Mapping and Modeling Interdependent Power,
Water, and Gas Infrastructures

Ahmad Momeni', Vindhyawasini Prasad?, Hasala I Dharmawardena
Kalyan R. Piratla*, Kumar Venayagamoorthy

3

5,a,%*

Real-Time Power and Intelligent System Laboratory
Clemson University, SC, USA

*IEEE Senior Member
* School of Engineering, University of KwaZulu-Natal, Durban, South Africa

Abstract — Although various aspects of interdependencies among
Power, Water, and Gas (PWG) infrastructures have been studied in
the last couple of decades, there still exists void of modeling
techniques capable of revealing the interdependencies among real-
world infrastructures. This paper presents review of the state-of-the-
art knowledge on interdependent critical infrastructure (ICI)
modeling techniques along with delineation and discussion of
interdependencies at transmission and distribution levels among
PWG networks. The present study will also outline the suitability of
various approaches to work with real-time infrastructure
monitoring data that is becoming abundantly available in the recent
years. The paper also highlights some directions on future research
in interdependency modeling as well as suggestions on improving
real-time interdependent models in operational and physical aspects.

Index Terms — Components, Cascading Failure, Interdependent
Infrastructure, Power Grid, PWG Networks, Real-time.

I. INTRODUCTION

UPON reviewing the state-of-the-art knowledge on
interdependent critical infrastructures (ICIs), especially

Power-Water-Gas (PWG), the variety of modeling
techniques that have been previously used becomes clearly
apparent. In the literature, most focus has been geared toward how
failures are caused and cascaded from one PWG network to
another; however, the consequences and the granularity at which
such cascading mechanisms have been modeled varied widely.
Besides, many researches have quantified interdependencies only
between pairs of infrastructures [1]—[3] thereby limiting the
breadth of interdependencies in our real-world IClIs. In this study,
taking into consideration the two-way cascading effects of power
grid on all other infrastructures including water and gas all at once
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is a priority. Also, as Rinaldi (2004) proposed, there are heuristic
approaches to digging deep into the interoperability of PWG
networks [4], but poor data acquisition and lack of real-world
near-real-time data for model validation causes significant paucity
of accuracy in the model. Needless to say, lack of sufficient and
reliable data for validation purposes, in turn, will lead to the
unlikelihood of temporal analysis focused on how often and how
long does it take for a failure to cascade between ICIs. In an
attempt to summarize the state-of-the-art knowledge and
outstanding challenges with modeling failures in IClIs, this paper
will: (i) briefly review the various ICI modeling techniques from
the literature; (ii) map the specific dependencies among the PWG
infrastructures; and (iii) assesses the suitability of modeling
techniques for temporal analysis of cascading failures in ICIs. By
addressing these aspects, future directions will be aimed at real-
time modeling of large PWG networks with focus on predictive
capabilities for real-time decision-making.

II. SUMMARY OF ICI MODELING TECHNIQUES

A. Identification and Literature Review

This section aims at highlighting the most recent reviews on
ICI modeling and then identifying various modeling approaches.
These methods have been comprehensively reviewed by Ouyang
(2014) based on the following criteria: maturity, paradigm,
monitoring area, data needs, course of triggered events, types of
events, types of interdependencies, design strategies, and
modeling focus [5]. Taking into account these criteria in this
study, the paper is mainly focused on strengths and weaknesses
inherent to the reviewed ICI modeling techniques are
summarized. Owing to the growing nature of temporal relevance
of ICIs as well as the complexity of interdependencies, suitability
of ICI modeling techniques to leverage the currently available
real-time monitoring data is discussed [6]-[10].

To begin with, Table 1 lists some of the most recent papers on
how interdependencies among critical infrastructures are modeled
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and evaluated based on several metrics. Only those studies
published after Ouyang’s study [5] are listed in Table 1 to
minimize repetition.

