
1 

   978-1-7281-0316-7/18/$31.00 ©2018 IEEE  

Abstract — Although various aspects of interdependencies among 

Power, Water, and Gas (PWG) infrastructures have been studied in 

the last couple of decades, there still exists void of modeling 

techniques capable of revealing the interdependencies among real-

world infrastructures. This paper presents review of the state-of-the-

art knowledge on interdependent critical infrastructure (ICI) 

modeling techniques along with delineation and discussion of 

interdependencies at transmission and distribution levels among 

PWG networks. The present study will also outline the suitability of 

various approaches to work with real-time infrastructure 

monitoring data that is becoming abundantly available in the recent 

years. The paper also highlights some directions on future research 

in interdependency modeling as well as suggestions on improving 

real-time interdependent models in operational and physical aspects. 

 
Index Terms — Components, Cascading Failure, Interdependent 

Infrastructure, Power Grid, PWG Networks, Real-time. 

I. INTRODUCTION 

 

PON reviewing the state-of-the-art knowledge on 

interdependent critical infrastructures (ICIs), especially 

Power-Water-Gas (PWG), the variety of modeling 

techniques that have been previously used becomes clearly 

apparent. In the literature, most focus has been geared toward how 

failures are caused and cascaded from one PWG network to 

another; however, the consequences and the granularity at which 

such cascading mechanisms have been modeled varied widely. 

Besides, many researches have quantified interdependencies only 

between pairs of infrastructures [1]–[3] thereby limiting the 

breadth of interdependencies in our real-world ICIs. In this study, 

taking into consideration the two-way cascading effects of power 

grid on all other infrastructures including water and gas all at once  
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is a priority. Also, as Rinaldi (2004) proposed, there are heuristic 

approaches to digging deep into the interoperability of PWG 

networks [4], but poor data acquisition and lack of real-world 

near-real-time data for model validation causes significant paucity  

of accuracy in the model. Needless to say, lack of sufficient and 

reliable data for validation purposes, in turn, will lead to the 

unlikelihood of temporal analysis focused on how often and how 

long does it take for a failure to cascade between ICIs. In an 

attempt to summarize the state-of-the-art knowledge and 

outstanding challenges with modeling failures in ICIs, this paper 

will: (i) briefly review the various ICI modeling techniques from 

the literature; (ii) map the specific dependencies among the PWG 

infrastructures; and (iii) assesses the suitability of modeling 

techniques for temporal analysis of cascading failures in ICIs. By 

addressing these aspects, future directions will be aimed at real-

time modeling of large PWG networks with focus on predictive 

capabilities for real-time decision-making. 

II. SUMMARY OF ICI MODELING TECHNIQUES 

 

A. Identification and Literature Review 

 

This section aims at highlighting the most recent reviews on 

ICI modeling and then identifying various modeling approaches. 

These methods have been comprehensively reviewed by Ouyang 

(2014) based on the following criteria: maturity, paradigm, 

monitoring area, data needs, course of triggered events, types of 

events, types of interdependencies, design strategies, and 

modeling focus [5]. Taking into account these criteria in this 

study, the paper is mainly focused on strengths and weaknesses 

inherent to the reviewed ICI modeling techniques are 

summarized. Owing to the growing nature of temporal relevance 

of ICIs as well as the complexity of interdependencies, suitability 

of ICI modeling techniques to leverage the currently available 

real-time monitoring data is discussed [6]–[10]. 

To begin with, Table 1 lists some of the most recent papers on 

how interdependencies among critical infrastructures are modeled 
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and evaluated based on several metrics. Only those studies 

published after Ouyang’s study [5] are listed in Table 1 to 

minimize repetition. 

 
Table 1. Summary of ICI Simulation Methods and Modeling Approaches by 

Recent Scholars 

Authors Objectives and Methods Used 

Pengshuai 
Cui 

(2016) 

[11] 

A capability-based dependency model of interdependent 

networks that takes two node-dependency properties 

(connectivity and dependence links) into account; The general 
approach closes in on Numerical and Analytical Interpretations 

and numerical simulations. 

