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ABSTRACT

The Visualization for Terrestrial and Aquatic Systems project (VISTAS) aims to help environmental scientists
produce visualizations for themselves and for a range of stakeholders including other scientists and decision makers.
The need for better visualization tools for scientists is well-documented, but little prior work determines what kinds
of visualizations work with different audiences and different kinds of problems. The VISTAS project applied social
science research methods to this question and identified issues relevant to visualization software development,
particularly where the domain involves wicked problems such as climate change. This paper presents visualization
issues confronted by VISTAS collaborators who used visualization to enhance their own inquiry and to
communicate complex concepts, present results, and include decision makers in data exploration and hypothesis
formation. Case study findings suggest that scientists use visualization to communicate concepts, validate findings
to skeptics, and include stakeholders in data exploration; they decide which visualizations to present based on their
impressions of audiences when including visualizations in decision-making. The primary lesson learned is that
extending the scope of the software problem domain beyond the explicit functionality of creating
visualizations, to include the reactions or enhanced participation of decision makers, will likely provide scientists

with more effective software.
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1. INTRODUCTION
Current ecological problems such as environmental change drive researchers to look outside their normal,
discipline-oriented boundaries to understand how their particular model, process or system might interact with other
models and systems. Technology innovations from computer science and engineering research provide not only
hardware (e.g., sensor tools, processing capability of computers), but also software, for dealing with ecological
problems [1]. Using these new technologies, researchers learn, observe, and might come to conclusions differently
than they had before. New practices usually emerge with technical innovation, and the relatively recent deluge of
data now available for analysis is no exception. Some observers have suggested the data deluge might lead to the
end of theory, where data mining will be just as important as experimental hypothesis testing [2]. Whether that
comes to pass or not, the amount of data collected by sensors and models is clearly outpacing the ability of scientists
to process and analyze data, and many scientists ask how they can increase their understanding and use of data, and
whether technology innovations can lead to new insights into contemporary problems.  Clearly, the nearly
overwhelming amount of data increasingly available to scientists necessitates looking beyond current disciplinary
practices for new approaches.

Responding to the above issues, in 2011 computer scientists, social scientists and environmental scientists at
The Evergreen State College, Oregon State University, Willamette University, the Environmental Protection
Agency, and the Conservation Biology Institute launched the Visualization for Terrestrial and Aquatic Systems

project (VISTAS). The project had three initial objectives, each with explicit expected outcomes:

1) Conduct ecology informatics and computing research to enable the visual analytics of environmental science
models and data—in order to develop a visualization tool that would be used by our collaborators and
visualization research transferable to other visualization efforts.

2) Jointly with three close science collaborators, conduct environmental science research using the VISTAS
software and study VISTAS’ extensibility to other applications—in order to create visualizations applied to
climate change problems and publish environmental science research that use those visualizations.

3) Use social science methods to study VISTAS’ co-development process, visual analytics, and usability—in

order to:



a) conduct social science research into understanding which visual analytics work, for whom, and why;
b) publish best practices for engineering complex scientific systems;
c) determine prerequisite knowledge and skills for co-developers and articulate a process for studying co-

development of scientific visualizations and software.

This paper focuses on the third aspect of these objectives; we began with the research question “which
visualizations work for which audiences and which problems”. Social scientists partnered with VISTAS conducted
a qualitative case study to better understand how and why scientists in VISTAS intended to use visualization and
what the benefits and limitations are to visualization use for informing the design and development process.
Analytical generalizations, then, might be made for how to incorporate into the design and development process the
needs of primary users (scientists) for communicating with secondary users in public policy settings. VISTAS
investigators originally had assumed that their environmental scientist collaborators primarily used visualizations
to enhance their own scientific inquiry, sorting out reams of sensed and modeled data to arrive at new insights into
the underlying physical phenomena, or at least to conduct their own research more efficiently. We also believed
that scientists would use visualization to present results to other scientists. Within a year, however, it became clear
that two of our three collaborating teams, those studying the impacts of climate change, were using visualizations
to explain complex environmental science phenomena to non-scientist audiences, and needed to create
visualizations we had not anticipated. Non-scientists with whom the scientists were interacting were typically local,
state, or national government decision makers involved in defining policy for environmental science problems.

That our scientist collaborators presented different kinds of visualizations to non-scientists prodded us to
modify both software specifications and development priorities. While we had expected changes during the
development process, these new requirements involved more extensive review and revision of the underlying
scientific and social problem than expected, and in fact altered some underlying technical assumptions that had
driven initial software design and implementation. We also refined our research question(s) to also focus on the

role of visualization in communicating scientific results involving wicked problems to decision makers:



1) Do visualizations that scientists develop for their own use or to show to other scientists differ
from those developed for communicating with decision makers in the context of wicked
problems? If so, how and why?

2) Do best practices for co-developing visualization software used in this context differ from those
developed for a purely scientific use? If so, how?

3) Do prerequisite knowledge and skills for co-developers for this kind of software and
visualizations also differ, and if so how?

Thus, we realized that, even if visualization and other innovations were successful in providing scientific insight
and solving scientific problems, the challenge of addressing pressing environmental societal problems—

especially those classified as “wicked”—would remain [3].

In this paper, we present findings that suggest that designing visualizations and developing software for
scientists who work with decision makers in the context of wicked problems differ from developing software that
does not involve wicked problems or where decision makers are not involved. Scientists, software engineers and
systems analysts who co-design and co-develop such artifacts should thus be cognizant of the type of problems to
which those artifacts will be applied; this implies that the co-developers should understand the characteristics of
wicked problems in order to recognize them and act accordingly. Sections 2 and 3 provide background information,
explaining first the changing roles for science in the context of wicked problems and post-normal science, and then
the case study methodology employed in our study of VISTAS’ co-development process, visual analytics, and
usability. Section 4 describes the case study participants, the context of their work, and the design process for
VISTAS’ visualization and software. Section 5 presents findings and analysis, and in Section 6 we discuss how
visualization and visual analytics strategies might affect outcomes of problem solving in a public policy setting and
how our work relates to other digital government studies. We then go on to discuss strengths and limitations of this

work and summarize conclusions.

