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ABSTRACT: Spin-dependent processes involving nonadiabatic transitions
between electronic states with different spin multiplicities play important roles
in the chemistry of complex systems. The rates of these processes can be
predicted based on the molecular properties at the minimum energy crossing
point (MECP) between electronic states. We present the development of the
MECP search technique within the fragment molecular orbital (FMO) method
applicable to large complex systems. The accuracy and scalability of the new
method is demonstrated on several models of the metal−sulfur protein
rubredoxin. The effect of the model size on the MECP geometry and relative
energy is discussed. The fragment energy decomposition and spin density
delocalization analyses reveal how different protein residues and solvent
molecules contribute to stabilization of the spin states. The developed FMO-
MECP method can help to clarify the role of nonadiabatic spin-dependent processes in complex systems and can be used for
designing mutations aimed at controlling these processes in metalloproteins, including spin-dependent catalysis and electron
transfer.

I. INTRODUCTION

Nonadiabatic processes involving nonradiative transitions
between different electronic states play important roles in
broad areas of chemistry and biology. Examples include
combustion,1,2 reactions in planetary atmospheres and
interstellar space,3,4 transition-metal-based catalysis,5 binding
of small molecules to the active sites of metalloproteins,6−9

visual perception,10,11 and protection against UV light in living
organisms.12−17 Spin-forbidden nonradiative transitions be-
tween electronic states of different spin multiplicities are called
intersystem crossings (ISCs).12,18,19 The rates of ISCs can be
predicted either with statistical theories or nonadiabatic
molecular dynamics (NA-MD). For small systems, the NA-
MD approach is preferable because it can sample complex
features of the potential energy surfaces (PESs) and account
for ISC transitions anywhere on these surfaces. However, due
to the computational demands, the NA-MD methods, such as
ab initio multiple spawning20−23 and trajectory surface hopping
(TSH),12,24−27 are limited to relatively small systems and fast
ISCs.
In contrast to NA-MD, the statistical nonadiabatic

transition-state theory (NA-TST)28−30 assumes that the
“effective” transitions occur only at a minimum energy crossing
point (MECP), which is the minimum on the crossing seam
between the PESs of two spin states. This makes NA-TST very
computationally efficient and applicable to slower ISCs in

larger systems,23,30 such as acrylates,31 myoglobin,32 and metal-
sulfur proteins.8,9,30,33 Another important advantage, related to
a small number of electronic structure calculations required by
NA-TST, is the possibility of using high-level electronic
structure methods, which is critical for accurate kinetics
studies.34

However, the difficulty of finding MECP geometry in large
complex systems means that the ISC kinetics is often studied
using small models. For example, the solvated metalloproteins
are usually reduced to the active site models embedded in
polarizable medium.8,9,30,33 For accurate description of the ISC
kinetics in large biological systems, it is important to account
for the influence of the protein chains and the surrounding
water molecules on the active site, which is too expensive with
the conventional electronic structure methods and requires
alternatives. The hybrid quantum mechanics/molecular
mechanics (QM/MM) method in which a small part of the
system is described with QM, while the surrounding protein
chains and the solvent molecules are treated with MM, is one
of such alternatives.35−40 The main QM/MM challenge is the
accurate description of the interaction between the QM and
MM regions.41 In contrast, the fragment-based fully QM
methods offer a uniform quantum description of the entire
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system, which is a more universal and potentially more
accurate approach.42

Fragment-based methods43−53 provide an efficient way to
predict properties of large molecular systems. The fragment
molecular orbital (FMO) method,54−58 implemented59 in
quantum chemical package GAMESS,60,61 has been success-
fully used to optimize molecular geometries corresponding to
minima and transition states on PES62−65 and thus can be
utilized for the conventional transition-state theory (TST) rate
calculations. However, the FMO method has not been
interfaced with the MECP search techniques66 preventing its
use within the NA-TST framework and hindering the studies
of nonadiabatic spin-forbidden kinetics in large complex
systems. An example of such systems is the electron-
transferring iron−sulfur protein rubredoxin33,67−69 that plays
important role in a variety of biological processes,70 including
nitrate reduction,71 alkane oxidation,72 methanogenesis,73

carbon fixation,74 and detoxification of reactive oxygen
species.75,76 Moreover, it was shown that rubredoxin is crucial
for the photosystem II activity within oxygenic organisms.77

