
1 

 

Software for Scientists facing Wicked Problems— 

Lessons from the VISTAS Project 

 

Kirsten Wintersa, Judith B. Cushingb,1, Denise Lacha 

 

a Oregon State University, Corvallis OR, USA 

b The Evergreen State College, Olympia, WA, USA

                                                                 
1 Corresponding author: Judith B. Cushing, The Evergreen State College, Olympia WA, USA. 360-701-6450, e-mail: judyc@evergreen.edu. 



2 

 

ABSTRACT 

 

The Visualization for Terrestrial and Aquatic Systems project (VISTAS) aims to help environmental scientists 

produce visualizations for themselves and for a range of stakeholders including other scientists and decision makers.  

The need for better visualization tools for scientists is well-documented, but little prior work determines what kinds 

of visualizations work with different audiences and different kinds of problems. The VISTAS project applied social 

science research methods to this question and identified issues relevant to visualization software development, 

particularly where the domain involves wicked problems such as climate change.  This paper presents visualization 

issues confronted by VISTAS collaborators who used visualization to enhance their own inquiry and to 

communicate complex concepts, present results, and include decision makers in data exploration and hypothesis 

formation.  Case study findings suggest that scientists use visualization to communicate concepts, validate findings 

to skeptics, and include stakeholders in data exploration; they decide which visualizations to present based on their 

impressions of audiences when including visualizations in decision-making.  The primary lesson learned is that 

extending the scope of the s o f t w a r e  p r o b l e m  domain beyond the explicit functionality of creating 

visualizations, to include the reactions or enhanced participation of decision makers, will likely provide scientists 

with more effective software.   

 

Keywords: Scientific Visualization, Visual Analytics, Wicked Problems, Climate Change, Post-Normal Science, 

Software Development 
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1. INTRODUCTION 

Current ecological problems such as environmental change drive researchers to look outside their normal, 

discipline-oriented boundaries to understand how their particular model, process or system might interact with other 

models and systems. Technology innovations from computer science and engineering research provide not only 

hardware (e.g., sensor tools, processing capability of computers), but also software, for dealing with ecological 

problems [1].  Using these new technologies, researchers learn, observe, and might come to conclusions differently 

than they had before.  New practices usually emerge with technical innovation, and the relatively recent deluge of 

data now available for analysis is no exception. Some observers have suggested the data deluge might lead to the 

end of theory, where data mining will be just as important as experimental hypothesis testing [2]. Whether that 

comes to pass or not, the amount of data collected by sensors and models is clearly outpacing the ability of scientists 

to process and analyze data, and many scientists ask how they can increase their understanding and use of data, and 

whether technology innovations can lead to new insights into contemporary problems.    Clearly, the nearly 

overwhelming amount of data increasingly available to scientists necessitates looking beyond current disciplinary 

practices for new approaches. 

Responding to the above issues, in 2011 computer scientists, social scientists and environmental scientists at 

The Evergreen State College, Oregon State University, Willamette University, the Environmental Protection 

Agency, and the Conservation Biology Institute launched the Visualization for Terrestrial and Aquatic Systems 

project (VISTAS). The project had three initial objectives, each with explicit expected outcomes:    

1) Conduct ecology informatics and computing research to enable the visual analytics of environmental science 

models and data—in order to develop a visualization tool that would be used by our collaborators  and 

visualization research transferable to other visualization efforts. 

2) Jointly with three close science collaborators, conduct environmental science research using the VISTAS 

software and study VISTAS’ extensibility to other applications—in order to create visualizations applied to 

climate change problems and publish environmental science research that use those visualizations. 

3) Use social science methods to study VISTAS’ co-development process, visual analytics, and usability—in 

order to:  
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a) conduct social science research into understanding which visual analytics work, for whom, and why;  

b) publish best practices for engineering complex scientific systems;  

c) determine prerequisite knowledge and skills for co-developers and articulate a process for studying co-

development of scientific visualizations and software. 

This paper focuses on the third aspect of these objectives; we began with the research question “which 

visualizations work for which audiences and which problems”.  Social scientists partnered with VISTAS conducted 

a qualitative case study to better understand how and why scientists in VISTAS intended to use visualization and 

what the benefits and limitations are to visualization use for informing the design and development process. 

Analytical generalizations, then, might be made for how to incorporate into the design and development process the 

needs of primary users (scientists) for communicating with secondary users in public policy settings.  VISTAS 

investigators originally had assumed that their environmental scientist collaborators primarily used visualizations 

to enhance their own scientific inquiry, sorting out reams of sensed and modeled data to arrive at new insights into 

the underlying physical phenomena, or at least to conduct their own research more efficiently.   We also believed 

that scientists would use visualization to present results to other scientists. Within a year, however, it became clear 

that two of our three collaborating teams, those studying the impacts of climate change, were using visualizations 

to explain complex environmental science phenomena to non-scientist audiences, and needed to create 

visualizations we had not anticipated.  Non-scientists with whom the scientists were interacting were typically local, 

state, or national government decision makers involved in defining policy for environmental science problems.   

That our scientist collaborators presented different kinds of visualizations to non-scientists prodded us to 

modify both software specifications and development priorities.  While we had expected changes during the 

development process, these new requirements involved more extensive review and revision of the underlying 

scientific and social problem than expected, and in fact altered some underlying technical assumptions that had 

driven initial software design and implementation. We also refined our research question(s) to also focus on the 

role of visualization in communicating scientific results involving wicked problems to decision makers: 
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1) Do visualizations that scientists develop for their own use or to show to other scientists differ 

from those developed for communicating with decision makers in the context of wicked 

problems?  If so, how and why? 

2) Do best practices for co-developing visualization software used in this context differ from those 

developed for a purely scientific use?  If so, how? 

3) Do prerequisite knowledge and skills for co-developers for this kind of software and 

visualizations also differ, and if so how? 

