiplied by (1 — a}(s_l). Similarly
given that n for the right side is 2, P&"‘r g) is multiplied by (1— a)(z_l).
The example in Fig. 3 demonstrates the steps performed to compute
the intermediate locations for (WS). We use the same method to
calculate intermediate locations for (RS) and (HS) probabilities.

The complete method to construct complete mobility timeline of
a given user is summarized algorithm 1. In the algorithm, as defined
above, we replace k., with g, to represent the index of each time
step in the timeline. Further given a timeline T of an individual, the
location x4 is the g element in T, i.e T[q].

3.6 Training and Testing Data and
Optimization

To select the training data for the entire prediction we, randomly
and uniformly across all distinct values of k, sampled 70% of the
data from each user. It should be noted that the test set contains
the 30% location data of each user which was not used in calcu-
lating the conditional probabilities or training the model. Further,
the data spans only the daytime hours wherein an individual is
changing location most frequently. The performance of the model
was calculated only on this test data as not to bias the performance
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Algorithm 1 Constructing complete mobility timeline using ILC

Input: Timeline T of user u, community behavior, Pc, of similar
users at each time step, effect of community behavior § and 1, and
Ap for each g

Output: Complete timeline Teomprere

: Tcomplete T

1
2:
3. for each behaviour S in [WS, RS, HS] do
4 Tg — Tg T

5 for qin1:length(TS) do
6 if NULL(TS[q]) then
7 T51q] — inter(P} (xqlxg-1 = T5[q— 11), P} (xg))
8 end if
9 end for
10: for gin length(Tlf) :1 do
11: if NULL(TIf[q]) then
12: T)[q] « inter(P}  (xqlxg+1 = T, [q + 1), P} ,(xq))
13: end if
14: end for
15: end for

16:
7: for each x4 in T do
18: if NULL(x4) then

—_

19: for each behaviour S in [WS, RS, HS] do

20: if NULL(x4-1) then

21 P}?a(xq) — Pfa(xq|xq—1 = Tés[q -1])

22: else

23: Pia(xq) — pIS’a(xqpcq_1 =Tlg-1])

24: end if

25: if NULL(xg+1) then

26: Pﬁb(xq) — 1t>15’b(xq|xq+1 =T lg+1])

27: else

28: Pib(xq) — Pib(xq|xq+1 =Tlg+1])

29: end if

30: Pi(xq) = (Aa * P(Sl’a)(xq) + A * P(Sl,b)(xq) +
PS (xq))/3

31: end for

32: Pp = (P}VS(xq) + PRS(xq) + PHS (xq))/3

33: Teompleteld] — arg.max((1-Bq)*Pr(xq)+PBq+Pc(xq))

34: end if

35: end for

Return Teomplete

of the method towards sampled times where an individual is static
(nighttime hours).

Using the training data, we calculated Py and Pc lists for every
individual, at each time resolution. These probabilities are then
used to optimize the value of ff; and a. For simplicity, we optimize
a fixed value independent of a user or a sampling time for «, but .
is user, day of the week and hour of the day specific as we would
expect the contributions of community behavior to vary at different
times and for different people. To select the optimal values of f.,
we vary fi from 0 and 1 (intervals of 0.05) and select the Sy, for a
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Figure 3: Intermediate Location Computing algorithm illus-
tration. A: Timeline of an individual for a week w, between
k — 3 and k + 2. Location data for the individual is missing
for k — 2 to k + 1. Shaded area shows the location to be pre-
dicted. B: Intermediate locations (red) calculated after first
iteration. C: Intermediate locations after second iteration. D:

Effect of information loss on PV° and P35 .
(I,a) (I,b)

given k, that maximizes prediction accuracy on the training data.
was optimized in a similar way, but only using Py (inclusion of Pc
would have resulted in concurrent optimization of both & and f).
The value of « as 0.1 performed well on the training set, and was
used in study.

3.7 Evaluation Versus Baseline Models

For fair comparison and to ensure that the variation in performance
is only due to the inference power of the models and not due to
variation in training data, all baseline models were trained using
the same training data for each user (post processed form of data)
as used for ILC, and the performance of the models was tested on
the same test set.

3.7.1  Home-Work location Model. It has been shown that periodic
behavior accounts for up to 70% of an individual’s movement [7].
Given that the periodic behavior Hence, the first baseline model
assumes users follow a simple periodic behavior, switching be-
tween two locations: their inferred home and work locations. Using
the training dataset, we computed and assigned a single home
(nighttime) and a work (daytime) location for each individual by
identifying the most frequent location a user is present in between
10pm and 8am, and between 8am and 10pm.

