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A B S T R A C T

The Cenozoic India-Asia collision reactivated several ancient thrust belts in the interior of the Asian continent,
including the West and East Kunlun ranges in central Tibet, and the Tian Shan and Qilian Shan further north.
Both basin sedimentary records and thermochronological data show that the uplift of the South Tian Shan and
Qilian Shan at the north occurred earlier than that of the West and East Kunlun ranges at the south. Diachronous
continental deformation and initiation of uplift during orogeny are contrary to the general notion that the stress
transfer in response to the India-Asia collision should propagate sequentially from south to north. Here we
systematically conducted 2D thermo-mechanical simulations to investigate possible factors for this diachronous
deformation pattern. The results show that a hotter Tian Shan lithosphere, with Moho temperature> 100 °C
hotter than that of the proto-southern Asia, leads to an earlier and higher uplift of the Tian Shan. Additionally, a
faster convergence rate of the India-Asia collision results in a more efficient transfer of boundary force into the
upper plate's interior, giving rise to a larger amount of uplift in the Tian Shan. We conclude that intra-continental
ranges with weaker lithosphere, such as the Tian Shan or Qilian Shan, uplift earlier than stronger regions, such as
the West and East Kunlun ranges. Faster convergence rates amplify this situation. Our results imply that the
unique diachronous growth of the Tibetan plateau arises from its complex pre-collisional history, which includes
collided arc-continent terranes with hotter and weaker lithosphere that respond to the effects of far-field stress
transfer.

1. Introduction

The Cenozoic India-Asia collision exerts far-field effects on the
tectonic deformation of the interior of Asian plate, and boundary forces
along the collisional margin have reactivated several weakly welded
suture zones in southern Asia (Hendrix et al., 1992; Yin, 2000; Yin and
Harrison, 2000; Zuza and Yin, 2017). This proposal has been related to
the stepwise growth of the Tibetan plateau from south to north
(England and Houseman, 1986; Tapponnier et al., 2001). Stress re-
sulting from the collision was transferred northward through the Ti-
betan plateau, Tarim basin and Qaidam basin to the interior of Asian
plate, leading to deformation and uplift of the Tian Shan and Qilian
Shan thrust belts, strike-slip faulting in Mongolia, and the formation of
the Baikal rift (Molnar and Tapponnier, 1975; Tapponnier et al., 1982;
Vassallo et al., 2007; De Grave et al., 2007).

Past research commonly highlights the expected northward propa-
gation of deformation and northward younging of orogeny in response
to the India-Asia collision. However, this idea has been challenged over
the years by observations from both basin-sedimentation studies and
bedrock thermochronology, which demonstrate that uplift occurred
relatively early along the orogen's northernmost boundaries, prior to
regions within the plateau interior. Specifically, the South Tian Shan in
the north uplifted prior to the West Kunlun range in the south, and
uplift of the Qilian Shan in the north preceded that of the East Kunlun
range in the south (Fig. 1, Supplementary Data Table A.1). This out-of-
sequence uplift of the Himalayan-Tibetan orogen conflicts with the
aforementioned long-held notion of progressive northward propaga-
tion. It is therefore critical to understand the mechanism for the unique
diachronous orogeny of the Tibetan plateau and thrust belts in Asian
continent's interior under the framework of India-Asia collision.
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Intra-continental deformation within the India-Asia collision has
been extensively studied by numerical modeling over the past four
decades. Previous studies were mainly based on thin viscous sheet
models (England and Houseman, 1985, 1986; Neil and Houseman,
1997; Dayem et al., 2009) or viscoplastic models under plane strain
conditions (e.g., Vilotte et al., 1984). These models highlighted the
importance of a rigid inclusion, analogous to the Tarim basin, to drive
crustal thickening in northern Tibet or the Tian Shan. Recently, Pusok
and Kaus (2015) used 3D mechanical models to show that both external
forcing and the presence of a strong block (i.e., Tarim basin) are ne-
cessary to generate high topographic fronts and plateaus. Some models
take into account the south-north rheological heterogeneity to in-
vestigate the dynamics of the multi-terrane configuration of the Tibetan
plateau (Kelly et al., 2016; Li et al., 2016; Huangfu et al., 2018). These
models emphasize that distinct properties of the multiple terranes
played an important role in the geodynamic evolution of the Tibetan
plateau and associated intraplate orogeny. However, none of these

previous studies investigated the cause for the out-of-sequence uplift
observed in the Asian plate and/or the Himalayan-Tibetan orogen, in-
cluding any potential influence of terrane variability on its coupled
thermal and mechanical evolution.

In this study, we investigate the far-field effects of the India-Asia
collision on intraplate orogeny using 2D thermo-mechanical simula-
tions. Our focus is on the topographic expression in response to the
collision between the Indian and Asian lithosphere with varying
strength heterogeneity. Lithospheric strength variation here is ex-
pressed in terms of lithospheric thermal state or rheology contrast (e.g.,
Chen and Gerya, 2016; Chen et al., 2017). On this basis, two key
parameters are systematically examined: (1) convergence rate and (2)
the upper plate thermal state. The aim of this study is not to reproduce
the orogeny in detail, but rather to advance our understanding of po-
tential driving mechanism for the diachronous topographic rise of the
West Kunlun range versus the South Tian Shan, which also provides
insights for the out-of-sequence deformation observed between the East