Rubredoxin is the smallest representative of the large class of
iron−sulfur proteins participating in electron transfer by
changing the oxidation state of the Fe centers. The active
sites of these proteins are characterized by multiple low-lying
electronic states with different spin multiplicities. The relative
stability of these states is controlled by the geometry of the
active site, which is sensitive to the environment. Therefore,
changes in the active site environment could lead to
nonadiabatic “spin-forbidden” transitions between the low-
lying electronic states. The role of these transitions in
biological electron transfer is not clear.
In this work, we report an implementation of a new FMO-

MECP method. To test this method, we locate the MECP
between the lowest energy spin states (quartet and sextet) of
rubredoxin with the Fe(III) center considering the protein and
solvent models of different sizes and complexities. The
electronic structure methods and general MECP search
method are described in Sections II and III, respectively.
The implementation of FMO-MECP and its application to
ISCs in rubredoxin are discussed in Section IV. In Section
IV.A, FMO is applied to calculate the energy of the large
rubredoxin model that includes the entire protein chain and
surrounding water molecules. The scalability of the FMO
gradient calculations, which is a computational bottleneck of
the FMO-MECP search, is addressed. Section IV.B describes
the FMO-MECP interface and its validation by comparing the
MECP energies and geometries of small rubredoxin models
obtained with and without the FMO fragmentation. Finally,
Section IV.C demonstrates the application of a new FMO-
MECP method to the full-size protein model. Concluding
remarks and future outlook are presented in Section V.

II. METHODS
The detailed description of NA-TST is given in the earlier
review.30 Briefly, the microcanonical rate constant, k(E), for
the transition between the electronic spin states with different
multiplicities is18,28,29,78−81

k E
N E

h E
( )

( )
( )

MECP

Rρ
=

*

(1)

Here, h is the Planck constant, ρR(E) is the density of
rovibrational states of the reactant, and N*MECP(E) is the

effective number of rovibrational states at the MECP that
could be written as

N E E P( ) ( ) ( )d
E

MECP
0 MECP trans∫ ρ ε ε* = − ε⊥ ⊥ ⊥ (2)

In eq 2, ρMECP(E) is the density of rovibrational states at the
MECP, E is the total internal energy of the system, ε⊥ is the
component of internal energy along the reaction coordinate
orthogonal to the crossing seam hypersurface, and Ptrans(ε⊥) is
the transition probability at MECP. As seen from eqs 1 and 2,
the MECP properties play a key role in NA-TST; thus, the
calculation of the rate constant k(E) requires the MECP
geometry.
The MECP search82−84 relies on the energies (E1 and E2)

and energy gradients (G1 and G2) of the two crossing spin-
diabatic states. These quantities are used to form two
orthogonal gradient vectors that are perpendicular, G⊥, and
parallel, G∥, to the seam hypersurface, as well as the effective
gradient Geff
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The three- and two-dimensional representations of the
crossing spin-diabatic potential energy surfaces (PESs) with
MECP, and these gradients are shown in Figure 1. The
gradient G⊥ points toward the seam, while the G∥ projection
on the seam points toward the seam minimum. The effective
gradient Geff is a linear combination of these two gradients in
which G⊥ is weighed by the energy gap and the empirical
scaling parameter α is set to 30 hartree−1 to achieve an optimal
convergence rate to MECP geometry. The MECP geometry

