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CASE REPORT

Monitoring worker fatigue using wearable devices: A case study to detect
changes in gait parameters

Amir Baghdadia, Lora A. Cavuotob, Allison Jones-Farmerc, Steven E. Rigdond, Ehsan T. Esfahania, and
Fadel M. Megahedc

aDepartment of Mechanical & Aerospace Engineering, University at Buffalo, Buffalo, New York; bDepartment of Industrial & Systems
Engineering, University at Buffalo, Buffalo, New York; cFarmer School of Business, Miami University, Oxford, Ohio; dCollege for Public
Health and Social Justice, Saint Louis University, Saint Louis, Missouri

ABSTRACT
The goal of this case study is to answer four research questions related to fatigue through
features derived from wearable sensors to measure patterns in steps: (1) How do important
gait parameters change over time? (2) How do these sensor-based changes relate to the
participant's subjective fatigue ratings over time? (3) Are there consistent patterns in per-
formance across different individuals over time? and (4) Do these patterns vary systematic-
ally based on specific demographic characteristics? To answer these questions, we have
combined multivariate changepoint methods with hierarchical time-series clustering and
exploratory data analysis. The results improve our understanding of fatigue development.
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1. Motivation

Many authors have noted how recent technological
advancements have led to innovative statistical meth-
ods to help understand, monitor, and/or control com-
plex data sets. For example, in 2018, the Journal of
Quality Technology published three special issues:
(a) “Statistical process control on big data streams,”
(b) “Quality engineering in advanced manufacturing,”
and (c) “Reliability and maintenance modeling with
big data.” In all, 19 articles were published in these
special issues, and we applaud the focus on process
improvement and reliability related to technological
advancement. However, we want to emphasize how
the advances in technology can affect our ability to
improve the performance of human workers who are
central to productivity and quality in many produc-
tion systems.

Our motivation behind presenting this article/case
study is to encourage the quality community to inves-
tigate relevant research problems that pertain to
human operators. Specifically, we posit that the three
research streams highlighted by the special issues can
extend to “human systems.” For example, let us con-
sider the domain of advanced manufacturing (often
referred to as Industry 4.0), which is defined by The

(U.S.) President’s Council of Advisors on Science and
Technology (2011) as a subset of manufacturing tasks
that is built upon the utilization of automation, com-
puting, and sensing technologies. Advanced manufac-
turing is different from the computer-integrated
manufacturing of the 1990s. Specifically, “the end goal
of computer-integrated manufacturing was a workless
manufacturing environment (i.e., lights-out manufac-
turing facilities); however, advanced manufacturing
aims to integrate workers into the cyber–physical
infrastructure to maximize the impact of their skills . . .”
(Lu et al. 2017, 139). From that perspective, each oper-
ator can be seen as an integral component of modern
production systems. We hope to demonstrate how stat-
istical methods that have traditionally been applied to
problems of process quality monitoring (e.g., filtering,
change point methods, and CUSUMs) can be applied to
monitor worker fatigue.

The quality community has traditionally ignored
the impact of human operators on process/product
quality in manufacturing environments. While it is
outside the scope of this article to investigate potential
reasons for this observation, it is due time to encom-
pass human performance monitoring as an integral
component of quality monitoring activities. Our view
is supported by the recent review of Kolus, Wells, and
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Neumann (2018), who identified 73 published empir-
ical studies discussing the impact of human factors
(HF) in manufacturing operations on system quality
performance. The authors clearly stated that: “quality
deficits were associated with undesirable human
effects of workload like fatigue and injury-related risk
factors. Forty-six percent of the studies reported on
efforts to improve HF in the [operations systems]
with effect sizes for quality improvements reaching up
to 86%.” Moreover, we would like to mention two
examples that show why our community should be
more amenable for monitoring human performance as
a part of quality control. First, it is already a standard
practice in [lean] Six Sigma to collect “human per-
formance related data” as a part of the Safety and
Morale key indicators in the SQDCM (safety, quality,
delivery, cost, and morale) framework. Second, the
research community has been indirectly measuring
human performance in surgical quality performance
monitoring for about two decades (see the review of
Woodall, Fogel, and Steiner 2015 for more details).
We believe that the aforementioned discussion should
encourage and justify why our community needs to
be more involved in human performance monitoring.

With recent developments leading to numerous
sensors that can be used to capture human perform-
ance (e.g., wearables, motion capture devices, sensors
embedded in work stations), we believe that the three
research streams can be extended to human perform-
ance modeling applications. First, the use of sensors
and the need to analyze the generated data using
automated methods is a key feature of advanced man-
ufacturing. Second, because the sensors often have
multiple frequencies and generate different data types,
their analysis fits the “big data streams” paradigm.
Third, a degradation in a worker’s performance can
require an ergonomic intervention (i.e., maintenance).
Thus, the ability to estimate when the performance
will deteriorate and what type of intervention opti-
mizes recovery can improve quality and productivity
and reduce injury risk. This application is conceptual-
ized using a “big data” predictive mainten-
ance paradigm.

2. Problem description

In this case study, we consider data gathered from 15
subjects participating in an experimental study per-
forming an occupational task. Data were gathered on
each participant using wearable sensors over a 3-hour
period for the purposes of understanding physical
fatigue development over time. Therefore, the main

goals of our analysis are to (a) detect the onset of
fatigue during the task, (b) characterize the stages of
fatigue development, and (c) identify how different
participants fatigue over time.

From an occupational perspective, physical fatigue
is an adverse condition that leads to “a lower level of
strength, physical capacity and job performance” (Lu
et al. 2017, 140). Antecedents include (a) high work-
loads, (b) unergonomic postures, (c) long shifts, and/
or (d) poor physical environments (Yung 2016).
Interestingly, the recent technological advancements
have burdened highly skilled workers, increasing their
workload and fatigue rates (Brocal and Sebasti�an
2015; Gust et al. 2017; Romero et al. 2016).

High fatigue rates are being reported in many U.S.
industries. For example, 58 percent of U.S. advanced
manufacturing workers have reported being fatigued
during the past work week (Lu et al. 2017). Similar
fatigue rates have also been reported among construc-
tion (Zhang et al. 2015) and distribution center work-
ers (Schneider, Copsey, and Irastorza 2010). It is
important to highlight that high workplace fatigue
rates are not unique to U.S. workplaces because they
have also been reported in Japan (Kajimoto 2008),
Sweden (Evengård 2008), Canada (Yung 2016), and
the European Union (Loriol 2017).

Physical fatigue results in numerous adverse out-
comes. These include (a) increases in sickness absence
(Janssen et al. 2003), (b) higher likelihood of being
injured in an occupational accident (Swaen et al.
2003), (c) decreased physical and cognitive function
(Bl�afoss et al. 2019; Zhang et al. 2015), (d) reduced
work capacity/performance (Barker and Nussbaum
2011; Macintosh, Svedahl, and Kim 2004), (e) dimin-
ished quality (Kolus, Wells, and Neumann 2018;
MacLeod 1994; Yeow and Sen 2003) and (f) higher
rates of health complaints (Sluiter et al. 2003). The
consequences of worker fatigue are not limited to the
worker alone. For example, Ricci et al. 2007 estimated
that U.S. employers lose $136 billion annually in
fatigue-related costs (i.e., diminished production and
worker compensation).

Due to the damaging effects of physical fatigue on
both the individual and firm, it is important to
quickly detect the onset of fatigue in order to minim-
ize its consequences. Currently, the measurement of
physical fatigue can be divided into three approaches:
(a) exact methods, which involve the application of
blood sampling techniques to detect cellular and
metabolic changes (Garde, Hansen, and Jensen 2003);
(b) electromyography (EMG)-based methods, which
capture the electrical activity produced by muscles
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through the use of skin recording electrodes; and (c)
feature-based methods that attempt to detect/monitor
fatigue symptoms including changes in posture con-
trol, walking patterns, and increased sway (Davidson,
Madigan, and Nussbaum 2004), which are typically
recorded via visual inspection of work tasks or
through the use of self-reported questionnaires.
Approaches (a) and (b) are unlikely to be used in
practice because they are intrusive and will likely be
resisted by individuals/unions. Additionally, the use of
EMG is only suitable for stationary tasks, which
makes it unfit for many occupational settings. Thus,
the first two approaches are primarily limited to
laboratory studies (Cavuoto and Megahed 2017).

