
Improving Saturation Efficiency with Implicit
Relations

Shruti Biswal and Andrew S. Miner

Iowa State University, Ames IA 50010, USA
{sbiswal,asminer}@iastate.edu

Abstract. Decision diagrams are a well-established data structure for
reachability set generation and model checking of high-level models such
as Petri nets, due to their versatility and the availability of efficient algo-
rithms for their construction. Using a decision diagram to represent the
transition relation of each event of the high-level model, the saturation
algorithm can be used to construct a decision diagram representing all
states reachable from an initial set of states, via the occurrence of zero or
more events. A difficulty arises in practice for models whose state variable
bounds are unknown, as the transition relations cannot be constructed
before the bounds are known. Previously, on-the-fly approaches have con-
structed the transition relations along with the reachability set during
the saturation procedure. This can affect performance, as the transition
relation decision diagrams must be rebuilt, and compute-table entries
may need to be discarded, as the size of each state variable increases. In
this paper, we introduce a different approach based on an implicit and
unchanging representation for the transition relations, thereby avoiding
the need to reconstruct the transition relations and discard compute-
table entries. We modify the saturation algorithm to use this new repre-
sentation, and demonstrate its effectiveness with experiments on several
benchmark models.

Keywords: Petri nets, decision diagram, saturation, reachability set
generation

1 Introduction

High-level formalisms can be used to model complex discrete-state systems. The
generation of the reachable state space, or reachability set, for such systems is an
essential step for different kinds of studies. Formal verification techniques, such as
model checking, may require the entire state space of a system to verify that some
or all states satisfy certain properties, such as the presence of a safety property
at all states. However, the reachability set of a system can be extremely large
due to the state explosion problem, making the generation of the reachability
set difficult.

Present-day symbolic techniques usually outperform the traditional explicit
techniques used for reachability set generation. The saturation[7] algorithm is



one such symbolic strategy for reachability set generation. An efficient imple-
mentation [14] of the saturation algorithm uses multi-valued decision diagram
(MDD) representations [13] for encoding sets of reachable states and matrix
diagram representations (MxD) for transition relations of the models.

However, a significant complication arises when the variables of the system
have unknown bounds. For such systems, on-the-fly techniques [7, 19] for transi-
tion relation construction are used, that require expansion of transition relations
every time new bounds for variables are discovered which amounts to additional
changes to compute-table entries. While the information in the transition rela-
tion is crucial to the application of symbolic techniques, its repeated construction
in the form of MxD affects the overall efficiency of symbolic methods involved in
reachability set analysis. When the events of a system are such that the enabling
of each event is co-dependent on multiple variables, and the firing of the event
affecting each variable is independent of other variables, the re-building of tran-
sition relations becomes an overhead because the growth of variable bound is a
function of the variable itself. For the aforementioned systems, a more efficient
technique would be to use a static representation of transition relations in order
to restrict the modification of compute-table entries to the development of the
reachability set alone. The focus and contribution of this paper is to devise a
data structure, called an implicit relation forest, that encodes the events of such
systems and uses the saturation algorithm for reachability set generation with
reduced time and memory expense. To provide strong evidence of improvement
in reachability set generation process, the paper proposes a modified satura-
tion algorithm that uses implicit relations to conduct experiments and compares
performance results with that of the on-the-fly saturation algorithm.

The rest of the paper is organized as follows. Section 2 defines the class of
models we consider, and briefly recalls decision diagrams and on-the-fly satura-
tion. Section 3 introduces implicit relation forests, details their construction from
a model, and presents the saturation algorithm modified to use the alternate rep-
resentation for model events. Section 4 discusses the related work and compares
them with implicit relations. Section 5 describes the experimental evaluation
of the devised method on an extensive set of Petri net models collected from
the annual Model Checking Competition (MCC) [1]. Finally, Section 6 draws
conclusions and discusses future research directions.

2 Background

This section describes the class of models that we consider in the paper, recalls
the basics of decision diagrams, MDDs, and MxDs, and the saturation algorithm.

2.1 Model definition

Rather than restricting our discussion to a particular formalism, we consider
a class of generic high-level discrete-state models that includes many existing
formalisms. A discrete-state model M is defined by a tuple (V, E , i0, ∆) where:



– V = {v1, v2, . . . , vL} is a finite set of state variables of the model. Each state
variable vk can assume a value from the set of natural numbers. A (global)
state i of M is then an L-tuple (i1, i2, . . . , iL) ∈ NL.

– E = {e1, e2, . . . , e|E|} is a finite set of events of the model.
– i0 ∈ NL is the initial state of the model.
– ∆ : NL × E 7→ NL is the next state (partial) function. If ∆(i, e) is defined,

we say event e is enabled in state i, and if event e occurs then the model
changes from state i into state ∆(i, e). Otherwise, if ∆(i, e) is undefined, we
say event e is disabled in state i.
We require that each event e can be expressed using L local next state
(partial) functions, ∆e,1, . . . ,∆e,L, such that

∆((i1, . . . , iL), e) = (∆e,1(i1), . . . ,∆e,L(iL)).

In other words, the value of a single local variable vk is enough to disable an
event, and the change in state variable vk when an event occurs may depend
only on state variable vk. Furthermore, each event is deterministic: for a
given input state, an event can produce at most one output state. However,
the model may be nondeterministic, as several events may be enabled in a
given state.

For example, an ordinary Petri net [16] can be expressed using our model:
the set V can correspond to the set of Petri net places, the set E can correspond
to the set of Petri net transitions, the initial state i0 will correspond to the
initial marking of the Petri net, and ∆ will correspond to the Petri net firing
rules. Specifically, for a place pk and a transition t, ∆t,k(ik) is defined if ik is
greater or equal to the number of edges from pk to t, and ∆t,k(ik) = jk if jk− ik
equals the number of edges from t to pk minus the number of edges from pk to
t. Petri nets with inhibitor arcs can also be expressed. An example “fork-join”
Petri net model is shown in Figure 1, where the circles correspond to places and
the squares correspond to transitions. Transition t1 performs a fork operation
and transition t6 performs a join operation.

Petri nets with marking-dependent arc cardinalities can sometimes be ex-
pressed using our model. Effectively, if the cardinality on an edge from pi to t or
from t to pi depends on the number of tokens in a place pj , then places pi and
pj could be grouped together in a single model variable vl ∈ V. Alternatively,
transition t can be split into several model events, each representing a portion
of t. For example, we might use events e1, e2, e3, . . . where event en simulates
transition t but only when there are exactly n tokens present in place pi. These
modifications are necessary to express ∆(i, t) in terms of local functions ∆e,l(il)
that depend only on the local model state variable. Transition guards can be
handled in a similar manner. This is the Kronecker consistency requirement dis-
cussed in [6], and in practice it limits the applicability of our approach to models
that can be obtained by merging only a few places together and whose number
of events (including those obtained from splitting transitions) is small.