Figure 1. PES crossing of two electronic states with different spin
multiplicities. (a) Three-dimensional representation showing the
perpendicular, parallel, and effective gradients. (b) Two-dimensional
representation of MECP along the minimum energy reaction
pathway.
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search is performed by following the effective gradient using
the quasi-Newton method with the Broyden−Fletcher−
Goldfarb−Shanno (BFGS) Hessian update. The MECP
geometry is considered to be converged when the following
five parameters reach values below some predefined thresh-
olds: the energy gap E1 − E2, max(Geff), rms(Geff), max(ΔX),
and rms(ΔX). Here, ΔX = Xi-Xi−1 is the difference between
the atomic coordinate vector X at the MECP search steps i and
i − 1.
In FMO, a molecular system is divided into fragments. The

electronic structure of each fragment (monomer) is calculated
in the presence of the electrostatic embedding until full
convergence. Then, fragment pair (dimer) calculations are
performed. The total properties such as the total energy are
obtained as a combination of the properties of fragments and
their pairs. In this work, the frozen domain (FD) formulation
of FMO is used with the dimer approximation (FDD).62 In
FD, each fragment is assigned to either the polarizable or
frozen domain. Full calculations for the whole system are only
done once for the initial geometry, and for each consequent
step, the electronic state in the frozen domain is frozen and
contributes to the embedding of the polarizable buffer and to
the energy via interactions with it. Only atoms in a part of the
polarizable buffer, the active domain, are optimized. In FDD, a
further computational acceleration is achieved by neglecting
very small contributions of pairs outside of the active domain.

III. COMPUTATIONAL DETAILS
Four models of rubredoxin protein were used (Figure 2).
Models 1, 2, 3, and 4 contained 13033, 144, 68, and 973 atoms

divided over 844, 9, 5, and 107 fragments, respectively. These
models were based on the rubredoxin structure obtained from
macromolecular neutron crystallography data (PDB 4K9F).89

Model 1 was solvated with the Chimera software90 using the
TIP4 solvation model.91 The smaller models 2 and 3 were
made by truncating model 1. The total charge of all models
was set to −1 to keep the metal center in the formal oxidation
state, Fe(III). For the active site fragment, −COO− groups of
aspartate and glutamate residues were protonated, while
−NH3

+ groups of lysine were deprotonated. We found that
no DFT convergence was possible when charged residues were
retained in the rubredoxin models. It has been shown earlier92

that DFT features a small HOMO-LUMO gap for zwitterions,
which is the reason why some residues had to be protonated to
alleviate the problems. An improvement in the future can be
obtained by a more biologically feasible protonation when
DFT functionals with a better description of zwitterions
become available.
We focused on the lowest energy quartet and sextet

electronic states because our previous study on the isolated
active site model indicated the presence of the intersection
between these electronic states.33 The large-scale energy
calculations on the model 1 quartet state were performed
using the FMO1 method (only fragment monomers are
computed), LC-BPBE functional,93−95 and the def2-SV(P)
basis set.96 The scalability of the FMO-MECP code was tested
on model 2 using the FMO2-UHF method97 (with dimer
corrections) and 3-21G basis set.98−100 The FMO-MECP
accuracy was tested by performing the MECP search on the
small model 3 using the FMO2-LC-BPBE method101 with 6-
31G basis set102,103 and comparing the obtained MECP
geometry to that of the nonfragmented model optimized with
the conventional MECP method. Calculations on model 4 that
contains the entire protein and crystallographic water104 were
performed using the FMO frozen domain approach with dimer
approximation (FDD).64,65 All geometry optimizations were
carried out with the gradient threshold 10−4 hartree/bohr. In
the MECP search, the following thresholds were used: E1 − E2
= 10−5 hartree, max(Geff) = 5 × 10−4 hartree/bohr, rms(Geff) =
3 × 10−4 hartree/bohr, max(ΔX) = 2 × 10−3 bohr, and
rms(ΔX) = 1.5 × 10−3 bohr. The scalability tests were
performed on a Mira 10-petaflops IBM Blue Gene/Q
supercomputer at the Argonne Leadership Computing Facility.
The initial structure of model 4 was preoptimized with the