Although there are several physiological and phys-
ical indicators of fatigue onset, we limit our analysis
to detecting changes in gait (i.e., walking pattern)
parameters. Fatigue is a multifaceted phenomenon,
which heavily depends on task, a person’s individual
characteristics, medical history, and environmental
conditions (Cavuoto and Megahed 2017). Fatigue
indicators will differ according to these conditions;
thus, the corresponding feature-based methods to
measure fatigue must be tailored to specific tasks. It is
important to develop a methodology that can poten-
tially translate to a large subset of occupations; we
have to identify a component that is common to
many tasks. Walking (often to pick items) is a perva-
sive component of many occupational tasks in manu-
facturing, construction, mining, and nursing. For
example, U.S. advanced manufacturing workers have
reported performing tasks that involve an average of
5.7 hours of walking per shift (Lu et al. 2017).
Similarly, distribution center workers typically spend
75 percent of their time picking orders and walk up
to 6 miles per shift (Fiveash 2016). The reader is
referred to Hernandes 2016 for similar statistics
involving other occupations.

In the fields of industrial statistics, quality, and reli-
ability, fatigue generally refers to the weakening of
materials after prolonged use or load (King et al.
2016). In this study, we consider physical fatigue of
humans in an occupational setting. In both material
fatigue testing and human fatigue, the stress can accu-
mulate to the point that a failure occurs; for the case
of a material, this might mean that the item breaks
and, in the case of a worker, it could mean that job
performance is negatively affected. Human fatigue is
also related to degradation testing of equipment,
where items are placed on test and the important
characteristic is monitored across time so that a fail-
ure can be predicted. For example, a lamp may be

tested and the luminosity monitored across time.
When the luminosity drops below a specified level,
the unit is deemed to have failed (Tseng, Hamada,
and Chiao 1995). Lu and Meeker (1993) developed
methodology to monitor the crack length in materials
in order to predict when a crack will lead to a failure.
Degradation testing and human fatigue do, however,
differ in a few aspects. First, the profile from a deg-
radation test is almost always monotonic because
luminosity does not get higher and cracks don’t get
shorter. Also, in degradation testing, the general form
of the degradation profile is known; for example,
cracks will grow in size until a failure but, for
humans, it is not known a priori what type of profile
will suggest fatigue. Third, there is usually a single
output variable in degradation testing, whereas human
fatigue can be assessed through many output variables
that are measured using wearable sensors.

With the continued advancements in wearable
technologies and the associated decrease in their costs,
wearable sensors are widely considered to be an inte-
gral component of next-generation fatigue/gait moni-
toring systems (Dempsey et al. 2018; Schall, Sesek,
and Cavuoto 2018; Tsao, Ma, and Papp 2018; Zhao
and Obonyo 2018). The advantages for using wear-
ables technology for feature-based prediction/monitor-
ing methods include portability, noninvasiveness,
affordability, multifunctionality (which makes them
translatable between different applications and/or
occupational tasks (Tongen and Wunderlich 2010;
Yang and Li 2012), and reliability (Tao et al. 2012).
These advantages make them more appealing than
video-based motion capture systems (which are static)
and questionnaires (which are less timely).

The existing literature on wearable sensors for
fatigue detection has been limited to classification
methodologies, where regression and/or machine
learning approaches are used to predict whether a
subject is fatigued or not (Baghdadi, Cavuoto, and
Crassidis 2018; Baghdadi et al. 2018; Pantelopoulos
and Bourbakis 2008, 2009, 2010; Maman et al. 2017,
n.d.). In these approaches, the response variable is
typically dichotomous, corresponding to fatigued and
nonfatigued states based on a subjective user/partici-
pant rating. The predictor variables are typically fea-
tures extracted from the wearable sensors capturing
statistical, kinematic, and physiological changes. There
are three main limitations for the methodologies cur-
rently published in the literature. First, temporal vari-
ation in the predictors are not explicitly accounted for
in the existing models, which are meant to be applied
at regular intervals (e.g., every 15minutes) instead of
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accumulating information over time. Second, machine
learning approaches are black-box and often provide
no diagnostic information for why a person is deemed
fatigued at a given time point. Finally, the published
sensitivity and specificity rates for individual subjects
are typically between 75 percent and 85 percent.
When applying these classification methods to mul-
tiple subjects in practice, it is likely that the misclassi-
fication rates would be very high.

As a first step toward addressing these limitations,
we examine how wearable sensor data can be better
explored and analyzed. Specifically, we combine
exploratory data analysis (EDA) techniques, multi-
variate nonparametric change point methodology,
and time series clustering to address four
research questions:

1. How do important gait parameters (e.g., stride
length, height, and duration) change over time?

2. How do these sensor-based changes relate to the
participants’ subjective fatigue ratings?

3. Are there consistent patterns in performance
across different individuals over time?

4. If so, do these patterns vary systematically based
on specific demographic characteristics?

Addressing these questions can set the foundation
for prospective fatigue monitoring.

The remainder of the article is structured as fol-
lows. Section 3 details the experimental setup and fea-
ture engineering (i.e., how stride length, height, and
duration were generated from the sensors’ data). In
Section 4, we present how the data were preprocessed.
Section 5 details the application of the nonparametric
change point approach to detect the different stages of
fatigue development, and address research questions
(1) and (2). In Section 6, we discuss how a hierarch-
ical time series clustering approach was used to help
us address research questions (3) and (4). Finally, our
concluding remarks are presented in Section 7.

3. Experimental setup and feature engineering

The goal of this article is to examine the use of EDA
techniques, multivariate change point analysis techni-
ques, and time series clustering to describe the differ-
ent stages of fatigue development based on data
collected from wearable sensors. This case study
presents a secondary analysis of the experimental data
of Baghdadi et al. (2018), where fatigue was classified
using a machine learning approach (i.e., not account-
ing for the temporal nature of wearable sensors data).
To improve the readability of our article, in this

section, we present a brief description of (a) the
experimental procedure, (b) sensor data collection and
recording, and (c) the feature engineering, explaining
how the gait cycles were extracted from the raw data
and how the stride length, height, and duration were
computed based on the segmented gait cycles.

3.1. Experimental procedure

The case presented in this manuscript is part of the
broader study published by Maman et al. (2017) and
further reported on in Baghdadi et al. (2018). The
study was designed as a cross-sectional laboratory
study using a one-factor within-subjects design. The
designed factor was the physical level of the task at
three levels (low, medium, and high) based on pos-
tural, biomechanical, and physiological demand. The
low-level task included an assembly task completed in
a standing position at a workstation, the medium-level
task involved supply pickup and delivery with sus-
tained back flexion at the delivery point, and the
high-level task involved manual materials handling.
These tasks represent the range of tasks performed
regularly and repeatedly in complex manufacturing
environments (Lu et al. 2017). Each task level was
performed in a separate session and the session
involved 3 hours of continuous work. Due to the
nature of the tasks, only the high-level manual materi-
als handling (MMH) task involved a significant period
of continuous walking that would allow for analysis of
changes in gait over the duration of the session.
Similar to Baghdadi et al. (2018), we only used the
data corresponding to the high-level MMH task in
our case study. The 3-hour period was selected to rep-
resent a typical period of continuous manufactur-
ing work.

