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Abstract—As the adoption of cloud storage service has been
pervasive, more and more attentions have been paid to the
related security and privacy risks, among which, data access
pattern privacy is an important aspect. Lots of solutions have
been proposed, but most are infeasible due to high overheads
in communication and storage. In this paper, we propose a new
solution to address the limitations by leveraging the moderate
storage capacity in the increasingly popular cloud storage gate-
ways and the existence of multiple competing and independent
cloud storage servers. Extensive analysis and evaluation have
shown that, our proposed system can simultaneously attain the
features of provable protection of data access pattern, low data
query delay, low server storage overhead, low communication
costs, and accountability.

I. INTRODUCTION

For the attractive features of self-provisioning, pay-as-you-

go, economic efficiency and high availability, cloud storage

model has been hailed by organizational and individual clients.

In the past years, the model has kept evolving, and the hybrid

variant based on cloud storage gateway has increasing popu-

larity [1]. By the hybrid model, a client runs an on-premise

gateway with moderate storage resources. For scalability and

cost-efficiency, the gateway outsources majority data to one

or multiple off-premise cloud storage servers; meanwhile, it

stores the meta-data and the frequently or recently-accessed

data, to manage data as well as reduce the frequency and

latency in accessing data directly from the remote server.

In spite of the pervasive usage of cloud storage, the clients

have also raised various privacy concerns, among which the

data access pattern privacy is gaining more awareness. Data

encryption has been common for data privacy protection, but

it cannot protect data access patterns for cloud storage clients.

A curious owner or employee of a cloud storage service, or an

intruder invading the storage server, can observe a client’s data

access pattern. Based on the observed pattern and the client’s

activities that could be obtained through some side channels,

the attacker could develop a model relating them. Later on,

the attacker may use the model and newly observed access

patterns to infer or predict the client’s activities. Therefore,

exposed data access pattern can potentially reveal some private

information about cloud storage clients. Especially, military,

homeland security and public safety agencies should protect

these private information from the enemies; businesses should

protect the information from their rivals and competitors.

In the past decades, the problem of protecting data access

pattern has attracted a lot of interest from the researchers, but

the advancements are mainly with the theoretical aspect. It is

still an un-attained goal to build an oblivious cloud storage

system that can protect the data access pattern but meanwhile

can deliver a performance similar to an existing non-oblivious

system. Specifically, it is desirable to have a storage system

with the following features: (i) provable security in access

pattern protection; (ii) low data query delay experienced by

the client; (iii) low communication costs incurred; and (iv)

low storage costs incurred.

Related Works. The oblivious RAM (ORAM) model [2],

originally proposed for software protection, is a well-known

provable approach to protect the client’s access pattern. Fol-

lowing this model, a large variety of schemes [2]–[13] have

been developed, with the goal to implement the ORAM model

more efficiently and practically. We here briefly review a few

that are most related or newest schemes.

Communication efficiency has been one major optimization

objective in the research. As one of the most communication-

efficient ORAM schemes, Partition ORAM [3] organizes the

server storage as
√
N partitions (N is the number of exported

data blocks), and each partition works as an ORAM module.

The client storage is utilized to contain a location map for

blocks, a buffer for storing and shuffling data blocks of an

ORAM partition, and
√
N stash slots. Based on this storage

arrangement, together with optimizations in query and shuf-

fling algorithm, the scheme incurs a communication cost of

about 1.25 logN blocks per query. Burst ORAM [5] improves

upon Partition ORAM [3] by introducing a new XOR tech-

nique to reduce the online bandwidth cost to a constant, and

priority scheduling algorithms to deal with request bursts. Ring

ORAM [8] further improves the communication efficiency by

combining the best qualities from the Partition ORAM [3]

and Path ORAM [4], an efficient tree-based ORAM. CURI-

OUS [14] presents a partition-based ORAM framework and

each partition is a small ORAM and can be organized as

Path ORAM [4]. It doubles the overall communication cost of

Partition ORAM, but reduces the response time. Although the

above efforts have advanced the communication efficiency, es-

pecially in the regard of client-server communication latency,

the client-server communication cost is still higher than a non-

oblivious storage system by a factor of O(logN). Besides, the

server storage costs also remain high; to export N data blocks,

the server needs to store 3N or even more data blocks, most

of which are dummy.

To address the problem with client-server communication,

Hoang et al. [11] propose S3ORAM based on the utiliza-

tion of multiple (at least three) non-colluding servers. This
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scheme incurs O(1) bandwidth consumption for client-server

communication, which is similar to the cost incurred by a non-

oblivious storage system; it still requires O(logN) bandwidth

consumption for communication between the servers, but

the inter-server communication occurs behind the scene and

does not consume client-server bandwidth. However, there are

several limitations with this scheme. First, the scheme requires

multiple servers each storing a copy of the outsourced data

blocks, which significantly increases the server storage cost to

12N blocks for every N real data blocks exported. Second,

the scheme assumes the servers to be semi-honest, which may

not be realistic in practice; a dishonest server could deviate

from the designated protocol, and if not detected immediately,

could lead to big overhead to recover the system.

