2019 IEEE Conference on Communications and Network Security (CNS)

Efficient and Accountable Oblivious Cloud Storage
with Three Servers

Qiumao Ma, Wensheng Zhang
Iowa State University, Ames, IA, USA
{gqmma,wzhang} @iastate.edu

Abstract—As the adoption of cloud storage service has been
pervasive, more and more attentions have been paid to the
related security and privacy risks, among which, data access
pattern privacy is an important aspect. Lots of solutions have
been proposed, but most are infeasible due to high overheads
in communication and storage. In this paper, we propose a new
solution to address the limitations by leveraging the moderate
storage capacity in the increasingly popular cloud storage gate-
ways and the existence of multiple competing and independent
cloud storage servers. Extensive analysis and evaluation have
shown that, our proposed system can simultaneously attain the
features of provable protection of data access pattern, low data
query delay, low server storage overhead, low communication
costs, and accountability.

I. INTRODUCTION

For the attractive features of self-provisioning, pay-as-you-
go, economic efficiency and high availability, cloud storage
model has been hailed by organizational and individual clients.
In the past years, the model has kept evolving, and the hybrid
variant based on cloud storage gateway has increasing popu-
larity [1]. By the hybrid model, a client runs an on-premise
gateway with moderate storage resources. For scalability and
cost-efficiency, the gateway outsources majority data to one
or multiple off-premise cloud storage servers; meanwhile, it
stores the meta-data and the frequently or recently-accessed
data, to manage data as well as reduce the frequency and
latency in accessing data directly from the remote server.

In spite of the pervasive usage of cloud storage, the clients
have also raised various privacy concerns, among which the
data access pattern privacy is gaining more awareness. Data
encryption has been common for data privacy protection, but
it cannot protect data access patterns for cloud storage clients.
A curious owner or employee of a cloud storage service, or an
intruder invading the storage server, can observe a client’s data
access pattern. Based on the observed pattern and the client’s
activities that could be obtained through some side channels,
the attacker could develop a model relating them. Later on,
the attacker may use the model and newly observed access
patterns to infer or predict the client’s activities. Therefore,
exposed data access pattern can potentially reveal some private
information about cloud storage clients. Especially, military,
homeland security and public safety agencies should protect
these private information from the enemies; businesses should
protect the information from their rivals and competitors.

In the past decades, the problem of protecting data access
pattern has attracted a lot of interest from the researchers, but
the advancements are mainly with the theoretical aspect. It is

978-1-5386-7117-7/19/$31.00 ©2019 IEEE

37

still an un-attained goal to build an oblivious cloud storage
system that can protect the data access pattern but meanwhile
can deliver a performance similar to an existing non-oblivious
system. Specifically, it is desirable to have a storage system
with the following features: (i) provable security in access
pattern protection; (ii) low data query delay experienced by
the client; (iii) low communication costs incurred; and (iv)
low storage costs incurred.

Related Works. The oblivious RAM (ORAM) model [2],
originally proposed for software protection, is a well-known
provable approach to protect the client’s access pattern. Fol-
lowing this model, a large variety of schemes [2]-[13] have
been developed, with the goal to implement the ORAM model
more efficiently and practically. We here briefly review a few
that are most related or newest schemes.

Communication efficiency has been one major optimization
objective in the research. As one of the most communication-
efficient ORAM schemes, Partition ORAM [3] organizes the
server storage as /N partitions (N is the number of exported
data blocks), and each partition works as an ORAM module.
The client storage is utilized to contain a location map for
blocks, a buffer for storing and shuffling data blocks of an
ORAM partition, and v/N stash slots. Based on this storage
arrangement, together with optimizations in query and shuf-
fling algorithm, the scheme incurs a communication cost of
about 1.25log IV blocks per query. Burst ORAM [5] improves
upon Partition ORAM [3] by introducing a new XOR tech-
nique to reduce the online bandwidth cost to a constant, and
priority scheduling algorithms to deal with request bursts. Ring
ORAM [8] further improves the communication efficiency by
combining the best qualities from the Partition ORAM [3]
and Path ORAM [4], an efficient tree-based ORAM. CURI-
OUS [14] presents a partition-based ORAM framework and
each partition is a small ORAM and can be organized as
Path ORAM [4]. It doubles the overall communication cost of
Partition ORAM, but reduces the response time. Although the
above efforts have advanced the communication efficiency, es-
pecially in the regard of client-server communication latency,
the client-server communication cost is still higher than a non-
oblivious storage system by a factor of O(log IV). Besides, the
server storage costs also remain high; to export [V data blocks,
the server needs to store 3N or even more data blocks, most
of which are dummy.

To address the problem with client-server communication,
Hoang et al. [11] propose S?°ORAM based on the utiliza-
tion of multiple (at least three) non-colluding servers. This

2019 IEEE Conference on Communications and Network Security (CNS)

scheme incurs O(1) bandwidth consumption for client-server
communication, which is similar to the cost incurred by a non-
oblivious storage system; it still requires O(log N') bandwidth
consumption for communication between the servers, but
the inter-server communication occurs behind the scene and
does not consume client-server bandwidth. However, there are
several limitations with this scheme. First, the scheme requires
multiple servers each storing a copy of the outsourced data
blocks, which significantly increases the server storage cost to
12N blocks for every N real data blocks exported. Second,
the scheme assumes the servers to be semi-honest, which may
not be realistic in practice; a dishonest server could deviate
from the designated protocol, and if not detected immediately,
could lead to big overhead to recover the system.