A sample of 15 participants completed the study.
The participants had an average (standard devi-
ation): (a) age of 37.6 (16.7) years, (b) body mass of
74.2 (14.4) kilograms, and (c) height of 170.8 (9.2)
centimeters. Eight participants were men and seven
were women. These subjects included a combination
of students with some experience of performing
manual tasks and local workers, which is typical of
many ergonomic studies (Evstigneeva et al. 2012;
Rashedi et al. 2014; Tanoue et al. 2016). Participants
were excluded based on the Physical Activity
Readiness Questionnaire (Thomas, Reading, and
Shephard 1992).

At the start of the experimental session, partici-
pants were provided with instructions for performing
the task and had a period to become acquainted with
the task and ask any questions as needed. This period
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also served as a warm-up for the physical demand of
the task. Participants were instrumented with a small
inertial measurement unit (IMU of size 51mm �
34mm � 14mm) attached around their right ankle
(see Figure 1). Note that an IMU is a device that
encompasses three different sensors: (a) accelerometer,
measuring a body’s specific force, (b) gyroscope to
measure the angular rate, and (c) magnetometer for
measuring the magnetic field, which is useful for
determining directions in a global field of reference
(e.g., one can think of the role of a compass). The
IMU, used in Baghdadi et al. (2018), recorded data
continuously at 51.2Hz (i.e., 51.2 measurements per
sensor per second) throughout the task. Each sensor
recorded three time series at 51.2Hz, one for each
axis of the Cartesian coordinate system.

Once instrumented, baseline data were collected
with the participant in a stationary position. Once the
MMH task commenced, the participants completed a
set of deliveries of weighted cartons using a two-
wheeled dolly. At 10-minute intervals during the ses-
sion, participants provided a rating of their perceived
exertion (RPE) (Borg 1982). A visual summary of the
experimental procedure is shown in Figure 2 (see
Baghdadi et al. 2018 for more details).

3.2. Feature engineering

In this subsection, we describe the approach needed
to preprocess the accelerometer data to generate the
required features. The challenge is to transform the
three-dimensional accelerometer data from the refer-
ence of an individual body (which we denote with x,
y, and z) to a global frame of reference (which we dis-
tinguish through the use of the uppercase X, Y, and
Z). To achieve this transformation, we first estimate
the angular orientation of the ankle/sensor. This is
achieved by combining the angular orientation from
the accelerometer and gyroscope through the applica-
tion of a Kalman Filter (KF). Through a series of

preprocessing steps, we translate the raw data into the
stride length, height, and duration for each participant
over time. An overview of the preprocessing steps
involved in feature generation are depicted in Figure
3. While the major components of the IMU prepro-
cessing procedure are the same across multiple studies
(Baghdadi, Cavuoto, and Crassidis 2018; Baghdadi
et al. 2018; Rebula et al. 2013), the sequence/segmen-
tation approach can differ according to the location of
the IMU sensor on the body, the task being moni-
tored, and/or the goal of application (real-time versus
retrospective monitoring). For this reason, the seg-
mentation approach presented here is different than
that used by Baghdadi et al. (2018).

3.2.1. Fusing the accelerometer and gyroscope data
using a Kalman filter

From Figure 3, the first step in preprocessing the
IMU data is to estimate the angular orientation of the
ankle. In this case study, we implement the procedure
used by Baghdadi et al. (2018) and developed in the
seminal work of Luinge and Veltink (2005), where a
Kalman filter (KF) was designed to fuse accelerometer
and gyroscope signals for ambulatory recording of a
body part’s orientation. For the sake of conciseness,
we do not repeat the description of the process here.
The interested reader is referred to Luinge and
Veltink (2005) for a detailed description of the statis-
tical modeling and the assumptions pertaining to both
movement mechanism and sensor error behavior. In
addition, we provide the MATLAB code used to
implement that procedure in the GitHub repository
(see the folder titled “feature-engineering”) introduced
in the Supplementary Materials Section.

The KF implementation results in an optimal/fused
estimate of the angular orientation, which accounts
for the different accuracies and sources of error for
each of the accelerometer and gyroscope (Luinge and
Veltink 2005). To demonstrate the utility of the KF
implementation, consider the sample experimental

Figure 1. Visualizing the IMU sensor and its placement on the right ankle of one of the participants. Figure 1b Source: Baghdadi,
Megahed et al. (2018), Figue 2. # 2018. Amir Baghdadi, Fadel M. Megahed, Ehsan T. Esfahani & Lora A. Cavuoto. All Rights
Reserved. Reproduced with permission.
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data from one participant shown in Figure 4. In this
sample, the participant was standing for the first
�10 seconds and then walking for the remaining
�20 seconds. Figure 4(a) highlights the effect of move-
ment on the angular orientation estimate obtained
from the accelerometer. In particular, one can see the

large variation in the angular position of the ankle
with movement. This variation is much larger than
the variation expected with movement on a flat sur-
face and is attributed to the inability of the accelerom-
eter to accurately predict the angular position on its
own (Jimenez et al. 2009; Rebula et al. 2013).

Figure 2. A visual summary of the experimental procedure. Adapted from Figures 2 and 3 in Baghdadi, Megahed et al. (2018). #
2018. Amir Baghdadi, Fadel M. Megahed, Ehsan T. Esfahani & Lora A. Cavuoto. All Rights Reserved. Reproduced with permission.
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Moreover, Figure 4(b) demonstrates the drift in angu-
lar position due to the accumulated error of gyroscope
biases (Chang, Li, and Chen 2015). Figure 4(c) shows
how the KF procedure of Luinge and Veltink (2005)
resulted in a realistic estimate of the changes (within
�25

�
) in the ankle’s angular orientation due to walking.

Estimating the angular orientation is pivotal in the
usage and understanding of the acceleration data

captured by the IMU’s triaxial accelerometer. Similar
to the approach of Baghdadi et al. (2018) (and
detailed in Ghobadi and Esfahani 2017), we express
the estimated angular positions, from the KF, in the
form of quaternions, which are then used for transla-
tion of the accelerometer signal from the body coord-
inate system to the global frame of reference.
Consequently, the gravitational effects will be limited

Figure 3. An overview of the main IMU processing tasks (shown through the flowchart on the left), with their corresponding data
trajectories (plotted at right). Figure is inspired by Rebula et al. (2013).
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to the vertical axis and will not affect/influence the
accelerations along the horizontal plane. The reader is
referred to Ghobadi and Esfahani (2017) for a detailed
description of the mathematical formulations/
derivations.

Once the accelerations are expressed in the global
reference frame, high-frequency noise in the acceler-
ation signals (generated from external sources, e.g.,
electromagnetic interferences and small shifts in the
sensor positioning with movement) were removed
through a smoothing procedure. A low-pass
Butterworth filter, with a cutoff frequency of 4HZ,
was used to smooth the transformed acceleration sig-
nals in the X, Y, and Z global frame of reference
directions. The reader should note that the
Butterworth filter is commonly applied in smoothing
biophysical sensor signals (see, e.g., Baghdadi et al.
2018; Bastos et al. 2001; Merletti and Di Torino

1999). After smoothing, the overall resultant acceler-
ation was calculated as the magnitude of the acceler-
ometer signal across the three axes (i.e.,
am ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2X þ a2Y þ a2Z
p

). The am signal is then further
smoothed using the Butterworth filter, with the same
cutoff frequency of 4HZ, to ensure that the sensor
signal is smoothed so that it is suitable for usage in
the subsequent gait cycle segmentation procedure.
This was done to mimic the analysis performed in
Baghdadi et al. (2018).