We believe our results are relevant to the digital government community as they develop or select software
to study complex scientific problems in which the public holds considerable interest. The primary contribution lays

in our contention that understanding the nature of so-called wicked problems is critical to developers and procurers
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of software products that convey scientific results to decision makers and the public. While the Association for
Computing Machinery (ACM) engineering code of ethics contends that “...software engineers...[should] consider
broadly who is affected by their work,” stakeholders are typically thought of not only as developers and users, but
also those who have to support, deploy, or pay for the software; secondary users are at best thought of as those
whose information is ingested into software systems [4]. In our case, the software and visualizations are shown by
scientists to decision makers, and most scientists, designers and developers would contend that it is the primary
user’s responsibility to design effective visualization and relate to software developers what they need for that.
Further, while engineers have traditionally been taught to eschew policy matters [2, 5], recent social science research
suggests that technology inevitably has policy implications [6] despite best efforts of scientists and engineers to
divorce themselves from policy decisions [7]. We now believe developers will produce more effective software if
they explicitly recognize the role their artifacts play in decision making, and hence in policy. In light of recent
studies in public policy and philosophy of science that suggest that policy and government decision making are not
greatly influenced by scientific research results and, conversely, that nonscientists rarely influence the formulation
of science problems [6], it seems critical to extend both the scientists and software engineers’ understanding of both
primary and secondary users of their science and technology, given the global-scale nature of current issues and the
likely failure of straightforward technological solutions to solve those problems [8, 9]. We do not advocate that
scientists and engineers practice normative science, but that they become more aware of the information,

technology, or science needs of those who set policy and make decisions.

2. WICKED PROBLEMS AND POST-NORMAL SCIENCE: CHANGING ROLES FOR

SCIENCE

The late 20th century brought a host of grand challenges to the discipline of ecology, including the concept of
coupled human and natural systems (e.g., Liu et al [10]), which present as complex, dynamic, and adaptive
systems. When managers or policy makers deal with problems in these complex systems, they often exhibit
features of what have come to be known as wicked problems (Table 1). Wicked problems are characterized

as difficult or impossible to resolve because of the fluid and often contradictory requirements for any effective



or acceptable solution [11]. For example, the complex interdependencies of the issues usually result in the
creation of new problems even as we think we’re making progress with the original problem [12]. For the
most part, traditional “normal science” [13] is unprepared to answer questions posed by policy makers
responsible for managing the complex systems that generate wicked problems. New approaches, what have come
to be known as post-normal science, are emerging as ways to generate the information needed to make intentional

and collective choices to resolve wicked problems.

There are three key, interconnected, components of the post-normal science model that make it different
from other approaches and more appropriate for dealing with wicked problems: (1) Uncertainty is considered
more than a technical or methodological issue; uncertainty is accepted as the state of affairs within which
decisions must be made. (2) Different approaches are recognized and leveraged rather than assuming a scientific
or policy consensus can be found. (3) The group of individuals considered capable of assessing the quality of
the results is extended beyond the normal disciplinary peer community to a wider range of experts and
knowledge; this new group is then better able to consider the array of risks, benefits, and implications for multiple

stakeholders [3].

This relatively new approach to developing science, especially in the face of wicked problems, is in
contrast to normal science. In normal science, peer communities are typically limited to those experts who can
judge the quality of the science; for the most part, these are disciplinarily-trained peers (e.g., environmental
scientists, biologists, physicists, geologists). When uncertainty and decision stakes increase, the post-normal
approach suggests that the peer community can and should be extended to non-disciplinary experts, those with
experiential, context, or local expertise. This is because a single scientific discipline and strictly scientific
knowledge are, by definition, incapable of capturing the full complexity of such problem settings. In post-
normal approaches, the peer community is extended to include not only producers of information but potential
users as well. Non-experts can contribute to knowledge production in a variety of ways including co-framing
problems, providing non-scientific information or data, acting as critical reviewers of the output, helping

interpret data in the local context, and acting as critical reviewers of the output.



Multiple approaches have been created to bring non-experts into both the production and evaluation of
knowledge including consensus conferences, which have been used to bring together competing perspectives
and values around topics like bioremediation of hazardous wastes [ 14]; citizen juries, which have been
organized to assess the quality of biomedical research [ 1 5] ; or the introduction of uncertainty guidance to the
Netherlands Environmental Assessment Agency that includes ways to consider both quantitative and qualitative
metrics of uncertainty in risk assessments [16]. Another approach is creation or use of a knowledge to action
network (KTAN) [17] that brings together a dynamically evolving group of participants who work together to
pose and answer questions collaboratively and iteratively, with the goal of creating usable information (or
knowledge). One highly visible and credible example that integrates the idea of an extended peer community is
the Intergovernmental Panel on Climate Change (IPPC) [18], which can best be described as an
interdisciplinary assessment of scientific research to integrate available knowledge for use by policy makers
[19]. This extended peer group is not only an interdisciplinary group of scientists studying the problem, but an
interdisciplinary group of scientists and policy experts working together to interpret and understand the

consequences of the data.

Two of VISTAS scientist collaborators work with non-scientist decision makers on wicked problems
related to the impact of climate change on local and regional landscapes. In these cases, even as the decision stakes
rise for policy makers and citizens due to climate impacts, the level of uncertainty increases as global models are
downscaled to regional areas and as forecasts are stretched into an unknowable future. This combination of high
systems uncertainty and high decision stakes suggests the situations these teams find themselves in have evolved
such that a new problem solving strategy grounded in post-normal science may be appropriate for developing the
information needed to move forward on local and regional decisions. What makes these cases unique is that our
collaborators—and subsequently the VISTAS team—are part of a larger team that includes non-scientists working
together to co-develop a sophisticated model to explore together the impact of climate change in the local context.
Not only was the choice of technology co-selected, but the scientists and the community also co-developed the

inputs and assumptions of the model, working together as a knowledge to action network. VISTAS developers were



brought in to develop the software tools and help the team create visualizations to explain results generated by the

complicated model to answer questions about the impact of climate change.

