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A New Take on Fast Web Application Backends
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N
oria [2], first presented at OSDI ’18, is a new web application back-

end that delivers the same fast reads as an in-memory cache in front 

of the database, but without the application having to manage the 

cache. Even better, Noria still accepts SQL queries and allows changes to 

the queries without extra effort, just like a database. Noria performs well: it 

serves up to 14M requests per second on a single server, and supports a 5x 

higher load than carefully hand-tuned queries issued to MySQL.

Writing web applications that tolerate high load is difficult. The reason is that the backend 

storage system that the application relies on—typically a relational database, like MySQL—

can easily become a serious bottleneck with many clients. Each page view typically involves 

10 or more database queries, which each take up CPU time on the database servers to evalu-

ate. To avoid such slow database interactions and to reduce load on the database, applications 

often introduce caches (like memcached or Redis) that store already-computed query results 

for fast common case access. These caches, however, impose significant application com-

plexity, because the application must query, invalidate, and maintain them [1]. Surely there 

has to be a better way.

Data-Flow for High Performance
At first glance, Noria seems similar to a database because it processes SQL queries. How-

ever, instead of evaluating queries on-the-fly as a traditional database would, the application 

registers long-term queries with Noria for repeated use. Queries contain free parameters 

that the application specifies when it actually executes its reads, similar to the interface 

provided by prepared SQL statements. From the pre-specified queries, Noria constructs a 

data-flow graph that continuously and incrementally evaluates the queries when the underly-

ing data changes.

Data-flow processing was initially invented in the 1970s for circuit design but has recently 

been adopted for large-scale parallel data-processing in systems like Dryad [4], Naiad [5], 

and TensorFlow [6], for example. In data-flow, the system represents computations as a 

graph whose vertices are data-flow operators and whose edges carry updates between the 

operators. When an operator receives an update on an incoming edge, it processes the update 

(possibly consulting internal state that it keeps) and emits zero or more updates of its own on 

all its outgoing edges. This graph representation is appealing, as it makes the computation’s 

dependencies explicit: update propagation across different edges and processing at differ-

ent vertices can happen in parallel. Therefore, data-flow processing is well-suited to scaling 

across multiple CPU cores and servers.

In Noria, the data-flow graph connects classic database tables at its inputs to materialized 

views at its leaves. The intervening operators proactively execute the application’s queries for 

each change to the tables. Noria generates the data-flow from SQL queries using a process 

similar to database query planning. Noria then serves all reads directly from the materialized 

views in memory, which makes reads as fast as reading from a cache. When the records in a 
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table change (e.g., in response to a client insert or update), Noria feeds updates through the 

data-flow to modify the materialized views as necessary.

The idea of materialized views has been around for decades, and some commercial and 

research databases support them. However, existing implementations lack the flexibility and 

performance that web applications require.

Noria’s approach effectively flips the database query model on its head: instead of executing 

queries in response to reads, Noria executes them in response to writes. Reads are simple 

lookups into materialized state, which makes them (much) faster by moving work from reads 

to writes. Modern web applications are generally read-heavy, so this tradeoff makes sense 

for them. Furthermore, since Noria takes care of making reads fast even for complex SQL 

 queries, the developer no longer needs to write error-prone, complex cache-maintenance 

code, or tune their queries for fast execution. They can simply issue the SQL queries they 

wish, inline aggregations and all, and Noria does the rest.

An Example: Votes for News Stories
Let’s take a look at how Noria executes a particular SQL query. Figure 1a shows the data-

flow that Noria constructs when given a query that counts the votes for each story in a news 

aggregator like Hacker News or Lobste.rs. The query joins with the stories table to retrieve 

the story’s details (title, author, etc.). When a client inserts a new vote (let’s say for the story 

with the identifier A), an update enters the data-flow at the vertex that corresponds to the 

votes table. From there, the data-flow propagates the update to the aggregation vertex below, 

which looks up the current vote count for the new vote’s story in the internal state it main-

tains (say, 7). The count then updates the internal state to record that the vote count for that 

story is now 8 and emits an update to its children saying that the count for A is now 8, not 7. 

This update arrives at the join, which looks up A’s title in stories and produces a new update 

that says A, whose title is “Space elevator nearly completed,” now has a vote count of 8, not 

7. That update finds its way to the materialized view StoryWithVotes, which Noria updates 

appropriately so that any subsequent read from it sees A’s vote count as 8. Here, we say that 

StoryWithVotes is keyed by the story’s identifier. In general, the key for a view is dictated by a 

set of free parameters in the corresponding SQL query issued by the application.

Figure 1a: Example Noria data-flow for a query that counts the votes for each story in a news aggregator 
and incrementally updates the count as new votes arrive (solid). Reads hit materialized view (dashed).
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Making Data-Flow Work for Web Applications
Naively adding new queries and initializing their data-flow state 

and materialized views may require Noria to compute a signifi-

cant amount of state for the new query and induce downtime 

while it does so. More generally, if Noria always kept all state for 

all stateful internal data-flow operators and all its materialized 

views, its memory footprint would explode with many queries. 