Thus, we realized that, even if visualization and other innovations were successful in providing scientific insight 

and solving scientific problems, the challenge of addressing pressing environmental societal problems—

especially those classified as “wicked”—would  remain [3]. 

In this paper, we present findings that suggest that designing visualizations and developing software for 

scientists who work with decision makers in the context of wicked problems differ from developing software that 

does not involve wicked problems or where decision makers are not involved.  Scientists, software engineers and 

systems analysts who co-design and co-develop such artifacts should thus be cognizant of the type of problems to 

which those artifacts will be applied; this implies that the co-developers should understand the characteristics of 

wicked problems in order to recognize them and act accordingly.  Sections 2 and 3 provide background information, 

explaining first the changing roles for science in the context of wicked problems and post-normal science, and then 

the case study methodology employed in our study of VISTAS’ co-development process, visual analytics, and 

usability. Section 4 describes the case study participants, the context of their work, and the design process for 

VISTAS’ visualization and software. Section 5 presents findings and analysis, and in Section 6 we discuss how 

visualization and visual analytics strategies might affect outcomes of problem solving in a public policy setting and 

how our work relates to other digital government studies.  We then go on to discuss strengths and limitations of this 

work and summarize conclusions.  

We believe our results are relevant to the digital government community as they develop or select software 

to study complex scientific problems in which the public holds considerable interest.  The primary contribution lays 

in our contention that understanding the nature of so-called wicked problems is critical to developers and procurers 
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of software products that convey scientific results to decision makers and the public.  While the Association for 

Computing Machinery (ACM) engineering code of ethics contends that “…software engineers…[should] consider 

broadly who is affected by their work,” stakeholders are typically thought of not only as developers and users, but 

also those who have to support, deploy, or pay for the software; secondary users are at best thought of as those 

whose information is ingested into software systems [4]. In our case, the software and visualizations are shown by 

scientists to decision makers, and most scientists, designers and developers would contend that it is the primary 

user’s responsibility to design effective visualization and relate to software developers what they need for that.  

Further, while engineers have traditionally been taught to eschew policy matters [2, 5], recent social science research 

suggests that technology inevitably has policy implications [6] despite best efforts of scientists and engineers to 

divorce themselves from policy decisions [7].  We now believe developers will produce more effective software if 

they explicitly recognize the role their artifacts play in decision making, and hence in policy.  In light of recent 

studies in public policy and philosophy of science that suggest that policy and government decision making are not 

greatly influenced by scientific research results and, conversely, that nonscientists rarely influence the formulation 

of science problems [6], it seems critical to extend both the scientists and software engineers’ understanding of both 

primary and secondary users of their science and technology, given the global-scale nature of current issues and the 

likely failure of straightforward technological solutions to solve those problems [8, 9]. We do not advocate that 

scientists and engineers practice normative science, but that they become more aware of the information, 

technology, or science needs of those who set policy and make decisions. 

2. WICKED PROBLEMS AND POST-NORMAL SCIENCE: CHANGING ROLES FOR 

SCIENCE  

The late 20th century brought a host of grand challenges to the discipline of ecology, including the concept of 

coupled human and natural systems (e.g., Liu et al [10]), which present as complex, dynamic, and adaptive 

systems. When managers or policy makers deal with problems in these complex systems, they often exhibit 

features of what have come to be known as wicked problems (Table 1). Wicked problems are characterized 

as difficult or impossible to resolve because of the fluid and often contradictory requirements for any effective 
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or acceptable solution [11].  For example, the complex interdependencies of the issues usually result in the 

creation of new problems even as we think we’re making progress with the original problem [ 1 2 ] . For the 

most part, traditional “normal science” [ 1 3 ]  is unprepared to answer questions posed by policy makers 

responsible for managing the complex systems that generate wicked problems. New approaches, what have come 

to be known as post-normal science, are emerging as ways to generate the information needed to make intentional 

and collective choices to resolve wicked problems. 

There are three key, interconnected, components of the post-normal science model that make it different 

from other approaches and more appropriate for dealing with wicked problems: (1) Uncertainty is considered 

more than a technical or methodological issue; uncertainty is accepted as the state of affairs within which 

decisions must be made. (2) Different approaches are recognized and leveraged rather than assuming a scientific 

or policy consensus can be found. (3) The group of individuals considered capable of assessing the quality of 

the results is extended beyond the normal disciplinary peer community to a wider range of experts and 

knowledge; this new group is then better able to consider the array of risks, benefits, and implications for multiple 

stakeholders [3]. 

This relatively new approach to developing science, especially in the face of wicked problems, is in 

contrast to normal science. In normal science, peer communities are typically limited to those experts who can 

judge the quality of the science; for the most part, these are disciplinarily-trained peers (e.g., environmental 

scientists, biologists, physicists, geologists). When uncertainty and decision stakes increase, the post-normal 

approach suggests that the peer community can and should be extended to non-disciplinary experts, those with 

experiential, context, or local expertise. This is because a single scientific discipline and strictly scientific 

knowledge are, by definition, incapable of capturing the full complexity of such problem settings. In post-

normal approaches, the peer community is extended to include not only producers of information but potential 

users as well. Non-experts can contribute to knowledge production in a variety of ways including co-framing 

problems, providing non-scientific information or data, acting as critical reviewers of the output, helping 

interpret data in the local context, and acting as critical reviewers of the output. 
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Multiple approaches have been created to bring non-experts into both the production and evaluation of 

knowledge including consensus conferences, which have been used to bring together competing perspectives 

and values around topics like bioremediation of hazardous wastes [ 1 4 ] ; citizen juries, which have been 

organized to assess the quality of biomedical research [ 1 5 ] ; or the introduction of uncertainty guidance to the 

Netherlands Environmental Assessment Agency that includes ways to consider both quantitative and qualitative 

metrics of uncertainty in risk assessments [16]. Another approach is creation or use of a knowledge to action 

network (KTAN) [17] that brings together a dynamically evolving group of participants who work together to 

pose and answer questions collaboratively and iteratively, with the goal of creating usable information (or 

knowledge). One highly visible and credible example that integrates the idea of an extended peer community is 

the Intergovernmental Panel on Climate Change (IPPC) [18], which can best be described as an 

interdisciplinary assessment of scientific research to integrate available knowledge for use by policy makers 

[ 1 9 ] . This extended peer group is not only an interdisciplinary group of scientists studying the problem, but an 

interdisciplinary group of scientists and policy experts working together to interpret and understand the 

consequences of the data. 