For a given model M = (V, E , i0, ∆), we can define the following.



p5

t1 t6

p4 t3

t2

p3

p2

t4

t5 p1

S = { (0, 0, 0, 0, 3), (0, 1, 0, 1, 2), (0, 1, 1, 0, 2), (0, 2, 0, 2, 1),

(0, 2, 1, 1, 1), (0, 2, 2, 0, 1), (0, 3, 0, 3, 0), (0, 3, 1, 2, 0),

(0, 3, 2, 1, 0), (0, 3, 3, 0, 0), (1, 0, 0, 1, 2), (1, 0, 1, 0, 2),

(1, 1, 0, 2, 1), (1, 1, 1, 1, 1), (1, 1, 2, 0, 1), (1, 2, 0, 3, 0),

(1, 2, 1, 2, 0), (1, 2, 2, 1, 0), (1, 2, 3, 0, 0), (2, 0, 0, 2, 1),

(2, 0, 1, 1, 1), (2, 0, 2, 0, 1), (2, 1, 0, 3, 0), (2, 1, 1, 2, 0),

(2, 1, 2, 1, 0), (2, 1, 3, 0, 0), (3, 0, 0, 3, 0), (3, 0, 1, 2, 0),

(3, 0, 2, 1, 0), (3, 0, 3, 0, 0)}

Fig. 1: A fork-join Petri net model (left) and its reachability set (right).

– The next state function for event e, Ne : NL → 2N
L

, is defined as Ne(i) =
{j : ∆(i, e) = j}. We then define the overall next state function as N (i) =⋃

e∈E Ne(i), which gives the set of states reachable via the occurrence of one
event from a single starting state, and further extend this to sets of starting
states: N (I) =

⋃
i∈I N (i).

– The reachability set S ⊆ NL is the set of states reachable via the occurrence
of zero or more events from the initial state i0, and is the least fixed point
satisfying S = {i0} ∪ S ∪ N (S).

As an example, the reachability set S is shown in Figure 1 for the fork-join Petri
net model, where a state is shown as (p1, p2, p3, p4, p5).

The focus of this paper is on algorithms to generate the set S, using decision
diagrams. This is a necessary first step for many types of analysis, including
verification of safety properties or model checking of more complex properties
specified in a temporal logic. For this work, we assume that S is finite (in general
there is no guarantee of this). Note that the set S is finite if and only if every
state variable is bounded. We do not require knowledge of these bounds a priori ;
instead, our reachability set generation algorithm will discover these bounds.

2.2 Multi-valued decision diagrams and matrix diagrams

An ordered multi-valued decision diagram (MDD) [13] defined over the sequence
of L domain variables (uL, . . . , u1), with a given variable order such that ul � uk
iff l > k and a specified domain for each variable D(uk) = {0, 1, 2, . . . , nk − 1},
is a directed acyclic edge-labelled graph where:

– Each node m is associated with some variable, denoted as m.var.
– There are two terminal nodes, 0 and 1. These are associated with a special

variable u0, satisfying uk � u0 for any domain variable uk.
– Each non-terminal node m is associated with a domain variable uk and
∀ik ∈ D(uk), there is an edge labelled with ik pointing to a child m[ik].



– The variable associated with any child m[ik] of a non-terminal node m is
guided by the variable order such that m.var � m[ik].var.

A node m in an MDD encodes a function fm : D(uL) × · · · × D(u1) → {0, 1},
defined recursively by

fm(iL, . . . , i1) =

{
m, if m.var = u0
fm[ik](iL, . . . , i1), if m.var = uk � u0

Non-terminal node n is a duplicate of node m if n.var = m.var, and if n[i] =
m[i],∀i ∈ D(n.var). Note that duplicate nodes n and m encode the same func-
tion: fm = fn. Non-terminal node m is redundant if m[i] = m[0],∀i ∈ D(m.var);
note that fm is independent of variable m.var in this case and fm = fm[0]. An
MDD is fully reduced if it contains no duplicate nodes and no redundant nodes.
It can be shown that fully reduced MDDs are a canonical form: any function
can be represented uniquely (fm = fn if and only if m = n). For our work, we
instead use zero reduced MDDs, which contain no duplicate nodes, and require
redundant nodes except for terminal node 0. More formally, for any non-terminal
node m with m.var = uk, we require, for all i, that either m[i].var = uk−1 or
m[i] = 0. This is done because we allow the MDD domain variables to grow,
or equivalently, we assume the MDD domain variables are unbounded but each
MDD node contains only finitely many non-zero children.

Given a modelM = (V, E , i0, ∆), a finite set of states X ⊂ NL can be encoded
as an MDD as follows.

– The MDD domain variables (uL, . . . , u1) correspond to the model state vari-
ables V. For simplicity of presentation, we assume that ∀i, ui = vi; in prac-
tice, the variables can be ordered differently and there can be non-trivial
mappings from state variables to domain variables (for example, several state
variables could be collected into a single domain variable).

– The set X can be encoded by an MDD node m such that fm is the charac-
teristic function for the set X : fm(iL, . . . , ii) = 1 iff (i1, . . . , iL) ∈ X .

The MDD encoding of S, for the fork-join Petri net, is shown in Figure 2. To
increase readability, only paths that lead to terminal node 1 are shown.

An ordered matrix diagram (MxD) [14] is defined similarly to an MDD,
except that each non-terminal edge is labelled with a pair :

– Each non-terminal node m is associated with a domain variable uk and
∀(ik, jk) ∈ D(uk)×D(uk), there is an edge labelled with (ik, jk) pointing to
a child m[ik, jk] such that m.var � m[ik, jk].var.

A node m in an MxD encodes a function fm : D2(uL)× · · · × D2(u1)→ {0, 1},
given by fm = fm,L, where fm,L is defined recursively as

fm,L(iL, jL, . . . , i1, j1) =


m, if L = 0
fm[iL,jL],L−1(iL, jL, . . . , i1, j1), if m.var = uL
fm,L−1(iL, jL, . . . , i1, j1), if uL � m.var ∧ iL = jL
0, otherwise.