3.7.2  Markov Models. Markov models have been widely used to
predict individual level mobility patterns [4, 36]. An Order-0 Markov
model identifies the most frequent location a user is in during a
given hour of the day, regardless of where the user came from or
is going[36]. The Order-1 Markov model, given the location x of
an individual at time k, identifies the most frequent location the
individual visits at time k + 1 if they were at x during time k. Due to
sparsity of data, multiple missing locations are predicted iteratively.
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i.e. each subsequent location at k + n is predicted using the previ-
ously predicted location at k + n — 1. For fair comparison, we use a
fall-back version for both Markov models which first computes the
(WS) likelihoods. If no location data exists, the model falls back to
(RS) likelihood, and then to (HS) likelihood.

3.7.3 Collaborative Point-of-Interest Recommendation Model. The
Point of Interest (POI) recommendation model was initially pre-
sented in [42], to recommend locations of interests of individuals
using data from Location Based Social Networks (LBSNs). The
model, in addition to using geographical distance between loca-
tions, first identifies close users both based on the social network
(friends/followers) of an individual as well as those who follow
similar movement patterns, and uses their location to predict the
individuals location. In line with the conclusion of the original
work, that social ties are not strong predictors, and given that we
are not assuming that the location data for the social network of
individuals is available, we model the movement of an individual
using the geographical distances between locations and location
data of users who follow similar movement patterns. Geographical
influence is modelled based on a power-law distribution between
successive data points, while location of similar users is calculated
similar to the community behavior part of our method.

3.7.4  NextPlace: Spatio-Temporal Non-linear Model. This spatio-
temporal non-linear “NextPlace” prediction model uses a non-linear
framework for predictions and unlike Markov models, which pre-
dict the next location at time k + 1 using historical movement
patterns, or the community based methods, which use location data
of similar users, uses the history of trips to the same location to pre-
dict when an individual will be in the same location the next time.
[34] The method first identifies the start time and stay duration of
each trip, then embeds the timeseries in a multidimensional space
by adding multiple instances of the timeseries with delays to ac-
count for non-linearity. Then, the start times and stay durations of
the user’s next visit are averaged to predict when and for how long
the next visit to the location will happen. In our implementation,
we used the delay as the smallest temporal unit in our study (i.e 1
and 2 hours for r;=1 and 2). Given the sparsity of data, we define the
start time when an individual makes a tweet from a location, and
stay duration is either inferred as described in the preprocessing
section of paper, or assumed to be either 1 or 2 hours based the
value of r;.

3.8 Recursive Neural Network

RNNs and specifically LSTMs (Long Short-Term Memory blocks)
have been gaining popularity due to their strength in identifying
and utilizing complex sequences of information to make future
predictions. For the domain of mobility prediction, this provides a
contrast to other work in which the heuristics for mobility mod-
elling are self specified. Hence, here we also study the utility of
an RNN architecture in constructing entire mobility timelines of
individuals in the context of sparse location data. Fig. 4 shows the
architecture of the network. We use a basic architecture, similar to
those used in previous mobility and sequence prediction work [12],
but adapted for full timeline location inference. Specifically, instead
of using separate inputs for current and historical trajectories of
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Figure 4: Architecture of Recursive Neural Network.

location, due to the sparse nature of data we input a single trajec-
tory of all locations. Secondly and more importantly, here instead
of only using a historical sequence of locations (left padded input),
[(X(k=n)y > X(k=2),> X(k-1),,] to predict x , we also use the fu-
ture sequence of location (right padded input), [X(k+1),,» X(k+2),, s
X(k+n),, ], to maximize the utility of sparsely available data and
predict a location value for ever missing time step (not just next
step). Thus, the architecture comprises of left and right padded
input layers which are fed to embedding layers to convert sparse
inputs into dense representations. The outputs from the embedding
layers are then input to recurrent units comprising of an array of
LSTM units. The LSTM outputs are then passed through a fully
connected layer and concatenated before being passed through a
fully connected layer to interpret the output and make prediction.
All fully connected layers use rectified linear unit activation except
for output layer which uses softmax activation. The model uses
categorical cross entropy loss function and uses Adam optimizer
to update weights in the network. The model is trained using the
training dataset. 10% of the training set is set aside for validation.
After each epoch, the performance of the model is tested on the
validation dataset. The training is stopped when no improvement
in prediction accuracy of validation data is observed. Though ar-
chitectures can be further augmented with other types of modules
to model further complexities, the comparison here is meant to
evaluate the pure heuristic versus deep learning approaches.