Fig. 1. (a) Topographic map of the Tibetan plateau and surrounding region. A-A′ indicates the location of topographic profile in panel b. Numbers are uplift or
deformation timing in million years, and those in brackets are reference numbers. The South Tian Shan uplifted at ~26–24 Ma (references: (1) Jepson et al., 2017; (2)
Glorie et al., 2011; (3) Sobel and Dumitru, 1997; (5) Sobel et al., 2006; (6) Wang et al., 2011; (7) Li et al., 2019b; (10) Yin et al., 1998) with multi-phase uplifting
pulses at ~17–16 Ma and younger (references: (4) Heermance et al., 2007; (8) Huang et al., 2006; (9) Charreau et al., 2006). The North Tian Shan uplifted at ~11 Ma
(references: (11) Charreau et al., 2005; (12) Bullen et al., 2003; (13) Bullen et al., 2001; (14) Glorie et al., 2010). The West Kunlun range uplifted at ~23–15 Ma
(references: (3) Sobel and Dumitru, 1997; (18) Jiang and Li, 2014; (19) Wang et al., 2003b; (20) Li et al., 2011) with a later stage of uplift at ~4.5 Ma (references:
(15) Zheng et al., 2000; (16) Zheng et al., 2006; (17) Tada et al., 2010). The Qilian Shan uplifted at ~65–30 Ma (references: (21) Zhuang et al., 2011; (22) Yin et al.,
2008; (23) Jolivet et al., 2001; (24) Yin et al., 2002; (25) Zhuang et al., 2018; (26) Zuza et al., 2016; (27) Zuza et al., 2019; (28) Qi et al., 2016; (29) Lu et al., 2012;
(30) Zhang et al., 2015) with a more recent phase of deformation at ~20–10 Ma (References: (31) Wang et al., 2003a; (32) Shi et al., 2018; (33) Sun et al., 2005; (34)
Guo et al., 2009; (35) Zheng et al., 2017; (36) Bovet et al., 2009; (37) Zheng et al., 2010; (38) Li et al., 2019a). The East Kunlun range uplifted at 40–20 Ma
(references: (22) Yin et al., 2008; (23) Jolivet et al., 2001; (39) Yin et al., 2007; (40) Wu et al., 2019; (41) Wang et al., 2017; (42) Wang et al., 2004; (43) Duvall et al.,
2013; (44) Mock et al., 1999; (45) Clark et al., 2010; (46) Wang et al., 2016; (47) Yuan et al., 2006). (b) Topography of a 20-km-wide swath profile along A-A′,
displaying a topographical pattern with high-low-high-low feature.
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Kunlun range and Qilian Shan.

2. Uplift timing of thrust belts in the interior of Asian plate

In discussing the diachronous uplift across the Tibetan plateau, we
focus on two north-south profiles: in the west is the West Kunlun-South
Tian Shan and in the east is the East Kunlun-Qilian Shan (Fig. 1a,
Supplementary Data Table A.1). In the West Kunlun range (i.e., the
northwestern margin of the Tibetan plateau south of Tarim basin), the
initiation of uplift is constrained at ~23 Ma based on the development
of a foreland basin in the southern Tarim basin, which is identified as an
environment transition between marine carbonate platform and clastic
tidal flat (Jiang and Li, 2014). This constraint is in accordance with the
estimated ~20–15 Ma initiation age based on apatite fission track
(AFT) dating (Sobel and Dumitru, 1997; Cowgill, 2001; Wang et al.,
2003b), multi-thermochronometer research (Ritts et al., 2008) and Nd
isotopic analysis (Li et al., 2011). In addition, a later stage of uplift has
been estimated at ~4.5 Ma constrained by paleo-environmental ana-
lyses (Zheng et al., 2000, 2006; Tada et al., 2010).

In contrast, the South Tian Shan, further to the north of the West
Kunlun range and Tarim basin, is characterized by ~26–24 Ma initial
uplift and subsequent multi-phase uplifting pulses. Near the South Tian
Shan front, growth strata and the transition of sedimentary facies in the
Kuche basin recorded initial deformation at ~26–25 Ma (Wang et al.,
2011; Li et al., 2019b) and ~24–21 Ma (Yin et al., 1998), respectively.
These constraints are confirmed by thermochronology research (i.e.,
AFT, and apatite and zircon (U-Th)/He), which suggests uplift and re-
lated exhumation initiated at ~25 Ma (Hendrix et al., 1994; Sobel and
Dumitru, 1997; Sobel et al., 2006, 2013; Glorie et al., 2011; Jepson
et al., 2017). Subsequently, the South Tian Shan underwent the main
phase of uplift at ~16–15 Ma based on estimates of total crustal
shortening using modern deformation rates (Avouac et al., 1993), the
acceleration of sediment flux (Métivier and Gaudemer, 1997), and an
increase in sedimentation rate (Huang et al., 2006; Heermance et al.,
2007). A later pulse of intensified uplift is also recognized in the Late
Miocene-Pliocene (Charreau et al., 2006, 2009; Huang et al., 2006;
Tang et al., 2011; Zhang et al., 2014). In addition, the surface uplift of
the North Tian Shan and Kyrgyz North Tian Shan initiated at ~11 Ma
possibly due to the migration of compressional stress (Bullen et al.,
2001, 2003; Charreau et al., 2005; Glorie et al., 2010). In summary, the
initial uplift of the South Tian Shan is earlier than that of the West
Kunlun range by ~2–3 Myr, although both the South and North Tian
Shan experienced distinct late Cenozoic deformation histories.

On the East Kunlun-Qilian Shan profile, to the east of the West
Kunlun-Tian Shan profile, deformation and uplift also exhibited mul-
tiple episodes. In the East Kunlun range, local Cenozoic exhumation
initiated at ~40–35 Ma (Wang et al., 2004, 2016, 2017; Clark et al.,
2010). This was followed by a subsequent primary phase of uplift be-
ginning at ~29–24 Ma as documented by the growth strata in the
southern Qaidam basin (Yin et al., 2007, 2008; Wu et al., 2014; Cheng
et al., 2016, 2018). This history has been supported by numerous
thermochronology studies. For instance, 40Ar/39Ar and apatite (U-Th)/
He ages recorded a deformation at ~30–20 Ma (Mock et al., 1999; Liu
et al., 2005; Duvall et al., 2013); AFT dating documented a later stage of
rapid cooling event at ~20–10 Ma (Lewis, 1990; Yuan et al., 2003,
2006; McRivette et al., 2019; Wu et al., 2019).