0 1 2 3

0 1 2 3

0123 012

0 1 2

01

0 1

0

0

0 1 2 3 0 1 2 0 1 0

0123

1 1 1 1

p5

p4

p3

p2

p1

1

p5

p4

p3

p2

p1

p’5

p’4

p’3

p’2

p’1

210

321

210

321

321

210

Fig. 2: MDD for S of fork-join Petri net (left) and MxD/MDD for t1 (right)

The definition of duplicates is similar to MDDs. A non-terminal node m is an
identity node if (1) m[i, i] = m[0, 0],∀i ∈ D(m.var), and (2) m[i, j] = 0,∀i 6= j.
An MxD is reduced if it contains no duplicate nodes and no identity nodes.
In practice, MxDs can be implemented as MDDs on twice as many domain
variables. If the MxD domain variables are (uL, . . . , u1), then the MDD domain
variables are (uL, u

′
L, . . . , u1, u

′
1), with the variable ordering defined such that u′i

immediately follows ui. However, the MDDs are not fully reduced, but instead
use a special identity reduction for primed variables [10].

Given a model M = (V, E , i0, ∆) and bounds for each state variable, func-
tion Ne can be encoded as an MxD as follows. Again, the domain variables
correspond to the state variables V. Then we use an MxD node m such that
fm(iL, jL, . . . , i1, j1) = 1 iff (jL, . . . , j1) ∈ Ne((iL, . . . , i1)). The MxD encoding
for Nt1 , for the fork-join Petri net example, is shown in Figure 2. Note that levels
p3, p

′
3, p1, p

′
1 are skipped because places p3 and p1 are completely unaffected by

transition t1, and thus its occurrence does not change state variables p3 and p1.
Also note that, because our model requires that an event occurrence changes
a state variable in isolation (without considering the values of the other state
variables), all MxD encodings of events will have a similar linear shape, where
there can be a fanout only from uk to u′k and all non-zero pointers from u′k must
point to a single node.



2.3 On-the-fly saturation using extensible decision diagrams

Given two MDD nodes m and n, encoding functions fm and fn, the MDD node
p encoding function fp = fm ⊕ fn for a binary operation ⊕ is constructed in a
recursive “Apply” operation [4]. An example of this is algorithm Union, shown
in Figure 5, which constructs a new MDD encoding the union of two sets, passed
as arguments and encoded as MDDs. Like most “apply” operations, Union si-
multaneously traverses the graphs rooted at nodes m and n, constructing a new
graph rooted at p containing the result. Procedure UniqueInsert, called in line 13,
eliminates duplicate nodes during construction: if the newly created node p is a
duplicate of some other node q, then node p is discarded and node q is returned;
otherwise, node p is added to the unique table and is returned. Duplicate compu-
tation arising from repeated recursive calls with the same arguments is avoided
using a compute-table C (c.f. lines 4 and 14). This bounds the computational
cost and the size of the resulting graph to be at worst the product of the sizes
of the input graphs.

For efficiency, specialized relational product operations can be implemented
(e.g., [20]) to construct the MDD for N (X ) or Ne(X ), when set X is encoded as
an MDD and N is encoded as an MxD or MDD. A straightforward breadth-first
iteration based on the fixed point equation S = {i0} ∪ S ∪ N (S) can then be
used to generate S. However, the iteration strategy of node saturation [7] can
be orders of magnitude more efficient in practice and is known to terminate
whenever S is finite.

Difficulty arises in practice for models whose state variable bounds are diffi-
cult or impossible to obtain, or are conservative. This can be alleviated using an
“on-the-fly” variant of saturation [8, 10, 15, 19], which allows variable bounds to
be discovered while generating S. This is done by distinguishing between con-
firmed local states that are known to appear in at least one reachable global
state, and unconfirmed local states. The encoding of N contains all transitions
out of confirmed local states, leading to confirmed or unconfirmed local states.
During the saturation procedure, when an unconfirmed local state is discovered
to be part of a reachable global state, it is confirmed and the encoding of N
must be expanded to include any transitions out of the newly confirmed local
state. For a Kronecker-based encoding ofN [8], this expansion is straightforward;
for more general encodings of N [10, 15], this expansion requires rebuilding the
MxD/MDD encoding of N , and even worse, often discards compute-table in-
formation that could eliminate duplicate computations during the saturation
procedure. This happens because, as the sizes of the state variable domains
grow, the nodes in the encoding of N must also grow, and it is possible for the
MxD/MDD for a next state function to change shape when the state variable
domains increase. Extensible MDD nodes were introduced [19] to address exactly
this issue, but unfortunately only certain repeating patterns can be exploited by
extensible nodes.



3 Implicit Relations

Motivated by the requirement of current on-the-fly saturation methods to update
(with varying degrees of computational overhead) their encodings of N as state
variable domains increase in size, in this section we introduce implicit relations
to encode N independently of the variable domain size. This new representation
retains useful properties of MxDs, namely the ability to exploit identity struc-
tures and allowing nodes to be shared (i.e., have several incoming pointers). We
also modify the on-the-fly saturation algorithm to work with implicit relations.

3.1 Definition

An ordered implicit relation forest defined over the sequence of L domain vari-
ables (uL, . . . , u1) is a directed acyclic graph where:

– Each node r is associated with some variable, denoted as r.var.
– There is a single terminal node, 1, associated with a special variable u0

satisfying uk � u0 for any domain variable uk.
– Each non-terminal relation node r is associated with a domain variable uk,

and contains a partial function r.δ : D(uk) 7→ D(uk).
– Relation node r contains a single outgoing edge, r.ptr, consistent with the

variable order such that r.var � r.ptr.var.

An implicit relation forest contains |E| implicit relations, where each relation
corresponds to an event e ∈ E and is uniquely identified by the top-most relation
node. A node r in an implicit relation forest encodes a function fr : D2(uL) ×
· · · × D2(u1)→ {0, 1}, given by fr = fr,L, where fr,L is defined recursively as

fr,L(iL, jL, . . . , i1, j1) =


1, if L = 0
fr.ptr,L−1(iL, jL, . . . , i1, j1), if r.var = uL ∧ jL = r.δ(iL)
fr,L−1(iL, jL, . . . , i1, j1), if uL � r.var ∧ iL = jL
0, otherwise.

Let Uk represent the sequence of variables uk, . . . , u1. Then fr,k encodes the effect
of an event on Uk. Either uk, a variable associated with node r, participates in
the event and the post-event value of uk is jk = r.δ(ik) with values of Uk−1 given
by fr.ptr,k−1, or uk does not participate in the event and the value of uk remains
unchanged, jk = ik. For the latter case, the variable uk is not associated with r
and hence, fr,k defines the effect of the event on the variables Uk−1, recursively
by fr,k−1

A relation node p is a duplicate of relation node r if p.var = r.var, p.ptr =
r.ptr, and p.δ = r.δ. From now on, we assume that the implicit relation forest
contains no duplicate nodes.

