IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

Cellular Computational Network for Distributed
Power Flow Inferencing in Electric Distribution
Systems

Hasala Dharmawardena, Student Member, IEEE *
Ganesh K. Venayagamoorthy, Senior Member, IEEE * T
*Real-Time Power and Intelligent System Laboratory
Clemson University, South Carolina, USA
tSchool of Engineering, University of KwaZulu-Natal, Durban, South Africa
hasala@ieee.org and gkumar@ieee.org

Abstract—The modern power system is undergoing a rapid
transformation from centralized generation to distributed gen-
eration. The distributed generation consists of a large number
of small distributed energy resource (DER) based generators
with stochastic power output connected at different geographic
locations throughout the feeder. Therefore, the operation of the
future distribution grid requires efficient, scalable, and robust
techniques for system analysis and control. This study presents
a data driven approach to solve the electric power flow problem
based on the framework known as the Cellular Computational
Network (CCN). It is scalable since diakoptics resolves the system
to computational cells, which are then connected together to form
the full system. The results for the IEEE 4 Bus system shows
that this approach can generate accurate power flow solutions.

Index Terms—Smart grid, electric power distribution system,
power flow, diakoptics, CCN

I. INTRODUCTION

The exponential growth in the unconventional technologies
is driving the power system to a state that was not envisioned
by the planners and the operators of the past. This smart
grid revolution spans through the full spectrum of power
engineering, starting from generation, through transmission to
distribution and loads. The system is increasing in size as well
as in complexity as a result of this revolution. The traditional
technologies could prove to be insufficient to address the
engineering problems associated with the smart grid.

This paper demonstrates a novel technology to solve the
power flow problem in a scalable and efficient way, by
tearing the larger system into sub units following the Cellular
Computational Network (CCN) framework (extension of CCN
theory to the power flow problem). By using this approach,
power flow for a large network can be solved in a High
Performance Computing (HPC) framework. In the near future
there will be stage where the system is so large that the power
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flow problem cannot be solved without a piecewise diakoptics
approach.

Diakoptics refers to the piecewise method of solution. It is a
procedure for solving large-scale system problems by tearing
or decomposing. The problems to be analyzed seem to grow
at a very rapid pace. Neither the increased computer speeds
nor the computer core storages seem (o keep up with the
size and complexity of the problems to be solved. Diakoptics
approach has been applied in the past to solve large-scale
system problems [1].

The technique presented in this paper is a data driven
diakoptic approach and not the model based approach which
was first proposed by Kron [1], [2], [3]. Since the smart grid
revolution will inherently have significant amount of embed-
ded sensors generating vast amounts of data, a data driven
approach makes more sense than a model based approach,
where the system is ’learned’” from data rather than *'modeled’
from physics. Additionally, advanced controls can be applied
when the system can be learned.

The diakoptics is based on the cellular computational net-
works (CCN) framework first introduced in [4], and then de-
veloped into a complete framework in [5]. This framework has
been successfully applied to voltage estimation [4], frequency
estimation [6], [7] and wind forecasting [8], as well as power
system contingency studies [9] in the past. The framework
is based on mapping the physical connections directly to
a computational network, which helps to recreate the total
system using the connections. The connections between cells,
however, are limited by the physical connections. CCN can be
layered when more than one variable needs to be estimated.
There will be connections between the layers to represent the
dynamics of the connections between different state variables.

The rest of the paper is organized as follows: Section II
describes the general power flow problem that this study
is based on. Section III describes the case study that is
analyzed in this paper. Section IV discusses the simulation
results comparing the different methods applied. Finally, the
conclusions and future work is given in Section V.

paper N-20374.pdf
ermitted, but republication/distribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

II. POWER FLOW PROBLEM

Where, Vi, = |Vi|Z£0k, represents the node voltage and
Y, = |Y.4|£6,., represents components of the Bus admittance
matrix, the power flow equations are defined by (1).

