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Abstract

Populations may respond to environmental heterogeneity via evolutionary divergence or 

phenotypic plasticity.  While evolutionary divergence occurs through DNA sequence differences 

among populations, plastic divergence among populations may be generated by changes in the 

epigenome.  Here, we present the results of a genome-wide comparison of DNA methylation patterns 

and genetic structure among four populations of Eastern oyster (Crassostrea virginica) in the northern 

Gulf of Mexico. We used a combination of restriction site-associated DNA sequencing (RADseq) and 

reduced representation bisulfite sequencing (RRBS) to explore population structure, gene-wide 

averages of FST, and DNA methylation differences between oysters inhabiting four estuaries with 

unique salinity profiles. This approach identified significant population structure despite a moderately 

low FST (0.02) across the freshwater boundary of the Mississippi river, a finding that may reflect 

recent efforts to restore oyster stock populations. Divergence between populations in CpG 

methylation was greater than for divergence in FST, likely reflecting environmental effects on DNA 

methylation patterns. Assessment of CpG methylation patterns across all populations identified that 

only 26 % of methylated DNA was intergenic; and, only 17% of all differentially methylated regions 

(DMRs) were within these same regions. DMRs within gene bodies between sites were associated 

with genes known to be involved in DNA damage repair, ion transport, and reproductive timing. 

Finally, when assessing the correlation between genomic variation and DNA methylation between 

these populations, we observed population-specific DNA methylation profiles that were not directly 

associated with single nucleotide polymorphisms or broader gene-body mean FST trends. Our results 

suggest that C. virginica may use DNA methylation to generate environmentally responsive plastic 

phenotypes, and that there is more divergence in methylation than divergence in allele frequencies. 

Keywords: Crassostrea virginica, oyster, salinity, epigenetics, DNA methylation, reduced 

representation bisulfite sequencing

Introduction

In highly variable marine environments, phenotypic plasticity allows organisms to persist in 

suboptimum environmental conditions (Somero, 2010). On short time scales this can be accomplished A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

via environmentally responsive changes in gene expression (Evans and Hofmann, 2012). Over the 

medium to long term, there is increasing evidence that phenotypic plasticity may be modulated by 

changes in the epigenome (Eirin-Lopez and Putnam, 2018; Hofmann, 2017; Hu and Barrett, 2017; 

Verhoeven et al., 2016). These epigenomic changes allow for the persistent expression of a plastic 

phenotype that in some cases may be transmitted to subsequent generations (Rondon et al., 2017). As 

a result, there is significant interest in understanding how epigenetic variation correlates with genomic 

and environmental variation; and ultimately, how changes in the epigenome might facilitate the 

generation of environmentally responsive phenotypes. The push to address these questions has 

developed as a result of new sequencing techniques that provide high-resolution data on epigenomic 

traits and the necessary data for identifying when phenotypic effects of genotype-by-environment 

interactions are governed by changes in the epigenome (Trucchi et al., 2016; Van Gurp et al., 2016; 

Yaish et al., 2014).

While there are multiple types of epigenetic mechanisms, 5mC DNA methylation (methylation 

at the 5th position in a cytosine molecule) has been the focus of a substantial amount of research to 

date using enzyme-linked immunoglobulin assays, methylation sensitive PCRs, and modified 

amplification polymorphism assays (Hu and Barrett, 2017; Kilvitis et al., 2014; Metzger and Schulte, 

2016; Schrey et al., 2013). These methodologies are able to identify quantitative changes in DNA 

methylation, however more targeted hypothesis testing is limited by a lack of high-resolution 

nucleotide-specific data among non-model marine invertebrates (Hofmann, 2017; Schrey et al., 2013). 

By contrast, reduced representation bisulfite sequencing (RRBS) methods provide nucleotide specific 

5mC DNA methylation status using high-throughput short-read sequences on the Illumina platform 

(Trucchi et al., 2016; Van Gurp et al., 2016). In particular, the epiGBS (Van Gurp et al., 2016) 

method combines this RRBS approach with enzyme digestion that is not sensitive to methylation and 

therefore provides locus-specific methylation state across a large proportion of the genome, even 

when no reference genome is available. 

Much of what is known about the functional role of epigenetic modifications in sessile marine 

invertebrates comes from research on the Pacific oyster (Crassosstrea gigas).  In C. gigas, DNA 

methylation appears to be an important molecular feature that directs developmental plasticity, gene 

regulation, and control over alternative splicing (Olson and Roberts, 2014; Riviere, 2014; Riviere et A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

al., 2013; Song et al., 2017). Specifically, increased levels of DNA methylation within intragenic 

regions in C. gigas is positively correlated with gene expression levels (Gavery and Roberts 2013), 

while exon methylation is positively correlated with inclusion in mRNA transcripts (Song et al 2017). 

Furthermore, changes in methylation patterns following parental exposure to environmental toxins 

appear to be heritable in the F1 generation (Rondon et al., 2017). Methylation research in C. gigas has 

been facilitated by the availability of a reference genome (Trucchi et al., 2016). The recent release of 

a reference genome for the Eastern oyster Crassostrea virginica (Gómez-Chiarri, 2018) provides an 

opportunity to explore similar patterns of DNA methylation with RRBS, and opens the door to future 

comparative epigenomic studies between these two closely related taxa.

Previous studies testing for acclimatization responses to divergent environments have focused 

on comparative transcriptomics to measure differences in global gene expression among populations 

across these conditions (DeBiasse and Kelly, 2016; Stillman and Armstrong, 2015). These differences 

may themselves be modulated by genome-level epigenetic changes, which may also impart this 

information to the next generation (intergenerational plasticity) (Hofmann, 2017; Platt et al., 2015; Vu 

et al., 2015; Wong, 2018). The regulatory importance of epigenetic changes in the process of 

population divergence is increasingly being supported by models that suggest these non-genetic 

features influence the rate of adaptation to environmental stress (Klironomos et al., 2016; Kronholm 

and Collins, 2016). Therefore, to better understand the genetic basis for population divergence, the 

interacting effects of genetic and epigenetic variation should be further explored.

