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Abstract. New laws such as the European Union’s General Data Protection Reg-
ulation (GDPR) grant users unprecedented control over personal data stored and
processed by businesses. Compliance can require expensive manual labor or retro-
fitting of existing systems, e.g., to handle data retrieval and removal requests.
We argue for treating these new requirements as an opportunity for new sys-
tem designs. These designs should make data ownership a first-class concern
and achieve compliance with privacy legislation by construction. A compliant-
by-construction system could build a shared database, with similar performance
as current systems, from personal databases that let users contribute, audit, re-
trieve, and remove their personal data through easy-to-understand APIs. Real-
izing compliant-by-construction systems requires new cross-cutting abstractions
that make data dependencies explicit and that augment classic data processing
pipelines with ownership information.

We suggest what such abstractions might look like, and highlight existing tech-
nologies that we believe make compliant-by-construction systems feasible today.
We believe that progress towards such systems is at hand, and highlight chal-
lenges for researchers to address to make them a reality.

1 Introduction

Many websites store and process customers’ personal data in server-side systems. Com-
panies operating these websites must comply with data protection laws and regulations,
such as the EU’s General Data Protection Regulation (GDPR) [9] and the California
Consumer Privacy Act of 2018 [1], that grant individuals significant control of and
powers regarding their own data. For example, the GDPR makes it mandatory for en-
terprises to promptly provide users with electronic copies of their personal data (“right
of access”), and for enterprises to completely remove the user’s personal data from its
databases on request (“right of erasure”). Non-compliance with the GDPR can result in
severe fines of up to 4% of annual turnover, and the EU has recently imposed fines of
hundreds of millions of dollars on Mariott [28] and British Airways [27] for negligent
handling of customer data. At one estimate, the cost of GDPR compliance is expected
to exceed $7.8bn for U.S. businesses alone [25].

In this paper, we survey the challenges that GDPR compliance creates for data stor-
age and processing systems, and argue that the database and systems research commu-
nities ought to treat these challenges as an opportunity for new system designs. These
new designs should broadly treat end-users’ control over their personal information as a
first-class design concern. Our vision is to align system designs closely with the reality
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of data ownership and legislative requirements such as those imposed by the GDPR.
Concretely, systems should achieve compliance with GDPR-like legislation by con-
struction, with significantly more help from databases than current systems can offer.

The GDPR differs from prior privacy legislation primarily in its comprehensive-
ness. The GDPR has an expansive interpretation of “personal data” that covers any
information related to an identifiable natural person, the data subject. The legislation
establishes data subjects’ rights over the information that data controllers (e.g., web
services) collect and which data processors (e.g., cloud providers) store and process.

This has wide-ranging implications, including for the relational backend databases
that support web applications. To comply with the spirit of individual control over data
and to guarantee the data subjects’ rights, such databases should become dynamic,
temporally-changing federations of end-users’ contributed data, rather than one-way
data ingestors and long-term storage repositories that indiscriminately mix different
users’ data.

To realize this ideal, a database must:

1. logically separate users’ data, so that the association of ingested, unrefined “base”
records with a data subject remains unambiguous;
2. model the fine-grained dependencies between derived records and the underlying
base records; and
3. by appropriately adapting derived records, handle the removal of one user’s data
without breaking high-level application semantics.
More ambitious goals may include having the database attest the correctness of its own-
ership tracking and data removal procedures, or to synthesize such procedures from a
high-level privacy policy.

Today’s websites and applications rely on much more than databases, however: blob
stores may store artifacts like photos, machine learning models may train on users’ de-
rived data, and long-term analytics pipelines may update aggregate statistics on dash-
boards. Consequently, implementing our vision in any single system is likely insuffi-
cient. Instead, cross-cutting abstractions that generalize across systems are needed.