3. CASE STUDY METHODS FOR DESIGN AND ANALYSIS

A single case study approach [20] was chosen for this project as a way to test the propositions the VISTAS research
team (n=21) set out to explore, and in a way that might be beneficial to other researchers considering similar
problems in scientific visualization meant for both exploration and for broader communication of complex datasets.
The case study approach is often used when a research question is unveiling concepts and discoveries in a relatively
new or unexplored topic, such as in this study about innovation and a new technology like VISTAS. Case study is
also a useful method for uncovering deep insight into a topic or group of people over time. A current gap in the
visualization community is studies that incorporate real users, with real problems, using real data [21]. Studies in
the wild, such as VISTAS, are valuable because they explore phenomena within real settings, rather than using

contrived settings such as a lab with controls.

The approach included working with key informants to test the use of visualization as a way to analyze and
communicate research output. Each key informant—ecologists and computer scientists—was formally interviewed
at least once with a semi-structured interview. Instruments and protocols were crafted both early in the VISTAS
case study and developed over time. Interview questions were based on a number of propositions, including the
hypothesis that visualization would help scientists understand their data and come to insight more easily.
Developing questions and analyzing responses based on initial propositions are common techniques for framing a

single case study [20].

In addition to the transcripts from interviews with key informants, data in the form of (1) field notes from
emails and informal conversations with members of the group; (2) weekly project meetings; and (3) audio
recordings of annual all-hands meetings (n=21 participants, including the seven key informants) were also analyzed.
General e-mails and the project website, though not used in the analysis, became an archive of the timeline of events
and project highlights. Project meetings varied topically to include both high-level ecology problems and technical

detail. All data from interviews, conversations, meetings, and memos were transcribed for an analysis that used



themes built from the project’s propositions, interviews with the key informants, and models and frameworks for

understanding the facets of the VISTAS case study.

Data analysis from the case study provides insight into both the visualization software design process and
the greater ongoing conversation about how visualization contributes to problem solving in an era of wicked
problems and big data. Initial themes and topics for analyzing communication of big data using visualization were
based on the framework of post-normal science (e.g., for analyzing communication with stakeholders and the
extended peer community) and were created over the course of the project as new topics emerged (e.g., audience
analysis practices of the case study scientists). Table 2 describes what VISTAS primary users consider to be
important issues related to developing data visualizations for ecological science. The themes suggest that the design
team consider not only the primary users, but also the secondary users of VISTAS visualizations. It should be noted
that the VISTAS software development project did not include stakeholders directly in any of the project data or
content at the time of this analysis, so the results presented here about the relationship between the key informants
and their stakeholders is based on the key informants’ perceptions about those needs. Other similar development
projects also base development on assumptions made about secondary users in a similar way during their first round
of development (e.g., QuestVis [22]). Codebook definitions in Table 2 were developed through iterative analysis

of transcripts.

4. CASE STUDY PARTICIPANTS AND THE CONTEXT OF THEIR WORK

During the VISTAS software design process, which was tracked and analyzed as the case study described above,
scientists with real data who were dealing with real scientific problems determined development directions. We
thus assert that the co-development process fit the description of a problem-driven design project. Software
developers considered the types of visualization that science collaborators requested, and VISTAS collaborators

communicated how they wanted to visualize results for different audiences.

The first and primary visualization design objective for VISTAS involved recreating the collaborators’
visualizations of physical terrain from flat two dimensions (2D) to incorporate topography. While scientists have

always suspected that the ecology of a region varies with topography, only recently have innovations in data

10



acquisition enabled them to collect data, conduct experiments, and validate models in topographically complex
areas. Our collaborators came to us with an overarching problem: with their current visualization tools, they could
not see topographic differences that might drive the physical processes under study. They wanted to enhance current
two-dimensional visualizations with digital elevation models so that the landscape’s topography would stand out in
three-dimensions. They were convinced (and this has been confirmed) that the third dimension would allow them
to intuit more readily where environmental variables respond to changes in drivers and assumptions. Thus the
primary visualization problem we aimed to address was (and remains): visualize landscape processes where

topography likely plays a role.

We found during the VISTAS project, however, that topography generally serves a different purpose for
non-scientist audiences. This theme emerged over the course of the project in both the interview and meeting data
when VISTAS scientists highlighted the distinction between the different audiences to whom they present
visualizations, and described how they would design visualizations with a particular audience in mind. Rather than
illuminate the science problem of determining the effect of topography on ecological response variables, topography
helps non-scientists recognize and relate to familiar landscapes; the third dimension allows secondary users to more
easily recognize features on the landscape. Other primary visualization needs were to produce animations, i.e.,
include in visualizations a fourth dimension (time), and to display changes in landscape via fly-throughs that
highlight particular areas. A third initial goal, not yet accomplished, was to be able to view data at different
geographic extents (spatial scales) in the same window. To make developing the new system tractable, we focused
on three environmental scientist collaborators; all would benefit from viewing data topographically but each focused
at different spatial scales. They all also wanted to use animation to visualize space displacement or the fourth
dimension time, and to view different variables or scenarios simultaneously. The following three sections describe

our collaborators’ projects and resulting VISTAS visualizations.

4.1 Alternative Land Use Scenarios
VISTAS collaborator John Bolte and his team at Oregon State University worked with VISTAS developers to

embed VISTAS into ENVISION, Bolte’s open-source GIS-based multi-agent model for scenario-based community
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and regional integrated planning and environmental assessments [23]. ENVISION integrates spatially explicit
models of landscape change processes and production for alternative futures analyses, and currently produces 2D
maps that illustrate changes over time of modelled attributes such as species habitat, ecosystem type, and
disturbance. Bolte believes that 3D maps and animations will help both scientists and stakeholders better understand
alternative futures. He also wants to view side by side camera-position-coordinated fly-throughs at specific points

in time for different attributes or scenarios.