Our Contributions. To address the afore-discussed limita-

tions of the existing works, we propose a new oblivious cloud

storage system, which is also an implementation of the ORAM

model. Similar to S3ORAM, our proposed system also recruits

three non-colluding cloud servers to act as the oblivious stor-

age. But, through leveraging the moderate storage space at the

client and optimizing the storage arrangement at the servers,

we significantly reduce the server storage overhead by storing

only around 0.3N extra dummy blocks compared to 11N
dummy blocks required by S3ORAM. Moreover, we design

and employ several lightweight accountability mechanisms for

the servers, such that each server can detect the misbehavior

of other servers that interact with it. Compared to the state

of the art, our proposed system can simultaneously attain the

following features:

• provable protection of clients’ access pattern privacy;

• low server storage overhead, which is around 0.3N
blocks for every N real data blocks exported;

• low data query delay, only slightly longer than a commu-

nication round trip time between the client and server;

• accountability with multiple servers, which removes the

less-realistic semi-honest assumption in a multi-server

oblivious storage system;

• lower communication costs than S3ORAM, the most

related state-of-the-art scheme.

The above features are achieved by our novel designs of stor-

age arrangement, data query algorithm and eviction algorithm.

Note that, our system has made full use of the available

moderate level of client-side storage, but the required storage

capacity is still only as small as around 0.1% of the cloud

server’s storage capacity.

Organization. In the rest of the paper, we first define the

system model and security in Section II, which is followed

by the detailed design in terms of storage organization, query

algorithm, eviction algorithm and accountability enhancements

in Section III-VI respectively. Section VII presents the security

analysis. Performance evaluation and comparisons are reported

in Section VIII. Finally, section IV concludes the paper.

II. PRELIMINARIES

We consider a distributed system that consists of a client

and three cloud servers. The client has an on-premise cloud

storage gateway with a moderate storage capacity, though

much smaller than the capacity of the cloud storage servers.

The cloud servers are assumed to be non-colluding. However,

different from the often-taken assumption that the servers are

semi-honest, we assume the servers could be malicious and

some accountability mechanisms will be deployed to each

server to detect the misbehavior of other servers. The client

is assumed to be honest; note that, this assumption could be

removed by, for example, requiring the client to electronically

sign each message and data block that it sends.

Assume the client outsources N data blocks each with the

same size of z bits to the cloud storage server, and then needs

to access the outsourced data every now and then.

Each data access intended by the client, which should

be kept private, is of two types: read a data block D of

unique ID i from the storage, denoted as (read, i,D); write

a data block D of unique ID i to the storage, denoted as

(write, i,D). To hide a private data access, the client and

servers need to access multiple locations of the server-side

storage and exchange some messages with each other. Each

location access or message exchange, which can be observed

by the servers, is one of the following types: retrieve (i.e.,

read) a data block D from location l at the storage, denoted

as (read, l,D); upload (i.e., write) a data block D to location l

at the storage, denoted as (write, l,D); send a message from

one party to another (note: a party could be the client or a

server), denoted as (send, s, d) where s and d are the source

and destinations.

Extending the security definition of ORAM in prior

works [2]–[4], we define the security of our proposed oblivious

storage system as follows.

Definition Let λ be a security parameter, and ~x = 〈
(op1, i1, D1), (op2, i2, D2), · · · 〉 denote a private sequence

of the client’s data accesses, where each op is either a read

or write. Let A(~x) = 〈 (op′1, p1,1, p1,2), (op′2, p2,1, p2,2), · · ·
〉 denote the sequence of the location accesses or message

exchanges (observed by the server) in order to accomplish the

data access sequence ~x. An oblivious storage system is secure

if (i) for any two equal-length private sequences ~x and ~y of

data accesses, their corresponding location access and mes-

sage exchange sequences A(~x) and A(~y) are computationally

indistinguishable; and (ii) the system fails to operate with a

probability of O(2−λ).

III. SYSTEM ARCHITECTURE AND INITIALIZATION

As shown in Fig. 1, our proposed system is composed of

one client and three servers, denoted as S0, S1 and S2. Only

one server (i.e., S0) needs to permanently store the data blocks

exported by the client. The other two servers only store some

meta-data and temporarily buffer some data blocks, to facilitate

data query and eviction processes as well as to maintain system

accountability, which are detailed in Sections IV, V and VI.

The client also stores meta-data and a small subset of data

blocks. In the following, we elaborate the storage organization

at server S0 and the client.

2019 IEEE Conference on Communications and Network Security (CNS)

38



Each leaf node stores up Z0 blocks

Server S0

Client

Frequently 
and recently 

accessed 
blocks

(Cloud storage gateway)

Storage Tree

Eviction Process

Control for query

Data for query

Control for eviction

Data for eviction

(0,0)

(1,0) (1,7)...
(1,1) (1,6)

(2,0) (2,7) (2,63)(2,56)
... ...

(L-1,0) (L-1,1) (L-1,7)
...

(L-1,2L-1-2)(L-1,2L-1-1)

... ... ... ...

... ...

...

Layer 0

Layer 1

Layer 2

Layer L-1

Server S1

Buffer for 
data eviction

Query Process

Each non-leaf node 
stores Z1 blocks

Index table

Index blocks 
for every 
node on 

storage tree

Buffer for 
data eviction

Server S2

Figure 1. Proposed System Architecture.

A. Storage Organization at Server S0
Let positive integers m (a power of 2) and q, and positives

fractions α and β be system parameters. Let

ξ(m, q) = max(
(m− 1) · q

2
, 2q). (1)

The data blocks are stored into an m-ary storage tree, in

which each non-leaf node can have up to m child nodes.

When constructing the storage tree, we make the tree to be

balanced and the number of data blocks at each leaf node to

vary between (1 + β) · ξ(m, q) and 2(1 + β) · ξ(m, q), for

certain security purposes explained later in Section VII.

Specifically, the tree is constructed as follows:

• Let L′ = ⌊logm N
ξ(m,q)⌋ and Z ′ = N

mL′ . Obviously, Z ′ ≥
ξ(m, q).