In the Qilian Shan, combined thermochronology, sedimentology
and structural studies suggest that Cenozoic uplift and exhumation in-
itiated at ~65–50 Ma (Jolivet et al., 2001; Yin et al., 2008; Zhuang
et al., 2011, 2018; Zhang et al., 2015; Qi et al., 2016; Zuza et al., 2016,
2019; Li et al., 2019c). Subsequently, a more recent phase of de-
formation and exhumation occurred in the Miocene time at ~20–10 Ma
(Wang et al., 2003a; Sun et al., 2005; Bovet et al., 2009; Guo et al.,
2009; Zheng et al., 2010, 2017; Shi et al., 2018; Li et al., 2019a),
probably related to the initiation of strike-slip faulting in northern Tibet
(Duvall et al., 2013; Zuza and Yin, 2016; Li et al., 2019a). In summary,

the Qilian Shan uplifted at least 10 Myr earlier than the East Kunlun
range, and possibly> 20 Myr earlier, which clearly demonstrates a
diachronous uplift pattern on the East Kunlun-Qilian Shan profile.

3. Numerical modeling method

3.1. Governing equations

To explore the far-field effect of the India-Asia collision, we use the
2D thermo-mechanical code, I2VIS (Gerya and Yuen, 2003a). It solves
the momentum, continuity and heat conservation equations based on
marker-in-cell and finite-differences methods:
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where σij' is the deviatoric stress tensor; P is the pressure; ρ is the
density; gi is the gravitational acceleration; vx and vy are the horizontal
and vertical velocity components, respectively; CP is the isobaric heat
capacity; DT

Dt
is the substantive time derivative; k is the thermal con-

ductivity coefficient; T is the temperature; Ha, Hr and Hs are adiabatic,
radioactive and shear heat production, respectively.

3.2. Rheological model

We consider the plastic and viscous rheology of rocks, which behave
like slowly creeping fluids at long time scale. The plastic rheology
follows the Drucker-Prager yield criterion at shallow depth and high
stress (Ranalli, 1995):

= +C P sin( )yield

=sin( ) sin( )(1 )dry

=
2plastic
yield

II (4)

where σyield is the yield stress; C is the cohesion (i.e., the residual
strength at P = 0), φ is the internal friction angle (φdry stands for dry
rocks); λ is the pore fluid pressure factor and II is the second invariant
of the strain rate.

The viscous rheology takes the form (Ranalli, 1995):

= +f B E PV
nRT

( )( ) expductile
n n a(1 )/ a

(5)

where Ea is activation energy; Va is activation volume; n is stress ex-
ponent; R is the gas constant. f is the scaling factor, which is used to
linearly modulate the effective viscosity relative to the reference la-
boratory data (e.g., Beaumont et al., 2004). This allows us to vary the
material strength to approximate the lithospheric strength hetero-
geneity due to tectonic inheritance and uncertainties in the rheological
parameters (e.g., Beaumont et al., 2004). B∗ is the pre-exponential
factor, which is related to material constant (AD) as follows:

=B AD n( 1/ ) (6)

Finally, the minimum of plastic and ductile viscosities defines the
effective viscosity:

= min( , )eff plastic ductile (7)

The models incorporate ‘wet quartzite’ flow law for the upper crust,
‘plagioclase An75’ for the lower crust, ‘dry olivine’ for the lithospheric
and sub-lithospheric mantle, and ‘wet olivine’ for the weak zone mantle
(Ranalli, 1995). These rheological parameters used in this study are
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summarized in Table 1.

3.3. Partial melting model

We take into account partial melting of various lithologies by em-
ploying experimentally-constrained solidus (Tsolidus) and liquidus
(Tliquidus) (Table 2). The degree of melt is represented as volumetric melt
fraction (M), which is assumed to increase linearly with temperature
(Gerya and Yuen, 2003b):

= < <M

T T
T T

T T
T T T

T T

0 when
( )

( )
when

1 when

solidus

solidus

liquidus solidus
solidus liquidus

liquidus (8)

The effective density (ρeff) of partially molten rocks can be calcu-
lated as follows:

= M ( )eff solid solid molten (9)

where ρsolid and ρmolten are the densities of the given solid and molten
rock, respectively.

3.4. Topography model

The evolution of topography involves the erosion and sedimentation
processes, which is calculated at each time-step on the Eulerian grid
following the transport equation (Gerya and Yuen, 2003b):

= +
t

v v
x

v vy x
y

s e
yes es

(10)

where yes is the vertical position of the model surface as a function of
the horizontal distance x; vx and vy are the horizontal and vertical ve-
locity vector at the surface; vs and ve are the sedimentation and erosion
rates conforming to the relation:

= = >v v y0 mm/yr, 0.2 mm/yr when 4 kms e es

= = <v v y0.3 mm/yr, 0 mm/yr when 1 kms e es

4. Model setup

The model domain extends 6000 km in the X direction and 820 km
in the Y direction, which is resolved by 2001 × 411 Eulerian nodes
with a uniform resolution of 3 × 2 km. There are over 12 million
Lagrangian markers randomly distributed in the whole domain. This
allows us to monitor crustal deformation in detail.