Bolte’s team wanted to generate fly-throughs for a stakeholder decision process focusing on better
understanding how biophysical systems, management actions, and socio-economic influences interact to affect
sustainability in fire-prone landscapes under climate change. Figure 1 shows a still-view of a VISTAS animation,
designed to show how land use affects vegetative cover, which in turn will determine fire hazards. Bolte’s team
was also tasked with modeling the impact of climate change on water availability in the Big Wood basin of south
central Idaho. This project involved a group of community members and potential information users engaged with
scientists and computer modelers. Initial meetings included state and federal agency staff, non-governmental
organization members, local and county officials, university extension agents, canal company representatives, and
area residents interested in thinking about the future of the region. Back-casting was used to start people thinking
about the future and characterizing conditions that might lead to desired futures [24]. Later, the group developed a
concept map (Figure 2) and a system dynamics model of the hydrological system [25], both of which the group
found too static to help in decision-making in the face of multiple uncertainties including, but not limited to, climate

change.

The above activities deepened all participants’ knowledge of relationships among natural and human
systems, and others’ perspectives and values around those systems. The concept map exercise moved the group
forward in identifying variables they wanted to consider, data they would need to support those variables, and what
probably could not be included in the model due to limitations in data or research methods, and brought about two
impacts critical to the VISTAS visualization effort: (1) Non-scientist participants realized that a complex model

was critical to understanding and mitigating the problem, and (2) scientist participants tasked with developing that
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model were provided with assumptions and variables that the community viewed as important and that would drive

the model. In other words, the process identified gaps in knowledge for both non-scientists and scientists.

As aresult of this exercise, Bolte and his team were tasked with co-developing a complex model that would
allow the joint exploration of the impact of climate change in the local context. In this case, not only the choice of
technology but the inputs to and assumptions of the model were co-developed by scientists and the community,
working together as a knowledge to action network. VISTAS developers were then tasked to help Bolte create
visualizations that could help explain the results generated by the complicated model to answer questions about the
impact of climate change in this western basin. Thus visualization challenges not anticipated for
VISTAS/ENVISION’s use with non-scientist stakeholders were expanded to showing model assumptions and
levels of uncertainty and aggregating variable types to simplify visualizations, as well as increasing audience

attentiveness with 3D maps, animations, and fly-throughs.

4.2 Hydrological-Biogeochemical Processes

VISTAS collaborators Bob McKane and Allen Brookes of the U.S. Environmental Protection Agency (EPA) use
VISTAS to demonstrate results from their ecohydrological model VELMA [26]. Given a set of drivers (e.g.,
temperature, precipitation) and disturbance (e.g., fire, harvest, fertilization), VELMA models the interaction of
stream flow and biogeochemical processes, and carbon and nitrogen dynamics in plants and soils. Running on a
daily time step across thousands of pixels, VELMA generates multiple gigabytes of output for multi-century
simulations of large landscapes. VELMA results are difficult to tune, interpret and communicate without
visualization. The EPA currently studies nitrogen deposits, a critical problem near croplands and in wetlands
because agricultural pollutants and eutrophication are critical water quality problems, and many bays, estuaries, and
tributaries exhibit high nitrate levels. VELMA was run to investigate the feasibility of using an ecohydrological
model to help bound uncertainties in difficult-to-measure nitrogen fluxes. VISTAS visualizations (Figure 3) were

generated from VELMA by McKane for an EPA webinar in July 2014, in which decision makers participated.

Unanticipated specifications for VELMA arose as McKane presented the results of VELMA visualizations

to non-scientist stakeholders. For example, McKane found it easy when refining his science model to view one
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image with land use (Figure 4, Left) then to imagine in his mind’s eye the land use boundaries on VISTAS
visualizations of nitrate flux (Figure 3), but his new audience wanted to see the land use boundaries explicitly. This
issue was critical enough for McKane that he reprioritized his wish list for visual analytics within VISTAS and put
as top priority the overlay of land use boundaries. While this seems like a simple change in the visualization, for
technical reasons it required re-thinking how to render the overlay in VISTAS. See Figure 4 (right) for an initial
effort at this visualization; achieving this feature will involve a re-implementation of the underlying graphical

rendering technique, a non-trivial undertaking.

4.3 Creating Visualizations with VISTAS

VISTAS grew out of prior scientific visualization work [27] implemented in Java and the Visualization Toolkit
VTK; that initial expertise guided VISTAS’ modular, scalable design implemented in C++ and OpenGL. We aimed
to create a scalable and extensible visualization tool for environmental scientists that allowed viewing landscapes
in 3D and animating landscape changes over time and space—all with a response time that would allow for
exploratory analysis. A plug-in design made adding new data and visualization types straightforward, and clear
architectural separation between the visualization core and user-interface components rendered practical embedding
the visualization engine in other scientific applications such as ENVISION [28]. Throughout the software design
process, we have emphasized close collaboration with users to solve their problems, interpreted generally as viewing

data in the context of topographically complex terrain..

We knew that visualization can help non-scientists better understand complex scientific results [1] and
VISTAS scientist collaborators specified this as their primary objective. As VISTAS matured and our collaborators
wanted to also use visualization in problem solving (analysis) sessions with stakeholders, both scientist and
developers began to think about how to enhance the visual interest of the images (e.g., improving the aesthetics or
providing animation) to create visualizations more accessible to secondary non-scientist users [29]. To address this

problem, we chose a design model for visualization.
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4.4 Using a Design Model for Visualization

Munzner’s nested blocks and guidelines model is often used for conceptualizing design and evaluation criteria by
visualization design researchers [30]. The nested design model defines four levels; analysis in the highest level
(problem characterization) cascades to affect design criteria at lower levels, ideally aligning with the problem at
hand (Figure 5). For example, to solve a problem within a certain domain, scientists might rely on datasets that they
analyze using statistics or with a simulation; these datasets constitute the data or task abstraction block, where
researchers choose which phenomena to measure [31]. Once scientists collect datasets and perform necessary
manipulations, transformations, or simulations, a technique for visualizing the data or model is chosen. The domain
problem characterization thus affects all design decisions about the resulting visualization. We used our own
refinement to Munzner’s model to characterize the outermost level of the nested model—the domain problem—

and postulated that for wicked problems the domain problem is dynamic and difficult to problematize [32].