Our Contributions. To address the afore-discussed limita-
tions of the existing works, we propose a new oblivious cloud
storage system, which is also an implementation of the ORAM
model. Similar to SSORAM, our proposed system also recruits
three non-colluding cloud servers to act as the oblivious stor-
age. But, through leveraging the moderate storage space at the
client and optimizing the storage arrangement at the servers,
we significantly reduce the server storage overhead by storing
only around 0.3N extra dummy blocks compared to 11V
dummy blocks required by SSORAM. Moreover, we design
and employ several lightweight accountability mechanisms for
the servers, such that each server can detect the misbehavior
of other servers that interact with it. Compared to the state
of the art, our proposed system can simultaneously attain the
following features:

« provable protection of clients’ access pattern privacy;
low server storage overhead, which is around 0.3N
blocks for every IV real data blocks exported;
low data query delay, only slightly longer than a commu-
nication round trip time between the client and server;
accountability with multiple servers, which removes the
less-realistic semi-honest assumption in a multi-server
oblivious storage system;
lower communication costs than S?ORAM, the most
related state-of-the-art scheme.

The above features are achieved by our novel designs of stor-
age arrangement, data query algorithm and eviction algorithm.
Note that, our system has made full use of the available
moderate level of client-side storage, but the required storage
capacity is still only as small as around 0.1% of the cloud
server’s storage capacity.

Organization. In the rest of the paper, we first define the
system model and security in Section II, which is followed
by the detailed design in terms of storage organization, query
algorithm, eviction algorithm and accountability enhancements
in Section III- VI respectively. Section VII presents the security
analysis. Performance evaluation and comparisons are reported
in Section VIII. Finally, section IV concludes the paper.

II. PRELIMINARIES

We consider a distributed system that consists of a client
and three cloud servers. The client has an on-premise cloud

38

storage gateway with a moderate storage capacity, though
much smaller than the capacity of the cloud storage servers.
The cloud servers are assumed to be non-colluding. However,
different from the often-taken assumption that the servers are
semi-honest, we assume the servers could be malicious and
some accountability mechanisms will be deployed to each
server to detect the misbehavior of other servers. The client
is assumed to be honest; note that, this assumption could be
removed by, for example, requiring the client to electronically
sign each message and data block that it sends.

Assume the client outsources /N data blocks each with the
same size of z bits to the cloud storage server, and then needs
to access the outsourced data every now and then.

Each data access intended by the client, which should
be kept private, is of two types: read a data block D of
unique ID ¢ from the storage, denoted as (read, i, D); write
a data block D of unique ID ¢ to the storage, denoted as
(write,i, D). To hide a private data access, the client and
servers need to access multiple locations of the server-side
storage and exchange some messages with each other. Each
location access or message exchange, which can be observed
by the servers, is one of the following types: retrieve (i.e.,
read) a data block D from location [at the storage, denoted
as (read,l, D); upload (i.e., write) a data block D to location [
at the storage, denoted as (write,, D); send a message from
one party to another (note: a party could be the client or a
server), denoted as (send, s,d) where s and d are the source
and destinations.

Extending the security definition of ORAM in prior
works [2]-[4], we define the security of our proposed oblivious
storage system as follows.

Definition Let A be a security parameter, and & (
(op1,i1, D1), (opa,iz, Da), --+) denote a private sequence
of the client’s data accesses, where each op is either a read
or write. Let A(Z) = ((op,p1,1,P1,2), (0P5,P2,1,P2,2)s * -
) denote the sequence of the location accesses or message
exchanges (observed by the server) in order to accomplish the
data access sequence Z. An oblivious storage system is secure
if (i) for any two equal-length private sequences & and ¥ of
data accesses, their corresponding location access and mes-
sage exchange sequences A(Z) and A(Y) are computationally
indistinguishable; and (ii) the system fails to operate with a
probability of O(27*).

III. SYSTEM ARCHITECTURE AND INITIALIZATION

As shown in Fig. 1, our proposed system is composed of
one client and three servers, denoted as Sy, S; and S,. Only
one server (i.e., Sg) needs to permanently store the data blocks
exported by the client. The other two servers only store some
meta-data and temporarily buffer some data blocks, to facilitate
data query and eviction processes as well as to maintain system
accountability, which are detailed in Sections IV, V and VL.
The client also stores meta-data and a small subset of data
blocks. In the following, we elaborate the storage organization
at server Sy and the client.

2019 IEEE Conference on Communications and Network Security (CNS)

Cmmm
ServerS; —

Server Sy Server S,
' (0.0)
Layero “hOTleatnode Buffer for Buffer for
} | data eviction data eviction
¥ ‘/q X <
Layer1 (1,0 [101} - 195; 17 /
3 | Query Process \ /
Layer2 Q . \ v \ /
2,0) 2,7) (2,56 2,63) \ .
oo @n S AN Client (Cloud storage gateway)
1@ @ h AN - Index blocks | | Frequently
ayer L-
w10 11y ©17) 122120y Index table | | for every | | and recently
Each leaf node stosres up Zy b\-(ll-cks storage tree blocks
torage Tree

—-— = Control for query — —» Control for eviction

—— Data for query — Data for eviction

Figure 1. Proposed System Architecture.