The model setup represents simplified tectonic map of the India-
Asia collision zone (Fig. 1a) based on Yin and Harrison (2000). It
consists of six tectonic units from left to right, south to north in the
model setup (Fig. 2a): Indian plate (2000-km-wide), Tethys Ocean
(500-km-wide), proto-southern Asia (1700-km-wide), Tarim basin
(800-km-wide), Tian Shan (500-km-wide) and Junggar basin (500-km-

wide). It is noteworthy that a narrow Tethys Ocean here is mainly used
to facilitate the subsequent subduction of the Indian plate (simple
shear), rather than to simulate the whole subduction history of the wide
Tethys Ocean. The oceanic crust is composed of 3-km-thick upper crust
and 5-km-thick lower crust, overlying 90-km-thick lithospheric mantle
(Fig. 2b). The continental lithosphere is divided into three categories
with different configurations. The proto-southern Asia is assumed to
have a pre-thickened crust composed of 25-km-thick upper crust and
25-km-thick lower crust (Kapp et al., 2005; Murphy et al., 1997), which
overlies the 50-km-thick lithospheric mantle. The Tian Shan is assumed
to have a 45-km-thick crust composed of 20-km-thick upper crust and
25-km-thick lower crust, which is underlain by 55-km-thick litho-
spheric mantle (Fig. 2c). The rest of continental domains have the same
crustal structure as the Tian Shan, but are underlain by 75-km-thick
lithospheric mantle.

All velocity boundary conditions (Fig. 2a) are free slip except the
lower boundary, which is permeable to allow the conservation of mass
in the computational domain and implies an infinity-like external free
slip condition (Burg and Gerya, 2005; Gerya et al., 2008; Li et al.,
2016). To simulate the topographical evolution, a 20-km-thick ‘sticky
air’ layer with viscosity of 1018 Pa s and density of 1 kg/m3 (Schmeling
et al., 2008; Crameri et al., 2012) is placed at the top of the model as the
internal free-surface. The initial geotherm linearly increases from 0 °C
at the surface to 1330 °C at the base of the lithosphere beneath all the
tectonic units except the Tian Shan, where the temperature first in-
creases linearly from 0 °C at the surface to a given value (e.g., 800 °C for
the reference model) at the Moho and then continues to increase with a
smaller geothermal gradient to 1330 °C at the lithosphere base. This
allows us to test the effect of the thermal state of the Tian Shan crust.
Similarly, different Moho temperatures of the proto-southern Asia have
also been tested. A mantle adiabat with potential temperature of
1330 °C and adiabatic gradient of 0.5 °C/km is used for the sub-litho-
spheric mantle. The thermal boundary conditions are illustrated in
Fig. 2a. The temperature is set constant (0 °C) for the top boundary and
the side boundaries are insulating (no horizontal heat flux). An infinity-
like external constant temperature condition is used for the lower
boundary (Burg and Gerya, 2005).

To drive the whole subduction-collision system, a constant con-
vergence rate is applied at the left side of the model (X = 1500 km).
The convergence rate in our models is based on estimates of Cenozoic
shortening rates across the Asian continent, north of the Himalayan
fold-thrust belt. Thus, our model involves shortening rates that are less
than the India-Asia convergence rate (Molnar and Stock, 2009), which
we justify because our model excludes any out-of-plane motion related
to lateral extrusion along large-scale strike-slip faults (e.g., Tapponnier
et al., 1982; Armijo et al., 1986, 1989). For comparison purposes, we
refer to the left and right sides of the model as south and north in the
rest of the paper. The West Kunlun range is defined as 150 km wide
forming the northern boundary of the Tibetan plateau. The Tian Shan is
sandwiched between the Tarim and Junggar basins on low topography.

Table 1
Rheological parameters used in the numerical experiments (Ranalli, 1995).

Material Flow law η Pan s n Ea kJ/mol Va J/ (Mpa mol) sin(φ) CPa

Sedi. Wet quartzite 1.97 × 1017 2.3 154 8 0.15 1 × 106

UCC Wet quartzite 1.97 × 1017 2.3 154 12 0.15 1 × 106

LCC Plagioclase (An75) 4.80 × 1022 3.2 238 8 0.15 1 × 106

UOC Wet quartzite 1.97 × 1017 2.3 154 8 0 1 × 106

LOC Plagioclase (An75) 4.80 × 1022 3.2 238 8 0.6 1 × 106

Dry M. Dry olivine 3.98 × 1016 3.5 532 8 0.6 1 × 106

Wet M. Wet olivine 5.01 × 1020 4.0 470 8 0 1 × 106

Note: Sedi., sediment; UCC, upper continental crust; LCC, lower continental crust; UOC, upper oceanic crust; LCC, lower oceanic crust; Dry M., lithosphere and
asthenosphere dry mantle; Wet M., lithosphere and asthenosphere wet mantle.
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5. Results

We performed 20 numerical experiments to investigate the effects of
convergence rate as well as thermal state of the proto-southern Asia and
the Tian Shan on stress transfer and intraplate orogeny. All the models
show similar episodes of evolution, including (1) subduction of the
Tethys Ocean, (2) continental collision, and (3) intraplate orogeny. The
variations in model parameters alter the deformation style and asso-
ciated topography expression, but the above-mentioned three episodes
hold for all the models.

The reference model involved the following parameters. (1)
Convergence rate (V) was set at 2.5 cm/yr, which is in agreement with
the estimate of Cenozoic shortening rate of Asian plate at present
(Guillot et al., 2003). (2) The Moho temperatures of the proto-southern
Asia (TMP) and the Tian Shan (TMT) were set at 665 °C and 800 °C re-
spectively, and the hot Moho underneath the Tian Shan is supported by
electrical conductivity of xenoliths study that suggested a Moho tem-
perature of 850 °C prior to shortening strain (Bagdassarov et al., 2011).
(3) The strength of lithospheric mantle of the Indian, Tarim and
Junggar blocks was adopted to be two times stronger than that of the
Asian and Tian Shan blocks (i.e., f = 2).