Zlontik et 
al. (2017) 

[12] 

Dynamic scheduling and simulation of coupled gas-electricity 

networks 

Yang et 

al. (2015) 
[13] 

Systematic modeling framework and simulation platform for 

coupled gas-power systems as well as analysis of impact of 6 
factors (market and system related) 

Tien and 

Chloe 
(2017) 

[14] 

Methodology to model interdependencies probabilistically 
using a novel Bayesian network approach 

Bing Li 

(2017) 
[15]   

Framework to model economic impact of cascading failures 

occurring in power network as well as ranking the criticality of 
the components in power system 

Zhang et 

al (2016) 
[1] 

Cascading model; redistribution of load in power system to 

explore vulnerabilities 

 

Based on the review of the studies listed in Table 1, it becomes 

apparent that nearly all of them are tailored to applying a specific 

method to a particular network for purposes like vulnerability or 

resilience assessment. However, real-time data has not been used 

to develop or validate ICI interdependency models that were 

previously proposed. Furthermore, a simple selection of modeling 

approach would not meet the requirements for an accurate real-

time interoperability of interdependencies. It is opined that a 

combination of the following three models is required to have a 

real-time model that could support operations of ICIs: (i) demand 

forecasting model, (ii) simulation model and (iii) optimization 

model [8]. So, this means that a simple selection of modeling 

approach would not meet the requirements for an accurate real-

time interoperability of interdependencies.  

 

B. Outlining the Interdependency Modeling Methods 

 

Various approaches of modeling ICIs have been reviewed in 

multiple studies [4], [5], [16]–[18]. Different taxonomies have 

been used by these authors to classify the models. Ouyang (2014) 

classified them in six broad categories: Empirical (E), Agent-

based (AB), System Dynamics (SD), Economic Theory (ET), 

Network-based (NB) and other approaches which included 

Dynamic Control System Theory (DCST), Bayesian Network 

(BN), Petri-net, and Hierarchical Holographic Modeling (HHM) 

based models [5]. In present work, the first five modeling 

approaches – empirical, agent-based, system dynamics, economic 

theory, and network based – have been reviewed and building 

upon the review of Ouyang (2014) [5], these approaches have 

been analyzed for their suitability to model interdependencies in 

PWG considering temporal aspects. 

   Empirical modeling approaches build a database to identify 

and quantify failure patterns in critical infrastructures [19]–[22]. 

Since these models rely mainly on media reports and ex-post 

assessments [19], [23], [24], there are internal dependencies and 

intangible cross-infrastructure dependencies which remain 

unaccounted in empirical models. Empirical approaches have 

been used to model cascading failures [25], to identify alternatives 

for risk mitigation [26]. Generally, metrics used in empirical 

methods represent the behavior of infrastructure system as a 

whole [24], [29].  Majority of empirical methods have been used 

to investigate cascading failures in case of natural disasters or 

large scale disruptions [19], [22], [24], [28], [29], which are cases 

of extreme perturbation to the infrastructure systems. Models 

developed at such large scales are capable of capturing the failure 

scenarios only at a lower resolution due to the paucity of data and 

abstraction of processes in concerned infrastructures. Databases 

prepared for empirical analysis are highly specific to the event and 

location, so there remains lack of standardized framework even 

for similar types of failures. Interdependence effects are modeled 

for historical data that generally lack a quantifiable threshold for 

the criticality of CIs that makes it difficult to interpolate the 

impacts for perturbations of lower intensity. Despite having these 

limitations, empirical methods have proved useful in validation of 

models based on other approaches. Also, empirical methods are 

utilized to characterize the resilience of individual components in 

ICIs in the form of fragility curves [30].  

Agent-based approaches have been used widely to model 

complex systems where each component is regarded as an 

individual agent and interacts with other agents and environment 

[31]. For example, NABLE is an agent-based model developed by 

Sandia National Laboratory which has the capabilities to model 

the interdependencies among various ICIs and economic firms 

[32]. Flexible Agent Simulation Toolkit (FAST) [33] and CIMS 

[34] are other agent-based models developed to study 

interdependencies. 

Agent-based approaches have been used to model physical and 

logical interdependencies. Methods based on agent-based 

approach provide a flexible platform to model the 

interdependency among range of heterogeneous components. 

Moreover, this approach is deemed useful to model cognitive 

aspects in decision making at agent level [35] which is a 

uniqueness of this approach and can be exploited for  real-time 

decision making. Agent-based methods are capable of modeling 

complex systems exhibiting a large number of interactions 

between agents. However, the complexity of these models 

increases significantly in modeling interdependencies considering 

all critical components.  