A. Storage Organization at Server S

Let positive integers m (a power of 2) and ¢, and positives
fractions « and /3 be system parameters. Let
(=D gy, M

The data blocks are stored into an m-ary storage tree, in
which each non-leaf node can have up to m child nodes.
When constructing the storage tree, we make the tree to be
balanced and the number of data blocks at each leaf node to
vary between (1 + f3) - £(m,q) and 2(1 + B) - £(m, q), for
certain security purposes explained later in Section VIL

Specifically, the tree is constructed as follows:

o Let L' = |log,, J and Z" = 2. Obviously, Z' >
§(m, q).
If Z/ < 2¢(m,q), the storage tree is organized as a
complete m-ary tree with height L = L' + 1 where the
capacity of each leaf node is Zy = [(14) - Z'] blocks.
Otherwise (i.e., Z' > 2£(m,q)), the storage tree is
organized as a tree of height L = L’ + 2, and the root
has Lﬂ%/q)J child nodes while each child node is a
root of a complete m-ary tree with L’ + 1 layers and
Zo=[1+p0)- Lgi,/} blocks at each leaf node.
Each non-leaf node has a capacity of Z1 = [(1 + «) -
&(m, q)] blocks.
Each node N ; is identified by a unique tuple ([,%), where
1€{0,---,L—1} is the ID of the layer that the node resides
(note: the root node is at layer 0 while the leaf nodes are at
layer L — 1), and ¢ > 0 is the ID of the node on layer [
that equals to the offset of the node on layer / (from O at the
leftmost towards right). Note that Fig. 1 shows a storage tree
when m = 8.

§(m,q) = max

N
&(m,q)

B. Storage Organization at the Client

The client maintains an index table for all of the N real data
blocks and an index block for each node on the storage tree.
The index table has N entries and each entry i € {0,--- , N —
1} has the following fields:

o path ID of block ¢, i.e., the ID of the leaf node on the
path that block 1 is assigned to;

39

o secret key k; which, as detailed in Section III-C, randomly
selected by the client to encrypt the block based on XOR
operation;

three message authentication codes (MACs) of the block,
of which the computation and usage are explained in
detail in Section VI.

Note that, following most of the tree-based ORAM construc-
tions [3], [4], [6], [7], [9], our proposed scheme also enforces
the policy that, a block is assigned to a path and the block
must be stored on the path.

For each node on the tree, the index block has one entry
(id, ah) for each block it stores, where id is the ID of the
block, no matter whether the block is real or dummy, and ah €
{0,1,2} indicates the access history of the block since the
system initialization or the most recent data eviction process
involving the node, whichever is more recent: (i) ah = 0 if
the block has not been accessed; (ii) ah = 1 if the block has
been accessed as a query target; and (iii) ah = 2 if the block
has been accessed but never as a query target.

In addition, the client maintains a local buffer that stores
the most recently accessed data blocks. The capacity of the
buffer is at least ¢ blocks.

C. System Initialization

The client picks a pseudo random number generator
PRG(k), which takes a secret seed k of A\ bits and outputs
a pseudo-random sequence of 3\ bits. The client also picks
and shares with the servers another pseudo random number
generator function, denoted as PRG1(k), which takes a secret
seed k£ and outputs a pseudo-random sequence of bytes with
the same length as a data block.

Before each real block (denoted as D; which is a sequence
of bits) of ID 4 is exported to server Sy, the client encrypts
the block as follows.

1) It randomly picks a secret seed k;, and computes
PRGy(k;) whose output is denoted as k;olki 1|ki 2
where each k; ; has A bits and | represents concatenation.

2) It computes PRGl(ki’()), PRGl(k’i,l) and PRGl(kfi)Q)
to generate three pseudo-random sequences of bytes,
denoted as ﬁi,o, ﬁi,l and R}g, each of the same length
as a data block.

3) It performs bit-wise XOR operations on each group of
Sfour bits with the same offset of the four bit-sequences
5% éi)o, ﬁi71 and ﬁi,g, to encrypt 5, to

52 = 5z‘ 2 ﬁi,o 3] §¢,1 2 ﬁi,z-

IV. DATA QUERY ALGORITHM

2)

Assume the client wishes to query data block 13t, where
t denotes the block ID, and the block is not in its local
buffer. It looks up its index table to find path p; that contains
D,, and looks up the index blocks of the path to locate the
node containing 5t. Then, it launches a query process in two
phases: selecting some data blocks to access from Sy, based
on the index table and index blocks that it stores, in order to
hide the query target; interacting with the servers to retrieve
query target D.

2019 IEEE Conference on Communications and Network Security (CNS)

A. Phase I: Selecting Data Blocks to Access

For each node N/ on path p;, where i € {0,--- ,L — 1}
represents the layer ID of the node, let A; o, A; 1 and A; 5
denote the block sets with ah being 0, 1 and 2, and §; o, ;1
and J; o denote the sizes of these sets, respectively. The client
selects data blocks from each node A to download, according
to the rules presented in Algorithm 1, with the dual goals of
hiding data access pattern and communication efficiency.

Algorithm 1 Rules for Selecting Blocks from N/ to Access
(Output: A - a set of blocks selected to access)

A0

2. if V] contains query target D, then

3 add D to A

4 VYD €A, add D to A with probability -
5: if ﬁt belongs to A; o then
6

VD € A; 5, add D to A with probability 22
i,0
7: else /fi.e., D, belongs to A; o
8: randomly picks one D from A; ¢; adds it to A
9: else

10: randomly picks one D from A;o; adds it to A
11: VD € A;1 UA,; 2, add D to A with probability ﬁ

First, the algorithm hides data access pattern by making
each block in N/ to be accessed with the same probability
independent of where the query target resides, as stated in the
following Lemma 1 with proof.

Lemma 1: During a query process with query path p;, each
block D in node N! on p; is selected to access with the
same probability of ﬁ, which is obviously independent of
the location of the query target.

Proof: _?Yhen the query target does not belong to A/,

every block D is accessed with probability ﬁ based on lines

10-11 of Algorithm 1. Otherwise, each block D must be in

Aj o, Ajqor A; 5. So we consider the three cases respectively.

e CaseI: D € A; o. Further there are two subcases: A; g
contains the query target or not.

- Subcase I-a: A; o contains query target 5t. Only ﬁt
is accessed from A, (. Further due to the random
distribution of blocks in A, o, every D has the same
probability of ﬁ to be accessed as query target.