4 RESULTS

4.1 Comparative Performance of Methods

The ILC, RNN, Home-Work and Markov-0 models predicted a lo-
cation value for every missing data point in the dataset (Table 1).
Amongst the remaining methods, the NextPlace algorithm ‘filled-in’
the least number of missing data points. ILC and RNN outperformed
all baseline models across all cities (Table 1).
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Table 1: Overall prediction accuracy (%) and average percentage of filled timelines(written in {}) for baseline models and Top 1
and Top 3 locations predicted by the intermediate location computing model.

City r; Top 1 Top 3 RNN Home-Work Markov O(0) Markov O(1) POI NextPlace

NYC r;=1 72.69{100} 82.35{100} 73.09{100} 65.54{100}  64.65{100}  26.39{32.70}  15.59{56.04} 0.17{18.07}
ri=2  64.78{100} 77.38{100} 59.33{100} 59.28{100}  57.98{100} 32.56{48.69}  19.11{76.75} 0.21{28.93}
DC  r;=1 75.08{100} 83.61{100} 74.58{100} 66.91{100}  65.76{100} 27.75{32.29}  31.27{70.60} 0.11{17.23}
ri=2  68.85{100} 79.57{100} 63.27{100} 62.35{100}  60.64{100}  34.13{48.79}  34.56{82.56} 0.19{28.36}
SF r;=1 77.20{100} 86.28{100} 76.26{100} 67.74{100}  67.21{100} 16.78{30.12}  35.49{60.24} 0.15{17.57}
ri=2  70.78{100} 82.06{100} 64.78{100} 63.66{100}  62.91{100} 19.52{43.72}  32.69{67.69} 0.22{28.50}

Table 2: Prediction accuracy (%) for Top 1 (T1) and Top 3 (T3)
locations predicted by the ILC model by grid size. (g) repre-
sents a grid size of g X g miles.

City r;  T1(05) T3(0.5) T1(0.1) T3(0.1)

NYC rj=1 65.64 75.71 54.23 64.07
ri=2  59.29 71.65 46.06 57.96
DC ri=1  67.32 77.65 54.27 64.10
ri=2 60.19 72.59 46.85 58.23
SF ri=1 70.86 80.97 57.37 67.26
ri=2  63.37 75.47 48.07 59.81
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Figure 5: Cumulative fraction of users vs. prediction accu-
racy for ILC and baseline models, r; = 1, (A) and 2 (B).
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Figure 6: Prediction accuracy of ILC (no community data)
and RNN with number of users used to train the model for
NYC r; = 1. Values calculated at # of users=5,10,50,100,200 us-
ing mean of 10 replications. At ~50 users RNN performance
comes close to ILC, and by 200 users the RNN model sur-
passes ILC. Accuracy values for training with all available
users are in Table 1.

For r; = 1, RNN slightly outperformed ILC in only NYC when
considering the overall performance of methods on test data points
(Table 1). When analyzing prediction accuracy per user in the test
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set, RNN slightly outperformed ILC (Fig. 5). For r; = 2 ILC out-
performed RNN across all cities both when considering overall
accuracy on test data and accuracy per user. Additionally, for r; = 2,
despite RNN outperforming Home-Work location model when con-
sidering overall prediction accuracy on test data (Table 1), it per-
formed slightly worse than Home-Work location method when
considering accuracy per user (Fig. 5B).

Amongst the heuristic-based baseline models, simpler models
outperformed more complex models. This was mainly because they
were able to predict a location value for larger number of missing
data points. The Order-0 Markov and Home-Work location model
resulted in similar prediction accuracy and outperformed the re-
maining baseline models. In contrast to previous work, the Order-1
Markov model had a lower prediction accuracy as compared to
Order-0 Markov, largely because it was only able to predict a loca-
tion value for one-third of the data points in timelines at ;=1 and
one-half of the data points in timelines at r;=2. The time-dependent
POI recommendation model outperformed Order-1 Markov model
in SF and DC and underperformed in NYC. This is consistent with
the fact that as shown in Fig. 7B, SF and DC had higher similarity
between locations of individuals as compared to NYC. Additionally,
the POI model was able to predict a much larger portion of users’
timelines as compared to the Markov-1 model, yet accuracy values
for both methods were close. The NextPlace method based on a non-
linear spatio-temporal framework had the least predictive power
given the fact that it relies largely on stay duration information.
Given the lack of this information in social media, the model was
scarcely able to predict missing location values.

While the baseline heuristic based methods have been optimized
for different data types, in general, ILC specifically addresses the
challenge of sparse data by incorporating a wide range of com-
ponents. The simpler components help predict a location value
for each missing point, while the more complex components help
identify complex movement behaviours.