Two of VISTAS scientist collaborators work with non-scientist decision makers on wicked problems 

related to the impact of climate change on local and regional landscapes.  In these cases, even as the decision stakes 

rise for policy makers and citizens due to climate impacts, the level of uncertainty increases as global models are 

downscaled to regional areas and as forecasts are stretched into an unknowable future.  This combination of high 

systems uncertainty and high decision stakes suggests the situations these teams find themselves in have evolved 

such that a new problem solving strategy grounded in post-normal science may be appropriate for developing the 

information needed to move forward on local and regional decisions.  What makes these cases unique is that our 

collaborators—and subsequently the VISTAS team—are part of a larger team that includes non-scientists working 

together to co-develop a sophisticated model to explore together the impact of climate change in the local context.  

Not only was the choice of technology co-selected, but the scientists and the community also co-developed the 

inputs and assumptions of the model, working together as a knowledge to action network. VISTAS developers were 
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brought in to develop the software tools and help the team create visualizations to explain results generated by the 

complicated model to answer questions about the impact of climate change.  

3. CASE STUDY METHODS FOR DESIGN AND ANALYSIS  

A single case study approach [20] was chosen for this project as a way to test the propositions the VISTAS research 

team (n=21) set out to explore, and in a way that might be beneficial to other researchers considering similar 

problems in scientific visualization meant for both exploration and for broader communication of complex datasets. 

The case study approach is often used when a research question is unveiling concepts and discoveries in a relatively 

new or unexplored topic, such as in this study about innovation and a new technology like VISTAS. Case study is 

also a useful method for uncovering deep insight into a topic or group of people over time. A current gap in the 

visualization community is studies that incorporate real users, with real problems, using real data [21]. Studies in 

the wild, such as VISTAS, are valuable because they explore phenomena within real settings, rather than using 

contrived settings such as a lab with controls.  

The approach included working with key informants to test the use of visualization as a way to analyze and 

communicate research output. Each key informant—ecologists and computer scientists—was formally interviewed 

at least once with a semi-structured interview. Instruments and protocols were crafted both early in the VISTAS 

case study and developed over time. Interview questions were based on a number of propositions, including the 

hypothesis that visualization would help scientists understand their data and come to insight more easily. 

Developing questions and analyzing responses based on initial propositions are common techniques for framing a 

single case study [20]. 

In addition to the transcripts from interviews with key informants, data in the form of (1) field notes from 

emails and informal conversations with members of the group; (2) weekly project meetings; and (3) audio 

recordings of annual all-hands meetings (n=21 participants, including the seven key informants) were also analyzed.  

General e-mails and the project website, though not used in the analysis, became an archive of the timeline of events 

and project highlights. Project meetings varied topically to include both high-level ecology problems and technical 

detail. All data from interviews, conversations, meetings, and memos were transcribed for an analysis that used 
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themes built from the project’s propositions, interviews with the key informants, and models and frameworks for 

understanding the facets of the VISTAS case study. 

Data analysis from the case study provides insight into both the visualization software design process and 

the greater ongoing conversation about how visualization contributes to problem solving in an era of wicked 

problems and big data. Initial themes and topics for analyzing communication of big data using visualization were 

based on the framework of post-normal science (e.g., for analyzing communication with stakeholders and the 

extended peer community) and were created over the course of the project as new topics emerged (e.g., audience 

analysis practices of the case study scientists).  Table 2 describes what VISTAS primary users consider to be 

important issues related to developing data visualizations for ecological science. The themes suggest that the design 

team consider not only the primary users, but also the secondary users of VISTAS visualizations.  It should be noted 

that the VISTAS software development project did not include stakeholders directly in any of the project data or 

content at the time of this analysis, so the results presented here about the relationship between the key informants 

and their stakeholders is based on the key informants’ perceptions about those needs. Other similar development 

projects also base development on assumptions made about secondary users in a similar way during their first round 

of development (e.g., QuestVis [22]).  Codebook definitions in Table 2 were developed through iterative analysis 

of transcripts. 

4. CASE STUDY PARTICIPANTS AND THE CONTEXT OF THEIR WORK 

During the VISTAS software design process, which was tracked and analyzed as the case study described above, 

scientists with real data who were dealing with real scientific problems determined development directions. We 

thus assert that the co-development process fit the description of a problem-driven design project. Software 

developers considered the types of visualization that science collaborators requested, and VISTAS collaborators 

communicated how they wanted to visualize results for different audiences.   

The first and primary visualization design objective for VISTAS involved recreating the collaborators’ 

visualizations of physical terrain from flat two dimensions (2D) to incorporate topography.  While scientists have 

always suspected that the ecology of a region varies with topography, only recently have innovations in data 
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acquisition enabled them to collect data, conduct experiments, and validate models in topographically complex 

areas.  Our collaborators came to us with an overarching problem:  with their current visualization tools, they could 

not see topographic differences that might drive the physical processes under study. They wanted to enhance current 

two-dimensional visualizations with digital elevation models so that the landscape’s topography would stand out in 

three-dimensions.  They were convinced (and this has been confirmed) that the third dimension would allow them 

to intuit more readily where environmental variables respond to changes in drivers and assumptions. Thus the 

primary visualization problem we aimed to address was (and remains):  visualize landscape processes where 

topography likely plays a role.  