We believe that one promising approach is to conceptualize web service backends—
databases, blob stores, analytics pipelines, machine learning (ML) models, and other
systems—as a large dataflow computation. In this model, a user “subscribes” and con-
tributes her data into an exclusively-owned shard of the backend. This shard stores all
data owned by this user. As data arrives into the shard, it streams into other systems
for processing and storage, but remains associated with the contributing user. The user
may at any point choose to withdraw her shard (and thus, her data) from the system. For
example, a newly-uploaded picture will initially be associated with the uploader’s shard
(and logically, or perhaps even physically, stored with it). Subsequently, it may perco-
late into a blob store (for storing the binary image data), a database (for tracking the
picture’s metadata), a request log, and a notification service that pushes updates to the
uploader’s friends. Beyond the original, encrypted user shard, the picture is associated
only with a pseudonymous identifier, a model that is GDPR-compliant by construction.
If the uploading user decides to retrieve her data, the service merely needs to return her
shard and all information it contains; if she demands erasure of her data, the service
deletes the shard and streams revocation messages that remove derived data.
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The dataflow architecture we sketched here crucially requires systems to track data
origin, e.g., via explicit labels or well-defined relationships. In addition, all systems
must support both data contribution and data revocation. We believe that efficient mech-
anisms for these purposes are within reach, and that developing mechanisms and sys-
tems that achieve compliance by construction constitutes a fruitful research direction
for databases and privacy-aware and distributed datacenter systems.

2 Vision

We envision a compliant-by-construction web service backend that allows users to
seamlessly introduce, retrieve, and remove their personal data without manual labor on
the application developer’s part. In the following, we focus how this vision addresses
data subjects’ rights to access, objection, erasure, and data portability under the GDPR.
Existing techniques discussed in §4 are sufficient to provide data protection and secu-
rity, and should compose with our proposal.

For concreteness, we center our discussion around relational databases, which are
central to many web service backends. We first sketch the system design, and then
explain how it facilitates key GDPR rights. §3 will discuss how to extend our design to
include other systems, such as blob stores and model serving infrastructure.

2.1 System design

Our key idea is for each user to have her own, structured shard of the storage back-
end (Figure 1). This user shard stores all information about this user, such as profile
information, posts, uploaded pictures, records of votes or “likes”, or other application-
specific information. Storing data in a user shard represents an association of control,
or, for many data items, ownership. Therefore, a user shard never contains information
related to other users, or derived information that combines multiple users’ data. We
expect that the data subject owning the user shard is often the primary contributor to
it, although other entities—including data controllers—may also add data to the shard
(consider, e.g., doctors adding to a medical record).

To combine users’ data, as most applications require, the backend builds material-
ized views over the user shards. These materialized views are what applications query,
and different applications may define different views that suit their needs. For example,
a microservice application for the personalized front page of a social application may
define a view for the social graph, views that hold users’ most recent and most-liked
posts, and a view for posts with associated images.

We envision a highly dynamic user shard set. Users will continuously update their
shards as they interact with the web service; new users will add shards, while other users
remove their shards or withdraw parts of their data. Moreover, we would like a system
based on dynamic user shards to enjoy the same performance as today’s applications
do with an optimized schema. Such optimized schemas often combine multiple users’
data in tables that make sense for application semantics, such as a table containing all
posts. This requires a system with support for a large number of materialized views
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Fig. 1. Example of our architecture for a web service with two applications. Applications write
new data to user shards (top). The database processes changes through a dataflow (middle, blue)
to update tables in the materialized views, which applications (bottom) query.

(tens or hundreds of thousands with many users), with efficient dynamic view creation
and destruction, and with excellent read and incremental update performance.

We believe that a key enabling technology for making this design efficient already
exists. The partially-stateful dataflow model supports high-performance, dynamic,
partially materialized, and incrementally-updated views over input data [11]. Using this
model, we can build a streaming dataflow computation over the user shards, linking
each user shard to the materialized views that changes to the shard will affect. Every
write to a user shard then becomes a streamed update that flows through this dataflow to
update the materialized views; the addition of new user shards becomes a set of batched
updates introducing a large collection of new records; and the removal of a user shard
becomes a set of batched updates that revoke previously-sent updates. The backend
becomes a long-running, streaming dataflow computation with its ground-truth state
federated over the user shards. The partially-stateful nature of the dataflow allows the
system to proactively update some materialized views (or parts thereof), while reac-
tively computing information in others by querying “backwards” through the dataflow.

Partially-stateful dataflow is a convenient abstraction for materialized views over
federated user data for several reasons:
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1. the dataflow implicitly represents dependencies between records, such as a post and
the likes associated with it via a foreign key;

2. dataflow models (e.g., differential dataflow [17]) allow processing additions, up-
dates, and removals of user shards as incremental computations;

3. dataflow computations can be sharded, parallelized, and scaled with relative ease,
making the architecture suitable for scaling to large web services; and

4. partially-stateful dataflow can selectively materialize only parts of downstream
views, which keeps the space footprint manageable and allows applications to im-
plement their own caching policies, such as keeping data only for active users, or
only for the most popular entities.