• If Z ′ ≤ 2ξ(m, q), the storage tree is organized as a

complete m-ary tree with height L = L′ + 1 where the

capacity of each leaf node is Z0 = ⌈(1+β) ·Z ′⌉ blocks.

• Otherwise (i.e., Z ′ > 2ξ(m, q)), the storage tree is

organized as a tree of height L = L′ + 2, and the root

has ⌊ Z′

ξ(m,q)⌋ child nodes while each child node is a

root of a complete m-ary tree with L′ + 1 layers and

Z0 = ⌈(1 + β) · Z′

⌊ Z′

ξ(m,q)
⌋
⌉ blocks at each leaf node.

• Each non-leaf node has a capacity of Z1 = ⌈(1 + α) ·
ξ(m, q)⌉ blocks.

Each node Nl,i is identified by a unique tuple (l, i), where

l ∈ {0, · · · , L−1} is the ID of the layer that the node resides

(note: the root node is at layer 0 while the leaf nodes are at

layer L − 1), and i ≥ 0 is the ID of the node on layer l

that equals to the offset of the node on layer l (from 0 at the

leftmost towards right). Note that Fig. 1 shows a storage tree

when m = 8.

B. Storage Organization at the Client

The client maintains an index table for all of the N real data

blocks and an index block for each node on the storage tree.

The index table has N entries and each entry i ∈ {0, · · · , N−
1} has the following fields:

• path ID of block i, i.e., the ID of the leaf node on the

path that block i is assigned to;

• secret key ki which, as detailed in Section III-C, randomly

selected by the client to encrypt the block based on XOR

operation;

• three message authentication codes (MACs) of the block,

of which the computation and usage are explained in

detail in Section VI.

Note that, following most of the tree-based ORAM construc-

tions [3], [4], [6], [7], [9], our proposed scheme also enforces

the policy that, a block is assigned to a path and the block

must be stored on the path.

For each node on the tree, the index block has one entry

(id, ah) for each block it stores, where id is the ID of the

block, no matter whether the block is real or dummy, and ah ∈
{0, 1, 2} indicates the access history of the block since the

system initialization or the most recent data eviction process

involving the node, whichever is more recent: (i) ah = 0 if

the block has not been accessed; (ii) ah = 1 if the block has

been accessed as a query target; and (iii) ah = 2 if the block

has been accessed but never as a query target.

In addition, the client maintains a local buffer that stores

the most recently accessed data blocks. The capacity of the

buffer is at least q blocks.

C. System Initialization

The client picks a pseudo random number generator

PRG0(k), which takes a secret seed k of λ bits and outputs

a pseudo-random sequence of 3λ bits. The client also picks

and shares with the servers another pseudo random number

generator function, denoted as PRG1(k), which takes a secret

seed k and outputs a pseudo-random sequence of bytes with

the same length as a data block.

Before each real block (denoted as ~Di which is a sequence

of bits) of ID i is exported to server S0, the client encrypts

the block as follows.

1) It randomly picks a secret seed ki, and computes

PRG0(ki) whose output is denoted as ki,0|ki,1|ki,2
where each ki,j has λ bits and | represents concatenation.

2) It computes PRG1(ki,0), PRG1(ki,1) and PRG1(ki,2)
to generate three pseudo-random sequences of bytes,

denoted as ~Ri,0, ~Ri,1 and ~Ri,2, each of the same length

as a data block.

3) It performs bit-wise XOR operations on each group of

four bits with the same offset of the four bit-sequences
~Di, ~Ri,0, ~Ri,1 and ~Ri,2, to encrypt ~Di to

~D′
i = ~Di ⊕ ~Ri,0 ⊕ ~Ri,1 ⊕ ~Ri,2. (2)

IV. DATA QUERY ALGORITHM

Assume the client wishes to query data block ~Dt, where

t denotes the block ID, and the block is not in its local

buffer. It looks up its index table to find path pt that contains
~Dt, and looks up the index blocks of the path to locate the

node containing ~Dt. Then, it launches a query process in two

phases: selecting some data blocks to access from S0, based

on the index table and index blocks that it stores, in order to

hide the query target; interacting with the servers to retrieve

query target ~Dt.
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A. Phase I: Selecting Data Blocks to Access

For each node N ′
i on path pt, where i ∈ {0, · · · , L − 1}

represents the layer ID of the node, let ∆i,0, ∆i,1 and ∆i,2

denote the block sets with ah being 0, 1 and 2, and δi,0, δi,1
and δi,2 denote the sizes of these sets, respectively. The client

selects data blocks from each node N ′
i to download, according

to the rules presented in Algorithm 1, with the dual goals of

hiding data access pattern and communication efficiency.

Algorithm 1 Rules for Selecting Blocks from N ′
i to Access

(Output: ∆ - a set of blocks selected to access)

1: ∆← ∅
2: if N ′

i contains query target ~Dt then

3: add ~Dt to ∆
4: ∀ ~D ∈ ∆i,1, add ~D to ∆ with probability 1

δi,0

5: if ~Dt belongs to ∆i,0 then

6: ∀ ~D ∈ ∆i,2, add ~D to ∆ with probability
δi,2
δ2
i,0

7: else //i.e., ~Dt belongs to ∆i,2

8: randomly picks one ~D from ∆i,0; adds it to ∆

9: else

10: randomly picks one ~D from ∆i,0; adds it to ∆

11: ∀ ~D ∈ ∆i,1 ∪∆i,2, add ~D to ∆ with probability 1
δi,0

First, the algorithm hides data access pattern by making

each block in N ′
i to be accessed with the same probability

independent of where the query target resides, as stated in the

following Lemma 1 with proof.