Algorithm BuildImplicit, shown in Figure 5, constructs a set of relation nodes,
R, for a given modelM. It builds a relation for each event e ∈ E , from the bottom
up. In the algorithm, we loop over variables ui where ∆i,e is not the identity
function (c.f. line 4); this corresponds to variables that either affect the enabling



1

t 1

δ(i)=i+1,

∀i

δ(i)=i+1,

∀i

δ(i)=i−1,

∀i > 0

1

p5

p4

p3

p2

p1

p’5

p’4

p’3

p’2

p’1

210

321

210

321

321

210

t 1

p5

p4

p3

p2

p1

t 1

p2

p4

p5

3

3

3

4

4

4

Fig. 3: Representation of transition t1, from the fork-join Petri net model, in MxD and
implicit relation. Dashed entities in the MxD represent the modification in the decision
diagram due to additional token in place p5, represented by dotted-circle.

of e or are changed when e occurs. For each such variable ui, we create a new
relation node with function ∆i,e, pointing to the node below it. After eliminating
duplicates (c.f. line 11), the top-level node encoding Ne is added to the set R.

Figure 3 compares the structure of implicit relation and MxD for transition
t1 of the fork-join Petri net model from Figure 1. Note that for every additional
token in place p5, the MxD for this transition undergoes modification in terms of
expansion of variable bound for each place. On the contrary, the implicit relation
remains unchanged. The figure showcases the benefit of representing transitions
of a model using implicit relation over MxD.

Figure 4 shows the implicit relation forest for all events of the fork-join Petri
net model. The set R contains the top-most node for each event. Each node r is
annotated with r.δ along with the values for which r.δ is defined. Note that the
terminal node 1 is repeated for clarity purpose only. The figure also demonstrates
merging of implicit relations for transitions t6 and t5 which is possible due to
equal effects of each transition, t6 and t5, on the low lying variables, namely p1.
This merging of implicit relations allow fr to encode the effect of more than one
event, where r is a relation node common to multiple transitions.



p5

p4

p3

p2

p1

t 1 t 2

1

t 3 t 4 t 5 t 6

δ(i)=i+1,

∀i

δ(i)=i+1,

∀i

δ(i)=i−1,

∀i > 0

δ(i)=i+1,

∀i

δ(i)=i−1,

∀i > 0

δ(i)=i+1,

∀i

δ(i)=i−1,

∀i > 0

δ(i)=i+1,

∀i

δ(i)=i−1,

∀i > 0

δ(i)=i+1,

∀i

δ(i)=i−1,

∀i > 0

δ(i)=i−1,

∀i > 0

δ(i)=i+1,

∀i

1 111

Fig. 4: The implicit relation forest for the fork-join Petri net model.

3.2 Saturation using relation nodes

To use saturation, we must partition the set of relation nodes R into RL, . . . ,R1

with Rk = {r ∈ R : r.var = uk}. Note that any event whose relation belongs to
Rk will not be disabled by, and will not modify if it occurs, any variable ul � uk.
The idea of saturation [7] is that, every time a node for variable uk is created, it
is saturated by applying the relations in set Rk repeatedly until a fixed point is
reached. The saturation algorithm, modified to use relation nodes, is shown in
Figure 5 as procedure Saturate. It operates “in place” on a node n that has been
created, but not yet added to the unique table, by repeatedly firing (c.f. line 10)
the events in A[j] (c.f. the loop in line 8), a subset of events from Rk that
produce same local index j on firing (c.f. the loop in line 5), over all possible
values of j and adding those states to the current node (c.f. line 11). Procedure
MultiRecFire, in line 10 is used to invoke RecFire for such subset of events and
union the result (c.f. the lines 2, 3 of MultiRecFire) before saturating the node. It
has been observed [5] that the order in which local states are explored (c.f. line 3
of Saturate) can significantly affect the efficiency of the iteration. The differences
with respect to saturation using MxDs for relations are in lines 6 and 7, which
obtain the local index j produced when an event fires on i using the relation
node r, and the use of the common downward pointer r.ptr in line 10.

Procedure RecFire, also shown in Figure 5, is used to “fire” a relation r on
node n (this determines the relational product of the set encoded by MDD node
n and the relation encoded by relation node r), except that any created nodes



are saturated immediately (c.f. line 15). Note that lines 8–9 handle the case
where the relation graph skips a level (corresponding to an identity function),
while lines 11–14 handle the case where the relation node and MDD node are at
the same level. We do not give the case where the MDD graph skips a level, as
this can only happen with edges that point directly to terminal node 0. Again,
the differences with respect to saturation using MxDs for relations are in lines
11, 12, and 13 which use the relation node r.

For fixed variable bounds, our modified saturation algorithm has the same
complexity as the on-the fly saturation using extended decision diagrams. How-
ever, as bounds expand during saturation, relations stored using Kronecker rep-
resentations, MxDs, or extended decision diagrams must all be updated to some
extent for the increased bounds, with various costs for this reconstruction based
on the type of storage. Even worse, some methods require discarding entries of
the compute table, which can require significant duplication of computation. In
contrast, no adjustments are needed to the implicit relation forest when bounds
expand, and no compute table entries ever need to be discarded.

3.3 Implementation notes

We briefly discuss some ideas for efficient implementation of implicit relation
forest nodes. For a node r, its partial function r.δ can be implemented using a
function pointer, an abstract class with a virtual function, or with a parse tree
or similar representation for expressions.

The elimination of duplicate nodes can be done similarly to MDDs, which
utilize a unique table. A hash signature for r.δ, with the property that equal
functions should produce equal signatures, can be used to reduce the number of
(potentially expensive) comparisons between functions. We stress that a stray
duplicate node will not affect correctness, but only the efficiency, by potentially
requiring duplication in computation.

To reduce the number of calls to r.δ (another potentially expensive opera-
tion), each node can maintain an array that memorizes r.δ, so that r.δ(i) must
be computed at most once for each i. Clearly this is a time/memory tradeoff,
and note that the memory cost for this array is similar to and does not exceed
other relation representations such as MxDs. However, simple functions, like up-
date by a constant, can be handled directly without using a function pointer or
a memorization array.