5.1. Reference model

Fig. 3 shows selected snapshots of the evolution of the reference
model. At the initial stage, the Tethys Ocean subducts underneath the
proto-southern Asia (Fig. 3a). A supra-subduction basin forms on the
continental margin of the upper plate, which accommodates the sub-
sidence of the upper plate's margin. The boundary convergence has
little impact on the deformation of the upper plate's interior, where the
horizontal deviatoric stress is low and the strain rate is generally slow.
The proto-southern Asian and Tian Shan blocks experience a transient
extensional state due to their hot thermal states.

As convergence continues, slab subduction is replaced by continent
collision. The pro-continent coupled to the oceanic plate is dragged
down to the depth of 200 km where the necking and breakoff of oceanic
lithosphere occur after ~25.4 Myr of convergence (Fig. 3b). When the
slab experiences complete breakoff, the India-Asia convergence would
no longer be consumed by slab subduction but rather by the deforma-
tion in the mantle wedge and subsequent far-field transfer of com-
pressional stress. The deformation of the upper plate becomes faster
relative to the initial stage, and significant strain localizes at the
boundaries between the strong and weak blocks, e.g., the south and
north slopes of the Tian Shan block (see the second invariant of strain
rate field).

Continuous convergence finally causes intraplate orogeny. After
55.8 Myr of convergence, the horizontal stress in response to the India-
Asia collision is transferred further northward by the rigid Tarim basin
triggering intraplate orogeny (Fig. 3c). The continued convergence
thickens the crust of the proto-southern Asia at the margin and causes
the formation of the Tibetan plateau (Fig. 4a, b). The cold Tarim basin
behaves as a rigid block and transfers stress to the Tian Shan. This leads
to strong crust-level fold-and-thrust deformation with a wavelength of
~60 km within the Tian Shan. As a consequence, the strain con-
centrates on both the weak Tian Shan and West Kunlun range, while the
strong Tarim basin is less deformed.

The topographic expression in response to the above-mentioned
geodynamic processes is illustrated in Fig. 4c–e. The stage of Tethys
Ocean subduction is characterized by the formation of deep trench.
After ~10 Myr of convergence, the topography reaches the height of
1–2 km due to the extrusion of accretionary wedge, which marks the
closure of the Tethys Ocean and the beginning of the continental col-
lision stage (Fig. 4c). In response to the slab breakoff and resultant
dynamic rebound, an abrupt topographic uplift takes place on the
subducted plate, which further results in the disappearance of the
trench. Subsequently, the Tian Shan and West Kunlun range uplifts after
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~31 Myr and ~36 Myr of convergence respectively, presenting the out-
of-sequence uplift. When analyzing the uplift sequence of West Kunlun
range and Tian Shan after India-Asia collision, a reference elevation of
500 m (white-colored contour line in the topographic elevation plots)
was adopted to define the uplift caused by the collision because the
thrust belts had experienced slow cooling rates of ~>0.01–0.02 mm/
yr prior to the initiation of rapid uplift (De Grave et al., 2011; Dai et al.,
2013; Wang et al., 2016, 2017; Cheng et al., 2018). Finally, the topo-
graphic map presents an overall uplift pattern across the Tibetan pla-
teau and the Tian Shan, where the elevation reached 2–3 km.

5.2. Effects of convergence rate

Since the Indian plate indented against the Asian plate with decel-
erating rates during its northeastward drifting (Molnar and Stock,
2009), the far-field effects under different shortening rates should be
tested. This group of models (Models a, b, c in Table 3) was designed to
examine the influence of convergence rate on the far-field stress
transfer of continental collision. A lower and a higher convergence rates
were set to 1 cm/yr (Model b) and 5 cm/yr (Model c) respectively,
relative to the reference model (Model a, V = 2.5 cm/yr). At the same
amount of convergence length (Figs. 5, 6), the results are comparable to
that of the reference model, with the differences being the deformation
style and topographical evolution of intraplate thrust belts.

At a low convergence rate (V = 1 cm/yr, Model b), the rigid Tarim
and Junggar blocks tend to subduct into the deep asthenospheric
mantle beneath the Tian Shan (Fig. 5a). In this case, the stress trans-
ferred from the south is dominantly consumed by this bi-directional
subduction, rather than deforming the Tian Shan's crust and driving
topographic uplift. Consequently, the topographic peak of the Tian

Shan is lower than 1 km and initiation of uplift is much later than in the
West Kunlun range (Fig. 6a). The high elevation of the West Kunlun
range propagates northward to the southern margin of the Tarim basin,
creating a gradual topographic slope between them (Fig. 6a).

At the medium (V = 2.5 cm/yr) and high (V = 5 cm/yr) con-
vergence rates, boundary stress is transferred northward more effi-
ciently. This leads to more pronounced crustal buckling and narrower
ranges within the Tian Shan block (Fig. 5b, c). As a consequence, strain
is significantly strengthened in both the Tian Shan and the West Kunlun
range relative to that at a slow convergence rate (Fig. 5a). In both cases,
the Tian Shan experienced an earlier uplift than the West Kunlun range
(Fig. 6b, c). A high convergence rate enlarges the time lag. For instance,
when V = 5 cm/yr, the Tian Shan uplifts after ~13 Myr of con-
vergence, while the elevation of the northern margin of Tibetan plateau
is below sea level until ~26 Myr (Fig. 6c).
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Table 3
Parameters and results of the numerical experiments.

