
www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 17

SYSTEMS

Noria
A New Take on Fast Web Application Backends

J O N G J E N G S E T , M A L T E S C H W A R Z K O P F , J O N A T H A N B E H R E N S , L A R A T I M B Ó A R A Ú J O ,

M A R T I N E K , E D D I E K O H L E R , M . F R A N S K A A S H O E K , A N D R O B E R T M O R R I S

N
oria [2], first presented at OSDI ’18, is a new web application back-

end that delivers the same fast reads as an in-memory cache in front

of the database, but without the application having to manage the

cache. Even better, Noria still accepts SQL queries and allows changes to

the queries without extra effort, just like a database. Noria performs well: it

serves up to 14M requests per second on a single server, and supports a 5x

higher load than carefully hand-tuned queries issued to MySQL.

Writing web applications that tolerate high load is difficult. The reason is that the backend

storage system that the application relies on—typically a relational database, like MySQL—

can easily become a serious bottleneck with many clients. Each page view typically involves

10 or more database queries, which each take up CPU time on the database servers to evalu-

ate. To avoid such slow database interactions and to reduce load on the database, applications

often introduce caches (like memcached or Redis) that store already-computed query results

for fast common case access. These caches, however, impose significant application com-

plexity, because the application must query, invalidate, and maintain them [1]. Surely there

has to be a better way.

Data-Flow for High Performance
At first glance, Noria seems similar to a database because it processes SQL queries. How-

ever, instead of evaluating queries on-the-fly as a traditional database would, the application

registers long-term queries with Noria for repeated use. Queries contain free parameters

that the application specifies when it actually executes its reads, similar to the interface

provided by prepared SQL statements. From the pre-specified queries, Noria constructs a

data-flow graph that continuously and incrementally evaluates the queries when the underly-

ing data changes.

Data-flow processing was initially invented in the 1970s for circuit design but has recently

been adopted for large-scale parallel data-processing in systems like Dryad [4], Naiad [5],

and TensorFlow [6], for example. In data-flow, the system represents computations as a

graph whose vertices are data-flow operators and whose edges carry updates between the

operators. When an operator receives an update on an incoming edge, it processes the update

(possibly consulting internal state that it keeps) and emits zero or more updates of its own on

all its outgoing edges. This graph representation is appealing, as it makes the computation’s

dependencies explicit: update propagation across different edges and processing at differ-

ent vertices can happen in parallel. Therefore, data-flow processing is well-suited to scaling

across multiple CPU cores and servers.

In Noria, the data-flow graph connects classic database tables at its inputs to materialized

views at its leaves. The intervening operators proactively execute the application’s queries for

each change to the tables. Noria generates the data-flow from SQL queries using a process

similar to database query planning. Noria then serves all reads directly from the materialized

views in memory, which makes reads as fast as reading from a cache. When the records in a

Jon Gjengset is a Norwegian

PhD student in the Parallel

and Distributed Operating

Systems group at MIT CSAIL.

He received his bachelor’s

from Bond University, Australia, in 2011, and

his master’s from University College London

in 2013. His primary research focus is on

distributed data-flow systems, though he has

also worked on computer security and wireless

systems. Outside of academia, Jon develops

teaching resources for the Rust programming

language and is a frequent open-source

contributor. jon@thesquareplanet.com

Malte Schwarzkopf is a

postdoctoral associate in the

PDOS (Parallel and Distributed

Operating Systems) group

at MIT CSAIL. His research

focuses on distributed systems, with current

and past work on data-flow systems, query

compilers, cluster scheduling, datacenter

networking, and parallel data processing.

He received both his BA and PhD from the

University of Cambridge, and his research has

won best paper awards from EuroSys (2013)

and NSDI (2015). malte@csail.mit.edu

Jonathan Behrens is a PhD

student in the PDOS group

at MIT. His research centers

around operating systems and

distributed systems, including

Noria and work on OS abstractions to improve

resource utilization. behrensj@mit.edu

18  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

SYSTEMS
Noria: A New Take on Fast Web Application Backends

Lara Araújo is a Software

Engineer at Airbnb working on

large-scale distributed services

and streaming data pipelines.

Before joining Airbnb, Lara

earned a bachelor’s and a master’s degree in

EECS from MIT, focusing on developing secure

datastores for high-performance applications.

Her interests revolve around distributed

systems and different kinds of storage

systems. Lara was born and raised in Fortaleza

and enjoys dancing, bouldering, and reading

books by the ocean. lara.araujo@airbnb.com

Martin Ek studied computer

science at MIT and the

Norwegian University of Science

and Technology. He’s currently

a Software Engineer at Stripe,

where he helps build financial infrastructure for

online businesses. mail@ekmartin.com

Eddie Kohler is a Professor of

Computer Science at Harvard.