Finally, we note that the flexibility of defining r.δ as a (partial) function
allows us to easily handle the case where MDD variable ui is not necessarily
equal to the number of tokens in place pi. This is required if ui corresponds to
more than one Petri net place. In our implementation, the value of ui is the index
of a submarking, stored in a collection of submarkings, where the submarking is
over the places corresponding to MDD variable ui.



mdd Union(mdd m,mdd n)

1 if n = 1 ∨m = 1 then return 1;
2 if n = 0 then return m;
3 if m = 0 then return n;
4 if ∃p s.t. (∪,m, n, p) ∈ C or
5 (∪, n,m, p) ∈ C then
6 return p;
7 k ← max(m.var, n.var);
8 p← new MDD node for variable uk;
9 for each i ∈ D(uk) do

10 md← (uk � m.var) ? m : m[i];
11 nd← (uk � n.var) ? n : n[i];
12 p[i]← Union(md, nd);
13 p← UniqueInsert(p);
14 C ← C ∪ {(∪,m, n, p)};
15 return p;

nodeset BuildImplicit(model M)
• Build set of relation nodes for modelM

1 R← ∅;
2 for each e ∈ E do
3 Split ∆ into ∆e,1, . . . ,∆e,L;
4 Ve ← {i : ∆e,i 6= identity func.};
5 r ← 1;
6 for i ∈ Ve do
7 p← new relation node;
8 p.var ← ui;
9 p.ptr ← r;

10 p.δ ← ∆i,e;
11 r ← UniqueInsert(p);
12 R ← R∪ {r};
13 return R

MultiRecFire(mdd n,nodeset rSet)
• RecFire all events in rSet on node n

1 for each r ∈ rSet do
2 fr ← RecFire(n, r);
3 f ← Union(f, fr);
4 return f ;

Saturate(level k,mdd n)
• Saturate node n in place using Rk.

1 Q ← {i : n[i] 6= 0};
2 while Q 6= ∅ do
3 i← SelectElement(Q);
4 Q ← Q \ {i};
5 for each r ∈ Rk do
6 if r.δ(i) is defined then
7 A[r.δ(i)]← A[r.δ(i)] ∪ r.ptr
8 for each a ∈ A do
9 j ← a.index;

10 f ← MultiRecFire(n[i], a.rSet);
11 u← Union(f, n[j])
12 if u 6= n[j] then
13 n[j]← u;
14 Q ← Q∪ {j};

mdd RecFire(mdd n, relation r)
• Fire r on node n and then saturate it.

1 if n = 0 then return 0;
2 if r = 1 then return n;
3 if ∃m s.t. (RecFire, n, r,m) ∈ C then
4 return m;
5 k ← max(n.var, r.var);
6 m← new MDD node for variable uk;
7 if n.var � r.var then
8 for each i ∈ D(uk) do
9 m[i]← RecFire(n[i], r);

10 else
11 for each i s.t. r.δ(i) is defined do
12 j ← r.δ(i);
13 f ← RecFire(n[i], r.ptr);
14 m[j]← Union(m[j], f);
15 Saturate(k,m);
16 m← UniqueInsert(m);
17 C ← C ∪ {(RecFire, n, r,m)};
18 return m;

Fig. 5: MDD and relation node algorithms.

4 Related Work

This section discusses our approach of saturation with implicit relations in light
of related work. We examine the alternative approaches of encoding transitions
and compare them against the idea of this paper.



4.1 Kronecker representations

The saturation algorithm originally used a Kronecker representation to encode
transitions [7]. Conceptually, such a scheme requires, for each model event e
and each state variable vk, a boolean matrix Ne,k used to encode function ∆e,k,
where Ne,k[ik, jk] is one if and only if ∆e,k(ik) = jk. Note that Ne,k will be the
identity matrix if event e does not change or depend on state variable vk. In
practice, identity matrices need not be stored explicitly, and other sophisticated
schemes [6] could be used to store each Ne,k. The dimension of Ne,k is the bound
for state variable vk, and it was originally assumed that this bound was known.
On-the-fly saturation [8] eliminated this requirement, allowing the bounds of
state variables to expand during saturation. As bounds expand, the matrices
Ne,k also expand in size.

Implicit relation forests have two main advantages as compared to on-the-
fly saturation using Kronecker representations. First, implicit relation forests
allow for “sharing”, i.e., a node can have more than one parent node, which
occurs whenever two transitions have the same effect on the bottom-most k
state variables. In some models, especially if transitions are split to maintain
Kronecker consistency [6], this sharing can be significant, and the primary benefit
is reduction of computation time, as this duplication in computation is avoided
via the compute table. Second, the saturation algorithm is simpler with implicit
nodes, as there is no longer a need to distinguish between “confirmed” and
“unconfirmed” local states, nor is it necessary to expand matrices as local states
are confirmed.

4.2 MDDs and extensible MDDs

A 2L-variable MDD, also called MxD, suffers from deletion of relevant yet in-
complete compute-table entries when the operand MxDs remain unchanged but
the resultant MxD undergoes modification in case of discovery of new bounds
for a variable. Such deletions lead to reduced efficiency, to address which exten-
sible MxDs were introduced in [19]. However, implicit relations provide a more
efficient format, as demonstrated in Section 5, for encoding transitions to tackle
the overhead cost of rebuilding extensible MxDs for the subclass of Petri nets.

4.3 Interval Mapping Diagrams

Strehl’s work [17] on interval mapping diagrams (IMD) provides a generalized en-
coding of transitions wherein the state distance between pre- and post-transition
state variable values are stored. The state distance is defined by an action opera-
tor and action interval, which together formulate the net-effect of the transition,
on a predicate interval of the state variable, which refers to the enabling condi-
tion of the transition.

Implicit relation forests have the advantage of encoding any (partial) function
as an effect of a transition on a variable, in contrast to IMDs, where the action
operator is restricted to use increment, decrement, and equality operators only.



4.4 Homomorphisms

Couvreur et. al’s work [11] offers an efficient way of encoding transitions using
the concept of inductive homomorphisms. The encoding is defined to work with
Data Decision Diagrams (DDD) [11] and Hierarchical Set Decision Diagrams
(SDD)[12]. The approach offers freedom to the user in defining transitions and
is more efficient compared to prior works [8, 10, 15, 19].

Implicit relations are an adaptation of inductive homomorphisms that work
with MDD and are restrictive in terms of the nature of transitions that can be
encoded. Only transitions with “firing” conditions defined as partial functions of
the participant variables are compatible with implicit relations. A comparative
study between tools implementing homomorphism on DDD and implicit relations
on MDD is discussed in Section 5 to get a general overview of their performance
on a set of benchmark models.

5 Experimental evaluation

Intra-Tool Comparative Performance Analysis

We implemented the modified saturation algorithm based on implicit relations
(SatImp) in SMART [9] using Meddly[3, 2] as the underlying decision diagram
library. We conducted experiments to compare the performance of SatImp with
the existing “on-the-fly saturation with matrix diagrams” approach (OtfSat)
for reachability set generation on a suite of 70 Petri net models that is available
as known-models in MCC 2018 [1]. An experimental run involves execution of
SatImp and OtfSat on a model instance with a timeout of one hour for each
approach. All experiments are run on a server of Intel Xeon CPU 2.13GHz with
48G RAM under Linux Kernel 4.9.9.