— Subcase I-b: A\; o contains query target ﬁt. Based on
line 8 of the algorithm, every D has the probability
of ﬁ to be accessed.

e Case II: D € A; ;. Every D has the probability of T
to be accessed, based on line 4 of the algorithm. '
e Case Ill: D € A, ». Further there are two subcases:

— Subcase IllI-a: A; o contains query target ﬁt, which

occurs with probability + fﬁ(’; ~ in case IIL In this
subcase, every D is accessed with probability 32’2.
i,0

— Subcase 11I-b: A; o contains query target Dy, which

occurs with probability + fﬁ; ~ in case IIL In this

subcase, D is accessed as the query target with
probability 3.
To summarize, D is accessed with the following proba-
bility in Case III:
) di2
di0 + 0i2 620

51"2 1

Si0+0i2 iz Oio
Hence, the Lemma is proved. |

Second, in terms of communication efficiency, the query
algorithm requires only 1+ % blocks accessed from each
node N . Further, as we study later in Section VII, % <
1 with an overwhelming probability of 1 — 2~*. That is, no
more than 2 blocks are accessed from each node N/ on the
query path with a probability at least 1 — 2.

1
4,0.

B. Phase II: Retrieving Query Target
The client sends a request to Sy, which contains:

o list B = (by,--- ,b,) of x block indices where, in each
b; = (n4,0;), n; is the ID of a block on query path and
o0; 1s the offset of a block selected to access in Phase I;

« random permutation vector V = (v, --- ,v,) of integers
{1,---,x}, which directs Sy to put every block b; to
offset v; after the permutation.

It also sends a request to S7, which only contains one number
in {1,---,x}.

In response to the client’s request, Sy makes a copy of the
blocks indicated by B, permutes the blocks as directed by Vv,
and then forwards the resulting block sequence to S;.

Upon receiving the sequence, S; retains only the query
target block, whose offset on the sequence is the index
contained in the client’s request, and immediately returns the
block to the client.

Having received the query target, the client updates its local
meta-data to make the copy of the query target left on the
storage tree as a dummy block. Then, it can start reading or
writing to the query target locally.

V. DATA EVICTION ALGORITHM

After every ¢ queries, the client has retained at its buffer ¢
blocks that are the targets of the most recent ¢ queries. We call
these blocks the current evicting blocks. The client randomly
re-assigns a path for each evicting block, sends all these blocks
in an ordered list to server S;, and then launches a data
eviction process to evict them into the storage tree at server
So. Note that, as in existing ORAM constructions such as [3],
the eviction process can be carried out concurrently with data
query processes through some de-amortization mechanism.
Due to page limit, we skip the de-amortization detail and focus
on the main idea.

Every eviction process involves only one root-to-leaf path,
which we call eviction path, on the storage tree at server Sy.
The eviction path is selected in the reverse-lexicographic order,
as illustrated by Fig. 2.

An eviction process runs iteratively, one iteration for each
node on the eviction path from the root to the leaf. We

40

2019 IEEE Conference on Communications and Network Security (CNS)

Figure 2. Reverse-lexicographic Order: Every eviction process involves
one root-to-leaf eviction path selected in the reverse-lexicographic order.

introduce variable N to denote the node currently involved
in the eviction. Hence, A is initialized to Ny (i.e., the
root node). Also, when an eviction iteration begins, Sy has
an ordered list (denoted as Eo) containing Zy or Z; blocks
stored at node N, depending on whether N is leaf or not;
Si has an ordered list (denoted as £1) of ¢ blocks; S has no
data blocks. Then, the iteration, which involves the client and
all the servers, runs as follows.
1) For each block 57 S Eo U 51, where ¢ represents the
ID of the block, the client randomly picks a new key
Kk, and then generates a new set of keys k; 00 K, 1 and
k:zy2 where PRGo(k}) = ki olki 1|k o- Also from the
current version of key k; recorded in the index table,
the client derives the current set of keys k; o, k; 1 and
k7;72 where PRGo(kl) = ki70‘ki,1|ki72.
2) The client randomly constructs a permutation vector g
for |EO| elements (i.e., a random permutation of numbers
.|Lo] — 1) where |£y| denotes the length of L,
and sends the vector to Sy.
3) Upon receiving Ty, S permutes ZO to Eg = m)(EO),
and sends EO to 81
4) Letting Ly = (Dy,,---,Di,) where z = |L)| +
|£1 |, the client randomly constructs a permutation vector
m1 for x elements and the following ordered list (denoted
as ﬁl):

Ri = ((kig0, Ky 1), (kiy_y0. K 1)) (3)

Then, the client sends 7; and 7€1 to Si.
5) Upon receiving E’ from Sy as well as _m and R, from
the client, S; first constructs E = [\El, which we
also denote as (D, - ,szm,1>- Next, it re-encrypts
each block 13” (Where j=20,--- ;2 —1), based on key
pair (k;; o, kgwl) in Ry, through the following steps:
o It computes pseudo random blocks ﬁz'j,o =
PRGl(k?, 0) and R 1= PRGl(k: 1)
« It updates D to D’ =D, @R, 0 @Rl 1> Where
@ is the bit- w1se XOR between two blocks (i.e., bit
sequences).
Then, list (ﬁgo, e 7Dﬂgmil) is permuted according to
71, and the resulting list (denoted as Eg) is sent to server
6) Letting (i(,- - ,i,,_,) be the ordered list of IDs of the
blocks in 52, the client sends to Sy the following list of

41

7)

8)

9)

key pairs
R? = <(ki6,17 k;&g)a T (ki;_l,la kz{;7172)>' (4)

The client also constructs a permutation mo for x ele-
ments, and sends 7y to Ss.