Pi—jQi =V} Y YV, ()
j=1
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j=1
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The power flow problem consists of solving a set of non-
linear simultaneous equations. The power flow equations for a
balanced power system takes the form given in (1), (2) and (3).
One typical way to solve this is to apply the Newton Raphson
(NR) method [10]. This method calculates the Jacobian based
on (4) and then applies (5), to iteratively correct the error. This
approach, however, requires the calculation of the inverse of
the jacobian, which is computationally demanding and thereby
places a constraint on the size of the system that can be solved.
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III. CASE STUDY

A. Diakoptics of a Power system based on CCN for power
Sflow

Here a large power system is cut into a number of compu-
tational units based on the physical interconnections between
the buses. Each sub unit is trained separately and after it is
sufficiently trained the networks are connected. Therefore, step
one is to use a good dataset to train the cells separately. Step
two is to connect the network in the CCN structure and iterate
till systems states converge. This technique could be applied
both in parallel as well as in a sequential manner.

12.47: 416 kV
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@ IVl 2000 ft. |v, %S [v, 2500ft |v,
Infinite [IIZ] BE [134]
Bus L, L, L,

Fig. 1. Single line diagram of the modified IEEE 4 Bus test feeder [11].

In this study a modified IEEE 4 bus case [11], shown
in Fig. 1, is used to demonstrate the approach. This is the
simplest possible unbalanced feeder that can be analyzed and
therefore a good choice to set up the proof of concept. The
loads at Bus 2, 3 and 4 are 1600 kW, 1800 kW and 2000

kW at 0.9 power factor respectively (balanced loading case
considered). The rated voltage for Bus 1 and 2 (primary) is
12.47 kV and for Bus 3 and 4 (secondary) is 4.16 kV. The
transformer configuration is grounded wye - grounded wye.
The input variables are the loads at Bus 2, 3 and 4: Lo, Ls,
L,. The output variables are the Bus voltages at Bus 2, 3 and 4:
V5 V5 ,Vy. Each of these variables are made up of six primary
units, since each variable has three phases and each of these
phase quantities has a real and an imaginary component. The
data for training, as well as validation, was generated using
the OpenDSS simulator [12].

The traditional approach is to learn the system as one single
network. In this approach there will be one large computation
unit to represent the full network as shown in Fig. 2.
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Fig. 2. Computation engine using a single neural network.

B. CCN Framework

The basic building block of the learning system in CCN is
the cell. In this study the inputs to these cells are the voltages
and the loads. The voltage and the loads are processed in the
Cartesian form (real and imaginary values separately). Since
the system under study is a three phase system, both loads and
voltages have three dimensions corresponding to phases A, B
and C.

CCN is a new technology that was first introduced in [4],
and then developed into a complete framework in [5]. In
simple terms the CCN modeling framework can be explained
as mimicking the physical topology to develop the distributed
model of the system. The distributed model for Fig. 1 that
was derived using the CCN framework is shown in Fig.
3. The computational cell for this network is chosen as
a fully connected feed-forward neural network (multi-layer
perceptron) with one hidden layer consisting of ten sigmoid
activated neurons. The number of inputs to each cell depends
on the CCN connections, whereas the output is the calculated
bus voltage. The neural networks that make up the cells, with
inputs and outputs, are shown in Fig. 4.

C. Training CCN Cells

The cells are trained by applying time varying loads to Bus
2, 3 and 4, which are different in shape and characteristics.
A large input data set of 1 million points was generated
by choosing random input load values in the interval of
[Limin, Lmaz). Here, the minimum load, L,,;p, is 0, and,
maximum load, L., is the rated load value. This input data
set was used as the time-series input to the physical model
of the system that was set-up in OpenDSS [12] to generate
the corresponding output data set. Out of the full data set,
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Fig. 3. Overview of the Cellular Computational Network.
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Fig. 4. Structure of individual computational cells.

70% of the data was used for training, 15% was used for
validation and the rest was used for testing. The Levenberg-
Marquardt algorithm [13], [14], which uses an approximation
to Newton’s method, was used for training the neural networks.
This algorithm uses the sum of squares error function, V(w),
given in (6). Here e; is the output error for every input pattern
and w the weight vector.

N
Viw) =) el(w) 6)

i=1

The weight update equation is:
Aw = [JT(w)J(w) + pI] 1T (w)e(w) @)

Where J is the Jacobian matrix of the weights.

D. CCN Power Flow Engine

Once the cells are trained, they are connected based on
the CCN derivation that was shown in Fig. 3. The connected
CCN network takes the form shown in Fig. 5. After the cells
are connected, the bus voltages are calculated based on the
algorithm shown in Fig. 6.