Recent studies in wild populations have identified variation in DNA methylation that is 

associated with both acclimatization and broader population-specific epigenomic variation. These 

studies have identified methylation differences between freshwater and marine populations of the 

three-spined stickleback (Gasterosteus aculeatus) (Artemov et al., 2017) and between invasive and 

native populations of the pygmy mussel (Xenostrobus secures) (Ardura et al., 2017).  Furthermore, 

multiple comparisons in species from clonal fish, tilapia, bats, and finches have found variation in 

DNA methylation that is greater than the standing genetic variation, lending support for the role of 

DNA methylation in alleviating the consequences of genotype-by-environment mismatches in a wide 

range of metazoans (Liu et al., 2015; Massicotte et al., 2011; Skinner et al., 2014; Wan et al., 2016).
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Genotype-by-environment interactions shape population structure and can play an important 

role in establishing population specific DNA methylation patterns and in driving phenotypic 

differences between populations. Recent evidence has shown that reduced representation genomic 

sequencing methods such as restriction site-associated DNA sequencing (RADseq) are a valuable tool 

for evaluating population structure in marine invertebrates (Bernatchez et al., 2019; Silliman, 2019; 

Xuereb et al., 2018). The population differences that have been detected in many of these studies are 

surprising, as many marine invertebrates are broadcast spawners with large dispersal distances, a 

feature that should produce high gene flow across a species’ range (Sanford and Kelly, 2011). 

However, previous assessments of population structure along the northern Gulf of Mexico (GOM) in 

Eastern oysters (Crassostrea virginica) have identified genetic variation between populations 

(Anderson et al., 2014).  These genetic differences may be explained by either a shift in phenology 

between regions of the GOM or by the influence of genotype by environment mismatches removing 

some genotypes from any given estuary. In the northern GOM, one potential driver of genotype-

environment mismatches is variation in salinity (Leonhardt et al., 2017).  

In coastal Louisiana, populations of Crassostrea virginica are spread across estuaries that 

range from low salinity (<5 psu) to mid-high salinity (~20 psu) (Das et al., 2012). Within these 

estuaries C. virginica plays a critical role as both a foundation species and an ecosystem engineer 

(Meyer et al., 1997; Plunket and La Peyre, 2005). Previous research has shown that along the northern 

GOM the interaction between temperature and salinity plays a major role in setting the species’ 

environmental distribution (Eastern Oyster Biological Review Team, 2007; Shumway, 1996). While 

broad scale genotyping of oyster populations along the GOM has provided some evidence for genetic 

differentiation, there is little known about whether this genetic variation contributes to local 

adaptation to salinity (Varney et al., 2009). In addition, regional salinity levels are also predicted to 

change dramatically in estuarine ecosystems due to changes in rainfall and anthropogenic alterations 

to hydrology (Das et al., 2012; Powell and Keim, 2015). Previous research into the molecular 

responses of Crassostrea spp.  to environmental variation have identified significant responses to 

salinity at both the mRNA and protein levels (Chapman et al. 2011, Jones et al. 2019). Therefore, 

examining the degree of genetic and epigenetic variation between populations of C. virginica that 

inhabit estuaries with distinct salinity conditions is an important step in understanding the observed A
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signals of local adaptation and phenotypic plasticity in response to changes in environmental 

conditions along the northern GOM.

In this study we characterize single nucleotide polymorphisms and DNA methylation patterns 

for four populations of Eastern oysters (Crassostrea virginica) along the northern GOM. This region 

is highly variable with respect to salinity, with shallow oyster reefs existing across regions with 

distinct annual salinity profiles (Figure 1). Recent evidence suggests population-specific physiological 

responses to salinity between oysters from either high or low salinity reefs from this region 

(Leonhardt et al., 2017). In addition, we hypothesized that the Lake Fortuna population, located east 

of the Mississippi river, would be the most unique population both in terms of methylation and 

genomic variation. As such, we have used a combination of RADseq and epiGBS sequencing to 

further describe potential genetic and epigenetic drivers of these observed population-specific 

physiological responses. 

Materials and Methods

Collection sites

Oysters were collected from four sites that are known to differ in annual mean salinity. 

Salinities for each estuary were calculated as daily averages from June 1st, 2006 – June 1st, 2016 using 

salinity measurements (collected by either the United States Geological Survey or the Louisiana 

Department of Fish and Wildlife) from stations located as close to the oyster beds as possible (Figure 

1). These data were used to calculate the amount of time each reef spent at one of five salinity regimes 

known to impact oysters in the eastern GOM (which has higher average salinities than the northern 

GOM). These bins were (i) >20 practical salinity units (psu) – no negative effects, (ii) 15 – 20 psu – 

reduced reproductive rates, (iii) 6 – 15 psu – reduced spat recruitment, (iv) 3.5 – 6 psu – reduced 

growth rates, and (v) 0 – 3.5 psu – survival limited to approximately 5 months (Barnes et al., 2007).  

In addition, average salinity and temperature for the 10 days prior to collection was also calculated 

and reflect the environmental conditions prior to sample collection.

Oyster collections

In order to characterize population-specific methylome patterns, 20 individual oysters from 

each site; Lake Calcasieu (LF), Lake Fortuna (LF), Sister Lake (SL), and Vermillion Bay (VB) ;were A
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collected as part of a larger study between May 15, 2015 and February 10, 2016 (Figure 1).  Oyster 

from all sites were collected by dredging at a depth of ~ 3 meters allowing for all oysters to have been 

collected from subtidal reefs. Salinity and temperature data was collected and 10-year daily average 

are reported in addition to the average conditions for the 10 days preceding collection (Figure 1C). 

Following collections, oysters were transported to Louisiana State University, gill tissue was dissected 

from each oyster, immersed in 95 % ethanol, and stored at +4 C for 18-24 months. The remaining 

whole organisms were subsequently frozen and stored at -80 C. In order to gather morphological data 

these oysters were thawed in September 2019. For individuals from LF and SL individual specific 

length, wet weight, and presence/absence of gonads was assessed; however, due to freeze-thaw it was 

not possible to identify the current sex of the individual. As oysters are sequential, protandric 

hermaphrodites, sexual stage has to be checked via gonads (Harding et al. 2013). For the other two 

sites (LC and VB), all 20 individuals were measured and weighed; however, the labeling of these 

individuals was lost and so only mean length and mean wet weight are reported. 