He maintains (more or less)

several widely used software

packages, including the Click

modular router and HotCRP, and he edited a

musical score of John Cage’s Indeterminacy.

Twitter: @xexd, kohler@seas.harvard.edu

Frans Kaashoek is the Charles

Piper Professor in MIT’s EECS

department and a member of

CSAIL, where he co-leads the

parallel and distributed operating

systems group (https://pdos.csail.mit.edu/).

Frans is a member of the National Academy

of Engineering and the American Academy of

Arts and Sciences, and is the recipient of the

ACM SIGOPS Mark Weiser award and the 2010

ACM Prize in Computing. He was a co-founder

of Sightpath, Inc. and Mazu Networks, Inc. His

current research focuses on multicore operating

systems and certification of system software.

kaashoek@mit.edu

Robert Morris is a Professor

of Computer Science at MIT.

rtm@csail.mit.edu

table change (e.g., in response to a client insert or update), Noria feeds updates through the

data-flow to modify the materialized views as necessary.

The idea of materialized views has been around for decades, and some commercial and

research databases support them. However, existing implementations lack the flexibility and

performance that web applications require.

Noria’s approach effectively flips the database query model on its head: instead of executing

queries in response to reads, Noria executes them in response to writes. Reads are simple

lookups into materialized state, which makes them (much) faster by moving work from reads

to writes. Modern web applications are generally read-heavy, so this tradeoff makes sense

for them. Furthermore, since Noria takes care of making reads fast even for complex SQL

 queries, the developer no longer needs to write error-prone, complex cache-maintenance

code, or tune their queries for fast execution. They can simply issue the SQL queries they

wish, inline aggregations and all, and Noria does the rest.

An Example: Votes for News Stories
Let’s take a look at how Noria executes a particular SQL query. Figure 1a shows the data-

flow that Noria constructs when given a query that counts the votes for each story in a news

aggregator like Hacker News or Lobste.rs. The query joins with the stories table to retrieve

the story’s details (title, author, etc.). When a client inserts a new vote (let’s say for the story

with the identifier A), an update enters the data-flow at the vertex that corresponds to the

votes table. From there, the data-flow propagates the update to the aggregation vertex below,

which looks up the current vote count for the new vote’s story in the internal state it main-

tains (say, 7). The count then updates the internal state to record that the vote count for that

story is now 8 and emits an update to its children saying that the count for A is now 8, not 7.

This update arrives at the join, which looks up A’s title in stories and produces a new update

that says A, whose title is “Space elevator nearly completed,” now has a vote count of 8, not

7. That update finds its way to the materialized view StoryWithVotes, which Noria updates

appropriately so that any subsequent read from it sees A’s vote count as 8. Here, we say that

StoryWithVotes is keyed by the story’s identifier. In general, the key for a view is dictated by a

set of free parameters in the corresponding SQL query issued by the application.

Figure 1a: Example Noria data-flow for a query that counts the votes for each story in a news aggregator
and incrementally updates the count as new votes arrive (solid). Reads hit materialized view (dashed).

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 19

SYSTEMS
Noria: A New Take on Fast Web Application Backends

Making Data-Flow Work for Web Applications
Naively adding new queries and initializing their data-flow state

and materialized views may require Noria to compute a signifi-

cant amount of state for the new query and induce downtime

while it does so. More generally, if Noria always kept all state for

all stateful internal data-flow operators and all its materialized

views, its memory footprint would explode with many queries.

Noria solves this problem by introducing partially stateful data-

flow. This new model in turn enables Noria to support dynamic

materialized views, where the set of queries changes over time

without requiring a system restart.

Dynamic change. Figure 1b shows the data-flow from Figure

1a after the application adds a new Karma query (the shaded gray

region). Karma computes the total votes for all stories posted by

a given user. Notice that the data-flow path for Karma partially

overlaps with that of StoryWithVotes. Noria realizes that it does

not need to recount all the votes but can instead reuse the counts

it already has. When the application first issues the Karma query,

Noria extends the currently running data-flow to also include

the extra data-flow operators needed for the new query and a new

materialized view for Karma. It then initializes the state needed

by stateful data-flow operators and the materialized view before

making the latter available for application reads. Reads of old

views are unaffected by changes to the data-flow, as are writes to

unconnected parts of the data-flow. In combination with partial

state, Noria makes the change instantaneous for writes as well.