3.2.2. Gait cycle segmentation
In order to extract the gait features of stride length,
stride height, and stride duration, the time-series mag-
nitude of the acceleration (i.e., am) was segmented
using a modified version of the algorithm introduced
in Baghdadi et al. (2018). This method isolates each
stride based on locating the two peaks of acceleration

Figure 4. The utility and effectiveness of the KF in estimating the angular orientation over time. The three signals correspond to
the angular orientation in the x, y, and z directions.
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indicating the heel strike and toe-off portions of the
gait cycle. This assumption was justified based on the
results of Tongen and Wunderlich (2010). As each
stride was expected to last around 1 second, the loca-
tions of the two peaks are first searched within a
time window containing 50 data points (recall our
IMU has a frequency of around 50HZ). From a bio-
mechanics perspective, true gait segments were
expected to fall within a 50–65 data point window. A
moving-window approach was used to search the
entire time series. After finding a gait segment, the
search continued from the data point immediately
following the end of that segment. However, if no
segment was found within the time window, the end-
ing point of the window was shifted by one data
point. The procedure continued until all gait seg-
ments were extracted. Algorithm 1 summarizes our
segmentation procedure. The algorithm contains sev-
eral empirically determined thresholds. These thresh-
olds are data dependent and may differ for other
applications.

Algorithm 1 Gait Cycle Segmentation Approach
Consisting of Two Main Procedures/Functions

1: procedure PARAMETERS DETERMINATION

(accMgnFiltTrain)
2: Apply the SEGMENTATION PROCEDURE on
accMgnFiltTrain with time window data points ¼
50 (segLenAvg¼ 50), and peakAccThr threshold
s¼ 5. . Values are for initialization purposes only
3: Determine the average number of data points per
gait cycle in the training dataset.
4: Define the threshold s for identifying acceleration
peaks as 80 percent of smallest peak.
5: Output: [segLenAvg, peakAccThr]
6: procedure SEGMENTATION(accMgnFilt,
segLenAvg, peakAccThr)
7: while {data length allows} do
8: Identify the 1st peak of the gait cycle acceleration.
9: Identify the 2nd peak of the gait cycle
acceleration.
10: if {2nd peak > 1st peak by 20 percent &&
2nd peak> s} then
11: Determine start point for the gait segment
by searching for the minimum point within a window
20 points before and 10 points after the current win-
dow start point.
12: Determine end point for the gait segment
by searching for the minimum point within a window
of 20 points past the 2nd peak.
13: if {determined segment length is >

1.3� average segment length} then

14: Discard the segment as an outlier and
start from the next point after the original time win-
dow start point.
15: else
16: Update the time window to start from
the determined next data point after the end point to
search for the next segment.
17: Update the array of segments to include
the determined start and end points.
18: Start from the next point after the original
time window start point.

return
19: Output: [segStartPntArr, segEndPntArr, peakTwoArr]
List of abbreviations:
accMgnFiltTrain: pure gait sample of am of 2,000
points (� 40 sec) for training the segmentation
parameters across the 3 hours.
accMgnFilt: filtered acceleration magnitude calculated
from the transformed acceleration signal (am).
segLenAvg: average length of segmentations from
parameters determination phase.
peakAccThr: threshold s from parameters determin-
ation phase.
segStartPntArr: array of refined start point for all seg-
ments in the input data set.
segEndPntArr: array of refined end point for all seg-
ments in the input data set.

3.2.3. Kinematics estimation and feature generation
From the segmented gait cycles, one can directly com-
pute the stride duration. For a given gait segment, the
stride duration equals the time difference between the
ending and starting points for that segment. For
generating stride length and height, we followed the
procedure of Baghdadi et al. (2018), which entailed
(a) numerically integrating the smoothed and trans-
formed acceleration signals in the X, Y, and Z global
reference frame to obtain the corresponding velocity
signal; (b) utilizing the Zero Velocity Update algorithm
of Skog et al. (2010) to remove the drift in the vel-
ocity calculations and force the segmentation end
point to zero (because this is a stationary period of
gait); (c) numerically integrating the corrected velocity
signal to get the position trajectories in the global X,
Y, and Z directions; and (d) from the position trajec-
tories, estimating the stride length (i.e., the distance
covered when a subject takes two steps, one with each
foot) and height for each gait segment. Because one of
our main goals is to understand fatigue development
across participants, we rescaled the stride length and
height, dividing each feature with the participant’s
height. This allows us to better interpret the features
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and facilitates the comparison of gait changes over
time and across participants (€Oberg, Karsznia, and
€Oberg 1993). The three time series containing the
scaled stride height, length, and duration for each par-
ticipant are depicted in Figure 5.

From Figure 5, there are three characteristics of
our data that can complicate any subsequent analysis.
First, the length of the data (which can be observed
from the x-axis of the graph) is different for each par-
ticipant. Note that the data length is a function of
both the total time of walking per participant and
number of strides. This can be problematic when we
attempt to perform time-series clustering on the par-
ticipants’ data because these approaches require that
the length of each series is identical. Second, there are
several outliers within each series that will impact the
performance of almost any statistical approach that
will be used for detecting the onset of fatigue. Third,
the time series for each feature exhibits high levels of
autocorrelation and an underlying cyclical pattern that
captures typical walking behavior. This is problematic
because the existing literature on change point detec-
tion for time-series data assumes independent vector

of observations over time (e.g., see Cabrieto et al.
2017; Capizzi and Masarotto 2017; De Oca et al. 2010;
Matteson and James 2014). In the next section, we
describe our attempts to tackle each of these issues.

4. Signal processing

4.1. Standardizing the length of each participant’s
time series

To account for the different lengths of the time series
across participants, we rescaled the data from nominal
time spent walking to a 0–100 percent scale, reflecting
the percentage completion time for the experiment. To
be specific, for each participant, the three features were
sampled in increments of 0.05 percent time from start
(starting with 0.05 percent and ending with 100 percent
time from start). We used this sampling strategy
because it allows us to (a) have an equal number of
observations, n¼ 2,000, among the 15 participants; (b)
the 2,000 observations present sufficient granularity to
capture any changes in kinematic patterns associated
with fatigue development (as the observations are
spaced at approximately 3–5 seconds depending on the

Figure 5. The three time series for stride length, height, and duration for Participant 1. The reader is encouraged to visit https://
fmegahed.github.io/fatigue_case_jqt.html to examine the visualizations for the other participants. The time series data are stored
in a “FeatureGeneration.RData” file, which can be accessed through our GitHub repository.
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participant’s walking behavior); and (c) maintain the
time order of observation, which is needed for any sub-
sequent statistical analysis. The links provided in the
Supplementary Materials allow the reader to access our
code and results from this standardizing stage.

4.2. Using the median filter to smooth the data

The sampling/standardization approach of Subsection
4.1 resulted in a trivariate vector (scaled stride length,
scaled stride height, and stride duration) of 2,000
observations for each participant. Thus, it solved the
unequal length problem highlighted in Subsection
3.2.3; however, the sampling did not remove/correct
the outliers observed in Figure 5. This subsection
describes our approach to outlier correction for the
data obtained at the end of Subsection 4.1.

Based on plotting the standardized data (not shown
here for conciseness; refer to Figure 5 for the nonstan-
dardized data or see https://fmegahed.github.io/
fatigue_case_jqt.html for the standardized plots), we
observed the following:

A. From a kinematic perspective, the spikes in the
data reflect errors from the segmentation method-
ology and/or from the sensor signal. For example,
a stride length � 2 is not realistic because this
means that the person’s stride length (refer to
Figure 3 for a visual interpretation) is twice their
height. The challenge here, however, is that there
is no hard limit that we can use for outlier detec-
tion because the kinematics literature reports mean
values across the population instead of attempting
to provide a physical threshold of what is possible.

B. There are several instances of the data, where the
outliers occurred in short succession (typically 2–3
observations). These situations should be corrected
because a participant is unlikely to be fatigued for
a few strides only. Specifically, the application of
the standardization step, in the previous section,
means that the maximum time difference between
two consecutive observations ranges between 3 to
5 seconds, depending on the participant.

C. As noted earlier in Subsection 3.2.3, the data for
each participant seems to be nonstationary and
autocorrelated. This means that commonly used
outlier detection methods, which are based on
normal theory (e.g., box plots for each sensor sig-
nal or the Mahalanobis-based distance measures
for our trivariate vector) are not appropriate
because their distributional assumptions will
be violated.