System Dynamics (SD) based approaches model the 

interdependencies using causal loop diagram and stock flow 

diagrams. For example, CIP/DSS is an SD-based model used 

extensively to study the cascading failures to other infrastructures 

from disruptions in power supply [34], modeling outbreak of 

disease [36] and impacts of natural hazards on ICIs [37]. SD-

based methods are capable of modeling the dynamics of the non-

linear systems with temporal variations. Since quantification of 

interdependencies among CIs is based on experts’ opinion and 

historical data [38], SD based methods need colossal calibration 
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efforts to model physical interdependencies among real-world 

CIs. Identification of vulnerable components or a sub-system in 

an infrastructure is important and is emerging part of studies 

related to ICIs but standard SD-based methods are not capable of 

providing an effective platform for that.  
Table 2. Pros and Cons of the Identified Methods 

 

Economic approaches are based on the input-output economic 

model proposed by Leontief [39]. Input-output inoperability 

models (IIM) are utilized to investigate the impact of natural 

hazards and systemic failures on various industries and economy 

at a macro level [40]. IIM based model quantify interdependencies 

and impact of inoperability on various ICIs in terms of financial 

losses occurring owing to disruptions. Inoperability of similar 

nature and of the same order may have different monetary impacts 

depending on the market-dynamics.   

  Network-based approaches model each infrastructure system 

as a combination of nodes and arcs. Nodes can be categorized into 

four types – source, sink, transmission nodes and exchange point. 

Sources are locations in a network where generation of the 

commodity takes place, sinks are consumption points, 

transmission nodes represent a junction point with no 

consumption or generation, and exchange points are a special type 

of sink where consumption of the commodity is used to facilitate 

operation in some other infrastructure. Arcs represent the path of 

flow between two nodes (can be pipe/compressor /transmission 

line/distribution line). Ouyang (2014) regrouped network-based 

approaches into topology-based methods and flow-based methods 

[5]. Topological methods focus on assessing the reliability based 

on connectivity and structural redundancy in the network while 

flow-based methods delve deeper to consider the dynamics of the 

flow within and across the networks. Analytical methods have 

also been used to investigate cascading failures in ICIs [41], to 

create fictitious interdependent networks [1], to model 

redistribution of the load in power network and to quantify the 

vulnerability of the networks [1]. Most of the analytical models 

used so far have generalized the nodes and did not take the 

heterogeneity of the nodes into consideration [6]. In addition, 

analytical models need calibration in order to conform to real-

world networks, which yet again is highly specific to the 

configuration of the networks. Simulation-based approaches have 

been more accurate in modeling interdependencies as the majority 

of simulation methods take into account the properties of different 

nodes and utilize heterogeneity of the nodes in quantifying 

system-level responses [2], [42].  

Flow-based methods have been used to investigate the internal 

dynamics and cascading of ICI failures [43], [44]. A common 

approach in flow-based methods is to identify the exchange points 

between infrastructures. Flow based model has been used by [12] 

to investigate the interdependence effects in real-time in a coupled 

gas network and power system. Pressure variation in gas network 

owing to fluctuating intraday power demand at gas fired power 

generators was minimized by the proposed real-time scheduling 

of gas withdrawal[12]. Gomand et al. (2015) did a similar analysis 

for interdependent gas and electricity networks using a transient 

model with one hour time step [45]. Non-linear terms in 

fundamental equations make the dynamic modeling of the gas 

network a challenging task [46]. Most of the flow-based models 

quantify the failure cascades in terms of physical 

interdependencies. Since these models are derived from the basic 

laws of conservations, topological information along with 

boundary conditions may be sufficient to develop the models.   

From the above discussion, we can say that the discussed 

approaches have been useful in studies with different objectives 

and scopes. While empirical methods are considered a good 

choice for swift but rough prediction of the consequences of a 

particular damage across the ICIs, agent-based approaches are 

capable of modeling multitudes of relationships among various 

components. SD-based methods have worked more useful than 

these two approaches in terms of predicting the dynamics of the 

systems. Since flow based methods are driven by fundamental 

laws of conservation, requirements of the calibration efforts are 

not as significant as they are in most of the discussed approaches 

Methods Strengths Limitations 

Empirical  

 Used for validation of models 

based on other approaches 

 Can be used to model the 

fragility of components 

 Database prepared are highly 

specific to causes of 

disruptions 

 Not able to capture failures/ 

impact of failure at 
component level 

Agent-

based 

 Component level mapping is 

feasible 

 Capable of modeling complex 

behaviors 

 Can be used to model 

cognitive decision making 

 Modeling is complex and 

data intensive unlike the 
network based models where 

topological information are 

sufficient 

 Difficult to update the model 

in case of changes in the 
network 

 