Upon receiving m and R, from the client, as well as
Ly = <5i6"" ,D_'Z-(kl) from Si, server Sy first re-
encrypts each block in L, based on the key pairs in
R, and then permutes the re-encrypted list according
to mo, as server S; does. The resulting list (denoted as
ﬁ’ is sent to server Sp.

Lettmg ¢y, ,i’_1) be the ordered list of IDs of the
blocks in £ , the client sends to Sy the following list of
key pairs

ﬁ(} - <(k 1" Q,k//) 7(kigf112’k21_1’0)>' (5)

Besides, the client further constructs and sends to Sy an
ordered list Z with ¢ elements, which is a sub-stream
of (0,---,z — 1). The construction should meet the
following requirements:

o Case I: N is a_non- leaf node. For each j €
{0,---,x—1},if D, ;v is a real block and it cannot be
evicted to the next ev1ct1ng node (i.e., the path that
Dl// is assigned to does not pass the next evicting
noae), then j must not be in Z.

o Case II: N is a leaf node. T should contain only
the IDs for dummy blocks.

Upon receiving £/, from So as well as Ro and T from
the client, server Sy re-encrypts each block in £} based
on the key pairs in ﬁo, as S; and Sy do. Then, from
the resulting list of blocks, Sy removes the list of blocks
with offsets specified in Z; these removed blocks are sent
to server S7 and become the new version of El if M is
a non-leaf node, or discarded if A/ is a leaf node. All
blocks written back to N are now with ah = 0.

Fig. 3 illustrates how the client and the servers cooperate

during the eviction process, in a high level.

@ store Zz /i(zz)to NP}

@ Zz = 7, Re-encrypt (L, | Zl ,k])

Figure 3. A High-level Illustration of Eviction Process.

2019 IEEE Conference on Communications and Network Security (CNS)

VI. ACCOUNTABILITY ENHANCEMENTS

In this section, we propose several accountability enhance-
ments to the above data query and eviction algorithms, so that
if a server maliciously changes a block, another server is able
to detect. The enhancements affect the storage organization,
system initialization, data query algorithm and data eviction
algorithm, in the following ways.

A. Enhancements to Storage and System Initialization

When the system is initialized, for each server S; where
i € {0,1,2}, the client randomly constructs A blocks each
with z bits, denoted as Afw = (@i 0, +Qij.—1) for j €
{0,---,A—1}, where each a; ; , € {0,1} fory € {0,--- ,z—
1}. Then, the client sends each /TZ j to server S;, and the block
should be kept secret only between server S; and the client.

For each exported data block D, letting (dg,- - ,d._1)
denote its plain text, the client computes 3 message authenti-
cation codes (MACs) as follows.

o First, the client computes the following 3\ message
authentication bits (MABs) for D:

MABZ’J(ﬁ) = EByG{O,--- 7z71}dy . am-,y, (6)

where ¢ € {0,1,2} and j € {0,--- ,A —1}.
o Based on the MABs, the client computes the following 3
MAGC:s for D:

MAC;(D) = MAB;o|---IMAB; »_1, (7

where 7 € {0,1,2} and | denotes concatenation.

Finally, the client stores M ACy(D), MAC(D) and
M AC5(D) to the entry of D in the index table.

B. Enhancement to Data Query Algorithm

In the data query algorithm, we introduce an accountability
enhancement to allow S to check if Sy has sent to it a correct
sequence L. The detail is as follows.

During the query process, the client completely knows
which blocks should be in £. Let Z = (i0,41,---) denote
the IDs of the blocks in the sequence. For each block with ID
iy € f the client computes an MAC of the block that can be
checked by the &; as follows:

« From the index table, it retrieves MAC,(D;,) (ie., the
MAC computed based on the block’s plain text and the
secret block ffl known by &7) and the current version of
encryption key k;_ for the block.

o It computes the two pseudo-random blocks that have been
used to encrypt the block, i.e., R}mO = PRG:(ki,),
Eim,l = PRGl(k¢m71), and Eim72 = PRGl(leVQ) Note
that, the x-th block received by S; should be equal to
5¢I D 132%0 D }?%1 D }?img if it is correct.

o It computes MAC)(D;,) as

MAC1 (D,)®MAC: (R, 0)®MAC: (Ri, 1)®MAC: (Ri, 2), (8)
which should be equal to

MAC, (ﬁzz @ ﬁiz,o O R, 1o ﬁzzz) ©))

(2

according to the definition of M AC, ().
Then, M AC)(D;,) is sent to S; for checking.

Upon receiving £ from So and the ordered list of MACs
from the client, S; applies M AC (-) to compute the MAC for
each block in £, and compares the resulting MAC with the
MAC sent from the client. If a mismatch is found, Sy will be
identified to have modified some block.

C. Enhancements to Data Eviction Algorithm

The accountability enhancements to data eviction algorithm
are similar to that applied for data query algorithm. That is,
whenever a server S; (i € {0,1,2}) receives a list of blocks
from another server, S; needs to: (1) receive from the client an
M AC; for each block on the list; (2) re-computes the M AC;
for each block on the list; (3) find out if the above values
match. We skip the detail due to the page limit.

VII. SECURITY ANALYSIS

According to the definition of security in Section II, we
first study the security of the proposed system in terms of
obliviousness and failure probability. Then, we study the
accountability of the system.

A. Obliviousness Analysis

In this subsection, we show the obliviousness of the query
and eviction processes; i.e., these processes are random and
independent of the client’s data access pattern. First of all, it
is obvious that the interactions between servers and the client
follow the same pattern, independent of the client’s access
pattern. Hence, we focus to analyze the obliviousness of the
processes inside server Sp.