From these observations, the outliers can be cor-
rected through a robust filtering technique. This
allows the data to retain its statistical characteristics
and simplifies the signal processing and imputation to
one step.

We used the median filter to smooth the data. The use
of median filtering to smooth data is reportedly first sug-
gested in Tukey (1974) and has been widely adopted ever
since (see, e.g., Dougherty and Astola 1994; Gallagher and
Wise 1981; Pitas and Venetsanopoulos 2013).

From an algorithmic perspective, our implementa-
tion of the median filter consisted of three steps. First,
we had to select an appropriate window size (w). We
chose w¼ 21 because it (a) captures 60–100 seconds of
continuous walking, depending on the participant,
which allows us to extend our approach to fatigue
prediction applications, where 2-minute windows are
often used (see e.g., Maman et al. n.d.); and (b) is an
odd number, which makes the median one of the
actual sensor values from the window. Second, we had
to determine the magnitude of overlap of the moving
window. The three most common overlap types are
no overlap, an overlap of approximately w

2 ; and an
overlap of w – 1 (Pitas and Venetsanopoulos 2013).
We chose an overlap of w – 1 (i.e., we moved the
window by one observation at a time) because this
allowed us to preserve the changes due to fatigue (see
the following subsection for a detailed discussion).
Third, once the window size and overlap magnitude
were selected, we applied the median filter to the
three features and all participants.

The application of the median filter smoothed the
data and reduced the length of each participant’s time
series by w¼ 21, from n¼ 2,000 to n¼ 1,979 observa-
tions (our first observation corresponds to 0.5 percent
percent from the start instead of 0.05 percent). The
results after the standardization and median filtering
signal processing steps are depicted in Figure 6.

4.3. On the tradeoff between autocorrelation and
change point detection

As mentioned in the previous subsection, the selection
of the degree of window overlap for the median filter
affects the amount of data available for analysis, the
ability to visualize patterns in the data, as well as the
degree of autocorrelation. These two effects can have
a profound influence on the results of multivariate
change point methodologies, most of which are devel-
oped to detect changes in observation vectors that are
independent over time.

Figure 7 shows how the window overlap affects the
scaled stride length for participant 10. The top panels
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give the filtered series for windows of size w¼ 21 with
no overlap, an overlap of w

2 ; and an overlap of w – 1.
The lower panels give the autocorrelation functions
(acf) up to lag 30 for the same overlap values. Due to
the nature of the biometric process we are observing,
one would expect the cyclical autocorrelation pattern
as we observe in the series with windows that overlap
by w – 1. As expected, when the overlap is reduced to
w
2 and no overlap, the autocorrelation reduces, but so
does our ability to visualize the patterns in the data
over time.

Because the goal of the analysis is to detect fatigue,
we determined that it is best to retain as many of the
patterns in the data as possible by using an overlap of
w – 1. By doing this, we are left with highly autocor-
related data, which violates the assumptions of most
multivariate change point methods. This decision
reflects a realistic decision that practitioners often
must make in practice. Transforming or manipulating
data to meet statistical assumptions necessary for cer-
tain methods often renders the features and patterns
of the data indiscernible, but failing to transform the
data means that the conclusions drawn from the

methods are often limited or even invalid. For the
purposes of this analysis, we will proceed with the
data filtered using a window size of w¼ 21 with an
overlap of 20, noting that the data are significantly
autocorrelated, and that our change point analysis
must be interpreted with this limitation in mind.

5. Change point analysis

5.1. Rationale for the use and selection of change
point methodology

Let zi;1; zi;2; :::; zi;1979 be the sequence of standardized
and median filtered kinematic features for participant
i, where i ¼ 1; 2; :::; 15: With this notation, the vector
z is composed of the median filtered kinematic fea-
tures (scaled stride length, scaled stride height, and
stride duration) and the second subscript denotes the
index for the percent time from start. In this section,
we describe the statistical approaches used to analyze
zi;1; zi;2; :::; zi;1979; ði ¼ 1; 2; :::; 15Þ to answer the fol-
lowing research questions: (1) How do important gait
parameters (e.g., stride length, height, and duration)
change over time? (2) How do these sensor-based

Figure 6. The standardized and median filtered time series for stride length, height, and duration for Participant 1. The
reader is encouraged to visit https://fmegahed.github.io/fatigue_case_jqt.html to examine the visualizations for the other
participants. The standardized and median filtered data for each participant are stored in a “NormMedianFilteredData.RData”
file, which can be accessed through our GitHub repository (see Supplementary Materials).
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changes relate to the participants’ subjective fatigue
ratings? To answer these questions, we used a multi-
variate change point methodology supplemented with
a graphical analysis for diagnosis.

From Figure 6, for a given participant i, one can
make the following observations about the data
zi;1; zi;2; :::; zi;1979 : (a) the data are trivariate and are
sampled from a continuous, but unknown, distribution;
(b) change point locations are unknown, with the possi-
bility of multiple unknown change points occurring in
the data; (c) each vector of observations is nonstation-
ary; (d) the variance of each feature is not constant; and
(e) the vectors are autocorrelated, that is, the typical
independence assumption between zi;j and zi;jþk cannot
be met. Statements (a)–(d) require the use of a nonpara-
metric, multivariate change point methodology that
allows for detecting multiple change points. Examples of
such methods include those of Capizzi and Masarotto
(2017) and Matteson and James (2014); however, our
data violate the assumption of independence between
observation vectors for both of these methods. At this
time, there is little published research on change point
methods suitable for this data that are designed for a
time-dependent multivariate and multiple change point
scenario. For this reason and given the scope of this
case study article, we have elected to use an existing
approach and then evaluate whether the detected change

points are reasonable based on combining the informa-
tion from the experimental procedure and the partici-
pant’s subjective ratings of fatigue.

In addition to the statistical requirements, there are
important practical requirements that should inform
method selection. The method should be reasonably easy
to implement and replicate, easy to understand, and able
to be automated. To ensure that the implementation is
straightforward and easy to replicate, we limited our selec-
tion of methods to those that have an R package. Both
Matteson and James (2014) and Capizzi and Masarotto
(2017) met the requirements (a)–(d) above and had com-
plementary R packages: ECP and dfphase1. In addition,
both Matteson and James (2014) and Capizzi and
Masarotto (2017) were straightforward to implement, pro-
viding results that were easy to understand. Finally,
because we do not expect practitioners to inspect multiple
graphs to visually determine the location of change points,
it is important that the methods could be automated. The
methods of Matteson and James (2014) and Capizzi and
Masarotto (2017) both met this need.

5.2. Application of the change point methods

Capizzi and Masarotto (2017) proposed a multivariate
Phase I method based on the signed rank statistic for
detection of process shifts of various types (e.g.,

Figure 7. An illustration of the effect of overlap window on the independence of successive observations for the scaled stride
length for Participant 10.
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transient, sustained, step, etc.). The method uses a
permutation test to determine the location of change
points and is complemented with a LASSO-based
post-signal diagnosis tool to identify which variable
shifted. We implemented this method, which has a
strict assumption of independence of the observation
vectors over time, on our filtered series,
zi;1; zi;2; :::; zi;1979; and we observed numerous change
points that we believe to be false alarms. For this rea-
son, we did not include this analysis in this
case study.

Matteson and James (2014) introduces a retrospect-
ive, nonparametric change point method based on a
multivariate distance measure given in Szekely and
Rizzo (2005) known as e-distance. The e-distance is
an extension of Ward’s minimum variance method
(Ward 1963), which is used in hierarchical clustering
to minimize the total within-cluster sum of squared
error. The e-distance between two vectors of observa-
tions xi and xj measures jointly the between and
within distances between xi and xj. Szekely and Rizzo
(2005) also developed a hierarchical clustering algo-
rithm to merge pairs of clusters with minimum
e-distances.