We found during the VISTAS project, however, that topography generally serves a different purpose for 

non-scientist audiences. This theme emerged over the course of the project in both the interview and meeting data 

when VISTAS scientists highlighted the distinction between the different audiences to whom they present 

visualizations, and described how they would design visualizations with a particular audience in mind.  Rather than 

illuminate the science problem of determining the effect of topography on ecological response variables, topography 

helps non-scientists recognize and relate to familiar landscapes; the third dimension allows secondary users to more 

easily recognize features on the landscape. Other primary visualization needs were to produce animations, i.e., 

include in visualizations a fourth dimension (time), and to display changes in landscape via fly-throughs that 

highlight particular areas.  A third initial goal, not yet accomplished, was to be able to view data at different 

geographic extents (spatial scales) in the same window.  To make developing the new system tractable, we focused 

on three environmental scientist collaborators; all would benefit from viewing data topographically but each focused 

at different spatial scales.  They all also wanted to use animation to visualize space displacement or the fourth 

dimension time, and to view different variables or scenarios simultaneously.  The following three sections describe 

our collaborators’ projects and resulting VISTAS visualizations. 

4.1 Alternative Land Use Scenarios  

VISTAS collaborator John Bolte and his team at Oregon State University worked with VISTAS developers to 

embed VISTAS into ENVISION, Bolte’s open-source GIS-based multi-agent model for scenario-based community 
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and regional integrated planning and environmental assessments [23]. ENVISION integrates spatially explicit 

models of landscape change processes and production for alternative futures analyses, and currently produces 2D 

maps that illustrate changes over time of modelled attributes such as species habitat, ecosystem type, and 

disturbance. Bolte believes that 3D maps and animations will help both scientists and stakeholders better understand 

alternative futures. He also wants to view side by side camera-position-coordinated fly-throughs at specific points 

in time for different attributes or scenarios.  

Bolte’s team wanted to generate fly-throughs for a stakeholder decision process focusing on better 

understanding how biophysical systems, management actions, and socio-economic influences interact to affect 

sustainability in fire-prone landscapes under climate change. Figure 1 shows a still-view of a VISTAS animation, 

designed to show how land use affects vegetative cover, which in turn will determine fire hazards.  Bolte’s team 

was also tasked with modeling the impact of climate change on water availability in the Big Wood basin of south 

central Idaho. This project involved a group of community members and potential information users engaged with 

scientists and computer modelers.  Initial meetings included state and federal agency staff, non-governmental 

organization members, local and county officials, university extension agents, canal company representatives, and 

area residents interested in thinking about the future of the region.  Back-casting was used to start people thinking 

about the future and characterizing conditions that might lead to desired futures [24].  Later, the group developed a 

concept map (Figure 2) and a system dynamics model of the hydrological system [25], both of which the group 

found too static to help in decision-making in the face of multiple uncertainties including, but not limited to, climate 

change.  

The above activities deepened all participants’ knowledge of relationships among natural and human 

systems, and others’ perspectives and values around those systems. The concept map exercise moved the group 

forward in identifying variables they wanted to consider, data they would need to support those variables, and what 

probably could not be included in the model due to limitations in data or research methods, and brought about two 

impacts critical to the VISTAS visualization effort: (1) Non-scientist participants realized that a complex model 

was critical to understanding and mitigating the problem, and (2) scientist participants tasked with developing that 
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model were provided with assumptions and variables that the community viewed as important and that would drive 

the model. In other words, the process identified gaps in knowledge for both non-scientists and scientists.  

As a result of this exercise, Bolte and his team were tasked with co-developing a complex model that would 

allow the joint exploration of the impact of climate change in the local context. In this case, not only the choice of 

technology but the inputs to and assumptions of the model were co-developed by scientists and the community, 

working together as a knowledge to action network. VISTAS developers were then tasked to help Bolte create 

visualizations that could help explain the results generated by the complicated model to answer questions about the 

impact of climate change in this western basin. Thus visualization challenges not anticipated for 

VISTAS/ENVISION’s use with non-scientist stakeholders were expanded to showing model assumptions and 

levels of uncertainty and aggregating variable types to simplify visualizations, as well as increasing audience 

attentiveness with 3D maps, animations, and fly-throughs.  

4.2 Hydrological-Biogeochemical Processes  

VISTAS collaborators Bob McKane and Allen Brookes of the U.S. Environmental Protection Agency (EPA) use 

VISTAS to demonstrate results from their ecohydrological model VELMA [26]. Given a set of drivers (e.g., 

temperature, precipitation) and disturbance (e.g., fire, harvest, fertilization), VELMA models the interaction of 

stream flow and biogeochemical processes, and carbon and nitrogen dynamics in plants and soils. Running on a 

daily time step across thousands of pixels, VELMA generates multiple gigabytes of output for multi-century 

simulations of large landscapes. VELMA results are difficult to tune, interpret and communicate without 

visualization. The EPA currently studies nitrogen deposits, a critical problem near croplands and in wetlands 

because agricultural pollutants and eutrophication are critical water quality problems, and many bays, estuaries, and 

tributaries exhibit high nitrate levels. VELMA was run to investigate the feasibility of using an ecohydrological 

model to help bound uncertainties in difficult-to-measure nitrogen fluxes. VISTAS visualizations (Figure 3) were 

generated from VELMA by McKane for an EPA webinar in July 2014, in which decision makers participated.  

Unanticipated specifications for VELMA arose as McKane presented the results of VELMA visualizations 

to non-scientist stakeholders. For example, McKane found it easy when refining his science model to view one 
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image with land use (Figure 4, Left) then to imagine in his mind’s eye the land use boundaries on VISTAS 

visualizations of nitrate flux (Figure 3), but his new audience wanted to see the land use boundaries explicitly. This 

issue was critical enough for McKane that he reprioritized his wish list for visual analytics within VISTAS and put 

as top priority the overlay of land use boundaries. While this seems like a simple change in the visualization, for 

technical reasons it required re-thinking how to render the overlay in VISTAS. See Figure 4 (right) for an initial 

effort at this visualization; achieving this feature will involve a re-implementation of the underlying graphical 

rendering technique, a non-trivial undertaking. 