Table 1. Summary of ICI Simulation Methods and Modeling Approaches by
Recent Scholars

Authors Objectives and Methods Used
. A capability-based dependency model of interdependent
Pengshuai .
Cui networks that takes two node-dependency properties
(2016) (connectivity and dependence links) into account; The general
(1] approach closes in on Numerical and Analytical Interpretations
and numerical simulations.
Zlontik et Dynamic scheduling and simulation of coupled gas-electricity
al. (2017)
networks
[12]
Yang et Systematic modeling framework and simulation platform for
al. (2015) coupled gas-power systems as well as analysis of impact of 6
[13] factors (market and system related)
Tien and
Chloe Methodology to model interdependencies probabilistically
(2017) using a novel Bayesian network approach
[14]
Bing Li Framework to model economic impact of cascading failures
(2017) occurring in power network as well as ranking the criticality of
[15] the components in power system
Zhang et . T .
Cascading model; redistribution of load in power system to
al (2016) e
[1] explore vulnerabilities

Based on the review of the studies listed in Table 1, it becomes
apparent that nearly all of them are tailored to applying a specific
method to a particular network for purposes like vulnerability or
resilience assessment. However, real-time data has not been used
to develop or validate ICI interdependency models that were
previously proposed. Furthermore, a simple selection of modeling
approach would not meet the requirements for an accurate real-
time interoperability of interdependencies. It is opined that a
combination of the following three models is required to have a
real-time model that could support operations of ICIs: (i) demand
forecasting model, (ii) simulation model and (iii) optimization
model [8]. So, this means that a simple selection of modeling
approach would not meet the requirements for an accurate real-
time interoperability of interdependencies.

B.  Outlining the Interdependency Modeling Methods

Various approaches of modeling ICIs have been reviewed in
multiple studies [4], [5], [16]-[18]. Different taxonomies have
been used by these authors to classify the models. Ouyang (2014)
classified them in six broad categories: Empirical (E), Agent-
based (AB), System Dynamics (SD), Economic Theory (ET),
Network-based (NB) and other approaches which included
Dynamic Control System Theory (DCST), Bayesian Network
(BN), Petri-net, and Hierarchical Holographic Modeling (HHM)
based models [5]. In present work, the first five modeling
approaches — empirical, agent-based, system dynamics, economic
theory, and network based — have been reviewed and building
upon the review of Ouyang (2014) [5], these approaches have
been analyzed for their suitability to model interdependencies in
PWG considering temporal aspects.

Empirical modeling approaches build a database to identify
and quantify failure patterns in critical infrastructures [19]-[22].
Since these models rely mainly on media reports and ex-post
assessments [19], [23], [24], there are internal dependencies and
intangible cross-infrastructure dependencies which remain
unaccounted in empirical models. Empirical approaches have
been used to model cascading failures [25], to identify alternatives
for risk mitigation [26]. Generally, metrics used in empirical
methods represent the behavior of infrastructure system as a
whole [24], [29]. Majority of empirical methods have been used
to investigate cascading failures in case of natural disasters or
large scale disruptions [19], [22], [24], [28], [29], which are cases
of extreme perturbation to the infrastructure systems. Models
developed at such large scales are capable of capturing the failure
scenarios only at a lower resolution due to the paucity of data and
abstraction of processes in concerned infrastructures. Databases
prepared for empirical analysis are highly specific to the event and
location, so there remains lack of standardized framework even
for similar types of failures. Interdependence effects are modeled
for historical data that generally lack a quantifiable threshold for
the criticality of Cls that makes it difficult to interpolate the
impacts for perturbations of lower intensity. Despite having these
limitations, empirical methods have proved useful in validation of
models based on other approaches. Also, empirical methods are
utilized to characterize the resilience of individual components in
IClIs in the form of fragility curves [30].

Agent-based approaches have been used widely to model
complex systems where each component is regarded as an
individual agent and interacts with other agents and environment
[31]. For example, NABLE is an agent-based model developed by
Sandia National Laboratory which has the capabilities to model
the interdependencies among various ICIs and economic firms
[32]. Flexible Agent Simulation Toolkit (FAST) [33] and CIMS
[34] are other agent-based models developed to study
interdependencies.