System 

Dynamics 

 Modeling of non-linear 

dynamic behavior of CIs is 

relatively easier 

 Have been used successfully 

in developing system level 

decision support systems 

 Reflects the behavior of the 

CI as a whole; not able to 

model the dynamics at 

component level 

 SD based models need 

calibration in order to 
represent real-world systems, 

which further needs huge 

amount of data 

Economic 

Theory 

 Capable of quantifying the 

impact of inoperability among 
different sectors at large scale.  

 Only systemic modeling is 

feasible; component level 

modeling is not feasible 

 Economic metrics depend on 

market dynamics as well; not 

a true representation of 

physical interdependencies 

Topology 

based 

 Provides a comprehensive 

method to investigate 

structural reliability of the 

systems 
 

 Physical interdependencies 

among CIs can be modeled 

only for  structural failure 

 Component criticality is 

derived more from an 

empirical framework rather 
than physics of the system 

Flow 
based 

 Capable of modeling the 

systems based on physics of 
the system and considering 

flow constraints of 

components 

 Has the potential to provide 

an efficient and accurate 
framework to model dynamics 

at a higher temporal 

resolution 

 Operational data of the CIs is 

required for validation of the 

models 

 Computationally expensive 
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although lack of real-world operational data of ICIs remains to be 

a challenge for researchers.  The strengths and weaknesses of 

these reviewed ICI modeling techniques are summarized in Table 

2. 

III. COMPONENT-LEVEL MAPPING OF PWG 

 

The purpose of this section is to provide a comprehensive outline 

of how major components in Water, Power, and Gas networks 

interact leading to operational dependencies. Such mapping 

would facilitate the modeling of the interdependencies among 

these infrastructures.  

 

 
 

A. Identifying the Major Components 

 

Table 3 outlines the significant components that comprise each of 

power, water and gas supply infrastructures. In this paper, the 

target is directed at first order dependencies where a failure or 

malfunction in one ICI network cause a cascading malfunction in 

another ICI network. 

 

 

 

 
Table 3. PWG Identified Components [47]–[52] 

 

 

B. Mapping of Interdependencies among PWG ICIs  

 

 Table 4 representing the correlation between components in one 

infrastructure and other networks based on “First Order” effects. 

In this context, first order correlation/failures are those that cause 

direct failures resulting from malfunction of one components to 

another.  
 

 

Table 4. Dependencies among ICI Components [53]; The networks written in 

columns are described in how they are dependent on components provided in 

rows (Column-on-Row Dependency) 

 

N
e
tw

o
r
k

s  

C
o

m
p

o
n

e
n

ts 

Power 

Network 

Water 

Network 

Gas 

Network 

SCADA 

Systems 

P
o

w
er N

etw
o

rk 

Tr 

 

Power 

Supply for 

controlling 
systems, 

pumps, and 

other power-
driven units 

Power for 
control 

systems, 

storage, 
compressors, 

and other 

control units 
 

 

Power for 

switches 

and 
telecom 

equipment 

 
 

G 

D 

TLE  Transmission lines and controlling system in 

power network will usually not “directly” 
cause failures to be cascaded into other 

networks. No “First Order” Effect 
CCS 

W
a
ter N

etw
o

rk 

 PS Water for 

cooling some 
distributed 

gas-driven 

power 
generating 

units   

 

No “First 

Order” 

Effect 

Water for 

cooling 

facilities T 

P&M No “First 
Order” 

Effect 

No “First 
Order” 

Effect 

No “First 
Order” 

Effect wV 

WTP 

No “First 

Order” 
Effect 

No “First 

Order” 
Effect 

No “First 

Order” 
Effect 

WM 

No “First 

Order” 

Effect 

No “First 

Order” 

Effect 

No “First 

Order” 

Effect 

G
a

s N
etw

o
rk 

ST  

Fuel for 
generators 

and heating  

No “First 
Order” 

Effect  

 