Matteson and James (2014) adapted the clustering
method of Szekely and Rizzo (2005) for use as a
change point method for multivariate observations over
time, presenting two possible methods. One method,
referred to as the e-divisive, estimates multiple change
points by iteratively applying a single change point
method and using a permutation test. The second
method, referred to as the e-Agglo method, is an
agglomerative clustering method. This method requires
an initial segmentation of the data and observations are
grouped together in sequence as in hierarchical cluster-
ing. The algorithm is designed to preserve the time
order of the observations within and between clusters.
In the absence of prior information about the location
of change points to create an initial segmentation, the
initial segments can be set to the individual observa-
tions or pairs of adjacent observations.

Because of its computational efficiency and good
performance, we used the e-Agglo method of
Matteson and James (2014) for our analysis. Details
on the implementation of the e-Agglo method can be
found in James and Matteson (2013). Implementation
requires an initial segmentation of the data as well as
a penalty function to discourage over fitting and a
parameter, 0 < a� 2. For our analysis, we used an
initial segmentation of subsequent pairs of observa-
tions because this segmentation reduced the computa-
tional burden over the choice of individual

observations as segments, yet did not substantially
affect our results. We chose the penalty2 function (see
James and Matteson 2013, 6), which discourages the
identification of small change points and/or change
points in close proximity, because we are interested in
detecting large and sustained shifts in the features
indicating fatigue. In certain special cases of cluster-
ing, the parameter a can be thought of as the power
of the Euclidean distance between clusters. For
example, a¼ 2 corresponds to the use of Ward’s
method in standard hierarchical clustering. For our
analysis, we chose a¼ 1 as recommended by Matteson
and James (2014). The reader is referred to Szekely
and Rizzo (2005) and Matteson and James (2014) for
more details on selecting a.

Plots of the filtered data with the identified change
points overlaid in black are given in Figure 8. From
this interactive figure, there are three trends from the
graphs. We describe each trend in a paragraph below.

First, the number of change points varied between
1 and 4. In most cases, the single change point sepa-
rated an initial interval (equating to 1–1.5 hours of
length) of no signs of fatigue to a secondary interval
where fatigue started to develop. When two change
points were detected (e.g., see participants 5, 6, and
10), the third interval captured the participant’s deter-
iorated performance near exhaustion. When three
change points were found (single case of participant
one), the initial interval was short, indicating that the
subject was still in his warm-up/learning phase. When
four change points were found (i.e., participant 15),
the time difference between the second and third
phase was short, indicating that the participant had a
significant and large change in his walking patterns.
We do not have a kinematic/physiological justification
for this change. However, from a psychological per-
spective, this short change can indicate distraction
and/or a decrease in motivation.

Second, the change points captured changes in
mean, variance, and correlation structure among the
three features. From a statistical perspective, the choice
of a¼ 1 allows for detecting different types of shifts.
From a kinematic perspective, we wanted to detect
these patterns because they correspond to different
fatigue modes, which may require different interven-
tions. For example, changes in mean can reflect the
onset of fatigue, while changes in variance of an acceler-
ation signal is a symptom of tremor, which can happen
in extreme fatigue cases (Cavuoto and Megahed 2017).

Third, participant 3 had faulty sensor readings,
which resulted in a large amount of missing and/or
inconsistent data. This can be observed from the
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sensor signal data (as well as Figures 5 and 6). These
inconsistencies, unsurprisingly, led to a large number
of change points. Hereafter, we will exclude partici-
pant 3 from our analysis.

5.3. Using cumulative sums to explain the changes
to a non-statistical audience

Due to the nonstationarity and the cyclical patterns
observed in our data, we hypothesized that the cumu-
lative sums (CUSUMs) of the mean-corrected series
would contain useful diagnostic information. Because
we would be implementing the CUSUMs retrospect-
ively (i.e., a Phase I application), we used the overall
mean of each series for a given participant to estimate
the mean parameter within the CUSUM. The top
three panels in Figure 9 show cumulative changes
above and below the average level for each participant
during the experimental period for each kinematic
feature. For a given participant, the black vertical lines
denote the e-Agglo change points first shown in
Figure 8 (i.e., the change points were obtained on the
filtered series, zi;1; zi;2; :::; zi;1979; and not the
CUSUMs). Additionally, the lower panel denotes the
participant’s subjective ratings of fatigue (RPE) using

the Borg 6–20 scale. The blue vertical line in the pan-
els corresponds to the first instance when the
RPE� 13, which can be used to estimate the onset of
fatigue according to Maman et al. (2017).

There are several noteworthy observations to be
made from Figure 9. First, the reader should note that
all top three panels, that is, the CUSUM plots, always
end at zero for all participants. This is not a coinci-
dence, and this is an expected mathematical result
given that we have used the CUSUMs retrospectively,
with the overall mean of each series as an estimate for
the mean parameter used in the recursive CUSUM cal-
culation. Second, the change points did not coincide
with the RPE threshold of � 13. In some cases, the
proximity of a change point and the RPE threshold
were close (e.g., participants 1 and 2). However, in
most cases, the perceived exertion threshold did not
coincide with the identified change points in the proc-
esses. We estimate that this observation is attributed to
the differences between the psychological and physio-
logical reactions. In other terms, while the RPE� 13
can be used to denote the onset of fatigue, the effects
of fatigue on performance can precede or follow the
occurrence of this threshold. Third, and perhaps the
most interesting observation, large changes in the

Figure 8. The e-Agglo-based change points are overlaid on the CUSUMs of the standardized and median filtered time series for
stride length, height, and duration for Participant 1. The reader is encouraged to visit https://fmegahed.github.io/fatigue_case_jqt.
html to examine the visualizations for the other participants.
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CUSUM slopes were often accompanied by change
points (e.g., see participants 1, 2, 4, 5, 7, 8, 9 10, 12, 13,
and 15). Although we interpret the analysis retrospect-
ively, this seems to indicate that changes in direction
above and below the within-person average are being
identified as possible changes in exertion or perform-
ance over time. We have no definitive conclusions
from this analysis; we simply find this an interesting
observation worthy of further investigation.

5.4. Discussion of change point modeling results

In Section 5, we performed a retrospective statistical
analysis of the trivariate series of observations from
wearable sensors for the purposes of attempting to
better understand/answer the characteristics of fatigue
development over time. More specifically, the analysis
performed in this section attempted to answer two
main research questions.

For addressing the first question, we used a multi-
variate nonparametric change point method based on
agglomerative clustering on our data, which allowed us
to automate the detection of changes in walking

patterns over time for a given participant. From a kine-
matic point of view, we have learned that, over time,
participants tended to have systematic changes in their
walking pattern. To summarize the results depicted in
Figure 8, we expect that a person’s walking behavior in
a manual material-handling task involves the following
four stages (based on the occurrence of three change
points). The first stage can be defined as a warm-up/
ramp-up stage. This stage is often highlighted in the lit-
erature; it is customary to use an arbitrary 10-minute
cutoff in the data preprocessing to remove its effects
(see, e.g., Baghdadi et al. 2018; Maman et al. 2017).
Our results indicate that this arbitrary cutoff may not
be suitable for all participants, as indicated by the early
change for participants 1 and 10. Future studies may
benefit from using data from the initial stages of the
experiment and determining the appropriate cutoff for
the warm-up period on a participant-by-participant
basis using a suitable change point method. The second
stage involves the participant reaching a steady-state
walking pattern (or more generally work performance).
From an occupational safety and ergonomics perspec-
tive, we hope that job tasks are designed such that this

Figure 9. A visualization of the e-Agglo-based change points overlaid on (a) the CUSUMs of the standardized and median filtered
time series for stride length, height, and duration for Participant 1 (top three panels) and (b) the participant’s subjective ratings of
fatigue (bottom panel). The blue vertical line captures the first instance when the subjective rating of fatigue is � 13. The reader
is encouraged to visit https://fmegahed.github.io/fatigue_case_jqt.html to examine the visualizations for the other participants.
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steady-state pattern can be maintained for the shift
duration. If the job is not well designed and/or the
worker is not well rested, the third stage occurs when
the steady-state pattern changes. Given the nature of
the experiment and our analysis, we cannot conclu-
sively state that a detrimental change in performance is
observed in the third stage. However, we can state that
there is a change in the patterns observed by the sen-
sor, which can reflect either a worker’s attempt to
adjust to the onset of fatigue (by changing work pos-
ture) and/or a different level of performance. In the
fourth stage, the magnitude of change in pattern is
larger, reflecting a higher level of fatigue effects.