Noria solves this problem by introducing partially stateful data-

flow. This new model in turn enables Noria to support dynamic 

materialized views, where the set of queries changes over time 

without requiring a system restart.

Dynamic change. Figure 1b shows the data-flow from Figure 

1a after the application adds a new Karma query (the shaded gray 

region). Karma computes the total votes for all stories posted by 

a given user. Notice that the data-flow path for Karma partially 

overlaps with that of StoryWithVotes. Noria realizes that it does 

not need to recount all the votes but can instead reuse the counts 

it already has. When the application first issues the Karma query, 

Noria extends the currently running data-flow to also include 

the extra data-flow operators needed for the new query and a new 

materialized view for Karma. It then initializes the state needed 

by stateful data-flow operators and the materialized view before 

making the latter available for application reads. Reads of old 

views are unaffected by changes to the data-flow, as are writes to 

unconnected parts of the data-flow. In combination with partial 

state, Noria makes the change instantaneous for writes as well.

Data-flow systems prior to Noria were designed for stream, graph, 

and parallel “big data” processing and cannot change the compu-

tation (i.e., queries) without restarting [6]. They must either keep 

all computed state in internal operator state and materialized 

views or apply windowing to reduce computed state by throwing 

away old records. For web applications, neither is acceptable: the 

backend cannot be down when queries change, and it must return 

complete results rather than ones based only on recent changes.

This brings us back to Noria’s key idea: partially stateful data-

flow. Noria’s data-flow changes on-the-fly in response to query 

changes, and it keeps only a subset of state in memory, fetching 

missing data on-demand.

Partial state. Noria marks some keys in each data-flow state as 

absent and recomputes them only when needed. To support such 

recomputation—e.g., when a client reads an absent key from a 

materialized view—Noria relies on upqueries through the data-

flow. Upqueries allow a vertex to ask its ancestors to recompute 

the absent state the vertex needs in order to serve an application 

read. The upstream ancestors respond to an upquery with the 

records in their state that match the absent key or keys speci-

fied by the upquery, and the results percolate back down through 

the data-flow. Since upqueries allow vertices to recover absent 

state, Noria is free to evict infrequently accessed state to save 

memory. More importantly, Noria also uses absent state to cre-

ate new materialized views and operators with initially empty 

state, relying on upqueries to fill the state on demand. This 

allows Noria to adapt to most query changes entirely without 

downtime; all that is required is to bring up a set of empty data-

flow operators. Absent state also speeds up regular processing, 

as updates for keys that are evicted, or that the application has 

never requested, can be discarded early.

Partial state and upqueries are conceptually simple, but mak-

ing them always correct actually requires care. Intuitively, a 

partially stateful data-flow is only correct if it always—whether 

directly or via upqueries—produces the same result for a client 

read that a classic data-flow with full state would have returned. 

However, ensuring this in the face of concurrent processing 

in the data-flow, and with upqueries that can race with “nor-

mal” updates traveling downstream that themselves may be 

contained in the eventual upquery response, is difficult. Noria 

ensures this property using a new data-flow model and extra 

invariants. Some of the challenges are:

 ◆ How do data-flow operators handle updates that encounter 

absent state? Consider the earlier count: if its state for story A  

is absent, how can the count operator produce (A, 8) as the 

emitted update?

 ◆ How does parallel processing of complex data-flows that fork 

and join still ensure that upquery responses always contain all 

the updates processed at the queried operator exactly once?

 ◆ How do operators that change the key column handle up-

queries? For example, the sum operator added in Figure 1 may 

upquery the join on its incoming edge for a particular user, but 

that join is keyed by the story identifier column.

 ◆ How do multi-ancestor operators handle upqueries if state  

for the upquery key is available in one ancestor but not in  

the other?

Figure 1b: If the application adds another query to compute the “Karma” 
score for each user (the total votes received for the user’s stories), Noria 
dynamically adds to the running data-flow (dash-dot) the extra operators 
and materialized views needed.
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Our paper [2] gives the invariants that Noria must maintain to 

guarantee correct execution and points out what goes wrong if 

these invariants are not properly maintained.

Evaluating the Noria Prototype
We implemented Noria in about 60,000 lines of Rust, along with 

a MySQL adapter that implements the MySQL binary protocol 

and makes Noria appear as a MySQL server to legacy applica-

tions. This way, Noria can support unmodified MySQL applica-

tions that use prepared statements (e.g., through PHP’s PDO 

library). Noria supports sharding and partitioning the data-flow 

across cores and servers, and stores all base tables durably in 

RocksDB [7]. It handles failures in the distributed system by 

recreating those parts of the data-flow that a failure affects.