4.5 Design for Wicked Problems

VISTAS end users are scientists and stakeholders working together to understand the short- and long-term effects
of decisions on the landscape, and problems vary in size and complexity from solvable puzzles to wicked problems.
The wicked problem paradigm applies to the VISTAS case study, where the environmental domain problem is
tightly coupled with sociological and political domains [32]. Wicked problems, such as what to do about climate
change, move beyond the ability of science to determine clear causal relationships, to predict the future, to control
or overcome unpredictable outcomes, or to establish the best outcome [33]; these factors make them not only
challenging to solve but also controversial. VISTAS scientist collaborators distinguish among activities to address
research problems, but they do not necessarily frame their research activities by referring to them as wicked
problems, nor do they talk about the distinction between complicated problems and simpler puzzles when they
devise models or analyze data. Even so, understanding that science will be conducted within the context of wicked
problems could help characterize and design software for visualization use. This context includes not only
technically challenging problems, but also problems where there might be low consensus and skepticism within the

extended community.
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5. Findings and Analysis

The VISTAS research group began the project with the proposition that data visualization tools could help scientists
better understand and communicate their own data, as well as increase their ability to integrate their research with
others and overcome challenges associated with big data [34]. VISTAS science collaborators had used visualization
prior to the project, but their processes, tools, and output varied. They also vary in their workaday tasks, not only
because of the ecological processes they study, the scale at which they study, or the part of the visualization process
they work on, but because they use technology and modeling in different ways, and produce results for different

audiences.

As discussed above, one visualization design objective for VISTAS involved moving the collaborators’
visualizations of physical terrain from flat 2D to incorporate topography so they could observe the topographic
difference in landscape that drove the physical processes under study. In constrast, visualizing topography helped
non-scientist audiences recognize and relate to familiar landscapes. This difference scientist and non-scientist
emerged over the course of the project in both the interview and meeting data when VISTAS scientists highlighted
distinctions between different audiences to whom they present visualizations, and described how they would design
visualizations with a particular audience, such as non-scientists, in mind. Visualizations created by VISTAS
scientists become artifacts viewed by secondary users, who for the most part are not scientists. As described in the
post-normal science paradigm, the extended peer community often requires the scientist to design visual output to
enable others’ understanding. Key to designing both the tool and the visualization is the realization that the scientist
is most likely to use the visualization in telling a story about the results of his or her scientific research. Consider
the dialogue between a VISTAS computer scientist and a VISTAS scientist at a development meeting in April,

2013:

Project Lead: Does [the scientist] ever see his role diminishing as the [translator of the model

results]? Could someone naive understand without him being the [translator]?
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Computer Scientist: Look at this as part of the set of tools to make an end product that someone
views. The Public is not going to sit down and use these tools...these are all tools that scientists use
to produce a final product...final material is accompanied by metadata or the person who

explains...

Visualization research studies often focus on tasks, techniques, and algorithms, or lower-level software design
considerations in order to boost automation of tasks and the power of machine learning [35]. However, the
contribution of the case study presented here is aimed at broader issues in public policy, ecological management,
and understanding scientific research practices. Our collaborators are aware that visualization might affect their

communication practices and have dedicated their time to developing better software tools for such a purpose:

... standing back, and being able to see how different the landscape looks in these four different
views, looking forward in time under different scenarios is really an eye opener. Often when I've
shown this to people, just this frame here [points to visualization], they need some explanation of
what they ’re looking at, naturally, but that doesn’t take very long, and it’s proven. (VISTAS

Scientist, Interview 2011)

When the decision stakes are high, other factors in addition to information access, such as values and trust, are
likely to sway public opinion [36]. According to case study interview and meeting data, stakeholder audiences are
characterized as trusting of visualizations that are relatively familiar or intuitive to what they hold in their minds.
In other words, for certain audiences, matching what they have in their minds to what they see in the visualization
is often proof of truth or fact. This finding might show a problem of confirmation bias in certain visualization
viewers. Within the academic institution, scientists are trained to ward against confirmation bias; however, other
stakeholders may not be so trained. On the other hand, stakeholders might become more critical of results if they
encounter a visualization counter to what they expect or intuit. One scientist alluded to this problem when discussing
the concept of mental models during a discussion of data exploration practices. He commented on instances when
scientists used visualization to validate their data, only to find out that something was wrong with the data. In such

instances, the visualization does not match the viewer’s mental model of how the data should look. When a relatively
17



uninformed audience has the same experience of not seeing what is expected, they might also question the data,
methods, or visualization, uncovering problems that escaped the trained viewer. More research on best practices for

communicating via visualization seems merited based on this analysis.

5.1 Designing Visualizations with VISTAS

Throughout the software design process, traditional methods were used that emphasize close user collaboration and
designing a tool to solve users’ primary problems. The problem was interpreted, generally, as viewing data in the
context of topographically complex terrain. While the ecological problems had been the primary focus for
developing visualizations, we found that in settings such as the Big Wood Basin, that the ecological problems were
considerably more complex than originally anticipated. Computer scientists and scientists involved in design and
implementation of both visualization tools and visualizations for wicked problems must take particular care to fully
characterize the domain problems early in the design process, and throughout the subsequent implementation,
deployment and maintenance. The VISTAS case study highlights that both software developers and scientist users
should recognize wicked problems and better understand how to characterize them and design visualizations for

them.

In traditional scientific visualization projects, computer scientists often suggest and prototype technological
innovations to enhance the scientific content of the visualization. However, few computer scientists are trained in
which scientific visualizations work for non-scientists in a wicked problem context. Social and environmental
science research conducted by the VISTAS team found that even the scientists themselves don’t always know how
to design visualizations accessible to non-science audiences. These findings are consistent with the literature, which

highlights the difficulty of matching the best visualization technique with the way the data is abstracted [12].