PM7 semiempirical method104 in MOPAC.105 The surround-
ing solvent in the model 4 calculations was described with the
conductor-like polarizable continuum model (C-PCM).106−108

In FMO/FDD, the active domain A consisted of an active site
fragment; the positions of all atoms in this fragment were
optimized. The polarizable domain B included domain A and
other fragments within the unitless distance of 1.9 from A,
roughly corresponding to 5 Å. The rest of the fragments were
placed in domain F. For the lower layer (domain F) in the
multilayer FMO, the LC-BLYP/STO-3G level of theory was
used, while the higher layer (domains A and B) was treated
with LC-BLYP/6-31G*. All calculations were performed using
GAMESS.
Parallelization is the crucial part of large-scale calculations.

The parallel calculations in GAMESS can be done using the
distributed data interface (DDI) and generalized distributed
data interface (GDDI). The DDI allows storage of large data
arrays in the aggregate memory of distributed memory across
computing nodes and provides an interface for message passing
between those nodes.109 The GDDI is built on the top of DDI
and introduces a two-level hierarchical scheme. In GDDI, the
parallelization is accomplished first at the upper level by
assigning computational tasks to groups. Next, each group
performs parallelization at the lower level by dividing its task
into smaller workloads assigned to individual CPU cores.
To achieve a better parallel efficiency, FMO-MECP was also

parallelized with generalized distributed data interface with
three-level parallelization (GDDI/3)110 (Figure 3). The
existing two-level parallelization (GDDI/2)109 algorithm had
major technical problems, related to overwriting the fragment
data of one spin state by another. Namely, in GDDI/2, there is

Figure 2. Four models of rubredoxin with FMO fragmentation
schemes (fragments are shown with different colors). For model 1,
fragmentation of water molecules is not shown. For model 4, domain
B in FDD is in cyan, and domain A (A ⊂ B) is shown inside the
dashed circle.
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a single fragment density storage (in shared memory) where
the data are first stored for spin 1 and the calculation for spin 2
overwrites these data, disrupting their reuse during the MECP
search. In GDDI/3, all CPU cores are divided into two worlds,
and each spin state is calculated by one world. Each world
keeps its own set of electron densities for the spin state it
calculates, and convergence is significantly improved. Fur-
thermore, each world uses a two-level parallelization (all CPU
cores in the world are divided into groups; one group
calculates a fragment or a dimer by dividing work between
cores in the group). To divide work between groups in GDDI/
3, a dynamic load balancing was developed solving the conflict
between the load balancing counters in different worlds by
implementing a new request mechanism for data servers.
Transition-metal complexes often have low-lying excited

states. In the Fe(III)-containing protein rubredoxin used to
validate the FMO-MECP implementation, an excited quartet
state lying about 10 kcal/mol above the ground quartet was
causing the MECP search algorithm to switch between these
two states hindering convergence. In FMO calculations,
molecular orbitals (MOs) of fragments are stored and reused
for subsequent geometries. However, dimer MOs are not
reused; instead, the initial density for the dimer IJ is
constructed as a block-wise addition of monomer I and J
densities. Therefore, there is no guarantee that the electron
state of dimers is the same in consequent geometries.
To facilitate the continuation of the same state surface, in

this work, a new option to store dimer densities in the DDI
memory was implemented, similar to the storage of monomer
densities, but accomplished in a different DDI array. Only the
densities of SCF dimers are stored (most dimers are treated
with the electrostatic approximation111 for which dimer
densities are not needed). It was found that this option is
critical for finding MECP in the case of a system with multiple

low-lying states. It should be noted that even with reading
orbitals from the previous geometry, there is no guarantee that
SCF would not converge to a different state; however, with
such orbitals, convergence to the desired state is much more
likely. In addition to the prevention of surface flipping, there is
also some speed-up achieved by using better initial orbitals.