The first step in the calculation is to initialize the voltages to
1 per unit (pu), since otherwise there is no estimation available
for the first iteration. The choice for using 1 pu is based on
the fact that any realistic power system Bus voltage will be
close to 1 pu. The second step is to calculate the voltages of
Bus 2, 3 and 4, in that order. The V3 calculated by cell 2
serves as an input to cell 2 and the Vj calculated by cell 3

serves as an input to cell 4. The stop condition for iterations
is based on the calculated difference in voltage magnitude in
all voltages between two consecutive iterations. When each
and every value in this set is smaller than a specified e, the
iterations will stop.
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Fig. 5. CCN Power flow inference engine.

Note that the only one initial value for Bus 2 is required
to start the iterations in this method. The full initialization is
only required if a parallel approach is used.

IV. RESULTS AND DISCUSSION
A. Results

The performance of the CCN inference engine is compared
with the MLP inference engine by applying the balanced
random load profile shown in Fig. 7 to the three loads. To
ensure a fair comparison, the number of hidden layer neurons
in the MLP implementation is set to 20. As a result both
methods have an equal 360 tuned weights.

Voltage magnitude and APE of Bus 2 phase A is compared
in Figs. 8 and 9. Since this is closest to the infinite Bus (Bus
1), the voltages are very close to 1 pu and shows minimal
variation from 1 pu. The CCN network accuracy compares
with the MLP results. Note that APE is calculated using (8).
Here, V;PR . is the estimated voltage magnitude of phase
Ph of Bus k and Vkp h is the actual voltage calculated through
OpenDSS.

APE =100 % | (Vi Lpimare — Vi ") Vi ®)

Voltage magnitude and APE of Bus 3 phase A are compared
in Figs. 10 and 11. Whereas the APE has increased for both
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Fig. 7. Load profile (phase A) used to evaluate performance.
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Fig. 9. Absolute Percentage Error of the voltage magnitude of Bus 2 phase
A.

MLP and CCN, the resulting APE is very low and the error
magnitude for the two methods are comparable.

From the set of buses Bus 4 is the farthest away from the
infinite bus, and as a result it is the most challenging bus to
infer voltage. Therefore, this bus is analyzed in more detail.

Figs. 12 and 13 shows that errors has increased in the
estimation. These plots also show that for Bus 4 phase A,
CCN accuracy is consistently comparable with MLP accuracy.
Additionally, the variation of error follows a similar pattern
across the two different methods. Figs. 14, 15, 16 and 17 shows
that a similar pattern holds for phase B as well as phase C of
Bus 4.

Fig. 18 compares the phase angle inferred from MLP and
CCN with the reference generated by OpenDSS for Bus 4
phase A while Fig. 19 compares the inference errors of CCN
with MLP. Fig. 20 compares the phase angle inferred from
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Fig. 11. Absolute Percentage Error of the Bus 3 phase A voltage magnitude.
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Fig. 12. Voltage magnitude (Bus 4 phase A).
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Fig. 13. Absolute Percentage Error of the Bus 4 phase A voltage magnitude.
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Fig. 14. Voltage magnitude (Bus 4 phase B).

MLP and CCN with the reference generated by OpenDSS for
Bus 4 phase B. Fig. 21 compares the inference errors of CCN
with MLP. Fig. 22 compares the phase angle inferred from
MLP and CCN with the reference generated by OpenDSS for
Bus 4 phase C. Fig. 23 compares the inference errors of CCN
with MLP.

The absolute percentage error for Bus 4 voltage is compar-
atively high in comparison to Bus 2 and 3. However, across
all phases, it is evident that CCN has a better performance in
comparison to MLP with respect to both voltage magnitude
and angle.

In order to gauge overall performance of the two different
approaches, the mean of the errors over the 50 second result
set is calculated and resulting values for MLP are compared
with CCN. The results looking at both inferenced voltage
magnitude as well as voltage angle, are given in Table 1.
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Fig. 15. Absolute Percentage Error of the Bus 4 phase B voltage magnitude.
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Fig. 16. Voltage magnitude (Bus 4 phase C).

B. Discussion

The mean absolute percentage error of the voltage magni-
tude as well as the mean absolute error of the voltage angle
has increased when moving from Bus 2 to Bus 4. The results
show that both CCN and MLP perform at a very high accuracy.
Both methods accurately estimate the system output and the
observed error values are negligible in the context of a real

application.