Model name V cm/yr TMT °C TMp °C Figures Comments

Model a 2.5 800 665 3 and 4 Reference model
Model b 1 800 665 5 and 6 Sequential rise
Model c 5 800 665 Diachronous rise
Model d 2.5 600 665 8 and 9 Failed rise
Model e 2.5 700 665 Sequential rise
Model f 2.5 900 665 Diachronous rise
Model g 2.5 800 600 10 Diachronous rise
Model h 2.5 800 800 Sequential rise

V, convergence rate; TMT, initial Moho temperature of the Tian Shan; TMP, in-
itial Moho temperature of the proto-southern Asia.
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In general, the convergence rate facilitates the build-up of topo-
graphy (Fig. 6). Faster convergence rate results in earlier and higher
uplift of the Tian Shan, which even precedes the uplift of the West
Kunlun range at a convergence rate of> 2.5 cm/yr.

5.3. Effects of thermal heterogeneity

The lithospheric thermal state strongly affects the rheological
strength (Burov and Watts, 2006; Gueydan et al., 2008; Schmalholz
et al., 2009). Thus, we designed two groups of models to test the li-
thospheric thermal state contrast between the strong and weak blocks
in the upper plate deformation by varying the Moho temperature of
both the Tian Shan (TMT = 600, 700 and 900 °C) and proto-southern
Asia (TMP = 600 and 800 °C), respectively. Results show that a high
initial Moho temperature dramatically reduces the viscosity of the
lower crust and upper lithospheric mantle (Fig. 7a, b).

A group of models (Models d, e, f in Table 3) with different Moho

temperatures of the Tian Shan shows similar composition evolutions to
the reference model except the extent of lithospheric deformation
during intraplate orogeny (Fig. 8). As the initial Moho temperature
increases, the strain is more easily to be transferred and concentrated
on the rheologically weaker Tian Shan through lithospheric shortening
and crustal buckling. The much intensive deformation domains are il-
lustrated as smaller values in the horizontal deviatoric stress fields (i.e.,
white or light reddish color in the horizontal deviatoric stress chart of
Fig. 8).

The thermal state of the Tian Shan plays a decisive role in the in-
traplate orogeny that is characterized by various topographical
buildups. At a low Moho temperature of 600 °C (TMT = 600 °C), the
topographic evolution shows no obvious uplift of the Tian Shan, in
which the elevation is always below sea level (Fig. 9a). When the Moho
temperature increases to 700 °C (TMT = 700 °C), the Tian Shan ex-
periences a period of low elevation and then uplifts to the same value as
the northern Tibetan plateau (i.e. the West Kunlun range, Fig. 9b). The
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uplift time of the Tian Shan after ~40 Myr of convergence lags behind
that of the West Kunlun range after ~34 Myr of convergence (Fig. 9b).
When the Moho temperature is up to 900 °C (TMT = 900 °C), the to-
pography of the Tian Shan is rapidly built up and finally reaches the
peak value that is greater than those in other models (Fig. 9c). It is
noteworthy that the uplift of the West Kunlun range lags behind that of
the Tian Shan under this condition, which may be due to stronger re-
sistance of the Tibetan lithosphere.

The thermal state of the West Kunlun range also largely affects in-
traplate orogeny (Models g, h in Table 3). Since the models return re-
sults that are comparable to those of the reference model, only the
topographic evolution graphs are illustrated here. Relative to the case
of reference model (TMP = 665 °C), a lower Moho temperature of the
proto-southern Asia (TMP = 600 °C) leads to an earlier uplift in the Tian
Shan than in the West Kunlun range (Figs. 6b, 10a). When the Moho
temperature of the proto-southern Asia was set higher to 800 °C, the
West Kunlun range involves earlier and higher uplift, and uplift of the
Tian Shan lags behind that of the West Kunlun range for ~9 Myr
(Fig. 10b).

6. Discussion

In this section, we first compare our model results to the geological
and geophysical observations in the Tibetan orogen-Tian Shan thrust
belt system. We then discuss the far-field effect of India-Asia collision
on intraplate orogeny and present the possible mechanism to interpret
the diachronous topographic rise between the Tian Shan and the West
Kunlun range. Finally, we discuss the limitations in the numerical
modeling.

6.1. Comparison with geological or geophysical observations

Several first-order characteristics observed in the models are com-
parable to regional geological or geophysical observations. First, mod-
eling (Fig. 4e) reproduces a topographic pattern that is characterized by
a basin sandwiched by two thrust belts, where fold-thrust systems are
topographically higher and surround a relatively undeformed basin.
This is coincident with the present topography with a high-low-high
feature on the profile (Fig. 1b). Second, modeled crustal thickness al-
ternates between relatively thicker and thinner crustal blocks (Fig. 4b),
which agrees with geophysical observations for variable crustal

thickness within the Tibetan orogen-Tian Shan thrust belt system
(Nelson et al., 1996; Kosarev et al., 1999; Kumar et al., 2005; Zhang
et al., 2011; Tunini et al., 2016). Furthermore, the abrupt Moho offsets
near the margin of the Tian Shan (Fig. 4b) have been supported by the
evidence that lithospheric mantle of both the Tarim and the Junggar
basins subducted bilaterally beneath the Tian Shan (Avouac et al.,
1993; Kao et al., 2001; Gao et al., 2013).

6.2. Intraplate orogeny pattern

All results are compiled according to the major parameters adopted
in the modeling, which can be grouped into three end-member patterns
with regard to the sequence of intraplate orogeny (Fig. 11). In the
failed-rise pattern, insufficient amount of stress is transferred north-
ward to cause the uplift of the Tian Shan. In the sequential-rise pattern,
sufficient stress is transferred northward, leading to the earlier uplift of
the West Kunlun range at the south and later uplift of the Tian Shan at
the north. In the diachronous-rise pattern, the uplift of the Tian Shan at
the north is earlier than that of the West Kunlun range at the south.