DNA extraction

DNA was extracted from all 80 individuals using the OMEGA E.Z.N.A. Tissue DNA Kit 

(D3396-01; Omega bio-tek) with a 2 min RNase A digestion to remove co-purified RNA. Extracted 

DNA purity was assessed on 260/280 and 260/230 ratios using a nanodrop spectrophotometer 

(ND1000; Thermofisher Scientific). Presence of high molecular weight DNA was confirmed using a 

1.5 % agarose gel, and DNA concentration was verified using a Qubit 3.0 Flourometric dsDNA BR 

assay kit (Q32850; Life Technologies).

RADseq library preparation

RADseq libraries were generated for the same 80 individuals plus an additional 2 individuals 

from each population providing (n = 88) using the 3RAD library preparation method (Bayona-

Vásquez et al., 2019). For these libraries, 100 ng of DNA was digested in a 15 ul reaction consisting 

of three enzymes (XbaI, EcoRI, and NheI, New England BioLabs (NEB)), an iTru NheI adapter, an 

iTru EcoRI adapter, and NEB 10x CutSmart Buffer. Reactions were incubated for 2 hours at 37 C. 

The adapters added in the original reaction were subsequently ligated to the digested DNA fragments 

with the addition of one unit of DNA ligase, 10x ligase buffer, additional rATP to ensure ligation of 

the iTru adapters, and the sample incubated at 22 C for 20 min. Ligation products were pooled, A
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purified with 1.25x speedbeads, and amplified using 1 unit of Kapa HiFi DNA Polymerase 

(KapaBiosystems, MA) in the presence of unique i5 and i7 primers. Amplification was completed 

using 12 cycles of 98 C for 1 min.; then, 12 cycles of: 98 C for 20 sec., 60 C for 15 sec., 72 C for 

30 sec.; 72 C for 5 min. Final library concentrations were quantified via qPCR and sequencing was 

completed on 1 lane of an Illumina Hiseq2500 with 100bp paired-end reads. Sequencing was 

completed at the North Carolina State University’s Genomic Sciences Laboratory (Raleigh, NC).

RADseq data analysis

The 3RAD data for the 88 individuals was demultiplexed using the process_radtag command 

available in STACKS v.1.48 (Catchen et al., 2013) where sequences with any uncalled base where 

removed (-c), low quality reads removed (-q), reads trimmed to 140 bp (-t 140), RAD-Tags rescued (-

r), and a score limit of 10 (-s 10). The program Bowtie2 v.2.3.4 (Langmead and Salzberg 2012) was 

then used for alignments to the reference genome (GCF_002022765.2) with default settings. The 

STACKS (Catchen et al., 2013) software was used to isolate SNPs between the four populations. The 

stack analysis was run using the ref_map.pl pipeline with the following settings ‘-p 2 --smooth --hwe 

-r 0.65 --min_maf 0.05  --bootstrap --bootstrap-reps 1000000 --structure --genepop --write_single_snp 

–vcf.’. These settings requires a locus to be represented by 65% of individuals in 2 of the 4 

populations that have a minimum allele frequency of 0.05, FST values are kernel-smoothed across 

chromosomes, and significance intervals based on resampling using 1,000,000 bootstraps 

(Supplemental file 1).

Population structure was investigated using the R program conStruct (v.1.0.3) and the 

population structure file generated from the Stacks program population. Samples were analyzed using 

the x.validation function in conStruct testing K from 1 to 4 using 90% of the dataset for training, 10 

replicates, and 1000 iterations per replicate (Bradburd et al., 2018). Input coordinates for each 

population are the same as those presented in Figure 1C. The final K was chosen based on comparing 

layer contributions and predictive accuracy for models constructed both with and without 

geographical distances between each of the four estuaries (Figure 2AB). 

DNA methylation epiGBS library preparation

For epiGBS library preparation, a total of 500 ng of purified genomic DNA was 

simultaneously double digested for all 80 samples in a 96 well plate using the two frequent cutter A
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enzymes AseI and NsiI (NEB-R0127L and NEB-R0526L; Van Gurp 2016). Digested DNA was 

ligated to custom y-yoked methylated sequencing adapters (Glenn et al., 2016) using a T4 DNA ligase 

(B9000S; New England Biolabs) with additional rATP to ensure ligation of custom adapters 

(Supplemental File 1) Digested and methylated adapter-ligated DNA were bisulfite converted in a 96 

well plate using the Zymo Research EZ DNA Methylation-Lightning kit (D5031; Zymo Research) 

with a 15 min L-desulphonation step. Bisulfite converted DNA was then tagged and amplified with 

Illumina adapters using 16 cycles of PCR. Amplified libraries were size selected to 300-600 base-

pairs (bp) using the Zymo Research Select-A-Size DNA clean & Concentrator (D4080; Zymo 

Research). Size selection was confirmed using the Agilent Bioanalyzer DNA high sensitivity chip 

(5067-4626; Agilent Technologies). Libraries were subsequently pooled and sequenced with a 10% 

PhiX spike-in on a full flow cell of the Illumina NextSeq 500 with 75 bp paired-end reads. 

Sequencing was completed at the North Carolina State University’s Genomic Sciences Laboratory 

(Raleigh, NC).

Differential DNA methylation analysis

The epiGBS sequencing reads were adapter and quality trimmed using Trim Galore! (v.0.4.5) 

(Krueger, 2015) with default settings. Trimmed, non-directional, paired end reads were mapped to the 

reference genome and CpG methylation was called using the software package bismark (v0.19.0) 

(Krueger and Andrews, 2011). The bismark commands used in the mapping allowed for 1 mismatch 

in a seed alignment of 10 with a minimum alignment score setting of -0.6 (--score_min L, 0, -0.6). 