4.3 Creating Visualizations with VISTAS 

VISTAS grew out of prior scientific visualization work [27] implemented in Java and the Visualization Toolkit 

VTK; that initial expertise guided VISTAS’ modular, scalable design implemented in C++ and OpenGL. We aimed 

to create a scalable and extensible visualization tool for environmental scientists that allowed viewing landscapes 

in 3D and animating landscape changes over time and space—all with a response time that would allow for 

exploratory analysis.  A plug-in design made adding new data and visualization types straightforward, and clear 

architectural separation between the visualization core and user-interface components rendered practical embedding 

the visualization engine in other scientific applications such as ENVISION [28]. Throughout the software design 

process, we have emphasized close collaboration with users to solve their problems, interpreted generally as viewing 

data in the context of topographically complex terrain.. 

We knew that visualization can help non-scientists better understand complex scientific results [1] and 

VISTAS scientist collaborators specified this as their primary objective. As VISTAS matured  and our collaborators 

wanted to also use visualization in problem solving (analysis) sessions with stakeholders, both scientist and 

developers began to think about how to enhance the visual interest of the images (e.g., improving the aesthetics or 

providing animation) to create visualizations more accessible to secondary non-scientist users [29].  To address this 

problem, we chose a design model for visualization.   
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4.4 Using a Design Model for Visualization 

Munzner’s nested blocks and guidelines model is often used for conceptualizing design and evaluation criteria by 

visualization design researchers [30].  The nested design model defines four levels; analysis in the highest level 

(problem characterization) cascades to affect design criteria at lower levels, ideally aligning with the problem at 

hand (Figure 5). For example, to solve a problem within a certain domain, scientists might rely on datasets that they 

analyze using statistics or with a simulation; these datasets constitute the data or task abstraction block, where 

researchers choose which phenomena to measure [31]. Once scientists collect datasets and perform necessary 

manipulations, transformations, or simulations, a technique for visualizing the data or model is chosen.  The domain 

problem characterization thus affects all design decisions about the resulting visualization.  We used our own 

refinement to Munzner’s model to characterize the outermost level of the nested model—the domain problem—

and postulated that for wicked problems the domain problem is dynamic and difficult to problematize [32].   

4.5 Design for Wicked Problems 

VISTAS end users are scientists and stakeholders working together to understand the short- and long-term effects 

of decisions on the landscape, and problems vary in size and complexity from solvable puzzles to wicked problems. 

The wicked problem paradigm applies to the VISTAS case study, where the environmental domain problem is 

tightly coupled with sociological and political domains [32]. Wicked problems, such as what to do about climate 

change, move beyond the ability of science to determine clear causal relationships, to predict the future, to control 

or overcome unpredictable outcomes, or to establish the best outcome [33]; these factors  make them not only 

challenging to solve but also controversial.  VISTAS scientist collaborators distinguish among activities to address 

research problems, but they do not necessarily frame their research activities by referring to them as wicked 

problems, nor do they talk about the distinction between complicated problems and simpler puzzles when they 

devise models or analyze data. Even so, understanding that science will be conducted within the context of wicked 

problems could help characterize and design software for visualization use. This context includes not only 

technically challenging problems, but also problems where there might be low consensus and skepticism within the 

extended community.  
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5. Findings and Analysis 

The VISTAS research group began the project with the proposition that data visualization tools could help scientists 

better understand and communicate their own data, as well as increase their ability to integrate their research with 

others and overcome challenges associated with big data [34]. VISTAS science collaborators had used visualization 

prior to the project, but their processes, tools, and output varied. They also vary in their workaday tasks, not only 

because of the ecological processes they study, the scale at which they study, or the part of the visualization process 

they work on, but because they use technology and modeling in different ways, and produce results for different 

audiences.  

As discussed above, one visualization design objective for VISTAS involved moving the collaborators’ 

visualizations of physical terrain from flat 2D to incorporate topography so they could observe the topographic 

difference in landscape that drove the physical processes under study. In constrast, visualizing topography helped 

non-scientist audiences recognize and relate to familiar landscapes. This difference scientist and non-scientist 

emerged over the course of the project in both the interview and meeting data when VISTAS scientists highlighted 

distinctions between different audiences to whom they present visualizations, and described how they would design 

visualizations with a particular audience, such as non-scientists, in mind.  Visualizations created by VISTAS 

scientists become artifacts viewed by secondary users, who for the most part are not scientists.  As described in the 

post-normal science paradigm, the extended peer community often requires the scientist to design visual output to 

enable others’ understanding. Key to designing both the tool and the visualization is the realization that the scientist 

is most likely to use the visualization in telling a story about the results of his or her scientific research. Consider 

the dialogue between a VISTAS computer scientist and a VISTAS scientist at a development meeting in April, 

2013:  

Project Lead: Does [the scientist] ever see his role diminishing as the [translator of the model 

results]? Could someone naïve understand without him being the [translator]?  
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Computer Scientist: Look at this as part of the set of tools to make an end product that someone 

views. The Public is not going to sit down and use these tools…these are all tools that scientists use 

to produce a final product…final material is accompanied by metadata or the person who 

explains…  

 

Visualization research studies often focus on tasks, techniques, and algorithms, or lower-level software design 

considerations in order to boost automation of tasks and the power of machine learning [35].  However, the 

contribution of the case study presented here is aimed at broader issues in public policy, ecological management, 

and understanding scientific research practices.  Our collaborators are aware that visualization might affect their 

communication practices and have dedicated their time to developing better software tools for such a purpose: 

. . . standing back, and being able to see how different the landscape looks in these four different 

views, looking forward in time under different scenarios is really an eye opener. Often when I’ve 

shown this to people, just this frame here [points to visualization], they need some explanation of 

what they’re looking at, naturally, but that doesn’t take very long, and it’s proven. (VISTAS 

Scientist, Interview 2011) 

When the decision stakes are high, other factors in addition to information access, such as values and trust, are 

likely to sway public opinion [36]. According to case study interview and meeting data, stakeholder audiences are 

characterized as trusting of visualizations that are relatively familiar or intuitive to what they hold in their minds. 