Lemma 1: During a query process with query path pt, each

block ~D in node N ′
i on pt is selected to access with the

same probability of 1
δi,0

, which is obviously independent of

the location of the query target.

Proof: When the query target does not belong to N ′
i ,

every block ~D is accessed with probability 1
δi,0

based on lines

10-11 of Algorithm 1. Otherwise, each block ~D must be in

∆i,0, ∆i,1 or ∆i,2. So we consider the three cases respectively.

• Case I: ~D ∈ ∆i,0. Further there are two subcases: ∆i,0

contains the query target or not.

– Subcase I-a: ∆i,0 contains query target ~Dt. Only ~Dt

is accessed from ∆i,0. Further due to the random

distribution of blocks in ∆i,0, every ~D has the same

probability of 1
δi,0

to be accessed as query target.

– Subcase I-b: ∆i,0 contains query target ~Dt. Based on

line 8 of the algorithm, every ~D has the probability

of 1
δi,0

to be accessed.

• Case II: ~D ∈ ∆i,1. Every ~D has the probability of 1
δi,0

to be accessed, based on line 4 of the algorithm.

• Case III: ~D ∈ ∆i,2. Further there are two subcases:

– Subcase III-a: ∆i,0 contains query target ~Dt, which

occurs with probability
δi,0

δi,0+δi,2
in case III. In this

subcase, every ~D is accessed with probability
δi,2
δ2
i,0

.

– Subcase III-b: ∆i,0 contains query target ~Dt, which

occurs with probability
δi,2

δi,0+δi,2
in case III. In this

subcase, ~D is accessed as the query target with

probability 1
δi,2

.

To summarize, ~D is accessed with the following proba-

bility in Case III:

δi,0

δi,0 + δi,2
· δi,2
δ2i,0

+
δi,2

δi,0 + δi,2
· 1

δi,2
=

1

δi,0
.

Hence, the Lemma is proved.

Second, in terms of communication efficiency, the query

algorithm requires only 1+
δi,1+δi,2

δi,0
blocks accessed from each

node N ′
i . Further, as we study later in Section VII,

δi,1+δi,2
δi,0

<

1 with an overwhelming probability of 1 − 2−λ. That is, no

more than 2 blocks are accessed from each node N ′
i on the

query path with a probability at least 1− 2−λ.

B. Phase II: Retrieving Query Target

The client sends a request to S0, which contains:

• list ~B = 〈b1, · · · , bx〉 of x block indices where, in each

bi = (ni, oi), ni is the ID of a block on query path and

oi is the offset of a block selected to access in Phase I;

• random permutation vector ~V = 〈v1, · · · , vx〉 of integers

{1, · · · , x}, which directs S0 to put every block bi to

offset vi after the permutation.

It also sends a request to S1, which only contains one number

in {1, · · · , x}.
In response to the client’s request, S0 makes a copy of the

blocks indicated by ~B, permutes the blocks as directed by ~V ,

and then forwards the resulting block sequence to S1.

Upon receiving the sequence, S1 retains only the query

target block, whose offset on the sequence is the index

contained in the client’s request, and immediately returns the

block to the client.

Having received the query target, the client updates its local

meta-data to make the copy of the query target left on the

storage tree as a dummy block. Then, it can start reading or

writing to the query target locally.

V. DATA EVICTION ALGORITHM

After every q queries, the client has retained at its buffer q

blocks that are the targets of the most recent q queries. We call

these blocks the current evicting blocks. The client randomly

re-assigns a path for each evicting block, sends all these blocks

in an ordered list to server S1, and then launches a data

eviction process to evict them into the storage tree at server

S0. Note that, as in existing ORAM constructions such as [3],

the eviction process can be carried out concurrently with data

query processes through some de-amortization mechanism.

Due to page limit, we skip the de-amortization detail and focus

on the main idea.

Every eviction process involves only one root-to-leaf path,

which we call eviction path, on the storage tree at server S0.

The eviction path is selected in the reverse-lexicographic order,

as illustrated by Fig. 2.

An eviction process runs iteratively, one iteration for each

node on the eviction path from the root to the leaf. We
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Figure 2. Reverse-lexicographic Order: Every eviction process involves
one root-to-leaf eviction path selected in the reverse-lexicographic order.

introduce variable N ′
e to denote the node currently involved

in the eviction. Hence, N ′
e is initialized to N0,0 (i.e., the

root node). Also, when an eviction iteration begins, S0 has

an ordered list (denoted as ~L0) containing Z0 or Z1 blocks

stored at node N ′
e, depending on whether N ′

e is leaf or not;

S1 has an ordered list (denoted as ~L1) of q blocks; S2 has no

data blocks. Then, the iteration, which involves the client and

all the servers, runs as follows.

1) For each block ~Di ∈ ~L0 ∪ ~L1, where i represents the

ID of the block, the client randomly picks a new key

k′i and then generates a new set of keys k′i,0, k′i,1 and

k′i,2 where PRG0(k
′
i) = k′i,0|k′i,1|k′i,2. Also, from the

current version of key ki recorded in the index table,

the client derives the current set of keys ki,0, ki,1 and

ki,2 where PRG0(ki) = ki,0|ki,1|ki,2.

2) The client randomly constructs a permutation vector π0

for | ~L0| elements (i.e., a random permutation of numbers

0, · · · , | ~L0| − 1) where | ~L0| denotes the length of ~L0,

and sends the vector to S0.