These settings were selected to account for genomic variations between C. virginica collected from 

the northern GOM (this study) and the disease-resistant inbred line from the U.S. East Coast used for 

the construction of the reference genome (Gómez-Chiarri et al., 2015). CpG methylation was 

extracted from the non-deduplicated mapped reads using the bismark command 

bismark_methylation_extractor with the following commands; --ignore_r2 2, --bedGraph, --

zero_based, --no_overlap, --cytosine_report, and –report. Differential methylation was conducted on 

CpG features using the bismark coverage files and the R program MethylKit (v.1.2.4) (Akalin et al., 

2012). Loci were first filtered using the filterByCoverage command to require a locus to have a low 

count of at least 10 reads to be included. Methylation was then assessed in a pair-wise bases using 

a 100 bp tiled approach with a step-size of 100 bp and restricted to tiles that had been covered by at A
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least 8 individuals from each of the two populations. These parameters were chosen so that each 100-

bp region would contain at least 1 CpG, would be approximately be equivalent to a single sequencing 

read (75bp), and would be present in 40% of the population. Pair-wise assessments of differential 

methylation was focused on contrasting the high salinity population with the other three populations.  

As such, the analysis described here reflects on both abiotic differences between estuaries over the 10-

year daily mean differences between sites and the 10-day daily mean differences prior to sampling 

(Figure 1C). Significantly differentially methylated regions (DMRs) were identified for all 

comparisons using a minimum percent methylation difference between populations of 15% and a 

Benjamini-Hochberg adjusted P-value (q-value) less than or equal to 0.05 (Mathers et al. 2019).

All 100-bp regions with sufficient coverage in at least one of the pair-wise comparisons were 

imported into SeqMonk (v1.40.1; www.bioinformatics.babraham.ac.uk/projects/seqmonk/) for 

visualization and annotation with nearest gene annotation. Each of these 100-bp regions were mapped 

to the nearest genomic feature Seqmonk and compared to the randomly generated sequencing markers. 

The genomic features included in this analysis were  promoter regions (2kb upstream of gene), 

3’UTRs,introns, exons, 5’UTRs, downstream regionus (within 2 kb down stream of gene), and 

intergenic regions. To investigate potential for the identified DMRs to be a result of random sampling, 

SeqMonk was used to generate 6 genome wide sets of 100 bp tiles (n=39,053).  The percent overlap of 

methylated genomic features for each marker was assessed using the R program ChIPpeakAnno (v 

3.10.2) (Zhu et al., 2010) and the distribution of DMRs for each comparison tested for significant 

differences in distribution when compared to the random markers using the Kolmogorov-Smirnov test 

(p-value ≤ 0.05). 

Differentially methylated regions were annotated to the nearest gene-body (defined here as the 

regions including promoters, introns, exons, 3’ and 5’ untranslated regions) using the sequence 

annotations available with the latest release of the C. virginica genome (GCF_002022765.2, version 

3.0). This definition of gene body was used as these neighboring regions all have the capacity to 

modify gene expression and therefore directly affect phenotypes (Keller et al., 2016; Song et al., 

2017; Gavery and Roberts, 2013). These genome annotations were combined with gene ontology 

terms generated in this study using InterProscan 5 (v 5.27-66.0) and the most recent gene ontology 

database release (format-version: 1.2, release: 2018-02-20). Gene ontology enrichment analysis was A
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performed with R scripts for rank-based gene ontology with adaptive clustering 

(github.com/z0on/GO_MWU) and was implemented with a signed -log of q-values as a continuous 

measure of significance (Wright et al. 2015). Significantly enriched gene ontologies for each ontology 

(i.e. biological process, cellular components, and molecular functions) were called based on an 

adjusted p-value less than 0.05. In all of these calculations of gene ontology enrichment, the 

background gene set was comprised of all genes that were identified within at least one population.

Associating between DNA methylation and genomic estimate of FST 

To investigate the overlap between genomic variation and changes in DNA methylation we 

reduced both datasets so that for each gene in each pair-wise comparison there would be a single FST 

value that represented the weighted average FST observed across a gene, an average percentage of 

gene-body methylation for each gene, and a measurement of epigenetic divergence (st). We defined 

PST as the methylation analogue of Wrights FST, and calculated it for each locus by subtracting the 

total variance in methylation in all populations from the variance within a single population and 

divided by the variance in all populations (PST= (VarianceTotal -VarianceSub) / VarianceTotal; Leinonen 

et al. 2013). Population level variances in methylation were calculated from the bismark coverage 

output and variance within each population was calculated using the rowVars command in the R stats 

package “matrixStats”. The distribution of mean FST among the DMRs for each comparison was 

tested for significant differences in distribution when compared to the mean FST for all region using 

the Kolmogorov-Smirnov test (p-value ≤ 0.05). 

Finally, to explore the influence of population structure, samples were grouped based on the 

results from an interpretation of the conStruct analysis contrasting individuals based on K=2 with a 

combined pool of Lake Fortuna and Vermilion Bay from the combined samples of Sister Lake and 

Lake Calcasieu (Figure 2). These methylation data were analyzed by requiring a tile to be represented 

by at least 8 individuals per population and differential methylation assessed based on a minimum 

percent methylation difference of 15 % and a q-value less than or equal to 0.05. Hierarchical 

clustering for both he 4 population and 2 population samples was also completed using the methylKit 

function clusterSamples that applies Ward’s hierarchical clustering using 1-Pearson’s correlation 

distances (Akalin et al., 2012). 

ResultsA
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Salinity variation among sites

Long-term salinity data for each site confirm variation in mean salinity, with Lake Calcasieu 

(LC) > Lake Fortuna (LF) > Sister lake (SL) > Vermillion Bay (VB; Figure 1). Examining 

distribution of time spent within each of the 5 salinity stress indices underscores the increasing 

frequency of time spent in low salinity conditions for VB and SL as compared to the two mid-high 

and high salinity sites (Figure 1). Specifically, LC and LF have recorded salinities greater then 15 psu 

for over 50 % of the year, while SL is below 15 psu for 71 % of the year, and VB is below 3.5 for 57 

% of the year. These differences in exposure history support the use of these oyster reefs in our efforts 

to describe population-specific methylation profiles that may facilitate population differentiation and 

possibly local adaptation to low and high salinity in this region. 