Fuel for 

heat, 
generators, 

and 

facilities 

TLH 

C 

R 

No “First 
Order” 

Effect 

No “First 
Order” 

Effect 

No “First 
Order” 

Effect DLL 

S
C

A
D

A
 

CR 
Distribution 
automation, 

EMS, and 

cybersecurity

, crew repair 

telecom 

 Distribution 
automation, 

EMS, and 

cybersecurity

, crew repair 

telecom 

Distribution 
automation, 

EMS, and 

cybersecurity

, crew repair 

telecom 

  

CS 

 

 
 

 a) Effects of Power Outage 

 

1) Consequences in Water Distribution Networks  

 

This will lead to the deficiency in power supply to run the 

pumping stations in water networks. As an example, a typical 

pump station in a city takes almost 25 horsepower for each pump. 

Network Components 

 

 

Water  

  

  

Pump Station (PS) 

Tanks (T) 

Water Treatment Plants (WTP) 

Valves (wV) 

Water Mains (WM) 

Fire Hydrants (FH) 

 

 

 

Gas   

  

  

  

Storage Tanks (ST) 

Transmission Line (High pressure) (TLH) 

Compressors (C) 

Regulators (R) 

City Gate Station (CGS) 

Distribution lines (low pressure) (DLL) 

Valves (wV) 

 

 

Electricity  

 

 

Circuit Breaker (CB) 

Transformer (Tr) 

Generator (G) 

Transmission Line (TLE) 

Command and Control System (CCS) 

SCADA System 
Controlling Room (CR) 

Communication Systems (CS) 
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This implies a power advocating for 18 kW is demanded for each 

pump to operate. In that case, power shortage or outage will cause 

pump station to run slower, which results in pumps not being able 

to operate properly, thus failing to meet the water demands in the 

network and causing less efficiency in water system. Water 

demands not being satisfied would have further impacts 

depending on the type of consumers in the area being served. For 

example, loss of water would have much severe impact on a 

hospital than on a movie theater in the same neighborhood.   

 

2) Consequences in Gas Network 

 

Gas transmission networks have a highly sophisticated 

instrumentation and monitoring system which is controlled in 

real-time by SCADA system [50]. Control systems and 

compressors in gas network may need continuous supply of 

electricity. Majority of compressors in transmission networks use 

a part of the gas for compression purposes in reciprocating 

compressors, there still remains the need of electricity for the 

instrumentations in control systems [50].  

 

3) Consequences in SCADA System 

 

Shortly after the power outage, generally the first cascading 

failure will appear in SCADA system where all the units including 

Controlling Room and Communication Systems rely deeply on 

continuous power supply. Switches and telecommunication 

equipment serving the automation, emergency signaling as well 

as crew repair communication will run into critical issues. 

Although SCADA end points (namely known as “Remote 

Terminal Units”) universally use battery backup systems to 

obviate the need for reliance on power grid [54], there is still the 

risk for backup failure which propagates the failure per se from 

power to SCADA system.  

 

b) Failure in Water Distribution Networks 

 

   Huge amount of water is required in power-plants for cooling 

purpose [55] but since these plants withdraw water from lakes, 

rivers and other huge water bodies, their reliance on typical water 

distribution networks is negligible. Similarly, water is required in 

processing plants of natural gas. However, our main concern in 

this study falls in water distribution network which accounts for 

potable water supply right after it flows out of the treatment plants 

all the way down to end users. Water-demand of processing units 

is out of the scope of water distribution networks. Nevertheless, 

as there are distributed gas-driven power generation units in 

distribution lines, though limited proportionally, water is still 

needed for cooling these units at smaller scale than production 

level. Also, SCADA system is another section that requires water 

for preventing overheating in its units. 

 

 

 
6 Remote Terminal Units 

 1) Consequences in SCADA System 

 

Water circulation for cooldown purposes in SCADA 

facilities and units plays an essential part in assuring that the 

interdependency SCADA provides in between all other 

networks is well maintained. Particularly, “thermal noise” is a 

phenomenon whereby all transmission media and 

communication equipment including passive devices will 

experience if cooling systems are not present [56]. The higher 

the temperature of the components or the medium, the greater 

the level of thermal noise, and in turn, the higher the thermal 

noise is, the less efficient the transmission processes through 

RTUs6 and PLCs7 would be [56]. Thus, air or water coolants 

are required to keep the SCADA units and room allowably 

cool. 