3) Upon receiving π0, S0 permutes ~L0 to ~L′
0 = π0( ~L0),

and sends ~L′
0 to S1.

4) Letting ~L′
0| ~L1 = 〈 ~Di0 , · · · , ~Dix−1

〉 where x = | ~L′
0| +

| ~L1|, the client randomly constructs a permutation vector

π1 for x elements and the following ordered list (denoted

as ~R1):

~R1 = 〈(ki0,0, k′i0,1), · · · , (kix−1,0, k
′
ix−1,1)〉. (3)

Then, the client sends π1 and ~R1 to S1.

5) Upon receiving ~L′
0 from S0 as well as π1 and ~R1 from

the client, S1 first constructs ~L′
1 = ~L′

0| ~L1, which we

also denote as 〈 ~Di0 , · · · , ~Dix−1
〉. Next, it re-encrypts

each block ~Dij (where j = 0, · · · , x− 1), based on key

pair (kij ,0, k
′
ij ,1

) in ~R1, through the following steps:

• It computes pseudo-random blocks ~Rij ,0 =

PRG1(kij ,0) and ~R′
ij ,1

= PRG1(k
′
ij ,1

).

• It updates ~Dij to ~D′
ij
= ~Dij ⊕ ~Rij ,0⊕ ~R′

ij ,1
, where

⊕ is the bit-wise XOR between two blocks (i.e., bit

sequences).

Then, list 〈 ~D′
i0
, · · · , ~D′

ix−1
〉 is permuted according to

π1, and the resulting list (denoted as ~L2) is sent to server

S2.

6) Letting 〈i′0, · · · , i′x−1〉 be the ordered list of IDs of the

blocks in ~L2, the client sends to S2 the following list of

key pairs

~R2 = 〈(ki′0,1, k
′
i′0,2

), · · · , (ki′
x−1,1

, k′i′
x−1,2

)〉. (4)

The client also constructs a permutation π2 for x ele-

ments, and sends π2 to S2.

7) Upon receiving π2 and ~R2 from the client, as well as
~L2 = 〈 ~Di′0

, · · · , ~Di′
x−1
〉 from S1, server S2 first re-

encrypts each block in ~L2 based on the key pairs in
~R2, and then permutes the re-encrypted list according

to π2, as server S1 does. The resulting list (denoted as
~L′
2 is sent to server S0.

8) Letting 〈i′′0 , · · · , i′′x−1〉 be the ordered list of IDs of the

blocks in ~L′
2, the client sends to S0 the following list of

key pairs

~R0 = 〈(ki′′0 ,2, k
′
i′′0 ,0

), · · · , (ki′′
x−1,2

, k′i′′
x−1,0

)〉. (5)

Besides, the client further constructs and sends to S0 an

ordered list I with q elements, which is a sub-stream

of 〈0, · · · , x − 1〉. The construction should meet the

following requirements:

• Case I: N ′
e is a non-leaf node. For each j ∈

{0, · · · , x−1}, if ~Di′′
j

is a real block and it cannot be

evicted to the next evicting node (i.e., the path that
~Di′′

j
is assigned to does not pass the next evicting

node), then j must not be in I.

• Case II: N ′
e is a leaf node. I should contain only

the IDs for dummy blocks.

9) Upon receiving L′
2 from S2 as well as ~R0 and I from

the client, server S0 re-encrypts each block in L′
2 based

on the key pairs in ~R0, as S1 and S2 do. Then, from

the resulting list of blocks, S0 removes the list of blocks

with offsets specified in I; these removed blocks are sent

to server S1 and become the new version of ~L1 if N ′
e is

a non-leaf node, or discarded if N ′
e is a leaf node. All

blocks written back to N ′
e are now with ah = 0.

Fig. 3 illustrates how the client and the servers cooperate

during the eviction process, in a high level.
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Figure 3. A High-level Illustration of Eviction Process.
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VI. ACCOUNTABILITY ENHANCEMENTS

In this section, we propose several accountability enhance-

ments to the above data query and eviction algorithms, so that

if a server maliciously changes a block, another server is able

to detect. The enhancements affect the storage organization,

system initialization, data query algorithm and data eviction

algorithm, in the following ways.

A. Enhancements to Storage and System Initialization

When the system is initialized, for each server Si where

i ∈ {0, 1, 2}, the client randomly constructs λ blocks each

with z bits, denoted as ~Ai,j = 〈ai,j,0, · · · , ai,j,z−1〉 for j ∈
{0, · · · , λ−1}, where each ai,j,y ∈ {0, 1} for y ∈ {0, · · · , z−
1}. Then, the client sends each ~Ai,j to server Si, and the block

should be kept secret only between server Si and the client.

For each exported data block ~D, letting 〈d0, · · · , dz−1〉
denote its plain text, the client computes 3 message authenti-

cation codes (MACs) as follows.

• First, the client computes the following 3λ message

authentication bits (MABs) for ~D:

MABi,j( ~D) = ⊕y∈{0,··· ,z−1}dy · ai,j,y, (6)

where i ∈ {0, 1, 2} and j ∈ {0, · · · , λ− 1}.
• Based on the MABs, the client computes the following 3

MACs for ~D:

MACi( ~D) = MABi,0| · · · |MABi,λ−1, (7)

where i ∈ {0, 1, 2} and | denotes concatenation.

Finally, the client stores MAC0( ~D), MAC1( ~D) and

MAC2( ~D) to the entry of ~D in the index table.