RADseq sequencing results

Sequencing of the 88 pooled RADseq libraries resulted in 232.8 ( 221) thousand reads per library, 

with 97.5 % of sequences retained after filtering. 73,128 loci of which 3,169 passed population 

coverage filtering, comprised of 1,134,111nucleotides. Of these loci 1,567 variant loci were retained 

for downstream analysis. Pair-wise population FST values were calculated for the 1,567 polymorphic 

sites passing filter, and mean FST across all populations was found to be 0.023. Population structure 

modeling using the conStruct model that incorporated geographical distance identified K=3 as 

significant; however, this analysis only identified slightly more support for a K=3 over K=2 (Figure 

2AB). We interpret these results to suggest that while K=3 is the best fit for the data, a K=2 explains 

close to the same amount of population structure such that Lake Calcasieu and Sister Lake are highly 

similar and Lake Fortuna and Vermilion Bay are also highly similar populations (Figure 2).

Sequencing Statistics 

Sequencing of the 80 pooled epiGBS libraries resulted in 1.3 ( 0.79) million reads per library, 

with 80.2 % of all sequences mapping to the reference genome (range: 74.6 % - 93.4 %). There were 

8,395,168 cytosines per sample sequenced at least once with 13.9 % of genomic cytosines identified 

as methylated from the Bismark mapping results. Tiled differential methylation analysis identified a 

total of 3,643 - 100 bp regions covered by at least 8 individuals with 10x coverage within at least one 

of the 4 populations (q-value ≤ 0.05). The distribution of these methylated regions revealed that they 

were predominately located within gene bodies (55.7 %; 5’UTR, introns, exons, and 3’UTRs) and A
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intergenic regions (25.9 %), while 12.7 % and 5.7% of methylated features were associated with gene 

promoter and downstream regions respectively (Figure 3). 

Differential Methylation

The principle component analysis (PCA) revealed that the majority of samples between the 

four populations showed overlapping means (Figure 4). Overall, 75.8 % of all differentially 

methylated regions from all of the pair-wise comparisons were located within gene bodies (promoters, 

introns, exons, 3’ and 5’ untranslated regions), 6.5 % were within downstream regions and 17.7 % 

were located along intergenic regions (Figure 3). These distributions were tested against the randomly 

generated 100 bp regions and showed that the distribution of DMRs was higher than expected for 

introns, 3’ UTRs, and 5’ UTRs (p-value ≤ 0.012); lower than expected for exons and intergenic 

regions (p-value ≤ 0.008); but not significantly different from random for promoter (2KB upstream) 

or downstream (2KB downstream) regions (p-value > 0.05). Finally, gene ontology enrichment for 

each population-specific differential methylation analysis was conducted for each pair-wise 

comparison between DMRs that fell within the gene-body region using a Mann-Whitney U-Test with 

a background list of all genes for which there was sequence data within any of the comparisons. 

Site-specific DNA methylation trends

Oysters from the Lake Calcasieu (LC) site experience the highest annual and short-term mean 

salinity conditions, spending approximately 74.2% of the year above 15 psu (Figure 1). Differential 

methylation for LC versus and each of the other three sites (LF, SL, and VB) identified 174 (8.0 %) of 

the 100 bp methylated regions as significantly differentially methylated. Of these only 6 DMRs were 

Differentially methylated in all three population comparisons against LC. Comparing LC with the low 

salinity site VB identified 103 DMRs while contrasts with the two mid-salinity sites (LF and SL) 

contained 60 and 54 DMRs respectively (Figure 5). Across all regions of gene bodies (2kb upstream 

to 2kb downstream) the most significant (lowest q-value) hypomethylated DMRs in the LC 

population were associated with genes coding for an uncharacterized long non-coding RNA, a proton-

coupled folate transporter, and (in one comparison) the enzyme ketohexokinase-like (Table 1). In 

addition, the most significant hypermethylated DMRs in the LC population were associated with 

genes coding for  axonemal-like dynein heavy chain 8 gene, an atrial natriuretic peptide receptor 1-

like isoform X3, and a  serine/threonine-protein phosphatase subunit (supplemental file 2).  Gene A
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ontology (GO) enrichment for DMRs that fell within gene bodies revealed enrichment in 2 biological 

process ontologies between LC and SL oysters. These ontologies were carboxylic acid metabolic 

process and cellular amino acid metabolic process. GO Enrichment also identified 2 molecular 

function ontologies between LC and VB which were identified as guanyl-nucleotide exchange factor 

activity and S-adenosylmethionine-dependent methyltransferase activity.

The Lake Fortuna site has the second highest annual mean salinity with approximately 51% of 

the year spent above 15 psu (Figure 1). This site also differed from all others in timing of the 

sampling with individuals collected in May. As such, the short-term (10-day) difference in 

environmental conditions was largest for temperature (Figure 1C). In total, there was 201 (6.6%) 100 

bp methylated regions identified as significantly differentially methylated in at least one of the three 

comparison with the other sites. Of these only 2 DMRs were Differentially methylated in all three 

population comparisons against LF. Comparing LF with the low salinity site VB identified 130 DMRs 

while contrasts with the mid-salinity and high salinity sites (SL and LC) contained 38 and 60 DMRs 

respectively. Across all regions of gene bodies (2kb upstream to 2kb downstream) the most 

significant (lowest q-value) hypomethylated DMRs in the LF population were associated with genes 

coding for the gametocyte surface protein P230, a Protein-L-isoaspartate(D-aspartate) O-

methyltransferase enzyme, a histone acetyltransferase KAT2B-like gene, the enzyme ketohexokinase-

like (Table 1). The hypermethylated DMRs in the LF population were associated with gene bodies of 

a germinal-center associated nuclear protein, a palmitoyltransferase ZDHHC17-like gene, a 

protogenin B-like gene, and a DNA-directed DNA polymerase (Table 1; supplemental file 2).  GO 

enrichment identified significant enrichment between LF and VB of the broad category extracellular 

region.

The Sister Lake site has the second lowest annual mean salinity spending approximately 71.4 

% of the year below 15 psu and 7.2 % of the year below 3.5 psu (Figure 1). There were a total of 111 

(8.5 %) DMRs between Sister Lake and any of the other 3 sites. Of these only 6 DMRs were 

Differentially methylated in all three population comparisons against SL. Pairwise differences in 

methylation identified 54 DMRs when compared to the high salinity site -LC, 38 DMRs when 

compared to the mid-salinity site -LF, and 48 DMRs when compared to the low salinity site VB. 