In other words, for certain audiences, matching what they have in their minds to what they see in the visualization 

is often proof of truth or fact. This finding might show a problem of confirmation bias in certain visualization 

viewers. Within the academic institution, scientists are trained to ward against confirmation bias; however, other 

stakeholders may not be so trained. On the other hand, stakeholders might become more critical of results if they 

encounter a visualization counter to what they expect or intuit. One scientist alluded to this problem when discussing 

the concept of mental models during a discussion of data exploration practices. He commented on instances when 

scientists used visualization to validate their data, only to find out that something was wrong with the data. In such 

instances, the visualization does not match the viewer’s mental model of how the data should look. When a relatively 
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uninformed audience has the same experience of not seeing what is expected, they might also question the data, 

methods, or visualization, uncovering problems that escaped the trained viewer. More research on best practices for 

communicating via visualization seems merited based on this analysis.  

5.1 Designing Visualizations with VISTAS  

Throughout the software design process, traditional methods were used that emphasize close user collaboration and 

designing a tool to solve users’ primary problems. The problem was interpreted, generally, as viewing data in the 

context of topographically complex terrain. While the ecological problems had been the primary focus for 

developing visualizations, we found that in settings such as the Big Wood Basin, that the ecological problems were 

considerably more complex than originally anticipated. Computer scientists and scientists involved in design and 

implementation of both visualization tools and visualizations for wicked problems must take particular care to fully 

characterize the domain problems early in the design process, and throughout the subsequent implementation, 

deployment and maintenance. The VISTAS case study highlights that both software developers and scientist users 

should recognize wicked problems and better understand how to characterize them and design visualizations for 

them.  

In traditional scientific visualization projects, computer scientists often suggest and prototype technological 

innovations to enhance the scientific content of the visualization. However, few computer scientists are trained in 

which scientific visualizations work for non-scientists in a wicked problem context. Social and environmental 

science research conducted by the VISTAS team found that even the scientists themselves don’t always know how 

to design visualizations accessible to non-science audiences. These findings are consistent with the literature, which 

highlights the difficulty of matching the best visualization technique with the way the data is abstracted [12].  

6. Discussion 

During the VISTAS experience, the scientists were characterized as primary users of the visualization tool and the 

non-scientist audience as secondary. We extend the traditional concept of software system stakeholder, which is 

limited to those with a stake in the software per se [4], to includeas software system stakeholders to include 

stakeholders in the overall ecological problem of climate change.   One implication of this characterization is that, 
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even if a scientist has a good scientific visualization tool, he or she might not know how to present data visually in 

a way non-scientists will understand and the tool will not then serve the non-scientist stakeholder. How one views, 

experiences, and transposes the data—how one designs visualization—affects understanding of the data. This 

problem is not widely addressed by the visualization research community, and as Desnoyers points out, “Most 

scientists were scarcely exposed to formal training in the use of visuals and it is our experience that students resort 

to learning by doing and imitating what they read and see, for better or for worse” [37]. He goes on to describe the 

need for more systematic training in visualization creation and use, especially due to the problem of polysemy, or 

the diversity of perceived meanings. In addition to training scientists, software design and development might take 

into account the context in which visualization might be used and characteristics of the various types of visualization 

users [32].  

6.1 Relevance to Public Policy and e-Government 

Visualization and visual analytics strategies may affect outcomes of problem solving in a public policy setting. As 

mentioned earlier, VISTAS case study scientists are using visualization for communication both in and outside of 

the research institution. They see the need for and potential of visualization as  part of good communication practice. 

Also, they are using visualization currently with various audiences, deciding how to present findings based on 

assumptions about those audiences, and designing visualizations with different audiences in mind. These scientists 

are engaged in research that affects management and decision-making processes, in which case considering best 

practices for visualization in various settings becomes a public policy concern. For example, more research on this 

topic seems necessary for developing best practices to explore how scientists increase non-scientists’ accessibility 

to scientific findings while communicating complex data transformations, uncertainty, or model calculations. To 

address this problem, one VISTAS scientist mentioned that when he uses visualization outside of the academic 

institution—such as with stakeholder groups or in any type of policy process—he endeavors to explain the related 

model behind the image in a way that overcomes disciplinary boundaries. 

It is difficult to tell with visualization what might lead to inaccurate conclusions when used in stakeholder 

engagement settings where the scientist or primary user is not available to provide an explanation. Strict 

methodology reporting and overcoming bias is an important part of scientific practice during hypothesis 
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formulation, data collection, and statistical transformations; and one might apply that same caution to visualization 

design that transforms scientific data for the purpose of increasing understanding or communication. That said, 

methodology for visualization production does not necessarily address the caveat that visualization—which allows 

for accelerated understanding—might also lead to unexamined conclusions. Educating not just scientists, but 

stakeholders and the interested public on how to interpret scientific visualization seems necessary. This problem 

becomes even more important when decision stakes are high. 

Other research in the e-government field suggests that software tools are increasingly used within 

government agencies to enable collaboration between scientists with non-scientists—for example, tools for 

supporting lay stakeholders in the framework of the democratic paradigm of environmental decision 

making [38], decision support systems that bridge science and values [39], or information systems in a 

mediating role for tackling climate change adaptation [40].  These studies complement an increasing 

interest within e-government research of using open data and visualization not only to improve 

government efficiency but also to make closer connections between citizens and government [41] and to 

enable stakeholders themselves to make sense of the data  [42].  We believe that scientists’ use of effective 

visualizations to both explain complex results to stakeholders and to engage them in knowledge to action 

networks could increase trust between government-employed or -funded scientists  and decision makers; 

whether this would pave the way for higher utilization of e-government services remains, for us, an open 

question [43].  In any case, government agencies and policy researchers are increasingly considering 

information technology as a topic meriting serious consideration. 