1) Obliviousness in Query Path Selection: When the system
is initialized, the path assigned to each block is selected ran-
domly and independently of each other. After a block has been
queried, its path is re-assigned randomly and independently of
the client’s data access pattern. Due to the randomness in path
assignment, the query path for each query process, which is
determined by the path assigned to the query target block, is
random and independent of the client’s access pattern.

2) Obliviousness in Block Access from Query Path: Ac-
cording to the data query algorithm, the following block access
pattern has been enforced: from each node on the query path,
the client must select one block that has not been accessed;
meanwhile, every block that has already been accessed has the
same probability to be accessed again according to Lemma 1.

3) Obliviousness in eviction process: The eviction process
is random and independent of the client’s data access pattern,
due to the following reasons: (i) Each eviction process involves
only one root-to-leaf path (called eviction path), and the order
in which the paths are selected for as eviction paths is fixed and
independent of data access pattern. (ii)During each eviction
process, the processing for each node on the selected eviction
path follows a fixed pattern which is independent of data
access pattern. Specifically, all the data blocks on the node
are re-encrypted and re-permuted by all the servers; then, the
same number of blocks are stored back to the node.

42

2019 IEEE Conference on Communications and Network Security (CNS)

B. Failure Analysis

In this subsection, we study the probabilities for a query
process and an eviction process to fail.

1) Failure Probability for A Query Process: According to
Algorithm 1, a query process fails only when the probability
5722 used in selecting a block (in Line 6) becomes greater
than 1. Also, as discussed in Section IV, we aim to make

L‘S” < 1 (which obviously makes ?22 < 1) such that on

average no more than 2 blocks are accessed from each layer
of the storage tree during each query process. Hence, we here
study the probability for %.2 > 1, which is no less than
the probability for a query process to fail. Our result is stated
in the following Lemma 2.

Lemma 2: Aslongasg>25)\andoz>025 A B>0.25
when m = 2,4, Pr| ”+ L2 < 1] > 1-27%, ie., any query
process fails with a probablhty less than 2~ ’\.

Proof: Consider an arbitrary node N; on a m-ary storage
tree, and let random variable X denote the times that N; has
been selected to be on a query path during two consecutive
evictions involving the node. Obviously, X > ;1 + ;2.

When m = 2,4, according to the storage organization, the
size of each node N/ on the storage tree is at least 2¢-min(1+
a,1+ B8) > 2.5¢q; ie., d;i 0+ 6;,1 + d;2 > 2.5¢. Since an
eviction process is launched every ¢ queries, the mean of X
is q. Further according to the multiplicative Chernoff bound,

0.25

—2x
- (1_25125 2 :

Pr(X <1.25¢ > 1) >1— (10)

Hence,
Pr(di1 + 02 < i,0) > Prdin + 82 < 1.25¢] > 1277, (11)

When m > 8, the size of each node on the storage tree is
at least 1 . ¢ > 3.5¢; i.e., 6,0 + 0;,1 + ;2 > 2.5¢. Due to
Equation (10),

Pridii+0ia < 8i0] > Prdin + 60 < 1.25¢] >1—27*. (12)

|

2) Failure Probability for An Eviction Process: An eviction
process fails iff the following scenarios occur in Step 8) of the
eviction algorithm. (i) Failure Scenario I: The current evicting
node (i.e., J\fe’) is a non-leaf node, and so ¢ out of the x blocks
in £} need to be picked to send from Sy to S;. According to
Case-I of the requirement, the ¢ blocks should not contain any
real block that cannot be evicted to the next evicting node,
but failure will occur if there are more than x — ¢ real blocks
that cannot be evicted to the next evicting node. (ii) Failure
Scenario II: The current evicting node N, 7 is a leaf node, and
so ¢ dummy blocks out of the x blocks in £} need to be
discarded. Failure will occur if there are less than ¢ dummy
blocks (i.e., more than x — ¢ real blocks) in L}.

The results of our analysis are summarized as the following
Lemmas 3 and 4. The proofs, which have to be skipped due
to space limit, can be developed based on the analysis of
the eviction process and the application of the multiplicative
Chernoff bound.

43

Lemma 3: With ¢ > 25\ and the following combinations
of system parameters, i.e., (m = 2, > 0.25), (m =4, >
0.25), (m = 8,a > 0.34) and (m = 16, > 0.34), the
Failure Scenario I occurs with a probability of O(277).

Lemma 4: With ¢ > 25\ and the following combinations
of system parameters, i.e., (m = 2,8 > 0.25), (m =4, >
0.25), (m = 8,4 > 0.13) and (m = 16, 8 > 0.09), the Failure
Scenario IT occurs with a probability of O(27?).

Based on the above analysis on obliviousness and failure
probablities, we get the following theorem.

Theorem 1: The proposed system is secure under the secu-
rity definition in Section II with ¢ > 25X and the following
combinations of system parameters: (m = 2, > 0.25,5 >
0.25), (m =4, > 0.25,5 > 0.25), (m =8, > 0.34,8 >
0.13) and (m = 16, > 0.34, 8 > 0.09).

C. Accountability Analysis

The accountability of the proposed system relies on the
security of the proposed MAC mechanism, which is formally
stated and proved in the following.

Lemma 5: ForVj € {0,1,2} and distinct blocks D and D,

1

Pr[MAB;..(D) = MAB,,,(D")] = 3 w=0 =1 (13)

Proof: (By induction). Let D and D' differ by n bits on
indices vo, -+ ,vn—1; let j € {0,1,2}, uw € {0,--- , A — 1}
and v e {0,---,z—1}; let A;,[v] denote the v-th bit on

Aj (recall that AJ « 18 a secret block shared only between
the client and server Sj;).

When n = 1, MABJ W(D) = MAB;., (D) iff
/_1’] u[vo] = 0. Because AJ « 1s randomly picked from {0,1}7,
PT‘[A] u[vo] = 0] = 1. Hence, Equation (13) holds.