Hypomethylation of gene bodies in the SL population were associated with a uncharacterized A
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lncRNA, an insulin-like peptide receptor, and a gene coding for the centromere-associated protein E. 

Hypermethylated DMRs in the SLpopulation were associated with a dual specificity protein 

phosphatase 22, a dnaJ homolog subfamily C member 16-like gene, and condensin complex subunit 

1. GO enrichment also identified significant enrichment between SL and VB of the broad category 

extracellular region.

Vermillion Bay has the lowest annual mean salinity of all sites with 99.8% of the year below 

15 psu, 57% of the year below 3.5 psu, and had a 10 day mean salinity of 2.9 prior to sampling 

(Figure 1). Vermillion Bay was also identified as having the highest number of DMRs when 

compared to all other sites with 253 (6.95%) of the 100 bp regions identified as significantly 

differentially methylated in at least one of the 3 pairwise comparisons. Pairwise differences in 

methylation identified 103 DMRs when compared to the high salinity site -LC, 130 DMRs when 

compared to the mid-salinity site -LF, and 48 DMRs when compared to SL. Hypomethylation of gene 

bodies in the VB population were associated with the gametocyte surface protein P230, a cytosolic 

carboxypeptidase 1-like protein, and an uncharacterized long non-coding RNA. Hypermethylated 

DMRs in the VB populations included genes associated with a germinal-center associated nuclear 

protein-like, a cytoplasmic dynein 1 heavy chain 1-like isoform X1, and a palmitoyltransferase 

ZDHHC17-like isoform X1. GO enrichment also identified significant enrichment between VB and 

both the LF and SL populations of the same broad category extracellular region. Genes associated 

with this ontology in both comparisons included regulatory genes such as WNT-5b, neurogenic locus 

notch homolog protein 4-like, and a phosphatidylinositol-glycan-specific phospholipase D-like gene 

(supplemental file 2). 

Differential methylation between Populations identified in conStruct 

The final comparison of differences in methylation between populations used the results 

obtained from the conStruct analysis identified significant genomic structure at K=3, with nearly 

equal support for K=2. After assessment of the structure plot in Figure 2 we focused on exploring 

differences in methylation between a K=2 model wherein the individuals sampled from Lake 

Calcasieu and Sister Lake were considered to be population 1 while the individuals sampled at Lake 

Fortuna and Vermilion Bay were considered to be population 2. This approach was chosen to test if 

the genomic population structure might explain the distribution of methylation between populations. A
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Hierarchical clustering comparing population 1 to population 2 identified clustering based on 

population with only minimal overlap of individuals (Figure 5A). Differences in the 10-day mean 

salinity and temperatures between the two population groups showed that population 1 was on 

average 4 psu higher then population 2, but population 2 was 7 C warmer than population 1. Global 

methylation patterns between these two meta-populations using a pairwise assessment of differential 

methylation identified 282 DMRs. The top DMRs within gene bodies were hypomethylated in 

population 2 (LF + VB) when compared to population 1 (LC + SL) and were associated with genes 

coding for a histone acetyltransferase KAT6A-like gene, a anoctamin-7-like gene, a ATP-binding 

cassette sub-family A member 3-like gene, and a glutathione synthetase-like gene. The top 

hypermethylated DMRs were associated with a V-type proton ATPase subunit , a protogenin B-like 

gene, a sodium/hydrogen exchanger 9B2 gene, and dnaJ homolog subfamily C member 1-like gene 

(Table 2). Gene ontology enrichment between these two populations revealed significant enrichment 

among hypermethylated genes associated with the ontology transferase activity, transferring glycosyl 

groups. Among the genes that were hypomethylated within the transferase activity was a 

glycylpeptide N-tetradecanoyltransferase 2-like gene that had a mean methylation of 7.7% 

methylation in population 2 and a mean methylation of 27.5% in population 1. This relationship was 

also true for the ATP-binding cassette sub-family A member 3-like gene and an uncharacterized 

protein.  

Finally, assessing variation between genomic variation (FST) and our estimate of epigenetic 

variation (PST) identified a mean PST of 0.10 and a mean FST of 0.023. This suggests that there is 

almost 5 times greater variation between populations in methylation than in variation of FST (Figure 

6A). This separation in PST  and FST  was also seen in each of the pair-wise comparisons between 

populations (Figure 6B). This analysis did not reveal any correlation between regions with elevated 

PST and FST. Finally, analyzing this combination of genomic and epigenetic data allowed us to identify 

differential methylation across multiple genomic features in light of the genomic evidence for 

population structure.

Discussion 

There is an emerging interest in understanding the role DNA methylation plays in population 

responses to heterogeneous environments (Hofmann, 2017; Hu and Barrett, 2017; Metzger and A
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Schulte, 2016). Recent physiological evidence suggests there is local adaptation between populations 

of C. virginica distributed across the northern Gulf of Mexico (GOM) (Leonhardt et al., 2017). 

Therefore, this study was designed to assess genetic and epigenetic variation between oysters 

collected from four coastal Louisiana sites spanning the range of salinity conditions inhabited by 

oysters in the GOM. By employing a combination of RADseq and comparative epigenomic analysis 

of oysters from these four sites, we were able to show significant population structure for genetic 

sequences, but much greater divergence in population specific methylation. This suggests that DNA 

methylation may play a greater role than sequence divergence in generating the previously observed 

phenotypic differences among C. virginica populations. While there are potential limitations to these 

data owing to the temporal distribution of collections and variation in prior exposure, these data 

provide important insight into epigenetic variation across known environmental gradients that may be 

contributing to the establishment of acclimatization and local adaptation among populations of C. 

virginica in this region.