Agent-based approaches have been used to model physical and
logical interdependencies. Methods based on agent-based
approach provide a flexible platform to model the
interdependency among range of heterogeneous components.
Moreover, this approach is deemed useful to model cognitive
aspects in decision making at agent level [35] which is a
uniqueness of this approach and can be exploited for real-time
decision making. Agent-based methods are capable of modeling
complex systems exhibiting a large number of interactions
between agents. However, the complexity of these models
increases significantly in modeling interdependencies considering
all critical components.

System Dynamics (SD) based approaches model the
interdependencies using causal loop diagram and stock flow
diagrams. For example, CIP/DSS is an SD-based model used
extensively to study the cascading failures to other infrastructures
from disruptions in power supply [34], modeling outbreak of
disease [36] and impacts of natural hazards on ICIs [37]. SD-
based methods are capable of modeling the dynamics of the non-
linear systems with temporal variations. Since quantification of
interdependencies among CIs is based on experts’ opinion and
historical data [38], SD based methods need colossal calibration



efforts to model physical interdependencies among real-world
ClIs. Identification of vulnerable components or a sub-system in
an infrastructure is important and is emerging part of studies
related to ICIs but standard SD-based methods are not capable of

providing an effective platform for that.
Table 2. Pros and Cons of the Identified Methods

Methods Strengths Limitations

@ Database prepared are highly
» Used for validation of models specific to causes of
based on other approaches disruptions
@ Can be used to model the ® Not able to capture failures/
fragility of components impact of failure at
component level

Empirical

 Modeling is complex and
data intensive unlike the

* Component level mapping is network based models where

feasible . .
Agent- o Capable of modeling complex tsilzglc(;ictal information are
based R léehaglors dt del  Difficult to update the model

an be used 1o model in case of changes in the
cognitive decision making network
 Reflects the behavior of the
® Modeling of non-linear Clas a whole; no_t able to
. . . model the dynamics at
dynamic behavior of Cls is
. . component level

System relatively easier

® SD based models need
calibration in order to
represent real-world systems,
which further needs huge
amount of data

Dynamics o Have been used successfully
in developing system level
decision support systems

@ Only systemic modeling is
feasible; component level

» Capable of quantifying the modeling is not feasible
impact of inoperability among ¢ Economic metrics depend on
different sectors at large scale. market dynamics as well; not

a true representation of

physical interdependencies

Economic
Theory

» Physical interdependencies
® Provides a comprehensive among CIs can be modeled
method to investigate only for structural failure
structural reliability of the » Component criticality is
systems derived more from an
empirical framework rather
than physics of the system

Topology
based

@ Capable of modeling the
systems based on physics of
the system and considering
flow constraints of

Flow components

based o Has the potential to provide

an efficient and accurate

framework to model dynamics
at a higher temporal
resolution

» Operational data of the CIs is
required for validation of the
models

» Computationally expensive

Economic approaches are based on the input-output economic
model proposed by Leontief [39]. Input-output inoperability
models (IIM) are utilized to investigate the impact of natural
hazards and systemic failures on various industries and economy
at a macro level [40]. [IM based model quantify interdependencies
and impact of inoperability on various ICIs in terms of financial
losses occurring owing to disruptions. Inoperability of similar
nature and of the same order may have different monetary impacts
depending on the market-dynamics.

3

Network-based approaches model each infrastructure system
as a combination of nodes and arcs. Nodes can be categorized into
four types — source, sink, transmission nodes and exchange point.
Sources are locations in a network where generation of the
commodity takes place, sinks are consumption points,
transmission nodes represent a junction point with no
consumption or generation, and exchange points are a special type
of sink where consumption of the commodity is used to facilitate
operation in some other infrastructure. Arcs represent the path of
flow between two nodes (can be pipe/compressor /transmission
line/distribution line). Ouyang (2014) regrouped network-based
approaches into topology-based methods and flow-based methods
[5]. Topological methods focus on assessing the reliability based
on connectivity and structural redundancy in the network while
flow-based methods delve deeper to consider the dynamics of the
flow within and across the networks. Analytical methods have
also been used to investigate cascading failures in ICIs [41], to
create fictitious interdependent networks [1], to model
redistribution of the load in power network and to quantify the
vulnerability of the networks [1]. Most of the analytical models
used so far have generalized the nodes and did not take the
heterogeneity of the nodes into consideration [6]. In addition,
analytical models need calibration in order to conform to real-
world networks, which yet again is highly specific to the
configuration of the networks. Simulation-based approaches have
been more accurate in modeling interdependencies as the majority
of simulation methods take into account the properties of different
nodes and utilize heterogeneity of the nodes in quantifying
system-level responses [2], [42].