The model results indicate that the intraplate orogeny pattern may
be controlled by the contrast in the Moho temperature between the
proto-southern Asian and the Tian Shan (Fig. 11a). In fact, when the
Moho temperature of proto-southern Asia is higher than that of the Tian
Shan, it is not likely for the Tian Shan to uplift. In this case, the stress
produced by convergence is preferentially accommodated by litho-
spheric deformation within Tibet, rather than transferred northward to
induce significant far-field effects. In contrast, when the Moho tem-
perature of the Tian Shan is higher than that of the proto-southern Asia
by> 100 °C, diachronous rise appears between the two thrust belts, in
the case of which the deformation in the weaker Tian Shan responses
quicker to the effects by far-field stress transfer and the time lag in-
creases as the contrast in temperature increases. When the Moho tem-
perature of the Tian Shan is higher than that of the proto-southern Asia
by< 100 °C, the intraplate orogeny presents a sequential-rise pattern.
In this case, the West Kunlun range and the Tian Shan uplift sequen-
tially in response to the far-field stress transfer. In general, the stress
induced by plate convergence prefers to be transferred firstly to the
block that is hotter and thus weaker than others, rather than to be
concentrated firstly to a neighboring block and then transferred to a
further block.

Faster convergence rates amplify the effects caused by the difference
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in the Moho temperature (Fig. 11b), especially in the condition when
the Moho temperature of the proto-southern Asia is lower than that of
the Tian Shan. When convergence rate increases from 1 cm/yr to 5 cm/
yr, sequential rise between the West Kunlun range and the Tian Shan
changes to the diachronous rise pattern. That is to say, faster con-
vergence between the India and Asia plates is beneficial for the stress to
be transferred through the rigid Tarim basin.

6.3. Diachronous rise of orogeny

How stress is transferred across the Tibetan plateau has long been
debated (Dewey and Burke, 1973; Molnar and Tapponnier, 1975;
England and McKenzie, 1982; Avouac et al., 1993; Royden, 1996;
Tapponnier et al., 2001; Dayem et al., 2009), but observations of de-
formation within the Asian continent suggest that residual stress has
propagated northward across the relatively rigid Tarim and Qaidam
basins (Molnar and Tapponnier, 1975, 1978; Windley et al., 1990;

Avouac et al., 1993; Neil and Houseman, 1997; Sobel et al., 2006;
Vassallo et al., 2007; Glorie et al., 2011). If this propagation involved a
steady northward progression, the uplift of the West Kunlun range is
predicted to have occurred earlier than that of the Tian Shan because it
is closer to the collision front (Fig. 1a). However, this hypothesis con-
flicts with the timing of intraplate orogeny constrained by both strati-
graphic records and thermochronological data, which suggest that the
deformation in the Tian Shan preceded that in the West Kunlun range
by ~2–3 Myr (see summary in the Section 2). Similarly, the Qilian Shan
uplifted millions to tens of millions of years prior to the East Kunlun
range, which is at odds with a northward growing orogen. It is therefore
critical to explore the mechanism producing this diachronous pattern of
the intraplate orogeny under the framework of far-field stress transfer
model.

One possible explanation for out-of-sequence orogeny relies on fo-
cused precipitation and correlated surface processes, as suggested by
research in the Himalayas (e.g., Hodges et al., 2004). However, most of
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the thrust systems far away from the Himalayan front did not experi-
ence enhanced precipitation, and the scale of the Himalaya is an order
of magnitude greater than the deformational systems on the plateau
(e.g., Zuza et al., 2019) and thus these analogies may not be useful.
Another interpretation suggests out-of-sequence orogeny is related to
lithospheric buckling over the plateau scale as indicated by analogue
modeling (Burg et al., 1994). However, laterally constant material
properties and viscosity of each layer assumed in these models seem
contrast with observations revealing north-south lithospheric hetero-
geneity of the Tibet plateau and surrounding regions (Molnar and
Tapponnier, 1975, 1978; England and Houseman, 1985, 1986; Roecker
et al., 1993; Yin and Harrison, 2000; Zhu et al., 2013).

Alternatively, our results reasonably explain diachronous uplift
during intra-continental orogeny primarily via differences in thermal
structure. Specifically, a hotter Tian Shan lithosphere, with Moho
temperature> 100 °C hotter than that of the proto-southern Asia, leads
to an earlier and higher uplift of the Tian Shan, and much more efficient
far-field stress transfer (Figs. 9b, c, 10a, 11). Faster convergence rates
amplify this effect (Figs. 6, 11b). This thermal heterogeneity has been
evidenced by both geophysical and geological studies. A high Moho
temperature beneath the Tian Shan before its deformation at ~20–30
Myr ago is suggested based on the following observations. First, elec-
trical conductivity of xenoliths showed that the Tian Shan was 850 °C at
the Moho boundary before the Late Oligocene-Early Miocene initiation
of deformation (Bagdassarov et al., 2011). Second, the Tian Shan is a
complex terrane created by the sequential accretion of many micro-
continents and island arcs in the Late Carboniferous (Burtman, 1975;
Coleman, 1989; Windley et al., 1990; Carroll et al., 1990; Bagdassarov
et al., 2011; Charvet et al., 2011) and has experienced continuous
tectonic activities prior to India-Asia collision (Hendrix et al., 1992),
which allows the presence of a warm lithosphere. Third, tomography
and receiver function studies revealed a low velocity anomaly in the
mantle beneath the Tian Shan, potentially representing present-day
mantle upwelling (Roecker et al., 1993; Kosarev et al., 1993; Huang
et al., 2006), which suggests a potentially hotter Moho for at least
several million years during active upwelling. In contrast, although the
proto-southern Asia also involves multiple accreted terranes that began
to amalgamate northward since the Early Mesozoic (Sengor and
Okurogullari, 1991; Yin and Harrison, 2000), a much lower Moho
temperature of ~500–600 °C for the proto-southern Asia has been es-
timated based on the uplift rate and current elevation of the Tibetan
plateau (Rey et al., 2010). From this study, the Tian Shan should have a
higher Moho temperature than that of the proto-southern Asia by>
100 °C, which could be supported by the evidence mentioned above.
This interpretation may also be applied to the east profile, where