IV. RESULTS AND DISCUSSION
IV.A. Parallel Scalability Tests. To test the scalability of

the FMO method applied to rubredoxin, single-point energy
FMO1 calculations were performed. In the one-body FMO1
approximation, the interaction between a fragment and the rest
of the system is described by the electrostatic field constructed
from the electronic densities of surrounding fragments.
Potentially, the interaction between fragments could be treated
more accurately with the two-body approximation (FMO2) in
which the interaction energies within the pairs of fragments are
calculated directly by subtraction of (FMO1) energies of
individual fragments from energies of the fragment pairs.
However, for the scalability tests, the FMO1 approximation is
adequate. The tests were carried out on the large model of
solvated rubredoxin (model 1), which includes 796 atoms of
the entire protein and 4079 water molecules. The model is
partitioned into 844 fragments, including 28 fragments that
represent protein, 815 fragments each consisting of five water
molecules, and one fragment containing four water molecules.
The fragment with four water molecules is the result of the fact
that the total number of water molecules in the model is not a
multiple of five. The active site fragment has the total charge of
−1 and contains the Fe(III) metal center surrounded by four
cysteine residues. The protein chain is fragmented in such a
way that each fragment contains two amino acids.
All single-point energy calculations were performed for the

quartet spin state using 4096, 8192, 16,384, 32,768, 65,536,
and 131,072 CPU cores distributed between 128 dynamically
load balanced groups in GDDI. The dynamic load balancing
scheme attempts to spread out possibly unequal work
assignments based on the rate at which different nodes
complete their tasks, which, in the case of fragments with a
similar number of basis functions, usually produces a
reasonable distribution of fragment calculations across
CPUs.109 As seen from Figure 4a, the energy calculation
scales well up to 16,384 CPU cores. These results are
promising and could be further improved by using the heuristic
static load balancing algorithm, as was previously demonstrated
in the FMO calculations on ubiquitin.112

To test the scalability of the FMO2 energy gradient, which is
the computational bottleneck of the MECP geometry
optimization, calculations were performed on the quartet
state of model 2 comprised of 144 atoms and nine fragments.
The active site fragment contains the Fe(III) center
surrounded by four −SCH2− groups. Other eight fragments
contain the residues nearest to the metal center. The
calculations were carried out on 128, 256, 512, 1024, and
2048 CPU cores with dynamic load balancing scheme between
eight CPU groups. Figure 4b shows that the single energy
gradient computational time decreases almost linearly with a
number of CPU cores, meaning that the parallel efficiency of
this calculation using our code is high.

IV.B. Validation of FMO-MECP Method. To validate the
newly developed FMO-MECP method against the conven-
tional nonfragment method, the MECP geometry search for
quartet/sextet intersection was performed on small model 3

Figure 3. GDDI/3 parallelization of FMO-MECP calculations. All
cores are divided into two worlds with spins S = 3/2 and S = 5/2;
then, each world is divided into multiple groups, and each group
consists of multiple cores. All of these calculations are done in a single
GAMESS run.
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with the FMO2-DFT (DFT = LC-BPBE/6-31G) levels of
theory. The root mean square deviation between the MECP
geometries found with the FMO-based and conventional
methods is only 0.0479 Å, indicating an excellent agreement
between the two structures (Figure 5a). To compare the
relative energies obtained with the FMO-based and conven-
tional MECP methods, the FMO equilibrium geometry
optimizations were also performed for the quartet and sextet
states. The differences between the relative DFT and FMO-
DFT energies do not exceed 0.85 kcal/mol (Figure 5b). It is
important to notice that according to these calculations, the
MECP and quartet minimum structures are very similar, while
their energies are nearly degenerate. That is not the case for
the previously studied small active site model.33 Thus, the size
of the protein model can affect the MECP geometry and using
large models in the ISC kinetics studies can be important.
It was demonstrated previously that the transitions between

electronic spin states of rubredoxin are mediated by changes of
the active site torsion angles α, β, and γ (Figure 6).33 The
maximum difference between the values of these torsion angles
obtained with the conventional MECP and FMO-MECP
methods is only 0.31 degrees (Table 1). Thus, the new FMO-
MECP method can accurately predict the energies and
geometries needed for the ISC kinetics calculations.
IV.C. Application of FMO-MECP to Full-Size Protein