For the second question, we combined the RPE val-
ues with the change points obtained from the first
analysis. Our results seemed to indicate that there is a
difference between the psychological feeling of fatigue
and its transcendence to changes in job performance.
Future research in this area should investigate our
observation further.

6. Time series clustering

In Section 2, we posed four research questions, the
last two of which were

(3)Are there consistent patterns in performance across
different individuals over time?

(4)If so, do these patterns vary systematically based on
specific demographic characteristics?

To answer these research questions, we applied a
multivariate time series clustering method followed by
a descriptive analysis of demographic and anthropo-
metric characteristics of the resultant clusters. Note
that these questions can be answered using either the
scaled and median filtered trivariate series or the
CUSUM of the aforementioned series. In this section,
for the sake of conciseness, we limit our discussion to
when the clustering was performed on the CUSUM of
the trivariate series. The reader is referred to Section
4.1 in https://fmegahed.github.io/fatigue_case_jqt.html
for the clustering results on the median filtered tri-
variate series.

6.1. Application of clustering methodology

Clustering methods are unsupervised methods that are
generally used in large data situations. Although we
have a very small number of participants in our study,
we found ourselves trying to heuristically group par-
ticipants according to patterns in their performance.
As such, we decided to try using a more algorithmic

approach and apply a clustering method for purely
exploratory purposes. With only 14 observations in
our study (recall that we dropped participant 3
because of a large number of suspected faulty sensor
readings), we realize that the conclusions we can draw
from this analysis are limited to a purely exploratory
analysis. In addition, this analysis makes an assump-
tion that the participants would exhibit the same or
similar pattern for repeated performances.

Time series clustering methods are extensions of
cross-sectional clustering algorithms, modified to han-
dle time series data. As with all clustering algorithms,
the distance or dissimilarity measure between the clus-
ters is one of the most important decisions that affect
the results of the analysis. Because we are interested
in understanding whether there are consistent patterns
among individuals and not necessarily whether those
patterns of change happen at exactly the same point
within the experiment, we chose an elastic method to
measure dissimilarity known as dynamic time warping
(DTW). The idea behind DTW is to compare two ser-
ies by algorithmically stretching or compressing two
series in time in order align the patterns. After doing
so, the distances between the two series are computed.
It is, perhaps, easiest to understand the intuition
behind DTW graphically. Figure 10 shows the DTW
alignment between two time series using the aami3a
data from the R package dtw. Aghabozorgi,
Shirkhorshidi, and Wah (2015) note that the DTW is
preferred over Euclidean distance measures for data
that has a temporal drift. In addition, the DTW

Figure 10. An example of applying DTW to align and compute
the distances between two series. Figure is from
Giorgino (2009).
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method can cluster multivariate time series, which
makes it suitable for our case study.

We used the R dtwclust package (Sarda-Espinosa
2018) to perform the multivariate time series

clustering of the participants. Specifically, we used the
function tsclust() and chose hierarchical clustering
with the classic DTW measure computed according to
Sakoe and Chiba (1978). Because this is a purely

Figure 11. Results of applying the hierarchical clustering, with the DTW distance measure, on the CUSUMs of the three scaled and
median filtered feature data.
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exploratory analysis, we used the dendogram shown
in Figure 11a to identify an appropriate number of
clusters. Based on the dendogram, we selected four
clusters. Accordingly, the participants (P) were divided
as shown in Figure 11b. To help in understanding
why the participants were clustered into different
groups, we plot the average “profile” of each feature
per cluster in Figure 11c.

Figure 11 (especially Figure 11c) presents several
insights that are helpful in addressing our third
research question. First, there is a large variation in
fatigue development patterns across the participants.
This is why the number of clusters is somewhat large
considering the sample size. Second, the profiles
depicted in Figure 11c show that there are varying
patterns of fatigue development across participants.
For example, the participants within clusters 1 (green)
and 2 (orange) exhibit similar patterns, but with dif-
ferent magnitudes. The CUSUMs of stride length and
height increase until the onset of fatigue, when they
then decrease. This means that those participants gen-
erally take shorter and lower steps when they are
fatigued. The reciprocal effect is shown on stride dur-
ation, where the time taken for each stride increases
with fatigue. The six participants within cluster three
exhibit the opposite behavior, where they generally
take longer and higher strides in a shorter time span
when they are fatigued. For cluster 4 (i.e., participant
14), the pattern is somewhat similar to clusters 1–4;
however, the onset of fatigue (at least from a change
of performance perspective) is earlier and more abrupt
(at least for stride height and length).

From an occupational health and safety perspective,
the changes detected from the sensors would not have
been observed otherwise. Specifically, the participants
had to pick the weighted cartons at a given rate.
When fatigued, the participants maintained the pre-
scribed order-picking rate; however, they adjusted
their walking pattern (either by having longer and
slower strides or shorter and faster strides) to mitigate
the effects of their physical fatigue. This is a novel
and interesting finding, which requires further investi-
gation to examine whether such a pattern holds in
other occupational settings.

6.2. Demographic and anthropometric analysis
of cluster solution

In Table 1, we present the recorded summary statistics
of the participants within each cluster. A close exam-
ination, involving both the demographic/anthropo-
metric measures and number of subjects within the
cluster, reveals that there does not seem to be a sys-
tematic difference between clusters. Given the second-
ary nature of the analysis and small sample sizes, we
cannot determine whether the lack of systematic dif-
ferences is attributed to (a) not capturing other
anthropometric, demographic, and/or medical factors
that are driving the differences or (b) the effects could
not be determined due to the small sample sizes.

From an occupational safety and ergonomics per-
spective, our conclusion that there are no differences
due to demographic and anthropometric measures is
potentially interesting if this conclusion can be repli-
cated for larger sample sizes. In such a case, occupa-
tional safety professionals should examine their
workers on an individual basis and not by using some
general “rule of thumb.” Current injury prevention
practices often recommend designing work tasks, for
example, 75 percent of the female population, will not
get injured. However, these calculations are only valid
for simple tasks such as stationary lifting (Salvendy
2012). In more dynamic and complex tasks, we may
need to resort to real-time and individualized moni-
toring, where we account for a worker’s baseline. The
insights gained from our analysis would support the
need for a larger study to examine this observation
(personal and body size/shape factors not accounting
for differences within the clusters) further.

7. Conclusions

7.1. Summary of impacts and contributions of the
case study

7.1.1. An ergonomics and occupational safety
perspective

In this case study, we examined the use of wearable
sensor data to understand how fatigue develops over
time. More specifically, we attempted to address the
following research questions: (1) How do important

Table 1. The mean (SD) demographic, anthropometric, and perceived fatigue ratings for participants within each cluster.
Cluster 1 Cluster 2 Cluster 3 Cluster 4

# Subjects within cluster 5 2 6 1
Gender (M¼ 0 & F¼ 1) 0.4 (0.55) 0.5 (0.71) 0.5 (0.55) 1 (0)
Age 38.8 (15.1) 24.5 (6.4) 32.8 (15.4) 62 (0)
Weight in kg 78.0 (17.3) 74.7 (6.3) 69.0 (2.2) 92.7 (0)
Height in cm 168.6 (10.7) 177.5 (0.7) 169.7 (6.9) 183 (0)
Final Borg ratings 15.6 (2.4) 15.5 (0.7) 15.2 (2.1) 13 (0)
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gait parameters (e.g., stride length, height, and dur-
ation) change over time? (2) How do these sensor-
based changes relate with the participant’s subjective
fatigue ratings over time? (3) Are there consistent pat-
terns in performance across different individuals over
time? (4) If so, do these patterns vary systematically
based on specific demographic characteristics?