The errors of both methods have increased for the tested
data set with increase in distance to the infinite bus. Even
though the network is unbalanced, the results show similar
voltages in the three phases since the network was designed

assuming balanced loads.

The CCN method is a distributed and scalable approach.
The training is faster and requires minimum computational
resources, yet shows comparable performance in accuracy
to the MLP network. The CCN approach does require a
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Fig. 17. Absolute Percentage Error of the Bus 4 phase C voltage magnitude.
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driven, it also provides an avenue to efficiently tune the cells
in an asynchronous manner.

The model that was used to set up the proof of concept was a
very simple radial network. In order to prove the applicability
of the method in a general load flow problem, the CCN needs
to be applied to a larger network which represents an actual
system operating in the real world.

The advantage of using a data driven approach is the
possibility of learning from data even in circumstances where
physics based models are unavailable. The disadvantage is that
a high quality data set is required.

The initial data set used to train the models cost some
computational resources. However, The approach used in
this study does not require matrix inversion. Therefore, once
trained, the model requires minimal computational resources
to solve load flow.

The results show that CCN and MLP can accurately identify
the power flow model. CCN is more scalable, efficient and can
be computed in a distributed manner, which makes it a better
approach for application in the future smart grid.

One key extension to this study is to find the applicability
of using algebraic connectivity or similar index from the graph
theory domain to understand characteristics such as stability
and speed of convergence of the CCN.

REFERENCES

[1]1 H. Happ, “Z diakoptics-torn subdivisions radially attached,” IEEE Trans-
actions on Power Apparatus and Systems, no. 6, pp. 751-769, 1967.

[2] G. Kron, Diakoptics: the piecewise solution of large-scale systems.
MacDonald, 1963, vol. 2.

[3] F. M. Uriarte, “On kron’s diakoptics,” Electric Power Systems Research,
vol. 88, pp. 146-150, 2012.

[4] L.L. Grant and G. K. Venayagamoorthy, “Cellular multilayer perceptron
for prediction of voltages in a power system,” in Intelligent System Appli-
cations to Power Systems, 2009. ISAP’09. 15th International Conference
on. IEEE, 2009, pp. 1-6.

[5] B. Luitel and G. K. Venayagamoorthy, “Cellular computational net-
worksa scalable architecture for learning the dynamics of large net-
worked systems,” Neural Networks, vol. 50, pp. 120123, 2014.

[6] Y. Wei, 1. Jayawardene, G. K. Venayagamoorthy et al., “Frequency
prediction of synchronous generators in a multi-machine power system
with a photovoltaic plant using a cellular computational network,” in
Computational Intelligence, 2015 IEEE Symposium Series on. IEEE,
2015, pp. 673-678.

[7]1 Y. Wei and G. K. Venayagamoorthy, “A lite cellular generalized neu-
ron network for frequency prediction of synchronous generators in
a multimachine power system,” in Neural Networks (IJCNN), 2016
International Joint Conference on. 1EEE, 2016, pp. 3085-3092.

[8] C. Pathiravasam and G. K. Venayagamorthy, “Spatio-temporal character-
istics based wind speed predictions,” in Information and Automation for
Sustainability (ICIAfS), 2016 IEEE International Conference on. 1EEE,
2016, pp. 1-6.

[9] L. Wu, G. K. Venayagamoorthy, and R. G. Harley, “Cellular compu-
tational networks based voltage contingency ranking regarding power
system security,” in Power Systems Conference (PSC), 2018 Clemson
University. 1EEE, 2018, pp. 1-6.

[10] J. J. Grainger and W. D. Stevenson, Power system analysis.
Hill, 1994.

[11] W. H. Kersting, “Radial distribution test feeders,” IEEE Transactions on
Power Systems, vol. 6, no. 3, pp. 975-985, 1991.

[12] R. C. Dugan, “Reference guide: The open distribution system simulator
(opendss),” Electric Power Research Institute, Inc, vol. 7, 2012.

[13] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with
the marquardt algorithm,” IEEE transactions on Neural Networks, vol. 5,
no. 6, pp. 989-993, 1994.

McGraw-

[14] D. W. Marquardt, “An algorithm for least-squares estimation of non-
linear parameters,” Journal of the society for Industrial and Applied
Mathematics, vol. 11, no. 2, pp. 431441, 1963.

paper N-20374.pdf