 

c) Failure in Gas Compressors and Transmission Lines 

  

 1) Consequences in Power Network 

 

Since gas provides a substantial amount of energy to power 

grids in terms of running the plants, disruption amid the 

transmission phases in basic components like distribution-level 

gas processing units or compressors would have adverse effects 

on the operation of power components [57].  Through the year 

2040, the U.S. electricity system will have demanded 340 GW 

of new generating capacity, 63 percent of which is planned to 

be supplied by natural gas plants [58]. Thus, a thorough 

understanding of the gas-power interdependency at 

componential level is required to optimize the production rate. 

One important unit lies in the combustion section where natural 

gas enters the turbine. There, cooling intake air temperatures 

are required to remain steady and proper through water droplets 

into the intake air, or simply thrusting the air into other cooling 

systems can improve the efficiency of the plant, thanks to the 

additional water use [59]. Therefore, this complex 

interdependency embraces all PWG networks to make sure gas 

processing units and storage tanks are well feeding energy into 

the power components like, basically generators, and 

transformers [58]. Hence, irregularity in generation unit 

through power grid will cause damage to electric units in other 

networks, like sensors and actuators as well as pumps in water 

network and SCADA units [59].  

 

2) Consequences in SCADA System 

 

Since gas-driven SCADA units are somewhat rare, there 

exists a minor interdependency between what might occur in 

gas network and what will consequently result in SCADA 

system. In case there is a separate in-house generator for 

SCADA room, gas will play more vital a role in providing 

energy to it [58].   

 

7 Programmable Logic Controllers 
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d) Failure in Gas Distribution Lines and Regulators 

 

Regulators accounts for reducing gas flow pressure to a 

predetermined extent [60]. This pressure reduction is subject to 

a hefty energy loss by containment through pressure regulators 

[60]. Failures in distribution lines and regulators affect the 

downstream end consumers which is mainly used for heating 

and cooking purposes. Majority of the gas-fired power plants 

have their own dedicated regulators and abstraction lines which 

withdraw gas directly from high pressure transmission lines. 

Therefore, first order effect has not been considered in this 

study.  

In water distribution network majority of pumping units run 

on electricity. Diesel driven pumps have been most preferred 

back-up units in pumping stations and do not use gas for 

pumping purposes. 

 

e) Failure in SCADA Components 

 

Inasmuch as SCADA is the cornerstone of interdependent 

networks, any associated failure in its components will sooner or 

later causes other networks to fail one after another. In case units 

and slots at communication system in a SCADA room 

malfunction, the interoperability of PWG networks will be called 

into question. If data is not consecutively transmitted among 

networks via SCADA system, real-time applicability of PWG 

networks will be disrupted. Also, SCADA is well associated with 

human factors of interdependent systems; therefore, emergency 

response or operator/crew repair correspondence will be 

defective, so SCADA node failures make it impossible for human 

operators and centralized automated control systems to monitor 

and control a particular power node. SCADA node failures bring 

about the disintegration of communications network components; 

as a result, crew members/operators will be unable to compile data 

from particular components of the power network [54]. 

Following this further, other data-based components and 

parameters in PWG networks such as water pump pressure, gas 

pressure and temperature, and/or power ampere and voltage will 

be rendered useless or unreliable and this will make problematic 

the parametric predictions and design as well as cyber security or 

design for future reliability and resilience of all PWG networks 

[48]. In this case, Rafael Vida et al. (2014) presented a contagion 

matrix where they proved malware and virus spreading across all 

PWG networks would cause cascading defection in data 

acquisition and management throughout interdependent networks 

[61].   

 

 

 

 

 

 

IV. TEMPORAL ASPECTS OF INTERDEPENDENCIES 

 

In this section, literature review on temporal aspects of 

interdependencies is presented and challenges in this regard will 

be put forth.   