6.2 Strengths and Limitations 

Delivering science into policy and managerial processes can challenge scientists; our study sought to understand 

how visualization tools might equip them to better communicate and explore new findings both in their own work 

and in broader policy settings.  In reporting distinction between exploring and communicating among scientists, we 

highlighted how visualization use might change depending on the audience and the purpose, i.e., whether a 
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visualization was used for exploration in a scientific setting or communication in a broader decision-making process 

[32].  The visualizations created by VISTAS scientists become artifacts viewed by secondary users, and the success 

of the software itself hinges on whether visualizations enhance scientific insight not only for scientists but also for 

these stakeholders and enable scientist and non-scientist collaboration in decision making. Evidence for this 

contention emerged during interviews and field observations, where scientists described the need both for a flexible 

visualization tool and for training using the tool to create visualizations for non-scientists. Increasing the extended 

peer community as in the post-normal science paradigm often requires the scientist to design good visualizations as 

cues for others’ understanding.  Key to designing both the tool and the visualization is the realization that scientists 

are most likely to use visualization when telling a story about the results of their scientific research. 

One strength of the VISTAS visualization case study presented here is the variety of science collaborators 

who range in their level of experience with visualization, in the types of relationships they have with the 

development team, in their relationships with other software developers, in the types of models they produce, in 

their various collaborations, and in the scales at which they work. Such strong collaboration is typically an indicator 

of software development success [44, 45]. The intention of these scientists to use visualization for exploring big 

data and addressing wicked problems shows the need for development of better tools, but it also highlights the 

potential problem of confounding factors in using visualization for communicating results to a wide variety of 

audiences. Considering options to support visualization, such as providing the data, models, or a verbal explanation 

of what the visualization is demonstrating, might help overcome these problems; such support where appropriate 

could be viewed as a criteria of successful software. More empirical work, directly observing stakeholders or 

secondary users interacting with visualization, seems merited in order to understand how the visual and verbal work 

together in a decision-making process. 

Problem-driven design studies for software design (e.g., [46]), and for visualization range from referencing 

specific users and situations, such as the intelligence community in Kang & Stasko [47], to casual users in Sprague 

& Tory [48].  Our study, however, is unique in seeking to understand how visualization might be used in a public 

policy and decision making setting where scientists are presenting data or models to stakeholders.  Users find that 
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certain visualizations serve better than others for certain tasks; however, pinning down what matters into a 

conceptual model and measuring effectiveness still challenges visualization researchers and designers. 

6.3 Conclusions 

The primary lesson thus far from our experience working with scientists who present research results exploring 

wicked problems to non-scientist stakeholders is that the problem domain affecting the design of the visualization 

is likely much broader than originally conceived. Additionally, developers and scientists should be prepared to 

recognize when they are working with wicked problems and be cognizant of the range of audiences interacting with 

visualizations produced via a software tool. Finally, while these considerations will help improve design decisions 

made at the beginning of the project, it is unlikely that all decisions will be correct as the project matures, and it 

might become necessary to revisit software design decisions as they emerge. Developers and users need to be 

prepared for the time and cost of revising assumptions that drove initial technology decisions. We believe that the 

lessons learned over the course of the VISTAS project apply to other similar software design and development 

projects where scientific data is to be visualized and used in decision-making processes and public policy settings. 

The VISTAS project findings drive new research questions that distinguish those (scientists) who create 

data stories or narratives through visualization, and the audiences of these data stories. VISTAS problem-driven 

design method highlights the importance of creating software that serves both the primary users, the scientists who 

create models and visualize their output, and secondary non-scientist users, the stakeholders and decision makers 

who experience the data stories told by the scientists. Future research for the VISTAS project includes testing the 

visualization output of the VISTAS tool with various audiences in different settings. Additionally, researchers might 

track and measure the role of visualization in a problem-solving process, especially the extent to which the audience 

can use the visualization to provide insight into a problem, and where visualization might fall short of that goal.  

More generally, research on group interaction with visualization, rather than single-user interaction, would 

provide insight into the contribution of visualization to the process of communicating results, or of telling a data 

story. And, finally research into how to create visualizations for non-scientists—which visualizations work and 
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why—is needed. Training for both computer scientists and scientists on designing such visualizations for diverse 

audiences seems merited based on the findings presented here. 
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Table 1.An overview of wicked problems (adapted from Rittel & Webber [11]) 

 

Scientific or 

technical 

solution? 

Consensus of general agreement about the problem? 

YES NO 

 

 

YES 

Tame Problem 

Problem is isolated 

Agreement on Solution 

Examples: fire suppression, municipal 

trash collection 

Mess or Complex Problem 

Science provides solution 

No agreement on how to proceed 

Examples: population control, traffic congestion 

 

 

NO 

Puzzle or Mystery 

Agreement on solution 

Lack technical/scientific capability for 

solution 

Examples: disease treatments, flood 

control 

Wicked Problem 

No agreement on solution 

Lack technical/scientific capability for full 

solution 

Examples: climate change; middle east war; 

waste cleanup 

 

Table 2: Initial themes related to communication using visualization. 

Topics Definitions 

 

Communication with non-

science audiences 

 

Communication with various audiences in general needed 

Visual communication simplifies concepts for general audiences 

Visual communication is used with audiences who are hard to convince 

Verbal explaining, in addition to visualization, is a communication strategy used with non-science 

audiences 

 

Communication with 

scientists 

Communication occurs within the institution and is with others who are trained in a specific discipline. 