Flow-based methods have been used to investigate the internal
dynamics and cascading of ICI failures [43], [44]. A common
approach in flow-based methods is to identify the exchange points
between infrastructures. Flow based model has been used by [12]
to investigate the interdependence effects in real-time in a coupled
gas network and power system. Pressure variation in gas network
owing to fluctuating intraday power demand at gas fired power
generators was minimized by the proposed real-time scheduling
of gas withdrawal[12]. Gomand et al. (2015) did a similar analysis
for interdependent gas and electricity networks using a transient
model with one hour time step [45]. Non-linear terms in
fundamental equations make the dynamic modeling of the gas
network a challenging task [46]. Most of the flow-based models
quantify the failure cascades in terms of physical
interdependencies. Since these models are derived from the basic
laws of conservations, topological information along with
boundary conditions may be sufficient to develop the models.

From the above discussion, we can say that the discussed
approaches have been useful in studies with different objectives
and scopes. While empirical methods are considered a good
choice for swift but rough prediction of the consequences of a
particular damage across the ICls, agent-based approaches are
capable of modeling multitudes of relationships among various
components. SD-based methods have worked more useful than
these two approaches in terms of predicting the dynamics of the
systems. Since flow based methods are driven by fundamental
laws of conservation, requirements of the calibration efforts are
not as significant as they are in most of the discussed approaches



although lack of real-world operational data of ICIs remains to be

Table 4. Dependencies among ICI Components [53]; The networks written in
a challenge for researchers. The strengths and weaknesses of columns are described in how they are dependent on components provided in
. L . . . rows (Column-on-Row Dependenc
these reviewed ICI modeling techniques are summarized in Table ¢ P )
2.

@]
Z, 5]
g =
III. COMPONENT-LEVEL MAPPING OF PWG g = Gas SCADA
= = Network Systems
= )
@ 2
. . . . . . «»
The purpose of this section is to provide a comprehensive outline
of how major components in Water, Power, and Gas networks Power for
interact leading to operational dependencies. Such mapping \ Power control Power for
.. . . . \ Supply for systems, switches
would facilitate the modeling of the interdependencies among \ controlling storage, and
these infrastructures. \ systems, compressors, telecom
\ pumps, and and other equipment
\\ other power- | control units
\ driven units
\
cp . \
4. Identifying the Major Components \ Transmission lines and controlling system in
\\ power network will usually not “directly”
Table 3 outlines the significant components that comprise each of \ cause failures to be cascaded into other
power, water and gas supply infrastructures. In this paper, the \ networks. No “First Order” Effect
target is directed at first order dependencies where a failure or Coz?rtgsf(‘)’;e \
malfunction in one ICI network cause a cascading malfunction in distributed |\ No “First Water for
another ICI network. gas-driven \ Order” cooling
power \ Effect facilities
generating \\
units \
No “First \ No “First No “First
Order” \ Order” Order”
Table 3. PWG Identified Components [47]-[52] Effect \\\ Effect Effect
Network Components No “F 1f’st \\ No “FII,‘,St No “FII,‘,St
Pamp Station (PS) Order’ \ Order’ Order’
,? s (T Effect \ Effect Effect
anks ( 1) No “First \\\ No “First No “First
Water Water Trc\:;ttﬁnent Plants (WTP) Order” \ Order” Order”
alves (WV) Effect \ Effect Effect
Water Mains (WM) \
Fire Hydrants (FH) _ \ Fuel for
Storage Tanks (ST) Fuel for No Flf’st \\ heat,
Transmission Line (High pressure) (TLH) generatqrs Order \ generators,
and heating Effect \ and
Compressors (C) \ faciliti
Gas Regulators (R) \ actihies
City Gate Station (CGS) \\
Distribution lines (low pressure) (DLL) \
Valves (wV) No “First No “First \ No “First
Circuit Breaker (CB) Order Order \\\ Order
Transformer (Tr) Effect Effect \ Effect
Electricity Generator (G) \\
Transmission Line (TLE) Distribution Distribution Distribution
Command and Fjontrol System (CCS) automation, | automation, automation,
SCADA System Controlling Room (CR) EMS,and | EMS,and EMS, and
Communication Systems (CS) cybersecurity | cybersecurity | cybersecurity
, Crew repair | , crew repair , Crew repair
telecom telecom telecom
B. Mapping of Interdependencies among PWG ICls
Table 4 representing the correlation between components in one a) Effects of Power Outage
infrastructure and other networks based on “First Order” effects.
In this context, first order correlation/failures are those that cause 1) Consequences in Water Distribution Networks
direct failures resulting from malfunction of one components to