Every Petri net model in the suite has multiple instances characterized by
scaling parameters that affect the size of model (|V| + |E|) or the initial state
of the model (i0). In order to demonstrate the effect of size and complexity of
the models on the performance of SatImp and OtfSat, the set of benchmark
models are classified into two categories namely, Type-1 models with scaling
parameters affecting model size, and Type-2 models with scaling parameters
affecting the initial state. Table 1 summarizes the experiments run on a subset
(due to space constraint) of Type-1 and Type-2 models with key metrics of
comparison as runtime, measured in seconds, and total number of pings and hits
to the compute-table for saturation operation. Since, OtfSat uses MxD, the
additional computation is summarized in the column for the total number of
pings and hits to the compute-table for MxD operations. The pings and hits to
the compute-table provide an overall picture of the number of decision diagram
computations for each approach.

It is also important to note that the computation time spent in calculating
the next-state of a variable is additional to the time spent for executing the
saturation algorithm. SatImp generates the next-state of a variable using the



information stored in the implicit relations and OtfSat spends time modifying
MxD when new bounds of the variable are discovered.

Observations from Table 1, for Type-1 models, confirm that the computation
time for reachability set remains fairly equal in both implementations. For these
models, since the scaling parameter does not affect the bound of the variables
in the model, there is comparatively less time spent on modification of MxDs.
Hence, the computation time spent by SatImp to calculate the next-state of
every variable is close to the time spent by OtfSat in construction of matrix
diagrams.

On the contrary, for Type-2 model, a significant improvement in performance
of SatImp is observed. For these models, the maximum value of any variable
discovered during the reachability set generation is a number greater than 1,
determined by the scaling parameter(s), which entails frequent expansion of
MxD nodes and possibly, for all variables at the most. Supported by this fact
and experimental results in Table 1, a few observations can be noted. First, while
SatImp is able to complete models with high scaling parameters quite early,
OtfSat either takes long time, generally increased many-fold as compared to
implicit relation, or does not finish the task before timeout. In such models, a
significant amount of computational time is spent in modification of the matrix
diagrams as shown by the number of pings and hits to compute-table for MxDs,
which is otherwise absent in implicit relations.

Second, since MxDs expand and contract during manipulation, it may re-
quire compute-table entries to be discarded. Hence, the number of pings to the
saturation compute-table would be relatively higher in OtfSat as compared
to SatImp. The dashes in the table correspond to cases in which the runtime
to construct S exceeded one hour. However, no claims can be made about the
models that did not complete within the timeout.

For comparing the maximum memory usage of SatImp with that of OtfSat,
we have chosen the largest completed instances of each model from the results in
Table 1. While matrix diagrams consume memory on megabytes scale, implicit
relations manage to store the exact information in much lesser space. The figures
in Table 2 provide substantial proof of improvement in memory usage.

Our results include metrics that are typical for efficiency comparisons be-
tween two approaches, and illustrate the efficiency of using SatImp in terms of
both computational and storage requirements. In practice, the use of implicit
relations allow for reachability analysis of much larger systems as compared to
that with MxDs.

Inter-Tool Comparative Performance Analysis

This section presents the performance comparison between the state-space gen-
eration algorithms of SMART and ITSTools, where the former tool uses implicit
relations and MDD and the latter is based on homomorphisms, DDD and SDD
[18]. The goal of this comparative analysis is to only gauge the efficiency of
SatImp by using the well-established technique of homomorphism-based satu-
ration as a benchmark.



A suite of 67 Petri net models from known models section of MCC 2018 is
used in the experiments to compare the tools based on the runtime of state-space
generation process. The largest instance of each model that could complete state-
space generation with both SMART and ITSTools in MCC 2018, is chosen for
this experiment. Table 3 shows only a subset of these experiments due to space
constraint. Since the tools are based on decision diagrams and variable order is
critical for efficiency of the state-space generation, identical static variable orders
are used in both tools for each experimental run. SMART is tuned to run on
implementation settings similar to that of MCC 2018 settings of ITS-Tools. For
example, with reference to Section 3.3, the MDD variable ui is adapted to be
equal to the number of tokens in place pi. However, the use of SDD in ITS-tools
is omitted from the experiments to ensure fair comparison, because the construc-
tion of an SDD in ITS-tools requires auxiliary information about hierarchy of
model variables and is not inferred directly from the model. All experiments are
run in the same environment as described in the previous section.

In Table 3, it is observed that SMART is faster than ITSTools for 41 out of
67 models by an average of 3.125 times. These models include Kanban, Flexible
Manufacturing System, House Construction and Philosophers where SMART
is 235, 30, 10 and 16 times faster respectively. For 10 of the models, where
Angiogenesis, SharedMemory etc are few of them, SMART is about 0.56 times
faster than ITSTools. For the remaining 16 models, ITSTools is 4.69 times faster
than SMART on an average. The experimental results allow us to surmise that
the performance of SMART when using implicit relations on MDD-based storage
complements the performance of ITSTools that use inductive homorphisms with
DDD-based storage for saturation.

6 Conclusions and future work

Reachability set generation using on-the-fly saturation with MxDs is quite an
improvement over explicit techniques, as it is often able to handle extremely large
sets with less time. However, the computational cost for building such transi-
tion relations repeatedly during reachability set generation, creates additional
focus towards handling the relations along with the state space. The transition
relations undergo manipulations for the construction of next-state functions nec-
essary for state space generation, while the underlying functions to generate the
next state is available in the model itself. Implicit relations manage to encap-
sulate and exploit these properties. Hence, we adapted the saturation algorithm
to work with implicit relations and showed how additional computations can be
saved during the reachability set generation.

Saturation algorithm using implicit relations for the reachability set gener-
ation provides promising results for the defined class of models. Experimental
results indicate that the costs are improved for a large set of models across
different sizes, though the approach is not adapted to handle marking depen-
dent events as discussed in Section 2.1. The improvement is mainly due to the



essence of implicit relations to encase the properties of the system in a simple
straight-forward approach.

Future work should investigate modification of the implicit relations to repre-
sent Petri nets with marking-dependent arcs by disclosing value of each variable
to the underlying variables in the implicit relation. We intend to create a merger
between implicit relations and MxDs that will exploit their respective static and
dynamic ingredients in the fusion. Allowing implicit nodes inside an MxD forest
would allow us to handle models that are not “Kronecker consistent”, but still
get benefits for events that affect the participant variables independent of each
other.