Model. To demonstrate the capability of the new method, the

FMO-MECP search was performed on the entire rubredoxin
and crystallographic water, while the surrounding solvent was
simulated via PCM (model 4). This model contained 973

Figure 4. Scaling of FMO GDDI/2 calculations as a function of the
number of CPU cores. (a) Time to complete an FMO1 energy
calculation on model 1 (active site and solvation shell are shown in
the inset). (b) Time to complete an FMO2 energy gradient
calculation on model 2 (shown in the inset). The red solid and
blue dashed lines depict measured and ideal timings, respectively.

Figure 5. Comparison between the MECP geometries of model 3
found with the conventional nonfragment and new FMO-MECP
methods. (a) Overlapping MECP geometries obtained with the two
methods. (b) Energies (kcal/mol) of the MECP and quartet
minimum with respect to the sextet minimum. The bold (upper)
and regular (lower) values are obtained with the FMO-based and
conventional methods, respectively.

Figure 6. Torsion angles of the rubredoxin active site.

Table 1. Active Site Torsion Angles (Degrees) Obtained
with the FMO-MECP and Convectional MECP Methodsa

method angle α angle β angle γ

FMO-MECP 92.46 62.21 64.41
MECP 92.59 61.90 64.20

aCalculations were performed at the LC-BPBE/6-31G level of theory.
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atoms divided into 107 FMO fragments. Protein fragments
contained one protein residue per fragment, and each explicit
water molecule was used as a single fragment. The calculations
were carried out using the FMO/FDD method optimizing the
geometry of the active site (domain A), while the surrounding
atoms in domains B and F were constrained (Figure 2d).
To determine the effect of the model size on the optimized

MECP geometry, the values of torsion angles α, β, and γ in the
active site fragments are compared for models 3 and 4 (Table
2). The significant differences of 6.96, 13.02, and 15.05 degrees

clearly demonstrate the importance of including the protein
environment around the active site in the computational
model.
To reveal insights into the nature of the stability of the two

spin states, the total FMO energy for spin state S is
decomposed into the internal monomer EI′S and pair
interaction energies (PIE) ΔEIJ

S (both include solvent
contributions).

E E ES

I

N

I
S

I J

N

IJ
S

1

∑ ∑= ′ + Δ
= > (4)

At MECP, the energies of the quartet and sextet states are the
same, E4 = E6. However, the components differ.

E E E E E
I

N

I
I J

N

IJ
4 6

1

∑ ∑Δ = − = Δ ′ + ΔΔ
= > (5)

where

E E E

E E E

I I I

IJ IJ IJ

4 6

4 6

Δ ′ = ′ − ′

ΔΔ = Δ − Δ (6)

The results are analyzed for the model 4 using the FMO/FDD
method with the Fe-site (fragment J = 6) included in the active
domain A. In this case, the energies are written as

E E E E E E
I

I
I

I
I

I
B B F

4 6
,6 ,6∑ ∑ ∑Δ = − = Δ ′ + ΔΔ + ΔΔ

∈ ∈ ∈
(7)