another. This will lead to the deficiency in power supply to run the
pumping stations in water networks. As an example, a typical
pump station in a city takes almost 25 horsepower for each pump.
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This implies a power advocating for 18 kW is demanded for each
pump to operate. In that case, power shortage or outage will cause
pump station to run slower, which results in pumps not being able
to operate properly, thus failing to meet the water demands in the
network and causing less efficiency in water system. Water
demands not being satisfied would have further impacts
depending on the type of consumers in the area being served. For
example, loss of water would have much severe impact on a
hospital than on a movie theater in the same neighborhood.

2) Consequences in Gas Network

Gas transmission networks have a highly sophisticated
instrumentation and monitoring system which is controlled in
real-time by SCADA system [50]. Control systems and
compressors in gas network may need continuous supply of
electricity. Majority of compressors in transmission networks use
a part of the gas for compression purposes in reciprocating
compressors, there still remains the need of electricity for the
instrumentations in control systems [50].

3) Consequences in SCADA System

Shortly after the power outage, generally the first cascading
failure will appear in SCADA system where all the units including
Controlling Room and Communication Systems rely deeply on
continuous power supply. Switches and telecommunication
equipment serving the automation, emergency signaling as well
as crew repair communication will run into critical issues.
Although SCADA end points (namely known as “Remote
Terminal Units”) universally use battery backup systems to
obviate the need for reliance on power grid [54], there is still the
risk for backup failure which propagates the failure per se from
power to SCADA system.

b) Failure in Water Distribution Networks

Huge amount of water is required in power-plants for cooling
purpose [55] but since these plants withdraw water from lakes,
rivers and other huge water bodies, their reliance on typical water
distribution networks is negligible. Similarly, water is required in
processing plants of natural gas. However, our main concern in
this study falls in water distribution network which accounts for
potable water supply right after it flows out of the treatment plants
all the way down to end users. Water-demand of processing units
is out of the scope of water distribution networks. Nevertheless,
as there are distributed gas-driven power generation units in
distribution lines, though limited proportionally, water is still
needed for cooling these units at smaller scale than production
level. Also, SCADA system is another section that requires water
for preventing overheating in its units.

¢ Remote Terminal Units
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1) Consequences in SCADA System

Water circulation for cooldown purposes in SCADA
facilities and units plays an essential part in assuring that the
interdependency SCADA provides in between all other
networks is well maintained. Particularly, “thermal noise” is a
phenomenon  whereby all transmission media and
communication equipment including passive devices will
experience if cooling systems are not present [56]. The higher
the temperature of the components or the medium, the greater
the level of thermal noise, and in turn, the higher the thermal
noise is, the less efficient the transmission processes through
RTUs® and PLCs” would be [56]. Thus, air or water coolants
are required to keep the SCADA units and room allowably
cool.