The challenges in realizing our design lie in achieving high performance while still
providing intuitive consistency semantics for complex applications. Specifically, the
user shard structure will yield dataflows over thousands or millions of individual user
shards. These dataflows will have extremely “wide” dependencies (i.e., many incoming
edges) at points where the computation combines data across users. Query evaluation
of partially-stateful dataflow is likely to be slow for such dependencies, since an up-
wards query through the dataflow must contact many shards. But eager, forward update
processing has no such limitation. Semantics of the dataflow execution also matter:
in a distributed, streaming dataflow with many servers processing updates in parallel,
updates derived from a particular change to a user shard may reach some materialized
views before others. An application that writes to a user shard may expect to see its write
reflected in subsequent reads, as it would when interacting with a classic database. But
providing even this read-your-writes consistency over a large-scale dataflow will result
in expensive and unscalable coordination if done naively. Finally, if the dataflow com-
bined data from many user shards, several users may share ownership of derived records
in the materialized views. The withdrawal of a user shard may affect these derived re-
sults, and the semantics of handling revocation of records that impacted such co-owned
derived results need to be clear.

We believe that if it works, our dataflow design will yield a framework for building
complex applications while granting users unprecedented control over their data.

2.2 Right to access

Supplying a user with a copy of all her data stored and processed in the system, as re-
quired by the GDPR’s “right to access” for data subjects (Article 15), is straightforward
in a compliant-by-construction design like ours. To serve a data subject’s access re-
quest, the system simply sends the data subject a copy of her user shard. This simplicity
contrasts with post-hoc approaches that extract data using complex, manually-crafted
queries or custom crawlers that identify data related to a subject for extraction and
manual verification [8]. Achieving this simple compliance-by-construction with user
shards imposes only two requirements: first, that the schema of the user shard is free
of proprietary information—such as, e.g., the data controller’s or processor’s backend
architecture—and second, that the data subject is permitted see all data in her user
shard. We therefore believe that compliance-by-construction systems should assume
that a user shard and its structure are visible to the data subject in their entirety.
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In addition to access to the raw data, the GDPR right of access also requires that
the user be provided with information regarding “the purposes of processing” and “the
existence of automated decision-making [. .. and] the logic involved” [9, Art. 15]. Com-
pliance with these requirements is trickier to ensure by construction, since processing
purpose and decision making happen—at least partly—in the application code. It might
be possible, however, to analyze the dataflow below user shards and generate a descrip-
tion of all materialized views and applications that a given user’s data can reach and
thereby might affect. Such an analysis would provide an automated means of extracting
the information required, and might also facilitate compliance with the GDPR’s right to
objection, which allows data subjects to reject certain types of processing (see §2.5).

2.3 Right to erasure

The GDPR’s Article 17 requires that users must be able to request erasure of their data
“without undue delay”. In a compliant-by-construction design, this involves removing
a user shard from the system. Withdrawing a user shard effectively erases all data con-
tained in it, and then remove or transform dependent downstream information in the
dataflow and materialized views.

In principle, removing dependent downstream data is easy as long as the dataflow’s
operators understand revocations as well as insertions. For example, revoking a vote
record for a post from a counting operator involves reducing the count by one, pro-
cessing a revocation through a join produces revocations for all joining keys, etc. By
sending a revocation update for all information contained in the withdrawn shard, the
system ensures that all derived downstream information is removed. And since all ma-
terialized views queried by applications depend on the dataflow, which itself is a fault-
tolerant, distributed computation, we can be assured that all derived information will
indeed (eventually) be removed.

All common relational operators have complements compatible with this model,
but more complex application semantics may require deeper system support for data
removal. For example, consider Alice removing her account from a news aggregator
website such as HackerNews or Lobste.rs*: removing the user shard in question will re-
move Alice’s posts and votes. More insidiously, the revocation also covers information
like invitations to the site that Alice issued, moderation decisions she made (if she’s
a moderator), and personal messages she sent to other users. Some of this informa-
tion may need to persist—perhaps in anonymized form—even though Alice originally
contributed it!