The fragments of model 4 with large absolute values of ΔEI′
and ΔΔEI,6 are depicted in Figure 7.
The numerical values obtained from the PIE analysis are

summarized in Table 3. Overall, monomers in the sextet state
are more stable (by about 55 kcal/mol). In the quartet state,
this difference is compensated by the pair interactions so that
the total energies of the quartet and sextet are the same. It can
be seen that the quartet state of the Fe-site fragment is less
stable than the sextet by 23.3 kcal/mol. The adjacent XAA-8
fragment is also less stable by 35.4 kcal/mol. However, pair
interactions make up for these two major differences in
monomer energies: there is a large contribution due to the

interaction of the Fe-site and XAA-8 and XAA-42. All other
contributions are 4 kcal/mol or less (the largest is due to ALA-
44). Explicit water molecules contribute less than 1 kcal/mol
(they may still be important for determining the structure).
The choice of the frozen domain was appropriate as it
contributes little to the stabilization energy components and is
sufficiently separated from the active site. The stability analysis
of spin states described here may be used for designing specific
protein mutations aimed at changing the MECP structures and
controlling the spin-dependent processes in biological systems.
The spin density at the minimum energy crossing is shown

in Figure 8. For the sextet, five unpaired α electrons determine
that only α-dominated spin density is seen. The quartet state
(three unpaired electrons) features competition between α and
β electrons, and the latter are also relevant for the spin density.
In addition, the spin density for the sextet is very much
localized on the iron-containing fragment. The quartet,
however, has a β-density leaking to XAA-8, which is consistent
with its large energetic contribution in Table 3.

V. CONCLUSIONS
To facilitate the studies of the intersystem crossing kinetics in
large complex systems, we developed and implemented a new
fragment molecular orbital method capable of finding MECP
between two electronic states with different spin multiplicities.
We also introduced several improvements to the FMO method
necessary for the computationally efficient MECP search,
including preventing switches between low-lying electronic
states by storing dimer densities in shared memory. Energy
calculations on the 13033-atom model of the protein
rubredoxin solvated with water show a very good scaling up
to 65,536 CPU cores and a reasonable scaling up to 131,072
cores at the FMO1-DFT level of theory.113 The new FMO-
MECP method was validated on a small rubredoxin model by
comparing the results obtained with the new and conventional
nonfragmented MECP geometry optimizations. The difference
between the FMO and nonfragmented relative energies of the
quartet/sextet MECP (0.85 kcal/mol) is within chemical
accuracy. The MECP geometries are also in excellent
agreement with each other (RMSD = 0.0479 Å). At the
MECP geometry, the thiolate torsion angles in the active site
of rubredoxin33 obtained with the FMO and nonfragmented
calculations agree within 0.31°.
We applied the new FMO-MECP method to a large model

of the protein rubredoxin with crystallographic water
molecules treated by FMO and the rest of the solvent
described by the polarization continuum model. While the

Table 2. Comparison of Fe(III) Rubredoxin Active Site
Torsion Angles at the Quartet/Sextet MECP in Models 3
and 4a

model angle α angle β angle γ

3 92.46 62.21 64.41
4 85.50 75.23 79.46

aValues of torsion angles are obtained with the FMO2 method at the
LC-BPBE/6-31G level of theory.

Figure 7. Fragments making significant contributions to the energy
differences between quartet and sextet electronic spin states. The
depicted geometry corresponds to the optimized FMO-MECP
structure of model 4.
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optimized MECP between the lowest quartet and sextet spin
states has similar geometry to that in the small active site
model, there are significant differences in the coordination of
the thiolate ligands to the Fe(III) centers. This indicates that
the use of large protein models with explicit solvent can be
important for describing kinetics of spin-forbidden transitions
in the metal-containing active sites and, therefore, for
understanding how metalloproteins function in realistic
biological environments. We also show how the FMO energy
decomposition can be used to determine which part of the

protein is responsible for stabilization of each spin states. We
speculate that such analysis could be useful for designing
protein mutations aimed at changing the MECP structures and
controlling the spin-dependent processes in metalloproteins,
including catalysis and electron transfer.
It is important to note that in NA-TST, energies are

evaluated for specific structures located on the multidimen-
sional PESs and do not include the effect of temperature or
conformational sampling. In future, by extending the
techniques developed to evaluate the free binding energy in
the framework of MM and QM/MM methods, it should be
possible to take advantage of the recent progress in the FMO/
MD methodology capable of MD simulations on the
nanosecond time scale.114 In addition, MD and Monte Carlo
techniques could be useful in locating the global minimum
energy crossing.
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Table 3. Contributions of Fragments to the Stability (Energies in kcal/mol) of Quartet and Sextet Spin Statesa