Genetic Population Structure

A surprising result from our analysis was the observed genetic similarities did not follow a 

geographic pattern, with the greatest similarities between Lake Fortuna and Vermillion Bay and 

between Lake Calcasieu and Sister Lake (Figure 2). We had originally hypothesized that Lake 

Fortuna would be the most divergent population as the Mississippi river presents a significant barrier 

to larval dispersal along coastal Louisiana. Our findings may reflect the effects of human 

management.  In Louisiana, juvenile (seed) oysters are routinely moved from public seed grounds to 

private oyster leases. Public seed grounds have historically included Lake Calcasieu, Lake Fortuna 

and Vermillion Bay, and there are private leases within or near Lake Fortuna, Vermillion Bay and 

Sister Lake. In addition, hatchery produced larvae or juveniles have been outplanted at several of 

these locations by the Louisiana Department of Wildlife and Fisheries (Leonhardt, 2013). The 

influence of these oyster transplants and translocations may also explain the results from the conStruct 

analysis which suggests that the observed population structure is not driven by an isolation-by-

distance effect. The conStruct analysis also identified at least two distinct populations at each site, 

possibly reflecting the presence of both ‘native’ and translocated or hatchery reared genotypes. 

Previous studies have observed similar patterns that suggest RADseq approaches are valuable tools A
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for identifying the influence of management activities on population structure (Bernatchez et al., 

2019; Silliman, 2019). 

Global DNA methylation patterns in C. virginica

The methylome sequencing approach used in this study revealed that approximately 14 % of 

the C. virginica genome is methylated. This level of methylation is comparable to previous studies 

that report 15 % of the C. gigas genome as being methylated (Gavery and Roberts, 2013; Olson and 

Roberts, 2014). The distribution of methylated regions across genomic features was also very similar 

to C. gigas, with a slightly higher percentage of regions within promoter regions being identified as 

methylated in C. virginica (Gavery and Roberts, 2013). The observed overlap in frequency and 

distribution of methylation within gill tissue between these two closely related species suggests a 

conserved role for DNA methylation within oyster genomes. Furthermore, the population differences 

observed here are a snap-shot of methylation states that are shaped by the environmental conditions at 

the time of collection. The presence of shared methylation states between individuals within a site 

strengthens the case for exploring potential intergenerational inheritance of these methylation patterns 

as was recently demonstrated in C. gigas following parental exposure to the herbicide diuron (Rondon 

et al., 2017). 

The range of population specific differentially methylated regions (38 – 282 regions) was 

consistently relegated to less than 10 % of all measured regions (6.7 % - 8.6 %), suggesting that the 

majority of methylation within the C. virginica genome is fixed and only a small portion is plastic. 

This is consistent with the concept that the major function of epigenomic modification is to control 

cellular differentiation and that environmentally induced de novo modifications are primarily 

important for maximizing phenotypic plasticity at both the cellular and organismal level (Eirin-Lopez 

and Putnam, 2018). Therefore, focusing on the genomic regions that are associated with DMRs 

between the same tissue types from individuals collected at the same life-history stages will provide 

further evidence for which genes are important for maximizing genome – phenome diversity across a 

range of environmental conditions. 

Among all pair-wise assessment of differential methylation, gene ontology enrichment was 

only identified between comparisons of the low salinity site Vermillion Bay and both Lake Fortuna 

and Sister Lake. In both cases, the enrichment was among the broad category extracellular region. A
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Genes associated with this ontology were hypermethylated in Vermilion Bay and may reflect 

differences in developmental stages between individuals at these sites. One caveat regarding these 

data is that the collections presented here was measured on individuals that had significant variation 

in size; however, growth rate in C.virginica is dependent on environmental conditions; therefore, 

attributing age based on size is not a dependable method when comparing oysters from estuaries 

known to differ in salinity. However, presence or absence of gonads as was seen among individuals 

from Lake Fortuna suggests differences in reproductive status may have an influence on DNA 

methylation. Evidence for this can be seen in the pair-wise assessments focused on the Lake Fortuna 

population that identified significant hypermethylation of genes associated with developmental 

processes. Specifically, the hypermethylation of protogenin B and germinal-center associated nuclear 

protein may reflect seasonal changes in DNA methylation that could be associated with reproductive 

timing. Future studies that account for these components will be crucial in validating the results 

presented here as samples varied in both time of collection and age of individuals.

DNA methylation and Population Structure

Integrating the conStruct structure results from the RADseq analysis provided an important 

insight into the influence of genotype on DNA methylation. Specifically, adjusting the differential 

methylation comparisons to reflect a population structure of K=2,  identified 282 DMRs that showed 

enrichment for genes associated with transferring glycosyl groups. Specifically, enrichment was seen 

among hypomethylated genes coding for a gene with enzyme annotation of glycosyltransferase and 

the gene coding for a glutathione synthetase-like protein. These enzymes are important for the 

biosynthesis of many carbohydrates and detoxification that have been shown to be differentially 

regulated, at the transcript level, in response to stress in other Crassostrea species (Tanguy et al. 

2005; Müller et al. 2018). The hypermethylation of ketohexokinase, an enzyme involved in 

metabolism, suggests that differences in food availability between the estuaries may influence these 

methylation patterns. The hypermethylation of ion channels such as sodium/hydrogen exchanger 9B2 

and the transient receptor potential cation channel suggests that the salinity differences between the 

two population groups may also influence differential methylation (Jones et al., 2019). Finally, the 

hypomethylated DMR located within the gene-body of the ATP-binding cassette sub-family A 

member 3-like gene was found to be one of 3 regions that had less than 10 % methylation in A
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population 2. This gene is putatively involved in shell formation, and the transition from 7.5 % 

methylation to 36.2 % methylation may reflect physiologically significant changes in methylation 

(Feng et al. 2015).

The relationship between genetic and epigenetic population structure suggests some influence 

of genetic structure on methylation state (see Figure 5).  Despite this influence, the greater differences 

among populations in methylation suggests there is potentially both an environmental and 

developmental influence on epigenetic methylation status. While the RADseq analysis suggests that 

genetic structure may also be influenced by management related activities, the presence of a strong 

differential methylation of ion transporters and genes involved in stress responses provides evidence 

that populations have unique methylome profiles that may directly regulate the plasticity of these 

genes in response to variation in the environment.