Audience Analysis: 

Appeal 

Has intuitive feel 

Creates a narrative 

Grabs attention 

 

Audience Analysis: 

Reasons Behind the 

Appeal 

Appeals to sense of home (audiences recognize familiar places in the visualization) 

Helps users understand and simplify complex concepts and findings 

Shows planning outcomes 

Design: making connections between variables 

Visualization shows future scenarios (Allows audience to ask what if…?)  

Visualization shows relationships between variables 

 

 

Designing with an 

audience in mind 

Combines visuals with graphs 

 

Pre-processed movies or animations 

Variety of variables 

Design/aesthetics 

Less abstract 

Photorealistic (also a challenge) 

Added key to design 

Showing “what if?” 

Helps prove findings/convince 

 

Meta-design 

 

Scientists expressed perceiving a strong demand for visualizations  

Scientists guide design, rather than the development team 

At times, visualization has limited effect 

Visualization useful for gaining funding 
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Fig. 1.  ENVISION alternative land use futures scenario—Central Oregon alternative futures:   

Left:  Vegetative cover (giant trees to seedling, shrub, meadow, barren, developed),  

Right:  Land use (homeowner, tribal, private or public industrial, state or federal). 

 

Fig. 2.  Big Wood Basin stakeholder problem solving and concept mapping. 

Fig. 3.  VELMA model of Chesapeake Bay nitrate: Left 2000, right 2003. 

 

Fig. 4.  Land use boundaries for VELMA Chesapeake nitrate study:   
Left:  Land use boundaries annotated hand, by the scientist,  
Right: Initial VISTAS land use overlay onto Fig. 3 visualization. 

Fig. 5. Munzner’s Nested Model [30]. 

 

 



29 

 

  

Fig. 1.   

 

 

Fig. 2.   

 

 



30 

 

 

 

Fig. 3.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.   

 

 

 

Fig. 5. 

 

domain problem characterization 

data/task abstraction design

encoding/interaction technique design

algorithm design

Figure 1: Or iginal depiction of the four-level nested design

model [23], with arrows indicating the cascading effects of de-
cisions made at higher levels.

domain and problem of interest; the next level is to design the data
and task abstractions for that characterization; the third level is to

design visual encodings and interaction techniques for those ab-
stractions; and the lowest level is to design algorithms to imple-

ment those techniques programmatically. Thefocusof thisoriginal
work is on the cascading implications of design decisions made at

different levels, where the decisions made at one level become the
assumptions at the next level. These implications are shown as ar-

rows in Figure 1.
Although wefind thismodel useful for structuring how wethink

about building and designing visualization systems, it falls short
when we try to reason about both the wealth and dearth of knowl-

edgethat wehaveabout design guidelines. In thispaper wepropose
an extension to the original model that helps us do so.

2.1 Blocks and Guidelines
We extend the nested model with the ideas of blocks and guide-

lines, as illustrated in Figure 2. A block is the outcome of adesign
decision at a specific level: an algorithm, a visual encoding and/or

interaction technique, a data abstraction, or a task abstraction. The
term blockallowsusto refer to thesedifferent kindsof outcomes in

a generic way that can be used for any level. Figure 2 shows these
blocks as individual shapes within the levels.

Examples of blocks at the algorithm level are different algo-
rithms for direct volumerendering: ray casting [21], splatting [39],

and texturemapping [6]. At thetechniquelevel, examplesof blocks
for visually representing text arephrasenets[34], wordles[35], and
word trees [38]. At the abstraction level, blocks include the tasks

of finding outliers and trends [2]; the dataset types of tables, net-
works, and text; and the attribute types of categorical, ordered, and

quantitative [24].
We chose the term blocks as an allusion to the experience of

playing with building blocks. The builder is guided in choosing
oneparticular block out of thebin of options by noticing that some

blocks fit together nicely while others do not. By combining in-
dividual blocks together, the builder is able create more complex

structures.
A guideline isastatement about therelationshipsbetween blocks.

Guidelines help designers make choices about which blocks are
appropriate versus which blocks areamismatch with their require-

ments. Within-level guidelines are for choices within a particu-
lar level, such as selecting the fastest algorithm from several con-

tenders within the algorithm level. Between-level guidelines are
for choices about how to move between levels, such as selecting

which visual encoding technique to use for a particular data and
task abstraction.

The arrows in Figure 2 represent guidelines that connect indi-
vidual blocks, in contrast to the arrows in Figure 1 that represent

dependencies and go between entire levels. For visual clarity, the
extension depiction orders the levels vertically rather than explic-
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block

guideline

between-level

within-level

Figure 2: The extended nested model explicitly includes blocks

that are the outcomes of the design process within a level, rep-
resented by individual shapes within each level, and guidelines

for making choices between these blocks, represented by ar-
rows. Between-level guidelines map blocks at adjacent levels,
and within-level guidelines compare blocks within a level. The

faded depiction at the domain problem level implies a knowl-
edge gap, discussed in moredetail in Section 3.

itly nesting them.

We consider within-level guidelines as directly comparing one
block to another. For example, a within-level guideline at the vi-

sual encoding level is to choose—for reasons of avoiding visual
clutter—node-link diagrams when visualizing small networks and

matrix diagrams when visualizing large ones [14]. An example
of a within-level guideline at the algorithm level is to choose the

newer Voronoi treemap algorithm of Nocaj and Brandes [27] over
theoriginal algorithm of Balzer and Deussen [5] because it is inde-

pendent of display resolution and faster to compute.
Movement from one level to another is guided by between-level

guidelines. These guidelines map blocks at one level to those at
an adjacent level. Figure 3(a) shows a well-established guideline

between hue colormaps and categorical data [37]. In the literature,
sometimes the term characterization is used to describe moving

upward from a lower to a higher level, and the term guideline for
moving downward from higher to lower—we consider these con-

cepts to simply be two sides of the same coin. The simple upward
characterization “hue-based colormaps areappropriate for categor-

ical data” can be trivially restated as the downward guideline “ if
your data is categorical, then hue-based colormaps are appropri-
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