After engineering the features and deploying sig-
nal-processing techniques to smooth the time series of
each feature, we combined exploratory data analysis
and the e-Agglo multivariate change point method-
ology to address the first two questions. From our
analysis, we have learned that the number of change
points for each participant typically varied between one
and three change points. Their location (i.e., percent
time from start of the experiment) indicated that there
are generally four stages of performance changes. These
stages correspond to (a) warm-up/learning stage, (b)
steady-state performance stage, (c) deviation from the
steady-state performance due to the onset of fatigue,
and (d) larger deviation from the steady-state perform-
ance, where participants start to be exhausted. The
identification of these changes represents a novel and
significant contribution to the biomechanics and ergo-
nomics literatures. Perhaps, more importantly to the
statistics community, these were only possible due to
using the multivariate change point methodology and
the CUSUM-based visualizations.

For the second question, we have learned that the
performance changes are not typically aligned with
the participant’s perception of fatigue. This is an
interesting finding because it indicates that there is a
difference between the perception and physical
changes in performance due to fatigue.

To address questions (3) and (4), we combined the
DTW multivariate time series clustering approach
with EDA. Our analyses indicated that the participants
should be clustered into four groups, which reflect
changes in both the magnitude and pattern of fatigue
development across clusters. Because participants had
to maintain a certain order-picking pace, they
adjusted their stride (shorter and faster strides for
some participants and longer and slower for others)
to mitigate the effects of fatigue. From an operational
perspective, this finding supports the use of wearable
sensors in the workplace because typical measures,
such as cycle time and time on task, would not have
been able to capture this change. For question (4), our
analysis does not support the hypothesis that the
changes in patterns (i.e., the clusters) are driven by
anthropometric and demographic factors.

7.1.2. A statistical (process control) perspective
Over the past several years, several prominent indus-
trial statisticians (Nair 2007; Woodall 2017; Woodall
and Montgomery 2014) have indicated that there is a
gap between the theory and practice of statistical pro-
cess control (SPC). For example, (Nair 2007, 7)
stated that:

One can identify many reasons for this gap: real
problems tend to be messy and do not readily
translate into research topics that can be solved and
published; there are no incentives for researchers in
academia to get close to the problem and develop
complete solutions, software and transfer technology
(especially in statistics departments that tend to be
located in liberal arts colleges) . . .

Additionally, most of the research in SPC has
remained centered around manufacturing applications
(we acknowledge that there are streams of excellent
research in other domains, e.g., public-health surveil-
lance and network applications). Thus, there has been
an emphasis, by renowned authors such as Box and
Woodall (2012) and Bisgaard (2012), to examine
innovative applications of our methods in other
domains. Recently, Jensen et al. (2018, 10-11) stated
that “Researchers must focus on real, applied problems,
which require collaboration with subject matter experts
. . . True collaboration with subject matter experts on
real projects is the key for critical future research.”

In the spirit of the above discussion, there are three
aspects that we hope to achieve by publishing this case
study. First, we would like to inspire research in human
performance modeling/monitoring because it is an
important area of work with significant worker’s safety
and economic implications. By making our data and
code available, we hope to reduce the “cost of entry”
for statisticians and encourage future work in this area.

Second, we would like to highlight the importance
of an open research culture (Nosek et al. 2015). We
see no reason why publishing the code does not
become the norm in our research community. We
applaud researchers who put their code into R pack-
ages that help the translation of our methodologies
into other domains. While we have highlighted only
two R packages in this article, there are several other
packages developed by members of our community
(see, e.g., Bui and Apley 2018; H€ohle 2007; Knoth
2018). In our estimation, publishing the code brings
us closer to Prof. Nair’s call for developing complete
solutions that include software development, and this
process has become simpler over the last few years
with continued developments in both Python and R.

The third, and final observation, that we would like
to highlight is that we agree with Prof. Nair’s
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comment about how “real problems tend to be
messy.” We would like to add that they often require
a multidisciplinary and interdisciplinary team. To
tackle the questions of this case study, our team was
comprised of the following backgrounds/expertise: (a)
fatigue and human performance modeling, (b) bio-
mechanics and kinematics, (c) biostatistics, (d) indus-
trial statistics, (e) safety engineering, and (f) data
analytics. The team worked together to understand
how to best tackle each stage of the analysis. From a
research perspective, those different backgrounds can
also lead to competing goals.

7.2. Limitations and future work

As we discussed in Section 3.1, the data analyzed in
this case stems from Baghdadi et al. (2018), which is
part of a larger study examined in Maman et al.
(2017, n.d.). One limitation of this analysis is the
somewhat small sample size associated with the work.
It is important to mention that the cost of the experi-
mental study exceeded $22,000 (advertising, partici-
pant incentives, material and equipment, and the 6-
month stipend for the graduate student). The reader
is referred to the referenced articles for a detailed
explanation of the factors that influenced the sample
size (and how a small number of participants is not
uncommon in ergonomic studies).

In our analysis, we considered a retrospective ana-
lysis of a trivariate series of observations from wear-
able sensors. The observation frequency and the
nature of the process rendered the data autocorrelated
and cross-correlated. For our application, we could
not transform the data to make successive observa-
tions independent because we needed to retain the
patterns to detect the desired changes in the process.
We chose the e-Agglo approach for change point ana-
lysis because it resulted in reasonable results despite
the fact that our data violated the assumption of inde-
pendence of the observations within the clusters.

Our study and analysis reveals a gap in the literature
for multivariate change point methods that can retro-
spectively detect multiple, unknown change points, are
free from distributional assumptions, and are computa-
tionally efficient. We realize this is a tall order. We
hope that, by publishing this case study, code, and
data, we encourage researchers to investigate this prob-
lem and produce practical methodologies that can be
used in this and other scenarios like this.

We also realize the limitation of our work in terms
of signal diagnosis. We have simply detected the
change points, but more work needs to be done in

terms of understanding what has happened in terms of
automating methods for diagnosing what aspect of the
kinematic process changed and how to work with the
participants to extend the period prior to the onset of
fatigue. The change point method of Capizzi and
Masarotto (2017) combines detection with a LASSO-
based diagnosis method, but did not work in our study
(likely because we could not meet the assumption of
independence). While there has been some work in the
joint detection and diagnosis of changes, much of this
work has been done in advanced manufacturing, not in
human performance modeling applications.

In future experiments, it would be helpful to apply
designed experiments in order to determine effects
due to gender, age, and other variables. One possible
design would be a factorial design where n subjects in
each gender/age category are assigned to perform a
task similar to the one described here. With sufficient
subjects, it would then be possible to see whether the
manifestation of fatigue is different across these vari-
ous categories.

As we continue to see humans monitored in the
workplace using sensor technology, we expect an
increased need for monitoring and control systems
that can be used to automatically detect and diagnose
worker fatigue and safety concerns.
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Supplemental Materials (Data, Code and
R Markdown)

To facilitate the replication of our work and encourage
future work in this area, we provide the raw data and code

in the following GitHub repository: https://github.com/
fmegahed/fatigue-changepoint. The repository is divided
into three main folders: (a) feature-engineering, which pri-
marily consists of the MATLAB code that we have to per-
form the analysis of Section 3; (b) fatigue-changepoint,
which contains the data and R code used for analysis in
Sections 4–6; and (c) fmegahed.github.io, where we host
the HTML generated by the R Markdown documenting the
code and results obtained from Sections 4–6. In addition,
we have created an HTML file based on our R Markdown,
which we make available at https://fmegahed.github.io/
fatigue_case_jqt.html. The HTML combines our code, ana-
lysis, and results. Thus, we consider it as an important part
of our work that should be examined by the readers of this
case study.
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