¢) Failure in Gas Compressors and Transmission Lines
1) Consequences in Power Network

Since gas provides a substantial amount of energy to power
grids in terms of running the plants, disruption amid the
transmission phases in basic components like distribution-level
gas processing units or compressors would have adverse effects
on the operation of power components [57]. Through the year
2040, the U.S. electricity system will have demanded 340 GW
of new generating capacity, 63 percent of which is planned to
be supplied by natural gas plants [58]. Thus, a thorough
understanding of the gas-power interdependency at
componential level is required to optimize the production rate.
One important unit lies in the combustion section where natural
gas enters the turbine. There, cooling intake air temperatures
are required to remain steady and proper through water droplets
into the intake air, or simply thrusting the air into other cooling
systems can improve the efficiency of the plant, thanks to the
additional water use [59]. Therefore, this complex
interdependency embraces all PWG networks to make sure gas
processing units and storage tanks are well feeding energy into
the power components like, basically generators, and
transformers [58]. Hence, irregularity in generation unit
through power grid will cause damage to electric units in other
networks, like sensors and actuators as well as pumps in water
network and SCADA units [59].

2) Consequences in SCADA System

Since gas-driven SCADA units are somewhat rare, there
exists a minor interdependency between what might occur in
gas network and what will consequently result in SCADA
system. In case there is a separate in-house generator for
SCADA room, gas will play more vital a role in providing
energy to it [58].

7 Programmable Logic Controllers



d) Failure in Gas Distribution Lines and Regulators

Regulators accounts for reducing gas flow pressure to a
predetermined extent [60]. This pressure reduction is subject to
a hefty energy loss by containment through pressure regulators
[60]. Failures in distribution lines and regulators affect the
downstream end consumers which is mainly used for heating
and cooking purposes. Majority of the gas-fired power plants
have their own dedicated regulators and abstraction lines which
withdraw gas directly from high pressure transmission lines.
Therefore, first order effect has not been considered in this
study.

In water distribution network majority of pumping units run
on electricity. Diesel driven pumps have been most preferred
back-up units in pumping stations and do not use gas for

pumping purposes.
e) Failure in SCADA Components

Inasmuch as SCADA is the cornerstone of interdependent
networks, any associated failure in its components will sooner or
later causes other networks to fail one after another. In case units
and slots at communication system in a SCADA room
malfunction, the interoperability of PWG networks will be called
into question. If data is not consecutively transmitted among
networks via SCADA system, real-time applicability of PWG
networks will be disrupted. Also, SCADA is well associated with
human factors of interdependent systems; therefore, emergency
response or operator/crew repair correspondence will be
defective, so SCADA node failures make it impossible for human
operators and centralized automated control systems to monitor
and control a particular power node. SCADA node failures bring
about the disintegration of communications network components;
as a result, crew members/operators will be unable to compile data
from particular components of the power network [54].

Following this further, other data-based components and
parameters in PWG networks such as water pump pressure, gas
pressure and temperature, and/or power ampere and voltage will
be rendered useless or unreliable and this will make problematic
the parametric predictions and design as well as cyber security or
design for future reliability and resilience of all PWG networks
[48]. In this case, Rafael Vida et al. (2014) presented a contagion
matrix where they proved malware and virus spreading across all
PWG networks would cause cascading defection in data
acquisition and management throughout interdependent networks
[61].

IV. TEMPORAL ASPECTS OF INTERDEPENDENCIES

In this section, literature review on temporal aspects of
interdependencies is presented and challenges in this regard will
be put forth.