B. Enhancement to Data Query Algorithm

In the data query algorithm, we introduce an accountability

enhancement to allow S1 to check if S0 has sent to it a correct

sequence ~L. The detail is as follows.

During the query process, the client completely knows

which blocks should be in ~L. Let ~I = 〈i0, i1, · · · 〉 denote

the IDs of the blocks in the sequence. For each block with ID

ix ∈ ~I, the client computes an MAC of the block that can be

checked by the S1 as follows:

• From the index table, it retrieves MAC1( ~Dix) (i.e., the

MAC computed based on the block’s plain text and the

secret block ~A1 known by S1) and the current version of

encryption key kix for the block.

• It computes the two pseudo-random blocks that have been

used to encrypt the block, i.e., ~Rix,0 = PRG1(kix,0),
~Rix,1 = PRG1(kix,1), and ~Rix,2 = PRG1(kix,2). Note

that, the x-th block received by S1 should be equal to
~Dix ⊕ ~Rix,0 ⊕ ~Rix,1 ⊕ ~Rix,2 if it is correct.

• It computes MAC ′
1(
~Dix) as

MAC1(~Dix )⊕MAC1(~Rix,0)⊕MAC1(~Rix,1)⊕MAC1(~Rix,2), (8)

which should be equal to

MAC1( ~Dix ⊕ ~Rix,0 ⊕ ~Rix,1 ⊕ ~Rix,2) (9)

according to the definition of MAC1(·).
Then, MAC ′

1(
~Dix) is sent to S1 for checking.

Upon receiving ~L from S0 and the ordered list of MACs

from the client, S1 applies MAC1(·) to compute the MAC for

each block in ~L, and compares the resulting MAC with the

MAC sent from the client. If a mismatch is found, S0 will be

identified to have modified some block.

C. Enhancements to Data Eviction Algorithm

The accountability enhancements to data eviction algorithm

are similar to that applied for data query algorithm. That is,

whenever a server Si (i ∈ {0, 1, 2}) receives a list of blocks

from another server, Si needs to: (1) receive from the client an

MACi for each block on the list; (2) re-computes the MACi

for each block on the list; (3) find out if the above values

match. We skip the detail due to the page limit.

VII. SECURITY ANALYSIS

According to the definition of security in Section II, we

first study the security of the proposed system in terms of

obliviousness and failure probability. Then, we study the

accountability of the system.

A. Obliviousness Analysis

In this subsection, we show the obliviousness of the query

and eviction processes; i.e., these processes are random and

independent of the client’s data access pattern. First of all, it

is obvious that the interactions between servers and the client

follow the same pattern, independent of the client’s access

pattern. Hence, we focus to analyze the obliviousness of the

processes inside server S0.

1) Obliviousness in Query Path Selection: When the system

is initialized, the path assigned to each block is selected ran-

domly and independently of each other. After a block has been

queried, its path is re-assigned randomly and independently of

the client’s data access pattern. Due to the randomness in path

assignment, the query path for each query process, which is

determined by the path assigned to the query target block, is

random and independent of the client’s access pattern.

2) Obliviousness in Block Access from Query Path: Ac-

cording to the data query algorithm, the following block access

pattern has been enforced: from each node on the query path,

the client must select one block that has not been accessed;

meanwhile, every block that has already been accessed has the

same probability to be accessed again according to Lemma 1.

3) Obliviousness in eviction process: The eviction process

is random and independent of the client’s data access pattern,

due to the following reasons: (i) Each eviction process involves

only one root-to-leaf path (called eviction path), and the order

in which the paths are selected for as eviction paths is fixed and

independent of data access pattern. (ii)During each eviction

process, the processing for each node on the selected eviction

path follows a fixed pattern which is independent of data

access pattern. Specifically, all the data blocks on the node

are re-encrypted and re-permuted by all the servers; then, the

same number of blocks are stored back to the node.
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B. Failure Analysis

In this subsection, we study the probabilities for a query

process and an eviction process to fail.

1) Failure Probability for A Query Process: According to

Algorithm 1, a query process fails only when the probability
δi,2
δ2
i,0

used in selecting a block (in Line 6) becomes greater

than 1. Also, as discussed in Section IV, we aim to make
δi,1+δi,2

δi,0
≤ 1 (which obviously makes

δi,2
δ2
i,0
≤ 1) such that on

average no more than 2 blocks are accessed from each layer

of the storage tree during each query process. Hence, we here

study the probability for
δi,1+δi,2

δi,0
> 1, which is no less than

the probability for a query process to fail. Our result is stated

in the following Lemma 2.

Lemma 2: As long as q ≥ 25λ and α ≥ 0.25 ∧ β ≥ 0.25
when m = 2, 4, Pr[

δi,1+δi,2
δi,0

≤ 1] > 1− 2−λ, i.e., any query

process fails with a probability less than 2−λ.

Proof: Consider an arbitrary node Ni on a m-ary storage

tree, and let random variable X denote the times that Ni has

been selected to be on a query path during two consecutive

evictions involving the node. Obviously, X ≥ δi,1 + δi,2.