  One of the challenging issues that networks need to be called 

into discussion is real-time or near real-time operations of PWG 

grids. Cheng et al. (2014) presented their model “individually” on 

water distribution network, attempting to measure pressure head 

and flow rate at 15-minute time intervals [62]. Similarly, Quevedo 

et al. (2010) put forward their operational real-time parameters, 

mostly flow rate and head, for every 10 minutes of demand 

patterns by relying on over 200 control points, sectors, and/or 

sensors [63]. Identically, in power smart grid, Hu et al. (2018) 

practiced the real-time aspects of a mutual interaction between 

utility company and multiple users to monitor daily power usage 

by each end user at an hourly interval [64]. Also, Mohagheghi et 

al. (2018) proposed an algorithm whereby a real-time mid-voltage 

power distribution network is optimized through an ad-hoc case 

study [65]. Liu et al. (2017) suggested an approach to a distributed 

real-time optimal power flow control that is both meant to refine 

the system frequency and keep the generator power as close to the 

optimal operational parameters as possible in case of any 

perturbations [66]. However, very little research has been done to 

take into account the temporal aspects of PWG networks and their 

interdependencies altogether. First, two aspects of temporality 

should be regarded for yielding results: (i) operational parameters 

including power usage in power grid, pressure head and flow rate 

in water grid as well as pressure and temperature parameters in 

gas network, so as to clarify how fluctuations in an operational 

parameter in one infrastructure cascades into the disturbance in 

those in another infrastructure at a specific interval of time (e.g. a 

drop in water pressure head may take up to hours to cascade into 

power generators and cause drop in produced voltage) (ii) 

physical parameters and proximity collocation of components in 

networks including the interactions between interdependent 

components across the ICIs. Notwithstanding, the number of 

parameters regarded in different research attempts [7]–[10], [62], 

[63], [67]–[70] needs to significantly increase in order to reach 

out to an extremely accurate interdependent real-time model, 

although the model analysis will be computationally expensive.   

 More specifically, according to Table 4, if a cascading failure 

is to break out because of power shortage/outage and break into 

pump station component in water network, the two 

abovementioned aspects (operational and physical) should be 

parameterized. Hence, if “a” is assumed to be the power needed 

to run a pump (e.g. 25 horsepower/pump) and “b” is the amount 

of water needed for cooldown process of a power plant (20-60 

gallons/every kilowatt hour) reciprocally and interdependently, a 

newfangled model is demanded to both assume (i) the formulation 

of “a” and “b” as the operational aspects of the two networks and 

their affiliated mutual interactions as well as the physical 

consequence these two components will have on each other; 

including but not limited to the roughness and reliability of 

connecting pipe in between the two components and/or the pump 

efficiency rate due to the failure from power generator that might 

cause backward flow or water hammer within pump station 
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connections. After identifying the physical and operational 

interactions and parameters that a cascading failure might cause 

among PWG networks, time steps for monitoring these 

interactions in real-time should be considered. The perfect real-

time model is to reduce the time of monitoring process of a failure 

from point A in one infrastructure all the way to point B from 

minutes/hours [63], [64] to seconds. All in all, the modeling 

challenges in this case turn out to be the integration of PWG 

network simulation models in a time-synchronized manner. Also, 

common optimization models for addressing parameters like 

reliability and costs or other control objectives should be bound 

in a real-time manner with the simulation model in a way that they 

work for very large networks at substantially short expansions of 

time. For now, individual models in the literature regarding 

updating simulation dynamics are taking on time steps of roughly 

as low as 5 to 15 minutes [6], [7], [62], [71], but this needs to 

decrease to less than a minute for multiple iterations for the 

purpose of high accuracy. What’s more, the uncertainties 

associated with the interdependent networks need to be studied 

and partly assumed and eventually trained based on real-time 

monitoring data in order to come up with accurate models [72]. 

For example, pipe roughness, diameter changes, pump efficiency 

are of those dynamic uncertain parameters that make the modeling 

process more challenging and uncertain. It is proposed that such 

uncertainties can be addressed by leveraging real-world 

monitoring data and training computational intelligence 

algorithms. 

V. CONCLUSION AND FUTURE WORK 

 

This paper sheds light on different aspects of interdependent 

infrastructures. First, a comprehensive literature review of the 

state-of-the-art knowledge on what has been done thus far 

regarding the ICI modeling of PWG networks was presented 

along with the strengths and weaknesses of the modeling 

techniques. Subsequently, a mapping of interdependencies among 

PWG systems is presented. Lastly, challenges with modeling the 

temporal aspects of cascading failures in PWG networks are 

brought up and suggestions are made to develop suitable 

modeling techniques. Future work should be geared toward the 

substantial reduction in the duration of time steps to support real-

time monitoring as well as identifying as many interdependently 

operational and physical parameters among PWG networks as 

possible.  
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