Conclusion

Our analyses identified differential methylation among genes known to exhibit high plasticity 

in response to environmental conditions (sodium/hydrogen exchanger, glutathione synthetase), to 

developmental timing (protogenin B), and DNA damage repair (dnaJ homologs). The variation in 

methylation around these genomic features potentially reflects both differences in timing of collection 

and differences in the environments the individuals were collected from. The DMRs identified here 

serve to highlight the diversity of methylation in the Eastern oyster and provide further evidence of 

the dynamic nature of CpG methylation in response to both environmental conditions and phenology. 

In addition, global methylation patterns revealed that relationships identified in C. gigas holds true for 

C. virginica and therefore supports the role of CpG methylation in phenotype environmental 

interactions for the genus Crassostrea. Assessing methylation patterns between populations identified 

using RADseq analysis also highlighted the effects of genomic structure on DNA methylation. 

Finally, our RADseq analysis also identified unexpected population structure potentially arising from 

management practices that may act counter to local adaptations to salinity within this coastal system. 

These results reinforce the need to combine genomic and epigenomic data when seeking to 

understand divergent population responses to heterogeneous environments.
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Table 1. Significantly differentially methylated regions (DMRs) identified from the pair-wise 

comparisons. All comparisons with percent methylation difference had a q-value < 0.05. Full list 

of DMRs is available in supplemental file 2. 

Gene Name Gene ID Chromosome Start

LC vs SL  

Methylation 

Difference 

(%)

LC vs LF 

Methylation 

Difference 

(%)

LC vs VB 

Methylation 

Difference 

(%)

Uncharacterize 

lncRNA
gene3398 NC_035780.1 56803901 -21.98 -17.91 -15.66

Uncharacterized 

protein 

LOC111122494

gene10033 NC_035782.1 33839401 -15.19 -16.57 -18.26

TATA-binding 

protein-

associated factor 

172-like

gene7372 NC_035781.1 50910301 NA -26.67 -21.46

Proton-coupled 

folate 

transporter-like

gene16442 NC_035783.1 56622601 -21.57 -18.81 -15.11

LOW 

QUALITY 

PROTEIN: 

dynein heavy 

chain 8. 

axonemal-like

gene10035 NC_035782.1 34231901 27.12 16.26 22.54

Atrial natriuretic 

peptide receptor 

1-like isoform 

gene17788 NC_035784.1 16257601 15.09 17.94 15.70
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X3

Serine/threonine-

protein 

phosphatase 4 

regulatory 

subunit 3A-like

gene15310 NC_035783.1 37214601 NA 16.36 17.10

Ketohexokinase-

like
gene19389 NC_035784.1 38858801 NA 15.18 -27.35

Table 2. Significantly differentially methylated regions (DMRs) identified from the K=2 

population comparisons. A full list of DMRs is available in supplemental file 2. 

Gene Name Gene ID Chromosome Start

Methylation 

Difference 

(%)

q-value

LOW QUALITY 

PROTEIN: anoctamin-7-

like

gene17601 NC_035784.1 13100700 -28.11 5.67E-12

Histone acetyltransferase 

KAT6A-like
gene10109 NC_035782.1 36268900 -26.38 1.11E-06

Ketohexokinase-like gene19389 NC_035784.1 38858800 -23.98 1.24E-12A
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ATP-binding cassette sub-

family A member 3-like
gene29286 NC_035787.1 12555600 -20.64 2.16E-40

Glutathione synthetase-like gene28446 NC_035786.1 55258701 -17.58 2.30E-09

Protogenin B-like gene38444 NC_035789.1 8868800 19.50 1.03E-19

DnaJ homolog subfamily C 

member 1-like
gene36200 NC_035788.1 67912000 20.36 1.91E-11

V-type proton ATPase 

subunit E-like
gene24127 NC_035785.1 23166100 22.66 1.90E-33

LOW QUALITY PROTEIN: 
sodium/hydrogen 

exchanger 9B2-like
gene5344 NC_035781.1 20161600 29.75 1.99E-15

Transient receptor potential 

cation channel subfamily 

M member 2-like isoform 

X2

gene5144 NC_035781.1 16979600 47.30 2.85E-35
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Figure Legends

Figure 1 Site-specific variation in salinity. A) Map indicating site locations along coastal Louisiana. B) 10 year 

mean distribution of time spent at each salinity bin. C) Table of mean salinity and temperature for each site along 

with data of sample collection and coordinates of oyster reef.

Figure 2 A) ConStruct cross-validation analysis predictive accuracy of K from 1 to 4 using 90% of the dataset for 

training, 10 replicates, and 10,000 iterations per replicate. B) ConStruct layer contributions of K from 1 to 4. C) 

Population structure plot of K=3 mapped to estuary locations. Downstream analysis of methylation focused on a 

K=2 model that groups LC with SL and VB with LF

Figure 3 Distribution of percent methylation across genomic regions. Global DNA methylation (black) and the 

mean distribution of randomly generated markers (grey) distribution of methylated cytosines across gene regions. 

Site specific mean methylation of DMRs for each genomic region is also shown in color; (Blue – Lake Calcasieu; 

Orange – Lake Fortuna; Green –Sister Lake; Purple –Vermillion Bay). Stars indicate samples are significantly 

different from the mean distribution of random markers.

Figure 4 Principle Component Analysis plot of PC1 and PC2 of the global variation in methylation between 

populations (based on 900 shared regions). Ellipses display the standard deviation within PC1 and PC2 for each 

group revealing significant overlap. 

Figure 5A) Hierarchical clustering of CpG methylation between all four populations and the two population 

comparisons using Ward’s hierarchical clustering with 1-Pearson’s correlation distances. B-D) Venn-diagrams 

revealing overlap of population-specific differentially methylated regions that are driving hierarchical clustering 

observed in Figure 5A. Values presented represent significantly differentially methylated regions with 

hypermethylated regions printed on top and hypomethylated regions printed below.

Figure 6. A) Per locus PST plotted against FST for loci shared between the two datasets. The red spot identifies the 

intersection of the observed mean FST and mean PST for all loci.  B) pair-wise estimates of FST and PST for all loci.
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Supplemental File 1 DNA methylation epiGBS sequencing methods and STACKS code used in this 

study.

Supplemental File 2 All Differentially methylated regions for each population-specific comparison 

including percent change in methylation, q-values, GOSlim terms, and enzyme codes. 
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