We believe that dataflow will work even in the presence of these complex applica-
tion semantics, provided the application developer can express a policy for how each
dataflow operator or materialized view handles record revocation. Instead of simply in-
verting the effect of the original record, the operators may e.g., re-attribute, anonymize,
or otherwise transform the derived information.* However, the invariants of partially-

3 https://lobste.rs

* However, general-purpose “undoing” of computation that extends beyond relational operators
can be hard [5, 6]. Imagine, for example, a dataflow operator that trains an ML model on
Alice’s data: it is unclear how to “invert” the training and revoke Alice’s information from the
trained model. §3 describes ideas for how we might handle this situation.
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stateful dataflow require that any materialized result must also be obtainable by exe-
cuting a query over the base data. The dataflow system may meet this requirement by
creating records that support the transformed derived data, and storing these records in
a special shard for deleted users.

2.4 Right to data portability

Compliance with the right to data portability (GDPR Article 20) follows from the com-
bination of the rights to access and erasure. To move data her data from one data con-
troller to another, a user can simply retrieve her user shard from the current controller,
withdraw it, and then introduce the retrieved shard to the new controller. All derived
information at both controllers will update appropriately, assuming that there is a com-
mon data description standard for user shard schemas, or that the controllers know how
to transform user shards to and from their respective schemas. This is admittedly a big
assumption, but we believe that standardized formats or conversion tools will become
available once user data is widely available in the “structured, commonly used and
machine-readable format” [9, Art. 20] that the GDPR requires.

2.5 Right to objection

The GDPR also grants users the right to object “any time to processing of personal data
concerning him or her” [9, Art. 21] for specific purposes (such as marketing), with some
exceptions. With our design, exercising this right involves preventing the flow of data
from a user shard into subgraphs of the dataflow that apply specific kinds of processing
or which lead to materialized views for specific applications.

We believe that adding appropriate “guard” operators to the dataflow can make it
feasible to enforce this right. These operators would check whether a user has objected
to the use of her data for e.g., marketing, and prevent any data from an objecting user’s
shard from affecting views used in marketing workflows. We envision that achieving
compliance this way requires applications to augment their materialized view specifi-
cations with a declarative specification of each view’s purpose, or a reason for overrid-
ing the right to objection and processing data without consent (as per GDPR Article
6). We believe that such a declarative specification is far simpler, easier to audit, and
more likely to be enforced correctly than adding explicit checks for user objection in
application code.

3 Challenges and Opportunities

Realizing our vision raises interesting research questions and its success requires over-
coming several challenges.

Classes of personal data. The data associated with a data subject can be contributed
directly by that subject into her user shard, but may also originate with other entities.
For example, data controllers sometimes create data about a user: a government agency
may create a birth certificate or tax information, a hospital may create and add to a
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medical record, or a network operators may collect metadata statistics about the user’s
network use. The GDPR grants that user the rights of a data subject for this content,
requiring the system to store such content in the relevant user shard. This will require
intuitive interfaces that allow applications to address the correct user shard on each
database write, ideally without requiring intrusive application changes.

Even if the data subject contributed content directly, it may be subject to different
policies. For example, a user may both browse and contribute articles to a news site.
Browsing data is personal, unshared, and typically subject to strong GDPR protections;
meanwhile, a contributed article may be subject to a contract giving the site permission
to host the article indefinitely. Furthermore, in some cases, such as shared data, a user’s
withdrawal from a site might require application-specific anonymization rather than
outright data removal. The presence of multiple classes of data in the same user shard
could complicate some compliance mechanisms; however, user shards are inherently
flexible, allowing such designs as multiple shards per user, one per data class.

Shared data. Not all data is clearly owned by a single user. Should a private message
on Facebook be associated with one user or both? If my friend deletes her copy of the
message from Facebook’s database, is my side of our conversation removed entirely, or
should a possibly-anonymized ghost message persist in my user shard?

Access control. Even though a user shard contains data associated with a particular data
subject, this association may not imply unlimited control. For example, although you
may be the data subject of tax records indicating what you owe, you certainly cannot
change or remove them! This suggests that controls over the management of data in a
user shard need to exist: some information will be immutable to the data subject, but
mutable by data controllers; other information may need to persist even when the user
removes her shard from the system. To realize the right to portability by retrieving a user
shard (as per §2.4), we may need a form of trusted transfer between data controllers, or
an assurance mechanism for immutable data if the data subject is part of the transfer.
Perhaps the controllers could exchange hashes or signatures of the immutable content,
and use these to validate the ported user shard after import.