One of the challenging issues that networks need to be called
into discussion is real-time or near real-time operations of PWG
grids. Cheng et al. (2014) presented their model “individually” on
water distribution network, attempting to measure pressure head
and flow rate at 15-minute time intervals [62]. Similarly, Quevedo
et al. (2010) put forward their operational real-time parameters,
mostly flow rate and head, for every 10 minutes of demand
patterns by relying on over 200 control points, sectors, and/or
sensors [63]. Identically, in power smart grid, Hu et al. (2018)
practiced the real-time aspects of a mutual interaction between
utility company and multiple users to monitor daily power usage
by each end user at an hourly interval [64]. Also, Mohagheghi et
al. (2018) proposed an algorithm whereby a real-time mid-voltage
power distribution network is optimized through an ad-hoc case
study [65]. Liu et al. (2017) suggested an approach to a distributed
real-time optimal power flow control that is both meant to refine
the system frequency and keep the generator power as close to the
optimal operational parameters as possible in case of any
perturbations [66]. However, very little research has been done to
take into account the temporal aspects of PWG networks and their
interdependencies altogether. First, two aspects of temporality
should be regarded for yielding results: (i) operational parameters
including power usage in power grid, pressure head and flow rate
in water grid as well as pressure and temperature parameters in
gas network, so as to clarify how fluctuations in an operational
parameter in one infrastructure cascades into the disturbance in
those in another infrastructure at a specific interval of time (e.g. a
drop in water pressure head may take up to hours to cascade into
power generators and cause drop in produced voltage) (ii)
physical parameters and proximity collocation of components in
networks including the interactions between interdependent
components across the ICIs. Notwithstanding, the number of
parameters regarded in different research attempts [7]-[10], [62],
[63], [67]-[70] needs to significantly increase in order to reach
out to an extremely accurate interdependent real-time model,
although the model analysis will be computationally expensive.

More specifically, according to Table 4, if a cascading failure
is to break out because of power shortage/outage and break into
pump station component in water network, the two
abovementioned aspects (operational and physical) should be
parameterized. Hence, if “a” is assumed to be the power needed
to run a pump (e.g. 25 horsepower/pump) and “b” is the amount
of water needed for cooldown process of a power plant (20-60
gallons/every kilowatt hour) reciprocally and interdependently, a
newfangled model is demanded to both assume (i) the formulation
of “a” and “b” as the operational aspects of the two networks and
their affiliated mutual interactions as well as the physical
consequence these two components will have on each other;
including but not limited to the roughness and reliability of
connecting pipe in between the two components and/or the pump
efficiency rate due to the failure from power generator that might
cause backward flow or water hammer within pump station



connections. After identifying the physical and operational
interactions and parameters that a cascading failure might cause
among PWG networks, time steps for monitoring these
interactions in real-time should be considered. The perfect real-
time model is to reduce the time of monitoring process of a failure
from point A in one infrastructure all the way to point B from
minutes/hours [63], [64] to seconds. All in all, the modeling
challenges in this case turn out to be the integration of PWG
network simulation models in a time-synchronized manner. Also,
common optimization models for addressing parameters like
reliability and costs or other control objectives should be bound
in a real-time manner with the simulation model in a way that they
work for very large networks at substantially short expansions of
time. For now, individual models in the literature regarding
updating simulation dynamics are taking on time steps of roughly
as low as 5 to 15 minutes [6], [7], [62], [71], but this needs to
decrease to less than a minute for multiple iterations for the
purpose of high accuracy. What’s more, the uncertainties
associated with the interdependent networks need to be studied
and partly assumed and eventually trained based on real-time
monitoring data in order to come up with accurate models [72].
For example, pipe roughness, diameter changes, pump efficiency
are of those dynamic uncertain parameters that make the modeling
process more challenging and uncertain. It is proposed that such
uncertainties can be addressed by leveraging real-world
monitoring data and training computational intelligence
algorithms.

V. CONCLUSION AND FUTURE WORK

This paper sheds light on different aspects of interdependent
infrastructures. First, a comprehensive literature review of the
state-of-the-art knowledge on what has been done thus far
regarding the ICI modeling of PWG networks was presented
along with the strengths and weaknesses of the modeling
techniques. Subsequently, a mapping of interdependencies among
PWG systems is presented. Lastly, challenges with modeling the
temporal aspects of cascading failures in PWG networks are
brought up and suggestions are made to develop suitable
modeling techniques. Future work should be geared toward the
substantial reduction in the duration of time steps to support real-
time monitoring as well as identifying as many interdependently
operational and physical parameters among PWG networks as
possible.
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