Acknowledgment

This work was supported in part by the National Science Foundation under grant
ACI-1642397.

References

1. MCC : Model Checking Competition @ Petri Nets. https://mcc.lip6.fr.
2. MEDDLY webpage. https://sourceforge.net/projects/meddly/.
3. J. Babar and A. S. Miner. Meddly: Multi-terminal and Edge-valued Decision

Diagram LibrarY. In Proc. QEST, pages 195–196. IEEE Computer Society, 2010.
4. R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-

grams. ACM Comp. Surv., 24(3):293–318, 1992.
5. M.-Y. Chung, G. Ciardo, and A. J. Yu. A fine-grained fullness-guided chaining

heuristic for symbolic reachability analysis. In Proc. ATVA, LNCS 4218, pages
51–66. Springer, 2006.

6. G. Ciardo, G. Lüttgen, and A. S. Miner. Exploiting interleaving semantics in
symbolic state-space generation. Formal Methods in System Design, 31:63–100,
2007.

7. G. Ciardo, G. Lüttgen, and R. Siminiceanu. Saturation: An efficient iteration
strategy for symbolic state space generation. In Proc. TACAS, LNCS 2031, pages
328–342. Springer, 2001.

8. G. Ciardo, R. Marmorstein, and R. Siminiceanu. Saturation unbound. In Proc.
TACAS, LNCS 2619, pages 379–393. Springer, 2003.

9. G. Ciardo and A. S. Miner. SMART: Simulation and Markovian Analyzer for Reli-
ability and Timing. In Proc. IEEE Int. Computer Performance and Dependability
Symp. (IPDS’96), page 60. IEEE Comp. Soc. Press, 1996.

10. G. Ciardo and A. J. Yu. Saturation-based symbolic reachability analysis using
conjunctive and disjunctive partitioning. In Proc. CHARME, LNCS 3725, pages
146–161. Springer, 2005.

11. J.-M. Couvreur, E. Encrenaz, E. Paviot-Adet, D. Poitrenaud, and P.-A. Wacrenier.
Data decision diagrams for petri net analysis. In Proc. ATPN, pages 101–120.
Springer, 2002.

12. J.-M. Couvreur and Y. Thierry-Mieg. Hierarchical decision diagrams to exploit
model structure. In Proc. Formal Description Techniques, FORTE95, volume 3731
of LNCS, pages 443–4572, 2005.



13. T. Kam, T. Villa, R. K. Brayton, and A. Sangiovanni-Vincentelli. Multi-valued
decision diagrams: theory and applications. Multiple-Valued Logic, 4(1–2):9–62,
1998.

14. A. S. Miner. Implicit GSPN reachability set generation using decision diagrams.
Performance Evaluation, 56(1):145 – 165, 2004. Dependable Systems and Networks
- Performance and Dependability Symposium (DSN-PDS) 2002: Selected Papers.

15. A. S. Miner. Saturation for a general class of models. In Proc. QEST, pages
282–291, Sept. 2004.

16. T. Murata. Petri nets: properties, analysis and applications. Proc. of the IEEE,
77(4):541–579, Apr. 1989.

17. K. Strehl and L. Thiele. Interval diagram techniques for symbolic model checking
of Petri nets. In Proc. Design, Automation and Test in Europe (DATE’99), pages
756–757, Mar. 1999.

18. Y. Thierry-Mieg. Symbolic Model-Checking Using ITS-Tools. In Tools and Al-
gorithms for the Construction and Analysis of Systems, volume 9035 of Lecture
Notes in Computer Science, pages 231–237, London, United Kingdom, Apr. 2015.
Springer Berlin Heidelberg.

19. M. Wan and G. Ciardo. Symbolic state-space generation of asynchronous systems
using extensible decision diagrams. In Proc. SOFSEM, LNCS 5404, pages 582–594.
Springer, 2009.

20. T. Yoneda, H. Hatori, A. Takahara, and S.-I. Minato. BDDs vs. zero-suppressed
BDDs: for CTL symbolic model checking of Petri nets. In Proc. FMCAD, LNCS
1166, pages 435–449, 1996.



Table 1: Computational requirements of saturation for reachability set generation in
Type-1 models and Type-2 models.

O
t
f
S
a
t

S
a
t
Im

p
A

d
d
it

io
n
a
l

M
x
D

C
T

in
O
t
f
S
a
t

M
o
d
el

|S
|

T
im

e
(s

ec
)

P
in

g
s

×
1
0
5

H
it

s
×

1
0
5

T
im

e
(s

ec
)

P
in

g
s

×
1
0
5

H
it

s
×

1
0
5

P
in

g
s

×
1
0
3

H
it

s
×

1
0
3

T
y
p

e-
1
:

B
ri

d
g
eA

n
d
V

eh
ic

le
s

V
5
0
P

5
0
N

1
0

3
.4

8
×

1
0
8

8
7
.0

5
4
4
4

1
6
8

5
1
.5

3
4
0
8

1
5
0

7
7
9
0

7
6
8
0

B
ri

d
g
eA

n
d
V

eh
ic

le
s

V
8
0
P

2
0
N

1
0

2
.4

3
×

1
0
9

4
7
3
.0

5
2
0
5
1

9
0
4

2
3
9
.9

3
1
9
0
6

8
2
7

5
0
0
1
0

4
9
7
9
1

B
ri

d
g
eA

n
d
V

eh
ic

le
s

V
8
0
P

5
0
N

1
0

2
.4

3
×

1
0
9

4
7
5
.2

4
2
0
5
1

9
0
4

2
5
3
.1

2
1
9
7
9

8
5
5

5
0
0
1
0

4
9
7
9
1

D
E

S
3
0
a

1
.9

2
×

1
0
1
3

2
2
.6

0
1
7
5

3
4

2
3
.9

1
1
7
6

3
4

2
4

1
6

D
E

S
3
0
b

1
.9

7
×

1
0
2
2

1
0
3
.9

7
7
1
9

2
0
1

1
0
2
.7

4
7
4
5

2
0
3

1
8

1
1

D
E

S
4
0
a

3
.5

2
×

1
0
1
3

4
9
.2

7
3
4
1

6
2

4
9
.5

4
3
4
4

6
3

2
8

1
8

D
E

S
4
0
b

3
.6

0
×

1
0
2
2

1
4
9
.6

4
9
9
5

2
5
6

1
5
2
.6

9
1
0
4
1

2
5
8

2
0

1
2

D
N

A
w

a
lk

er
1
4
ri

n
g
L

R
L

a
rg

e
1
.8

6
×

1
0
9

1
1
.3

8
9
0

6
6

1
2
.2

3
9
0

6
6

9
6

D
N

A
w

a
lk

er
1
5
ri

n
g
R

R
L

a
rg

e
1
.8

6
×

1
0
9

1
0
.1

1
7
8

5
8

1
2
.2

9
7
8

5
8

9
6

R
W

m
u
te

x
r1

0
w

1
0
0

1
.1

2
×

1
0
3

2
.2

9
2
6

0
2
.4

8
2
5

0
1
0
2

6
9

R
W

m
u
te

x
r1

0
w

5
0
0

1
.5

2
×

1
0
3

3
8
.0

1
4
3
2

3
0

3
8
.7

5
4
3
1

3
0

5
9
0

4
2
2

T
y
p

e
2

:

A
n
g
io

g
en

es
is

1
5

1
.1

2
×

1
0
1
5

3
2
4
.7

9
4
8
7
3

4
3
4
0

1
4
0
.3

3
2
9
7
3

2
6
7
1

3
2
0

3
1
0

C
ir

ca
d
ia

n
C

lo
ck

1
0
0
0

4
.0

2
×

1
0
1
5

3
3
3
4
.5

3
6
8
3
4

6
7
5
3

7
8
.0

2
1
8
6

1
3
6

8
8
0
1
6

8
8
0
1
4

F
M

S
1
0
0

2
.7

0
×

1
0
2
1

8
.9

0
3
4
0

3
3
2

4
.1

2
2
2
0

2
1
4

3
4
1

5
0

F
M

S
2
0
0

1
.9

5
×

1
0
2
5

7
8
.2

8
3
3
3
1

3
2
9
4

3
3
.5

0
1
7
3
7

1
7
1
4

5
0

5
0

G
P

P
P

C
1
0
0
0
N

1
0

1
.4

2
×

1
0
1
0

1
.1

9
5

3
0
.2

1
3

2
4
3

4
3

G
P

P
P

C
1
0
0
0
N

1
0
0

1
.1

4
×

1
0
1
5

4
4
0
.3

5
1
5
6
0

1
4
1
3

1
1
4
.8

8
6
5
4

5
4
3

1
8
0
7
2

1
8
0
7
1

K
a
n
b
a
n

5
0
0

7
.0

9
×

1
0
2
6

4
5
8
.6

6
2
5
5
8

2
5
4
2

1
2
.1

4
7
5
6

7
5
2

1
2
7
0
4

1
2
7
0
3

K
a
n
b
a
n

1
0
0
0

1
.4

2
×

1
0
3
0

2
3
4
7
.1

8
2
0
2
3
1

2
0
1
7
0

7
2
.5

0
5
9
0
9

5
8
9
1

5
0
6
7
7

5
0
4
3
6

R
o
b

o
t

M
a
n
ip

u
la

ti
o
n

2
0

4
.1

1
×

1
0
9

6
.9

1
1
7
2

1
5
3

1
.2

2
3
4

3
1

1
8

1
7

R
o
b

o
t

M
a
n
ip

u
la

ti
o
n

5
0

8
.5

3
×

1
0
1
2

1
7
6
.0

5
3
9
4
1

3
6
5
9

3
3
.1

5
8
7
1

8
3
3

2
5
3

2
5
3

S
m

a
ll
O

S
M

T
1
0
2
4
D

C
2
5
6

3
.2

7
×

1
0
1
2

9
7
1
.7

7
7
5
0
6

7
4
7
5

6
6
.1

3
3
1
9
8

3
1
8
4

2
4
5
2
2

2
4
5
2
1

S
m

a
ll
O

S
M

T
2
0
4
8
D

C
0
5
1
2

1
.0

4
×

1
0
1
4

−
−

−
6
2
0
.6

1
2
5
1
8
4

2
5
1
1
8

−
−

S
m

a
ll
O

S
M

T
2
0
4
8
D

C
1
0
2
4

2
.4

6
×

1
0
1
4

−
−

−
1
1
0
5
.1

8
3
8
0
8
2

3
7
9
4
5

−
−

S
w

im
m

in
g
P

o
o
l

9
1
.8

1
×

1
0
1
0

1
1
.7

3
1
1
6

9
7

7
.2

8
1
1
6

9
7

7
0

7
0

S
w

im
m

in
g
P

o
o
l

1
0

3
.3

6
×

1
0
1
0

1
5
.8

1
1
6
3

1
3
7

1
0
.9

8
1
6
1

1
3
5

9
5

9
5



Table 2: Storage requirements by saturation algorithm for transition encodings.

Model
Memory for
OtfSat

(KB)

Memory for
SatImp
(KB)

DES 40b 524.00 7.55

DNAwalker 15ringRRLarge 168.93 5.84

Angiogenesis 15 1133.90 9.28

CircadianClock 1000 959318.00 12.00

FMS 200 10175.00 26.59

GPPP 100 100 1470591.00 48.56

Kanban 1000 464342.00 16.00

Robot Manipulation 50 18020.00 14.12

Small OS 1024 256 242091.00 106.50

Swimming Pool 10 1823.60 10.88

Table 3: Performance comparison between SMART and ITS-tools.

Model Instance
Reachable States

(#)

Runtime
(sec)

ITS Tools SMART

Kanban 100 1.7263E+19 3.37E+03 1.42E+01

FMS 200 1.9536E+25 4.64E+02 1.42E+01

SwimmingPool 6 1.6974E+09 5.26E+01 2.89E+00

Philosophers 500 3.6300E+238 4.03E+00 2.24E-01

HouseConstruction 10 1.6636E+09 6.11E+00 5.99E-01

ClientsAndServers 5 1.2551E+11 7.11E+01 8.55E+00

CircadianClock 100 4.2040E+10 1.74E+00 4.60E-01

IBMB2S565S3960 none 1.5511E+16 1.60E+01 8.65E+00

Ring none 9.0265E+11 1.72E-01 9.34E-02

TokenRing 15 3.5358E+07 1.57E+01 1.26E+01

Referendum 100 5.1537E+47 1.07E+00 8.96E-01

SharedMemory 20 4.4515E+11 5.04E+00 7.76E+00

EnergyBus none 2.1318E+12 5.34E+01 9.00E+01

Angiogenesis 5 4.2735E+07 5.20E-01 9.58E-01

FlexibleBarrier 4a 2.0737E+04 6.11E-02 1.51E-01

Railroad 10 2.0382E+06 2.34E+00 5.94E+00

Peterson 3 3.4079E+06 2.70E+01 7.45E+01

CSRepetitions 3 1.3407E+08 6.01E-01 2.47E+00

UtahNoC none 4.7599E+09 5.29E+00 3.44E+01

PaceMaker none 3.6803E+17 2.47E-01 3.07E+00