Schemas. User shards will have a well-defined schema, but this schema may differ
significantly from the schemas desired by applications, which often perform queries
across groups of user data. The dataflow transformations that combine user shards into
views convenient for application access may be complicated; their performance may
benefit from insights from literature on partitioned in-memory databases [26].

Changing the user shard schema presents challenges and opportunities, as there
will be as many user shards as there are users, or more. On the one hand, user shards
represent natural boundaries for gradual schema change deployment; but on the other
hand, completing a schema change may require migrating millions of logically- and
physically-distinct databases.

Consistency. Current partially-stateful dataflow implementations provide only eventual
consistency. This may suffice for some applications, or for many parts of some applica-
tions, but strong consistency is important for some parts of all applications. We see this
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as an opportunity to develop high-performance partially-stateful dataflow implementa-
tions that support stronger consistency, e.g., through pervasive multiversioning.

Cross-system abstractions. Our exposition in §2 focused on an RDBMS, but web ser-
vices rely on many backend systems for storage and data processing. If user shards are
the unified ground truth storage of all contributed data, the dataflow over them must
feed not merely tabular materialized views, but also diverse endpoints like blob stores,
MapReduce jobs, ML training and inference, and others. This creates an opportunity to
define cross-cutting abstractions for dataflow between backend systems that augment
current datacenter system APIs. It also raises challenges: e.g., how do we revoke train-
ing data from an already-trained ML model?

We envisage partially-stateful dataflows that feed data from user shards into con-
sumer systems subject to policies over the interfaces. For example, a policy governing
MapReduce jobs may require recording which user shards contributed to the job result,
and have withdrawal of any such shard trigger re-execution. Systems might also specify
a threshold on shard withdrawals below which the derived effects of data revocation are
minimal or provably untraceable (i.e., a notion of differential privacy is guaranteed).
This might help, e.g., with ML models trained on a data subject’s information: if it is
impossible to tell whether an inference came from a model trained with this data or
from one trained without it, it is safe to avoid retraining when the subject withdraws her
data.

Trust model. In anideal world, an end-user would never need to trust a data controller or
data processor. A strong threat model provides hard guarantees, but often yields systems
heavily rely on cryptography and have restrict functionality. Alternatively, we might
presume that companies follow the law and faithfully implement laws like the GDPR,
and that out-of-band enforcement mechanisms (such as fines) take care of exceptions.

In technical terms, this model shifts the focus from making it impossible to violate
privacy laws to easing compliance with them. This can result in low-overhead systems
that maintain the functionality users demand, but offers no absolute guarantees.

Specifying privacy policies. The GDPR codifies general responsibilities of a data pro-
cessor, but leaves it to the data processor to provide specifics in a privacy policy. Pri-
vacy policy languages designed for computers rather than human lawyers could be a
fruitful research direction to ease automated policy enforcement. For example, our pro-
posed system would benefit from machine-parseable privacy policies that specify what
dataflows to restrict, how to handle data erasure on shard withdrawal, and what views
specific applications are permitted to define.

4 Related work

The desire to give users control over their personal data has been the motivation for
considerable existing research. This research addresses a wide variety of use cases, ad-
versary models, and presupposes different standards and ideals for user data protection.
The GDPR and similar comprehensive privacy legislation, by contrast, for the first time
defined concrete standards that real-world companies must comply with.
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Researchers have observed that retrofitting compliance with such wide-ranging reg-
ulation onto existing systems and processes is challenging: business models rely on
combining data across services, modern machine learning (ML) algorithms violate
rights to explanation of automated decisions, and pervasive caching and replication
complicate data removal [24]. Minimally-invasive changes that make existing system
compliant can substantially degrade their performance [23]. We believe that this in-
ability to retrofit compliance motivates new system designs and new abstractions for
inevitable interaction between systems.