When m = 2, 4, according to the storage organization, the

size of each node N ′
i on the storage tree is at least 2q ·min(1+

α, 1 + β) ≥ 2.5q; i.e., δi,0 + δi,1 + δi,2 ≥ 2.5q. Since an

eviction process is launched every q queries, the mean of X

is q. Further according to the multiplicative Chernoff bound,

Pr[X ≤ 1.25q] > 1− (
e0.25

1.251.25
)q > 1− 2−2λ

. (10)

Hence,

Pr[δi,1 + δi,2 < δi,0] ≥ Pr[δi,1 + δi,2 ≤ 1.25q] > 1− 2−λ
. (11)

When m ≥ 8, the size of each node on the storage tree is

at least m−1
2 · q ≥ 3.5q; i.e., δi,0 + δi,1 + δi,2 ≥ 2.5q. Due to

Equation (10),

Pr[δi,1 + δi,2 < δi,0] > Pr[δi,1 + δi,2 ≤ 1.25q] > 1− 2−λ
. (12)

2) Failure Probability for An Eviction Process: An eviction

process fails iff the following scenarios occur in Step 8) of the

eviction algorithm. (i) Failure Scenario I: The current evicting

node (i.e., N ′
e) is a non-leaf node, and so q out of the x blocks

in L′
2 need to be picked to send from S0 to S1. According to

Case-I of the requirement, the q blocks should not contain any

real block that cannot be evicted to the next evicting node,

but failure will occur if there are more than x− q real blocks

that cannot be evicted to the next evicting node. (ii) Failure

Scenario II: The current evicting node N ′
e is a leaf node, and

so q dummy blocks out of the x blocks in L′
2 need to be

discarded. Failure will occur if there are less than q dummy

blocks (i.e., more than x− q real blocks) in L′
2.

The results of our analysis are summarized as the following

Lemmas 3 and 4. The proofs, which have to be skipped due

to space limit, can be developed based on the analysis of

the eviction process and the application of the multiplicative

Chernoff bound.

Lemma 3: With q ≥ 25λ and the following combinations

of system parameters, i.e., (m = 2, α ≥ 0.25), (m = 4, α ≥
0.25), (m = 8, α ≥ 0.34) and (m = 16, α ≥ 0.34), the

Failure Scenario I occurs with a probability of O(2−λ).
Lemma 4: With q ≥ 25λ and the following combinations

of system parameters, i.e., (m = 2, β ≥ 0.25), (m = 4, β ≥
0.25), (m = 8, β ≥ 0.13) and (m = 16, β ≥ 0.09), the Failure

Scenario II occurs with a probability of O(2−λ).
Based on the above analysis on obliviousness and failure

probablities, we get the following theorem.

Theorem 1: The proposed system is secure under the secu-

rity definition in Section II with q ≥ 25λ and the following

combinations of system parameters: (m = 2, α ≥ 0.25, β ≥
0.25), (m = 4, α ≥ 0.25, β ≥ 0.25), (m = 8, α ≥ 0.34, β ≥
0.13) and (m = 16, α ≥ 0.34, β ≥ 0.09).

C. Accountability Analysis

The accountability of the proposed system relies on the

security of the proposed MAC mechanism, which is formally

stated and proved in the following.

Lemma 5: For ∀j ∈ {0, 1, 2} and distinct blocks ~D and ~D′,

Pr[MABj,u( ~D) = MABj,u( ~D
′)] =

1

2
, u = 0, · · · , λ− 1. (13)

Proof: (By induction). Let ~D and ~D′ differ by n bits on

indices v0, · · · , vn−1; let j ∈ {0, 1, 2}, u ∈ {0, · · · , λ − 1}
and v ∈ {0, · · · , z − 1}; let ~Aj,u[v] denote the v-th bit on
~Aj,u (recall that ~Aj,u is a secret block shared only between

the client and server Sj).

When n = 1, MABj,u( ~D) = MABj,u( ~D
′) iff

~Aj,u[v0] = 0. Because ~Aj,u is randomly picked from {0, 1}z ,

Pr[ ~Aj,u[v0] = 0] = 1
2 . Hence, Equation (13) holds.

Assuming Equation (13) holds when ~D and ~D′ differ by

n ≤ t, we next prove the equation holds when n = t + 1.

Without loss of generality, assume ~D[vt] = 0 and ~D′[vt] = 1.

Let ~I0 be the z-bit block with 0 on every bit, ~I1 be the

z-bit block with 1 on bit vt but 0 on all other bits, and
~D′′ = ~D′ ⊕ ~I1 (i.e., ~D′ = ~D′′ ⊕ ~I1). Hence, ~D and
~D′′ differ in t bits v0, · · · , vt−1. According to the induc-

tion assumption, Pr[MABj,u( ~D) = MABj,u( ~D
′′)] = 1

2 .

Also note that, Pr[MABj,u(~I0) = MABj,u(~I1)] =
1
2 and

~D = ~D ⊕ ~I0, ~D′ = ~D′′ ⊕ ~I1. Therefore, we have

Pr[MABj,u( ~D) = MABj,u( ~D
′)] (14)

= Pr[MABj,u( ~D ⊕ ~I0) = MABj,u( ~D
′′ ⊕ ~I1)] (15)

= Pr[MABj,u( ~D) = MABj,u( ~D
′′)]×

Pr[MABj,u(~I0) = MABj,u(~I1)] +

Pr[MABj,u( ~D) 6= MABj,u( ~D
′′)]×

Pr[MABj,u(~I0) 6= MABj,u(~I1)] (16)

=
1

2
× 1

2
+

1

2
× 1

2
=

1

2
. (17)

Theorem 2: If server Si sends data block ~D′ instead of ~D

to server Sj , where i 6= j and ~D 6= ~D′, then:

Pr[MACj( ~D
′) = MACj( ~D)] = 2−λ; (18)
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i.e., the misbehavior of Si is detected with a probability of

1− 2−λ.