To evaluate Noria’s performance and check that it actually 

makes web applications faster and reduces their complexity, we 

wrote a workload generator that emulates the real production 

workload seen by the news aggregator website Lobste.rs (https://

lobste.rs). Lobste.rs is a Ruby-on-Rails application backed by a 

MySQL database, and the Lobste.rs developers carefully hand-

optimized its queries for performance. Our benchmark issues the 

same SQL queries as the real Lobste.rs website, with the same 

frequency and popularity skew, using the MySQL binary protocol.

We then run that against both MySQL directly (we use MariaDB 

v10.1.34, a GPLv2 community fork of MySQL) and against Noria, 

on a 16-core Amazon EC2 VM. Figure 2 plots the offered load on 

the x-axis (in page views per second; each page issues around ten 

queries) and the achieved median and 95th percentile latency 

on the y-axis (so lower is better). At the point where each setup 

stops scaling—for example, because it saturates the server’s CPU 

cores—the latency curve forms a “hockey stick” that shoots up 

when the system cannot keep up with the load anymore. The 

results indicate that Noria scales to a 2.5x–5x higher load than 

the MySQL baseline. For the initial result (blue line with circles, 

2.5x improvement), we use the exact same queries as the Lobste 

.rs developers.

We then go a step further and remove all manual optimizations 

from the queries (line with squares). For example, the original 

application keeps upvotes and downvotes columns in the stories 

table and updates them on every vote, so that read query evalua-

tion avoids doing a COUNT over votes. This is effectively a hand-

rolled “materialized view” of the vote count, but it requires the 

developers to customize the application to update this column 

whenever the vote count changes. In Noria, such hand-tuning 

is unnecessary. Indeed, removing the hand-optimizations from 

the queries, we see a 5x speed-up over MySQL. The difference 

here comes from the fact that by not having to maintain these 

auxiliary values in the base tables (but instead having Noria 

maintain them in the data-flow), we avoid an extra UPDATE query 

and parallelize the update processing.

To quantify how much Noria improves performance over exist-

ing approaches, we choose a single, common query (the join of 

stories with vote counts) and issue that same query against 

a number of common web backend setups. Here, 95% of the 

requests are reads, and 5% are new votes, and we use a simi-

lar, skewed popularity distribution as the real Lobste.rs site 

observes. We benchmark MariaDB; System Z, a commercial 

database that supports materialized views; MariaDB with a 

memcached look-aside cache; “memcached-only,” an unrealistic 

deployment where the application stores vote counts directly in 

memcached without any database interactions; and Noria with 

four-way sharding for parallel processing.

All systems run entirely in-memory to avoid measuring the I/O 

layer performance, and we set the databases to avoid transac-

tions and use the lowest isolation level. Figure 3 again shows 

that Noria performs well: while the database-based systems do 

not scale beyond 200,000 requests/sec, Noria scales all the way 

to 14 million requests/sec. The unrealistic memcached-only 

deployment, for comparison, scales to 8 million requests/sec but 

then saturates the cores of the server.

Figure 2: Noria scales to a 5x higher load than MySQL for the Lobste.rs 
website’s workload while using queries free of hand-tuning (2.5x with the 
Lobste.rs’s developers’ original queries). Solid line shows median; dashed 
is the 95th percentile.

Figure 3: Noria supports 14 million requests/sec for a read-heavy  
(95% reads) workload, while other systems achieve only 200,000 
 requests/sec—with the exception of an unrealistic memcached-only  
setup that does strictly less work but still underperforms Noria.
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Noria outperforms memcached because it uses a more efficient, 

lock-free data structure to serve reads, but this is not fundamen-

tal (memcached could use the same data structure). Noria’s high 

performance comes because reads directly hit the materialized 

view, and because it processes writes efficiently through the 

sharded, partially stateful, incremental data-flow.

When to Use Noria
Noria is designed for web applications that are read-heavy and 

that can tolerate eventual consistency. The ubiquity of caches 

in modern web application stacks suggest that eventual consis-

tency is often sufficient, although we are also working on ideas 

for high-performance transactions on Noria. Noria also obviates 

the need for transactions in some cases. The Lobste.rs develop-

ers, for example, only use transactions to ensure that a story’s 

vote count is incremented atomically with the vote being stored. 

Noria maintains the vote count internally in the data-flow, so 

this transaction is no longer necessary.

Noria primarily targets applications whose working set fits in 

memory when sharded and partitioned across many servers. 

Old records in base tables are only on disk, but applications that 

regularly need to access the full data set (e.g., full-text search) 

would need additional support to work well in Noria.

How to Use Noria
Noria is open-source and available at https://pdos.csail.mit.edu 

/noria. In many cases, you should only need to start up the Noria 

MySQL adapter, point your application at it instead of MySQL, 

and turn off all your caches. Noria will take care of the rest. The 

Noria prototype is research code and still in development, but we 

would like to hear how it works for other people!
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