6. Discussion

During the VISTAS experience, the scientists were characterized as primary users of the visualization tool and the
non-scientist audience as secondary. We extend the traditional concept of software system stakeholder, which is
limited to those with a stake in the software per se [4], to includeas software system stakeholders to include

stakeholders in the overall ecological problem of climate change. One implication of this characterization is that,

18



even if a scientist has a good scientific visualization tool, he or she might not know how to present data visually in
a way non-scientists will understand and the tool will not then serve the non-scientist stakeholder. How one views,
experiences, and transposes the data—how one designs visualization—affects understanding of the data. This
problem is not widely addressed by the visualization research community, and as Desnoyers points out, “Most
scientists were scarcely exposed to formal training in the use of visuals and it is our experience that students resort
to learning by doing and imitating what they read and see, for better or for worse” [37]. He goes on to describe the
need for more systematic training in visualization creation and use, especially due to the problem of polysemy, or
the diversity of perceived meanings. In addition to training scientists, software design and development might take
into account the context in which visualization might be used and characteristics of the various types of visualization
users [32].

6.1 Relevance to Public Policy and e-Government

Visualization and visual analytics strategies may affect outcomes of problem solving in a public policy setting. As
mentioned earlier, VISTAS case study scientists are using visualization for communication both in and outside of
the research institution. They see the need for and potential of visualization as part of good communication practice.
Also, they are using visualization currently with various audiences, deciding how to present findings based on
assumptions about those audiences, and designing visualizations with different audiences in mind. These scientists
are engaged in research that affects management and decision-making processes, in which case considering best
practices for visualization in various settings becomes a public policy concern. For example, more research on this
topic seems necessary for developing best practices to explore how scientists increase non-scientists’ accessibility
to scientific findings while communicating complex data transformations, uncertainty, or model calculations. To
address this problem, one VISTAS scientist mentioned that when he uses visualization outside of the academic
institution—such as with stakeholder groups or in any type of policy process—he endeavors to explain the related

model behind the image in a way that overcomes disciplinary boundaries.

It is difficult to tell with visualization what might lead to inaccurate conclusions when used in stakeholder
engagement settings where the scientist or primary user is not available to provide an explanation. Strict

methodology reporting and overcoming bias is an important part of scientific practice during hypothesis
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formulation, data collection, and statistical transformations; and one might apply that same caution to visualization
design that transforms scientific data for the purpose of increasing understanding or communication. That said,
methodology for visualization production does not necessarily address the caveat that visualization—which allows
for accelerated understanding—might also lead to unexamined conclusions. Educating not just scientists, but
stakeholders and the interested public on how to interpret scientific visualization seems necessary. This problem

becomes even more important when decision stakes are high.

Other research in the e-government field suggests that software tools are increasingly used within

government agencies to enable collaboration between scientists with non-scientists—for example, tools for
supporting lay stakeholders in the framework of the democratic paradigm of environmental decision
making [38], decision support systems that bridge science and values [39], or information systems in a
mediating role for tackling climate change adaptation [40]. These studies complement an increasing
interest within e-government research of using open data and visualization not only to improve
government efficiency but also to make closer connections between citizens and government [41] and to
enable stakeholders themselves to make sense of the data [42]. We believe that scientists’ use of effective
visualizations to both explain complex results to stakeholders and to engage them in knowledge to action
networks could increase trust between government-employed or -funded scientists and decision makers;
whether this would pave the way for higher utilization of e-government services remains, for us, an open
question [43]. In any case, government agencies and policy researchers are increasingly considering

information technology as a topic meriting serious consideration.

6.2 Strengths and Limitations

Delivering science into policy and managerial processes can challenge scientists; our study sought to understand
how visualization tools might equip them to better communicate and explore new findings both in their own work
and in broader policy settings. In reporting distinction between exploring and communicating among scientists, we

highlighted how visualization use might change depending on the audience and the purpose, i.e., whether a
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visualization was used for exploration in a scientific setting or communication in a broader decision-making process
[32]. The visualizations created by VISTAS scientists become artifacts viewed by secondary users, and the success
of the software itself hinges on whether visualizations enhance scientific insight not only for scientists but also for
these stakeholders and enable scientist and non-scientist collaboration in decision making. Evidence for this
contention emerged during interviews and field observations, where scientists described the need both for a flexible
visualization tool and for training using the tool to create visualizations for non-scientists. Increasing the extended
peer community as in the post-normal science paradigm often requires the scientist to design good visualizations as
cues for others’ understanding. Key to designing both the tool and the visualization is the realization that scientists

are most likely to use visualization when telling a story about the results of their scientific research.

One strength of the VISTAS visualization case study presented here is the variety of science collaborators
who range in their level of experience with visualization, in the types of relationships they have with the
development team, in their relationships with other software developers, in the types of models they produce, in
their various collaborations, and in the scales at which they work. Such strong collaboration is typically an indicator
of software development success [44, 45]. The intention of these scientists to use visualization for exploring big
data and addressing wicked problems shows the need for development of better tools, but it also highlights the
potential problem of confounding factors in using visualization for communicating results to a wide variety of
audiences. Considering options to support visualization, such as providing the data, models, or a verbal explanation
of what the visualization is demonstrating, might help overcome these problems; such support where appropriate
could be viewed as a criteria of successful software. More empirical work, directly observing stakeholders or
secondary users interacting with visualization, seems merited in order to understand how the visual and verbal work

together in a decision-making process.

Problem-driven design studies for software design (e.g., [46]), and for visualization range from referencing
specific users and situations, such as the intelligence community in Kang & Stasko [47], to casual users in Sprague
& Tory [48]. Our study, however, is unique in seeking to understand how visualization might be used in a public

policy and decision making setting where scientists are presenting data or models to stakeholders. Users find that
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certain visualizations serve better than others for certain tasks; however, pinning down what matters into a

conceptual model and measuring effectiveness still challenges visualization researchers and designers.

6.3 Conclusions

The primary lesson thus far from our experience working with scientists who present research results exploring
wicked problems to non-scientist stakeholders is that the problem domain affecting the design of the visualization
is likely much broader than originally conceived. Additionally, developers and scientists should be prepared to
recognize when they are working with wicked problems and be cognizant of the range of audiences interacting with
visualizations produced via a software tool. Finally, while these considerations will help improve design decisions
made at the beginning of the project, it is unlikely that all decisions will be correct as the project matures, and it
might become necessary to revisit software design decisions as they emerge. Developers and users need to be
prepared for the time and cost of revising assumptions that drove initial technology decisions. We believe that the
lessons learned over the course of the VISTAS project apply to other similar software design and development

projects where scientific data is to be visualized and used in decision-making processes and public policy settings.