Assuming Equatlon (13) holds when D and D' differ by
n < t, we next prove the equation holds when n = ¢ + 1.
Without loss of generality, assume D[v;] = 0 and D’[vf] =1.
Let Io be the z-bit block with 0 on every bit, 11 be the
z-bit block with 1 on bit v; but 0 on all other bits, and
D' = D ol G.e., D = D'eo fl). Hence, D and
D" differ in ¢ bits vg, -, vs_1. According to the induc-

tion assumption, Pr[MABj,u(D_’) = MABjyu(D_a”)] = %

Also note that, ﬁPr[M_’ABjﬂi(I_{)) = MAB;,(I)] = % and
D=Da®l,, D =D"®I. Therefore, we have
Pr[MAB; (D) = MAB; (D)) (14)
= Pr[MAB;,(D® L) = MAB; (D" @ I,)] (15)
= Pr[MAB;, (D)= MAB;,,(D")] x
Pr[MAB; . (Io) = MAB; . (I)] +
Pr[MAB;..(D) # MAB; ., (D")] x
Pr{MAB; . (Io) # MAB; . (I)] (16)
UV VR SIS} 07
2727272 2
||

Theorem 2: If server S; send_§ datg block D' instead of D
to server S;, where ¢ # j and D # D', then:

Pr[MAC;(D') = MAC;(D)] = 277, (18)

2019 IEEE Conference on Communications and Network Security (CNS)

i.e., the misbehavior of S; is detected with a probability of
1—27%

Proof: According to the MAC definition in Section VI
and Lemma 5,

Pr[MAC;(D') = MAC;(D)] (19)
A—1

= I Pr[MAB;.,(D') = MAB,; . (D)] = 27*.(20)
u=0

|]

VIII. PERFORMANCE EVALUATION AND COMPARISONS

We have implemented the proposed system, and conducted
performance comparisons with SSORAM [11], which is the
newest and most-efficient ORAM construction that employs
multiple non-colluding servers.

A. System Settings

We rent four AWS EC2 instances to run our implemented
servers and client. As the communication latency between
these instances are smaller than those between client and
server and between the servers owned by different cloud own-
ers, we conducted experiments to measure the communication
latencies between AWS EC2 and Microsoft Compute Engine
instances and add the measured average round trip delay 29 ms
to the communication between our servers; we also measured
the communication latencies between these cloud servers and a
rented client located at the center of North America Continent,
and add the measured average round trip delay 177.5 ms to
the communication between our servers and client.

We set security parameter A = 40, which makes the failure
probability of each query and eviction process to be lower
than 2740, According to Theorem 1, we set ¢ = 1024 which
is greater than 25)\; with different m, we adopt the following
combinations of system parameter by default: (m = 2, =
8 =025), ((m=4,aa=p0=025), (m=8a=034,5=
0.13) and (m = 16, = 0.34, 8 = 0.09).

In each evaluation, we vary N (i.e., the number of real data
blocks to export) between 220 to 226 and vary B (i.e., the size
of each data block in bytes) between 16K to 1M.

We measure the following metrics: (1) client-server com-
munication cost, which is measured as the average number of
blocks sent between the client and the servers to serve each
data query request; (2) inter-server communication cost, which
is measured as the average number of blocks sent among the
servers per data query; (3) query delay, which is measured
as the average time elapse from a query request is sent from
the client till the requested data block arrives at the client;
(4) server storage overhead, which is measured as the amount
of storage consumed at the server other than that for storing
N exported data blocks; and (5) client storage cost, which is
measured as the amount of storage consumed at the client.

To optimize the system parameter selection, we also mea-
sure the system costs with varying m and results are shown
in Table I. Note that, the table only shows the results when
N = 220 a5 the trend is similar with different N. As we

44

Table 1
SYSTEM COSTS WITH VARYING m

m Client-Server Inter-Server Server Storage
Comm. Cost Comm. Cost Overhead

2 1.3B 96B 1.5 N

4 1.3B 58B 1.1 N

8 1.3B 67B 0.3N

16 1.3B 90B 0.17N

can see from the table, when m increases, the client-server
communication cost does not change; the inter-server commu-
nication cost decreases and then increases; the server storage
overhead decreases. Hence, in the following experiments, we
set m = 8 to make our system to have low communication
and storage overheads.

B. Comparison with S>ORAM

Comparisons are conducted over various metrics.

200

200

Our‘URA.Vl

Our ORAM
S*ORAM E=Z= X

S’ORAM s

150 150

100 100

50

Inter Server Commun. Cost(unit:#B)

Inter Server Commun. Cost(unit:#B)

2 2
520 522 224 226 220 22

(b) B = 64K B

(a) B=16KB

0
Our ORAM
S’ORAM s

Our ORAM
SPORAM =R

Inter Server Commun. Cost(unit:#B)

Inter Server Commun. Cost(unit:#B)
8

520 5 22

(c) B = 256K B
Figure 4.

(d) B=1MB

Inter-Server Communication Cost.

2

1) Communication Costs and Query Delay: As shown in
Fig. 4, our ORAM system incurs smaller inter-server commu-
nication cost, which is about 60-80% of that of SSORAM.
Both schemes require a constant number of blocks to be
transferred between the client and server for each query.
Specifically, in our system, the communication cost ranges
from 1 to 1.3 data blocks per query, which includes 1 target
block downloaded from &; and some control messages for
query and eviction. S’ORAM needs to download 3 data blocks
as well as a small size of meta-data.

In terms of query delay, as shown in Fig. 5, our ORAM
has similar but a slightly higher query delay. This is due to
the fact that, the request data block needs to travel through
the path of Sg — S1 — client; the detour between the servers
incurs some extra delay, but it is very small compared to the
delay between client and server.