Proof: According to the MAC definition in Section VI

and Lemma 5,

Pr[MACj( ~D
′) = MACj( ~D)] (19)

=
λ−1∏

u=0

Pr[MABj,u( ~D
′) = MABj,u( ~D)] = 2−λ.(20)

VIII. PERFORMANCE EVALUATION AND COMPARISONS

We have implemented the proposed system, and conducted

performance comparisons with S3ORAM [11], which is the

newest and most-efficient ORAM construction that employs

multiple non-colluding servers.

A. System Settings

We rent four AWS EC2 instances to run our implemented

servers and client. As the communication latency between

these instances are smaller than those between client and

server and between the servers owned by different cloud own-

ers, we conducted experiments to measure the communication

latencies between AWS EC2 and Microsoft Compute Engine

instances and add the measured average round trip delay 29 ms

to the communication between our servers; we also measured

the communication latencies between these cloud servers and a

rented client located at the center of North America Continent,

and add the measured average round trip delay 177.5 ms to

the communication between our servers and client.

We set security parameter λ = 40, which makes the failure

probability of each query and eviction process to be lower

than 2−40. According to Theorem 1, we set q = 1024 which

is greater than 25λ; with different m, we adopt the following

combinations of system parameter by default: (m = 2, α =
β = 0.25), (m = 4, α = β = 0.25), (m = 8, α = 0.34, β =
0.13) and (m = 16, α = 0.34, β = 0.09).

In each evaluation, we vary N (i.e., the number of real data

blocks to export) between 220 to 226 and vary B (i.e., the size

of each data block in bytes) between 16K to 1M .

We measure the following metrics: (1) client-server com-

munication cost, which is measured as the average number of

blocks sent between the client and the servers to serve each

data query request; (2) inter-server communication cost, which

is measured as the average number of blocks sent among the

servers per data query; (3) query delay, which is measured

as the average time elapse from a query request is sent from

the client till the requested data block arrives at the client;

(4) server storage overhead, which is measured as the amount

of storage consumed at the server other than that for storing

N exported data blocks; and (5) client storage cost, which is

measured as the amount of storage consumed at the client.

To optimize the system parameter selection, we also mea-

sure the system costs with varying m and results are shown

in Table I. Note that, the table only shows the results when

N = 220, as the trend is similar with different N . As we

Table I
SYSTEM COSTS WITH VARYING m

m Client-Server
Comm. Cost

Inter-Server
Comm. Cost

Server Storage
Overhead

2 1.3B 96B 1.5 N

4 1.3B 58B 1.1 N

8 1.3B 67B 0.3N

16 1.3B 90B 0.17N

can see from the table, when m increases, the client-server

communication cost does not change; the inter-server commu-

nication cost decreases and then increases; the server storage

overhead decreases. Hence, in the following experiments, we

set m = 8 to make our system to have low communication

and storage overheads.

B. Comparison with S3ORAM

Comparisons are conducted over various metrics.
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Figure 4. Inter-Server Communication Cost.

1) Communication Costs and Query Delay: As shown in

Fig. 4, our ORAM system incurs smaller inter-server commu-

nication cost, which is about 60-80% of that of S3ORAM.

Both schemes require a constant number of blocks to be

transferred between the client and server for each query.

Specifically, in our system, the communication cost ranges

from 1 to 1.3 data blocks per query, which includes 1 target

block downloaded from S1 and some control messages for

query and eviction. S3ORAM needs to download 3 data blocks

as well as a small size of meta-data.

In terms of query delay, as shown in Fig. 5, our ORAM

has similar but a slightly higher query delay. This is due to

the fact that, the request data block needs to travel through

the path of S0 → S1 → client; the detour between the servers

incurs some extra delay, but it is very small compared to the

delay between client and server.

2) Storage Overheads: Both schemes require 3 non-

colluding servers. For S3ORAM, all servers have the same
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Figure 5. Query Delay

structure, different in that each server stores a different secret-

shared version of blocks. Our system stores data blocks on one

server, i.e., S0, while the other two servers only need to allo-

cate small storage to facilitate query and eviction. Fig. 6 shows

the server-side storage overheads. Specifically, the server-side

storage overhead of S3ORAM is 11N data blocks, while the

overhead of our system is (β+ 1+α
7 )N + (1+α)s

2 , which is no

more than 0.3N blocks.
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Figure 6. Server Storage Overhead

As the cost of the increased server storage efficiency, our

system requires a larger client-side storage space, which is

around 0.1% of the server-side storage cost.

Also node that, both schemes require some computation

at the server side. S3ORAM requires its servers to execute

addition and multiplication of Shamir Secret Sharing opera-

tions, while our ORAM requires server to run random number

generator to produce pseudo random sequences and then

perform XOR operations to decrypt or re-encrypt data blocks.

Our ORAM also requires the server to conduct authentication,

which is also XOR operations. Our evaluations show that,

the delay caused by the computations is nearly negligible

compared to the communication delay.

3) Summary: Compared to S3ORAM, our ORAM achieves

a same level of efficiency in client-server communication, a

higher level of efficiency in server-server communication, and

a significantly higher level of server-side storage efficiency, at

the price of increased client-side storage requirement, which

is only around 0.1% of the server-side storage capacity and

thus should be affordable for a client who runs an on-premise

facility such as a cloud storage gateway.

IX. CONCLUSION AND FUTURE WORK

This paper proposes an oblivious cloud storage system to

address the limitations of existing research efforts. Extensive

analysis and evaluation have shown that, the system can

simultaneously attain the features of provable protection of

data access pattern, low data query delay, low server storage

overhead; low communication costs, and accountability. In the

future, we plan to improve the performance of the system by

further reducing the communication costs, especially the inter-

server communication costs.
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