The VISTAS project findings drive new research questions that distinguish those (scientists) who create
data stories or narratives through visualization, and the audiences of these data stories. VISTAS problem-driven
design method highlights the importance of creating software that serves both the primary users, the scientists who
create models and visualize their output, and secondary non-scientist users, the stakeholders and decision makers
who experience the data stories told by the scientists. Future research for the VISTAS project includes testing the
visualization output of the VISTAS tool with various audiences in different settings. Additionally, researchers might
track and measure the role of visualization in a problem-solving process, especially the extent to which the audience

can use the visualization to provide insight into a problem, and where visualization might fall short of that goal.

More generally, research on group interaction with visualization, rather than single-user interaction, would
provide insight into the contribution of visualization to the process of communicating results, or of telling a data

story. And, finally research into how to create visualizations for non-scientists—which visualizations work and
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why—is needed. Training for both computer scientists and scientists on designing such visualizations for diverse

audiences seems merited based on the findings presented here.

Acknowledgements

VISTAS is funded by NSF BIO/DBI 1062572. The authors would also like to acknowledge the entire VISTAS
team, including senior scientists Mike Bailey (Oregon State University—OSU), and Jenny Orr (Willamette
University), and developers Nik Stephenson-Molnar (Conservation Biology Institute—CBI), Taylor Mutch, Viriya
Ratanasanpunth and Chris Schultz, and our collaborators Bob McKane and Allen Brookes (U.S. Environmental
Protection Agency), John Bolte (OSU), Christoph Thomas (Bayreuth University), and Dominique Bachelet (CBI).
We also thank anonymous reviewers, and of course Jing Zhang (Clark University) and Yushim Kim (Arizona State

University), the editors of this special issue, for helpful suggestions.

References

[1] Keim D, Andrienko G, Fekete J-D, Gorg C, Kohlhammer J, Melangon G. Visual analytics: Definition, process,
and challenges: Springer; 2008.

[2] Anderson C. The end of theory: The data deluge makes the scientific method obsolete. Wired; 2008.
[3] Funtowicz SO, Ravetz JR. Science for the post normal age: Springer; 1995.

[4] Rozanski N, Woods E. Software systems architecture: working with stakeholders using viewpoints and
perspectives: Addison-Wesley; 2012.

[5] Fisler K, Krishnamurthi S, Dougherty DJ, editors. Embracing policy engineering. Proceedings of the FSE/SDP
workshop on Future of software engineering research; 2010: ACM.

[6] Lach D, List P, Steel B, Shindler B. Advocacy and credibility of ecological scientists in resource
decisionmaking: a regional study. BioScience. 2003;53(2):170-8.

[7] Lackey RT. Science, scientists, and policy advocacy. Conservation Biology. 2007;21(1):12-7.

[8] Gail W. Climate Conundrums: What the Climate Debate Reveals About Us: University of Chicago Press; 2014.

23



[9] Gail W. What’s after global warming? USA Today Editorial. 2015 April 17, 2015.

[10] Liu J, Dietz T, Carpenter SR, Alberti M, Folke C, Moran E, et al. Complexity of coupled human and natural
systems. science. 2007;317(5844):1513-6.

[11] Rittel HW, Webber MM. Dilemmas in a general theory of planning. Policy sciences. 1973;4(2):155-69.

[12] Pretorius AJ, Van Wijk JJ. What does the user want to see? What do the data want to be? Information
Visualization. 2009;8(3):153-66.

[13] Kuhn TS. The structure of scientific revolutions: University of Chicago press; 2012.

[14] Lach D, Sanford S. Public understanding of science and technology embedded in complex institutional settings.
Public Understanding of Science. 2010;19(2):130-46.

[15] Menon D, Stafinski T. Engaging the public in priority-setting for health technology assessment: findings from
a citizens’ jury. Health Expectations. 2008;11(3):282-93.

[16] Petersen AC, Cath A, Hage M, Kunseler E, van der Sluijs JP. Post-normal science in practice at the Netherlands
Environmental Assessment Agency. Science, technology & human values. 2010:0162243910385797.

[17] Cash DW, Clark WC, Alcock F, Dickson NM, Eckley N, Guston DH, et al. Knowledge systems for sustainable
development. Proceedings of the National Academy of Sciences. 2003;100(14):8086-91.

[18] Boyd J, Ringold P, Krupnick A, Johnston R, Weber MA, Hall K. Ecosystem Services Indicators: Improving
the Linkage between Biophysical and Economic Analyses. 2015.

[19] Kennel C, Daultrey S. Knowledge Action Networks: Connecting regional climate change assessments to local
action. UCSD Sustainability Solutions Institute. 2010.

[20] Yin RK. Case study research: Design and methods: Sage publications; 2013.

[21] Carpendale S. Evaluating information visualizations. Information Visualization: Springer; 2008. p. 19-45.

[22] Munzner T, Barsky A, Williams M. Reflections on QuestVis: A visualization system for an environmental
sustainability model. Dagstuhl Follow-Ups. 2011;2.

[23] Bolte JP, Hulse DW, Gregory SV, Smith C. Modeling biocomplexity—actors, landscapes and alternative
futures. Environmental Modelling & Software. 2007;22(5):570-9.

[24] Holmberg J, Robert K-H. Backcasting—A framework for strategic planning. International Journal of
Sustainable Development & World Ecology. 2000;7(4):291-308.

24



[25] Meadows DH, Wright D. Thinking in systems: A primer: chelsea green publishing; 2008.

[26] Abdelnour A, B McKane R, Stieglitz M, Pan F, Cheng Y. Effects of harvest on carbon and nitrogen dynamics
in a Pacific Northwest forest catchment. Water Resources Research. 2013;49(3):1292-313.

[27] Cushing JB, Nadkarni N, Finch M, Kim Y, Murphy-Hill E. The Canopy Database Project.