Comparing ILC with RNN shows that RNNs are powerful meth-
ods that can out perform traditional heuristic based methods. How-
ever, we see that in low data settings, heuristics can be used to
outperform the deep learning approach (e.g. when predicting at
less frequent time intervals, or when a lower number of users are
available to train the model). This is evident in Fig. 6, where despite
RNN outperforming ILC in NYC at r; = 1, if trained on a fewer
number of users, it under performs. Also in Fig. 5 we see that the
RNN requires data from more users to achieve the same accuracy as
ILC, when considering r;=2. However with increases in the amount
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Figure 7: A: Prediction accuracy (%) vs. number of similar
users (m). Model based on individual and community behav-
ior (black), and community behavior only i.e f§ = 1 (red).
All values were computed for r; = 2 and using Washington,
DC data. B: Aggregated similarity factors of closest users
(X, s(u)) vs. fraction of users by city. X-axis normalized by
dividing by the maximum aggregated similarity factor for a
user in the dataset.

of training data, the RNN outperforms ILC. This is due to the fact
that this implementation of ILC only uses a maximum sequence
length of two time steps, RNNs can learn larger and more complex
sequences of locations. Additionally RNNs can also learn longer
sequences of location data of similar users and help improve pre-
diction. Decision between selecting one over the other is based on
the goal of the study and the availability of data. If sparse data for a
large number of users is available, then an RNN approach should be
preferred. But if the goal of the study is to maximize the number of
users for which complete timelines can be constructed by sampling
their locations at less frequent time intervals, or if the number of
available users is low, then a heuristic based method like ILC should
be preferred given that it does not need data to learn patterns.

4.2 Effect of Community Behavior

We found that the effect of community behavior is consistently
higher on an individual’s mobility patterns during weekends as
compared to weekdays (. higher on weekends across all cities and
ri). The average value for i during weekdays ranged from 0.449
(NYC, ri =1) to 0.466 (DC, ri=2), while during weekends ranged
from 0.456 (NYC, r; =1) to 0.492 (DC, r;=2).

We observe that inclusion of community data helps the perfor-
mance of the method and the main improvement is seen when
the first similar user is accounted for (Fig. 7A). Moreover, after m
= 20, accuracy improvements begin to plateau with more m (the
inclusion of m closest individuals to compute community behavior
will work best for individuals who have high similarity values with
other individuals and are not outliers in terms of their mobility)
justifying the use of m = 50 in our method.

4.3 Performance of ILC in Different Settings

We observe that for ILC performance decreases as the interval (r;)
increases from 1 to 2 hours (Table 1), and as the grid size decreases
(Table 2), which is inline with the findings of [10] that at larger
time intervals and smaller grid sizes there is a higher associated
uncertainty . Similar trend is observed for RNN as increase in r;
from 1 to 2 hours decreases the overall training data for the model.
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Fig. 8 shows prediction accuracy versus the number of distinct
locations grids by individuals, for 1, and 2-hour resolutions; accu-
racy decreases with an increase in the number of distinct location
grids visited by an individual. The fitted line is generated using a
generalized additive model (GAM).

5 CONCLUSION

In this paper, we present a method for predicting missing locations
from an individual’s mobility timeline with good accuracy, using
only sparse location tags from social media data. In order to address
the challenge of sparse data, the model uses several heuristics of
human movement and incorporates similar user data. The proposed
approach consistently outperforms baseline heuristic based meth-
ods across data from three major cities, showing stability of the
approach. We also show how ILC fulfills timeline prediction better
than an RNN in sparse data settings, though use of heuristics should
be incorporated into the RNN architecture design in future work
to further advance the approach.

We recognize limitations of this work. Predictions for an individ-
ual can be biased based on their Tweeting patterns (which can be
specific to the types of people who use Twitter), although the incor-
poration of community behavior helps minimize this bias. Second,
even though our work advances previous work by predicting full
timelines for a large number of users, there are still many users for
whom the location cannot be predicted by our model. Hence, despite
the generalizability of the method and the dataset, the methodology
will not be accurate for every single user. Third, here ILC only uses
one location point in the past i.e k — 1 to predict the location at k
due to the sparse nature of the data and prioritization of filling in
the timeline, but we can expand the approach to use the sequence
of n locations in the past to predict the next location, with more
complex considerations. Overall, this research demonstrates a new
approach for the specific problem of filling in location timelines
from sparse social media data, without assuming any information
besides location data is available. The result can be used in many
real-world applications that require location timelines.
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