4.1 Malicious or negligent data controllers and data processors

Some prior work seeks to protect users against a malicious data processor, using sand-
boxes [12], by relying on decentralized storage with churn to effect self-destruction of
data unless refreshed [10], or by using cryptographic constructs for oblivious compu-
tation [29, 31] or computation over encrypted data [21, 22]. These systems have seen
limited uptake in practice, perhaps due to the high cost—in terms of overhead and re-
stricted functionality—that strong, often cryptographic, guarantees impose.

Information flow control (IFC) can protect against data breaches by statically or
dynamically verifying that it is impossible for specific system components or code to
access private user data [7, 14, 34]; programming language techniques similarly ensure
that applications handle user data in accordance with a privacy policy [20, 32, 33]. To
the same end, multiverse databases [16] compute individualized materialized views for
each end-user. These approaches help meet the GDPR’s data security requirements, but
they do not address other aspects, such as users’ rights to access, object, erasure, or data
portability, which our proposed design addresses by construction.

4.2 User control over data

Riverbed [30] allows end-users to define policies for their data and enforces them over
entire web service stacks: using containers, Riverbed forks a complete stack for every
new set of policies. This grants users control over their data, but prohibits and sharing
across users with disjoint policy sets, which severely restricts functionality. W5 [13],
by contrast, proposes to combine user data in a single platform and has users explic-
itly authorize access by applications running on this platform, relying IFC to enforce
isolation. This achieves good performance, but requires laborious effort on users’ part,
and is incompatible with web services that may wish to avoid exposing their internal
application structure.

Perhaps most similar to our dataflow design are the ideas of “standing queries” over
distributed data in Amber [2] and Oort [3]. Structured as a publish-subscribe network,
the their focus is to allow cloud applications to access data stored with multiple storage
providers, and users are responsible for setting permissions on their data. This is akin to
making our user shards held globally queryable; our design instead focuses on enforcing
GDPR compliance over data stored within a single web service backend.

BStore [4] and DIY hosting [19] suggest to store users’ data lives on cloud storage
services (such as Amazon S3), which web applications access through a filesystem
interface or serverless functions. Solid [15] and Databox [18] go one step further and
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have users run personal, physical or virtual, servers that host all data and execute all
server-side application logic, combining user data on different “pods” or databoxes via
well-defined APIs. These interfaces achieve user control over data, but lack support
for the long-running, stateful services at the backbone of today’s web services, which
rely on computing and caching derived data. Our user shards are instead held on a
web service’s servers (e.g., Google’s), allowing for efficient stateful services, but we
envisage APIs for the creation and withdrawal of user shards.

4.3 Data revocation

Removing user data from server-side systems, and revoking its effects on derived in-
formation, is a challenging problem. Some prior systems, such as Vanish [10], seek to
give users the ability to revoke data even if processed, cached, and stored online and on
machines beyond their control. In Vanish, data “self-destructs” after some time unless
it is actively refreshed, but revocation is all-or-nothing—i.e., it is impossible to revoke
only one of many records that impacted a piece of data stored in Vanish—and Vanish
relies on cryptography and a peer-to-peer distributed hash table, making it hard to fit
into today’s established web service stacks. Undo computing [5, 6], on the other hand,
seeks to provide a general-purpose mechanism to undo only specific frontend requests
and their derived side-effects. The use case is to undo malicious requests that exploited
bugs in a web application, and any secondary effects or subsequent data modifications
these requests applied, restoring a “clean” web service backend.

In a compliant-by-construction database, we trust the system (and the data processor
who runs it) to faithfully execute shard revocation requests, and expect that fines under
the GDPR are sufficient to discourage foul play. In our dataflow design, determinism
simplifies undoing requests, as the dataflow’s inherent dependency structure and known
operator semantics capture much of the information that undo computing (which covers
non-determinism) has to extract from logs.

5 Conclusions

In this position paper, we argued that recent privacy legislation such as the GDPR con-
stitutes an exogenous change that necessitates new system designs, much like changing
applications or hardware have in the past.

We proposed a new web service backend architecture that puts users in control
of their data, and which aims to be GDPR-compliant by construction. Applied to an
RDBMS, our design requires changes to classic schema design and query processing,
but leaves the application development model unchanged.

While we believe our ideas indicate a promising direction, and efficient and gen-
eralizable implementation requires addressing several research challenges that span
databases, distributed systems, programming languages, and security. We are excited
to work on these challenges ourselves, and we encourage the community to take them
up, as there is plenty of work to do.
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