2) Storage Overheads: Both schemes require 3 non-
colluding servers. For S30RAM, all servers have the same

2019 IEEE Conference on Communications and Network Security (CNS)

500

Our ORAM
S'ORAM Emm

Ol\r‘ORAM
S’ORAM EEEs

400

300

200

Query Delay (uni
Query Delay (unit:ms)

100

e

(b) B = 64K B

2 2°

(a) B = 16KB

500 500
Our, ORAM

S*ORAM Em=mEm

0ur‘ORAM
S’ORAM EEEEE

400

300

200

Query Delay (unit:ms)
Query Delay (unit:ms)

100

(c) B = 256K B
Figure 5.

(d) B=1MB

Query Delay

structure, different in that each server stores a different secret-
shared version of blocks. Our system stores data blocks on one
server, i.e., Sp, while the other two servers only need to allo-
cate small storage to facilitate query and eviction. Fig. 6 shows
the server-side storage overheads. Specifically, the server-side
storage overhead of S30RAM is 11N data blocks, while the
overhead of our system is (8 + 1+TQ)N + %, which is no
more than 0.3N blocks.

Our ORAM

Our, ORAM
S*ORAM E=EE

S’ORAM BT

Server Storage Overhead (unit: N)
Server Storage Overhead (unit: N)

zx

(a) B=16KB

22 2%

(b) B = 64K B

Our}()RAM

Our ORAM
s S’ORAM B

SORAM =z

Server Storage Overhead (unit: N)
Server Storage Overhead (unit: N)

d) B=1MB

Server Storage Overhead

(c) B = 256K B
Figure 6.

As the cost of the increased server storage efficiency, our
system requires a larger client-side storage space, which is
around 0.1% of the server-side storage cost.

Also node that, both schemes require some computation
at the server side. SSORAM requires its servers to execute
addition and multiplication of Shamir Secret Sharing opera-
tions, while our ORAM requires server to run random number
generator to produce pseudo random sequences and then
perform XOR operations to decrypt or re-encrypt data blocks.

45

Our ORAM also requires the server to conduct authentication,
which is also XOR operations. Our evaluations show that,
the delay caused by the computations is nearly negligible
compared to the communication delay.

3) Summary: Compared to SSORAM, our ORAM achieves
a same level of efficiency in client-server communication, a
higher level of efficiency in server-server communication, and
a significantly higher level of server-side storage efficiency, at
the price of increased client-side storage requirement, which
is only around 0.1% of the server-side storage capacity and
thus should be affordable for a client who runs an on-premise
facility such as a cloud storage gateway.

IX. CONCLUSION AND FUTURE WORK

This paper proposes an oblivious cloud storage system to
address the limitations of existing research efforts. Extensive
analysis and evaluation have shown that, the system can
simultaneously attain the features of provable protection of
data access pattern, low data query delay, low server storage
overhead; low communication costs, and accountability. In the
future, we plan to improve the performance of the system by
further reducing the communication costs, especially the inter-
server communication costs.

ACKNOWLEDGEMENT
This work is partly supported by NSF grant CNS-1844591.

REFERENCES

[1] Research and Markets, “Cloud storage market - forecasts from 2017
to 2022,” https://www.researchandmarkets.com/research/[fSwbx/cloud_
storage, 2017.

[2] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious RAMSs,” Journal of the ACM, vol. 43, no. 3, 1996.

[3] E. Stefanov, E. Shi, and D. Song, “Towards practical oblivious RAM,”
in Proc. NDSS, 2011.

[4] E. Stefanov, M. V. Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. De-
vadas, “Path ORAM: an extremely simple oblivious RAM protocol,” in
Proc. CCS, 2013.

[5] J. Dautrich and E. Stefanov, “Burst ORAM: Minimizing ORAM Re-
sponse Times for Bursty Access Patterns,” in Proc. 23rd USENIX
Security Symposium, 2014.

[6] C. Gentry, K. Goldman, S. Halevi, C. Julta, M. Raykova, and D. Wichs,
“Optimizing ORAM and using it efficiently for secure computation,” in
Proc. PETS, 2013.

[7]1 E. Stefanov and E. Shi, “Multi-cloud oblivious storage,” in Proc. CCS,
2013.

[8] L. Ren, C. W. Fletchery, A. Kwony, E. Stefanov, E. Shi, M. van Dijkz,
and S. Devadasy, “Ring ORAM: Closing the Gap Between Small and
Large Client Storage Oblivious RAM,” in Proc. IACR Cryptology ePrint
Archive 2014:997, 2014.

[9] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, “Oblivious RAM with
O((log N)3) worst-case cost,” in Proc. ASIACRYPT, 2011.

[10] S. Devadas, M. van Dijk, C. W. Fletcher, L. Ren, E. Shi, and D. Wichs,
“Onion oram: A constant bandwidth blowup oblivious ram,” in Proc.
TCC, 2016.

[11] T. Hoang, C. Ozkaptan, A. Yavuz, J. Guajardo, and T. Nguyen, “S3oram:
A computation-efficient and constant client bandwidth blowup oram with
shamir secret sharing,” in Proc. ACM CCS, 2017.

[12] X. Wang, T.-H. H. Chan, and E. Shi, “Circuit oram: On tightness of the
goldreich-ostrovsky lower bound,” in Proc. ACM CCS, 2015.

[13] X. Wang, S. Gordon, J. Katz, “Simple and Efficient Two-Server
ORAM,* in Proc. ASIACRYPT, 2018

[14] V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and Y. Huang, “Prac-
ticing Oblivious Access on Cloud Storage: the Gap, the Fallacy, and the
New Way Forward,” in Proc. CCS, 2015.