[28] Cushing J, Hayduk E, Walley J, Zeman L, Winters K, Bailey M, et al., editors. (In?) extricable links between
data and visualization: preliminary results from the VISTAS project. Scientific and Statistical Database
Management; 2012: Springer.

[29] Winters KM. Visualization in Environmental Science Research [PhD Dissertation]: Oregon State University;
2015.

[30] Munzner T. A nested model for visualization design and validation. Visualization and Computer Graphics,
IEEE Transactions on. 2009;15(6):921-8.

[31] Mayer-Schonberger V, Cukier K. Big data: A revolution that will transform how we live, work, and think:
Houghton Mifflin Harcourt; 2013.

[32] Winters KM, Lach D, Cushing JB, editors. Considerations for characterizing domain problems. Proceedings
of the Fifth Workshop on Beyond Time and Errors: Novel Evaluation Methods for Visualization; 2014: ACM.

[33] Batie SS. Sustainability science: statement of the Friibergh Workshop on Sustainability Science. American
Journal of Agricultural Economics. 2008;90(5):1176-91.

[34] Thomas JJ, Cook KA. A visual analytics agenda. Computer Graphics and Applications, IEEE. 2006;26(1):10-
3.

[35] Meyer M, Sedlmair M, Quinan PS, Munzner T. The nested blocks and guidelines model. Information
Visualization. 2013:1473871613510429.

[36] Kahan DM, Jenkins-Smith H, Braman D. Cultural cognition of scientific consensus. Journal of Risk Research.
2011;14(2):147-74.

[37] Desnoyers L. Toward a taxonomy of visuals in science communication. Technical Communication.
2011;58(2):119-34.

[38] Lotov AV. Internet tools for supporting of lay stakeholders in the framework of the democratic paradigm of
environmental decision making. Journal of multicriteria decision analysis. 2003;12(2-3):145.

[39] Meo M, Focht W, Caneday L, Lynch R, Moreda F, Pettus B, et al. NEGOTIATING SCIENCE AND VALUES
WITH STAKEHOLDERS IN THE ILLINOIS RIVER BASIN1. Wiley Online Library; 2002.

25



[40] Hasan H, Smith S, Finnegan P. An activity theoretic analysis of the mediating role of information systems in
tackling climate change adaptation. Information Systems Journal. 2016.

[41] Chun SA, Shulman S, Sandoval R, Hovy E. Government 2.0: Making connections between citizens, data and
government. Information Polity. 2010;15(1):1.

[42] Graves A, Hendler J. A study on the use of visualizations for Open Government Data. Information Polity.
2014;19(1, 2):73-91.

[43] Carter L, Bélanger F. The utilization of e-government services: citizen trust, innovation and acceptance
factors*. Information systems journal. 2005;15(1):5-25.

[44] Faraj S, Sproull L. Coordinating expertise in software development teams. Management science.
2000;46(12):1554-68.

[45] Wateridge J. How can IS/IT projects be measured for success? International journal of project management.
1998;16(1):59-63.

[46] Evans E. Domain-driven design: tackling complexity in the heart of software: Addison-Wesley Professional;
2004.

[47] Kang Y-a, Stasko J, editors. Characterizing the intelligence analysis process: Informing visual analytics design
through a longitudinal field study. Visual Analytics Science and Technology (VAST), 2011 IEEE Conference on;
2011: IEEE.

[48] Sprague D, Tory M. Exploring how and why people use visualizations in casual contexts: Modeling user goals
and regulated motivations. Information Visualization. 2012;11(2):106-23.

26



Table 1.An overview of wicked problems (adapted from Rittel & Webber [11])

Scientific or

Consensus of general agreement about the problem?

techqical YES NO
solution?
Tame Problem Mess or Complex Problem
Problem is isolated Science provides solution
YES Agreement on Solution No agreement on how to proceed
Examples: fire suppression, municipal Examples: population control, traffic congestion
trash collection
Puzzle or Mystery Wicked Problem
Agreement on solution No agreement on solution
NO Lack technical/scientific capability for Lack technical/scientific capability for full
solution solution
Examples: disease treatments, flood Examples: climate change; middle east war;
control waste cleanup
Table 2: Initial themes related to communication using visualization.
Topics Definitions

Communication with non-
science audiences

Communication with
scientists

Audience Analysis:
Appeal

Audience Analysis:
Reasons Behind the
Appeal

Designing with an
audience in mind

Meta-design

Communication with various audiences in general needed

Visual communication simplifies concepts for general audiences

Visual communication is used with audiences who are hard to convince

Verbal explaining, in addition to visualization, is a communication strategy used with non-science
audiences

Communication occurs within the institution and is with others who are trained in a specific discipline.

Has intuitive feel
Creates a narrative
Grabs attention

Appeals to sense of home (audiences recognize familiar places in the visualization)
Helps users understand and simplify complex concepts and findings

Shows planning outcomes

Design: making connections between variables

Visualization shows future scenarios (Allows audience to ask what if...?)
Visualization shows relationships between variables

Combines visuals with graphs

Pre-processed movies or animations
Variety of variables
Design/aesthetics

Less abstract

Photorealistic (also a challenge)
Added key to design

Showing “what if?”

Helps prove findings/convince

Scientists expressed perceiving a strong demand for visualizations
Scientists guide design, rather than the development team

At times, visualization has limited effect

Visualization useful for gaining funding
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Fig. 1. ENVISION alternative land use futures scenario—Central Oregon alternative futures:
Left: Vegetative cover (giant trees to seedling, shrub, meadow, barren, developed),

Right: Land use (homeowner, tribal, private or public industrial, state or federal).

Fig. 2. Big Wood Basin stakeholder problem solving and concept mapping.

Fig. 3. VELMA model of Chesapeake Bay nitrate: Left 2000, right 2003.

Fig. 4. Land use boundaries for VELMA Chesapeake nitrate study:
Left: Land use boundaries annotated hand, by the scientist,
Right: Initial VISTAS land use overlay onto Fig. 3 visualization.

Fig. 5. Munzner’s Nested Model [30].
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