I fragment name compositionb as in PDB separation RI,6 domain monomer ΔEI′ dimer ΔΔEI,6

4 VAL-5 Val-4 1.28 B 0.2 0.0
5 XAA-6 Cys-5, Lys-6 0.00 B 0.6 2.0
6 Fe-site Fe, Cys-5, Cys-8, Cys-38, Cys-41 0.00 A 23.3 0.0
7 XAA-8 Ile-7, Cys-8 0.80 B 35.4 −41.4
8 TYR-11 Tyr-10 1.06 B 0.0 2.3
9 ILE-12 Ile-11 1.42 B 0.3 −0.1
34 TRP-37 Trp-36 1.27 B −0.1 0.3
35 VAL-38 Val-37 0.00 B 0.1 −0.1
36 XAA-39 Pro-39 0.92 B −0.5 −2.2
37 ILE-41 Ile-40 0.00 B −1.1 −0.8
38 XAA-42 Gly-42, Cys-41 0.85 B −2.8 −10.4
39 ALA-44 Ala-43, Gly-42 1.32 B 1.6 −4.1
40 PRO-45 Pro-44 1.55 B −1.3 −0.6
43 GLU-48 Glu-47 0.93 B 0.4 −0.4
44 PHE-49 Phe-48 1.38 B −0.3 −1.0
45 GLU-50 Glu-49 1.55 B 0.1 0.3
54 HOH6 1 water 1.51 B 0.0 −0.2
57 HOH9 1 water 1.41 B −0.1 −0.2
62 HOH14 1 water 1.50 B 0.0 0.6
74 HOH26 1 water 1.48 B 0.0 −0.8
76 HOH28 1 water 1.63 B 0.0 0.9
77 HOH29 1 water 1.43 B 0.1 −0.2
86 HOH38 1 water 1.28 B 0.0 0.5

othersc composite >1.99 F 0.0 0.2
totald 55.9 −55.4

aThe separation is unitless (the geometrical distance between two atoms divided by the sum of their van der Waals radii; for O−H pairs, R = 1
corresponds to 2.6 Å). Negative values of ΔEI′ and ΔΔEI,6 mean that the quartet is more stable than the sextet. bFragment residues in PDB are
denoted by the first capital letter (Cys-5, etc.), whereas fragments are denoted by capital letters (VAL-5, etc.). Note that the residue numbering in
the PDB file starts from 0 so that Glu-49 is the 50th residue in the PDB entry 4K9F, and so in FMO, it corresponds to GLU-50 (numbering from
1). cThe value given here is EI IF ,6∑ ΔΔ∈ . dThe sum of the values in the ΔEI′ and ΔΔEI,6 columns should be zero at the perfect energy crossing; the
small deviation (0.5 kcal/mol) is due to round off errors (the exact energy difference computed from the total energies is 0.001 kcal/mol).

Figure 8. Spin density distribution in model 4. Only Fe-site and XAA-
8 fragments are shown, where the spin density is nonzero. The red
and blue surfaces show positive (α-dominated) and negative (β-
dominated) values of the spin density, respectively.
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Describe Intersystem Crossing Dynamics in Trajectory Surface
Hopping. Int. J. Quantum Chem. 2015, 115, 1215−1231.
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(26) Plasser, F.; Goḿez, S.; Menger, M. F.; Mai, S.; Gonzaĺez, L.
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