there is apparent out-of-sequence deformation between the East Kunlun
range (Oligocene-Miocene, Mock et al., 1999; Wang et al., 2004; Liu
et al., 2005; Yuan et al., 2006; McRivette et al., 2019) and Qilian Shan
(early Cenozoic, Yin et al., 2008; Qi et al., 2016; Zuza et al., 2016,
2019; Li et al., 2019c). Similar to the Tian Shan, the Qilian Shan con-
sists of a series of early Paleozoic and Permian-Triassic arcs that have
undergone subduction and collision, followed by Permian-Triassic clo-
sure of the Paleo-Asian Ocean to its north (Yin and Harrison, 2000; Xiao
et al., 2009; Song et al., 2013; Wilde, 2015; Zuza and Yin, 2017; Wu
et al., 2016, 2017; Zuza et al., 2018). This evolution history would
produce a warm weak lithosphere, comparable to the situation of the
Tian Shan, allowing a quick response on the stress by the far-field
transfer.

Modeling results also show that a higher convergence rate amplifies
the time difference in the diachronous rise pattern (Model c, Fig. 6c).
When the convergence rate increases from 2.5 to 5 cm/yr, the time
difference of uplift between the Tian Shan and the West Kunlun range
lengthens from 5 Myr (Model a, Fig. 6b) to 13 Myr (Model c, Fig. 6c).
This results may also be adopted to explain the situation on the East
Kunlun-Qilian Shan profile, where geological observations show that
uplift of the Qilian Shan was earlier than that of East Kunlun range by at

least 10 Myr, and possibly> 20 Myr. It is possible that this out-of-se-
quence uplift with a larger time difference might result from faster
convergence rates (> 5 cm/yr), as indicated by the Figs. 6c and A.3.
That is to say, it is likely that the diachronous uplift between the East
Kunlun range and Qilian Shan was driven by the similar mechanism
proposed for the West Kunlun-Tian Shan profile.

In general, our modeling demonstrates that the Cenozoic intraplate
orogeny of the Asian plate is controlled by the far-field effect of the
India-Asia collision, while the topographic rise pattern depends on the
intrinsic property of each thrust belt, such as thermal structure. The
diachronous uplift of the Himalayan-Tibetan orogen, such as the West
Kunlun range versus the South Tian Shan or the East Kunlun range and
the Qilian Shan, is triggered by the complex pre-collisional history,
including the numerous arcs and suture zones in the Tian Shan, Qilian
Shan and northern Tibet.

6.4. Limitations

With the purpose of fully checking its controlling effects, a constant
convergence rate (i.e., the shortening rate) was adopted from 1 to 5 cm/
yr in each model. This is different from the situation that the con-
vergence rate changes over time (Guillot et al., 2003). We also per-
formed additional models (Figs. A.3, A.4, A.5) to investigate the effects
under higher (6.5 cm/yr, the maximum, Guillot et al., 2003) or chan-
ging convergence rates. The results did not change the trend of in-
traplate orogeny pattern. We prefer adopting constant convergence
rates in the modeling because it highlights the effects of convergence
rate on the pattern of intraplate orogeny. In addition, our results sug-
gest that the larger time lag of the diachronous rise in the East Kunlun-
Qilian Shan profile than that in the West Kunlun-South Tian Shan
profile (Fig. 1) could be caused by a higher convergence rate. This is
consistent with the significant along-strike variation in the convergence
rate in the Himalayan-Tibetan orogen (Molnar and Stock, 2009), which
may be related to the rotational underthrusting of the Indian plate
(Klootwijk et al., 1985).

In this study, the 2D numerical modeling was focused on re-
presenting the far-field effect and associated topographic expression of
India-Asia collision in the north-south direction. The current models
excluded any potential lateral extrusion or strike-slip faulting as pro-
posed by Tapponnier et al. (1982) and numerically modeled in the
previous studies (e.g., Li et al., 2013; Chen et al., 2017). In addition, to
concentrate on evaluating the far-field effects, we simplified the models
by integrating all accreted terranes into one homogeneous block. Both
limitations do not allow us to reproduce more detailed deformation
features. It is noteworthy that the setup of the lithosphere of the Tethys
Ocean was only to facilitate the subsequent subduction of the Indian
plate, and thus a narrow Tethys Ocean was adopted to initiate the
subduction process. The simplified model configuration has successfully
revealed the first-order factors leading to the diachronous uplift of the
South Tian Shan and the West Kunlun range as well as the Qilian Shan
and the East Kunlun range, respectively.

7. Conclusions

Two-dimensional thermo-mechanical simulations illustrate that the
diachronous uplift of the Tian Shan and the West Kunlun range could be
induced by the far-field effect of the India-Asia collision. A hotter Moho
under the Tian Shan than that of the West Kunlun range causes the Tian
Shan to deform earlier despite its distance from the collisional front,
while the colder West Kunlun range resists deformation at a certain
degree. When the difference in the Moho temperature exceeds 100 °C,
the block with a hotter Moho temperature and thus a weaker litho-
sphere responds quicker to the convergence of the India-Asia plates.
Additionally, this situation is amplified by increasing convergence
rates, which promotes transmitting of the stress more efficiently
through the rigid Tarim block. The modeling implies that the effects of
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far-field stress transfer may first manifest in the parts of the ranges with
the hottest and weakest lithosphere. The unique diachronous uplift of
the Tibetan plateau and thrust belts in Asian continent's interior is
controlled by the pre-collisional geology.
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