Data-flow systems prior to Noria were designed for stream, graph,

and parallel “big data” processing and cannot change the compu-

tation (i.e., queries) without restarting [6]. They must either keep

all computed state in internal operator state and materialized

views or apply windowing to reduce computed state by throwing

away old records. For web applications, neither is acceptable: the

backend cannot be down when queries change, and it must return

complete results rather than ones based only on recent changes.

This brings us back to Noria’s key idea: partially stateful data-

flow. Noria’s data-flow changes on-the-fly in response to query

changes, and it keeps only a subset of state in memory, fetching

missing data on-demand.

Partial state. Noria marks some keys in each data-flow state as

absent and recomputes them only when needed. To support such

recomputation—e.g., when a client reads an absent key from a

materialized view—Noria relies on upqueries through the data-

flow. Upqueries allow a vertex to ask its ancestors to recompute

the absent state the vertex needs in order to serve an application

read. The upstream ancestors respond to an upquery with the

records in their state that match the absent key or keys speci-

fied by the upquery, and the results percolate back down through

the data-flow. Since upqueries allow vertices to recover absent

state, Noria is free to evict infrequently accessed state to save

memory. More importantly, Noria also uses absent state to cre-

ate new materialized views and operators with initially empty

state, relying on upqueries to fill the state on demand. This

allows Noria to adapt to most query changes entirely without

downtime; all that is required is to bring up a set of empty data-

flow operators. Absent state also speeds up regular processing,

as updates for keys that are evicted, or that the application has

never requested, can be discarded early.

Partial state and upqueries are conceptually simple, but mak-

ing them always correct actually requires care. Intuitively, a

partially stateful data-flow is only correct if it always—whether

directly or via upqueries—produces the same result for a client

read that a classic data-flow with full state would have returned.

However, ensuring this in the face of concurrent processing

in the data-flow, and with upqueries that can race with “nor-

mal” updates traveling downstream that themselves may be

contained in the eventual upquery response, is difficult. Noria

ensures this property using a new data-flow model and extra

invariants. Some of the challenges are:

 ◆ How do data-flow operators handle updates that encounter

absent state? Consider the earlier count: if its state for story A

is absent, how can the count operator produce (A, 8) as the

emitted update?

 ◆ How does parallel processing of complex data-flows that fork

and join still ensure that upquery responses always contain all

the updates processed at the queried operator exactly once?

 ◆ How do operators that change the key column handle up-

queries? For example, the sum operator added in Figure 1 may

upquery the join on its incoming edge for a particular user, but

that join is keyed by the story identifier column.

 ◆ How do multi-ancestor operators handle upqueries if state

for the upquery key is available in one ancestor but not in

the other?

Figure 1b: If the application adds another query to compute the “Karma”
score for each user (the total votes received for the user’s stories), Noria
dynamically adds to the running data-flow (dash-dot) the extra operators
and materialized views needed.

20  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

SYSTEMS
Noria: A New Take on Fast Web Application Backends

Our paper [2] gives the invariants that Noria must maintain to

guarantee correct execution and points out what goes wrong if

these invariants are not properly maintained.

Evaluating the Noria Prototype
We implemented Noria in about 60,000 lines of Rust, along with

a MySQL adapter that implements the MySQL binary protocol

and makes Noria appear as a MySQL server to legacy applica-

tions. This way, Noria can support unmodified MySQL applica-

tions that use prepared statements (e.g., through PHP’s PDO

library). Noria supports sharding and partitioning the data-flow

across cores and servers, and stores all base tables durably in

RocksDB [7]. It handles failures in the distributed system by

recreating those parts of the data-flow that a failure affects.

To evaluate Noria’s performance and check that it actually

makes web applications faster and reduces their complexity, we

wrote a workload generator that emulates the real production

workload seen by the news aggregator website Lobste.rs (https://

lobste.rs). Lobste.rs is a Ruby-on-Rails application backed by a

MySQL database, and the Lobste.rs developers carefully hand-

optimized its queries for performance. Our benchmark issues the

same SQL queries as the real Lobste.rs website, with the same

frequency and popularity skew, using the MySQL binary protocol.

We then run that against both MySQL directly (we use MariaDB

v10.1.34, a GPLv2 community fork of MySQL) and against Noria,

on a 16-core Amazon EC2 VM. Figure 2 plots the offered load on

the x-axis (in page views per second; each page issues around ten

queries) and the achieved median and 95th percentile latency

on the y-axis (so lower is better). At the point where each setup

stops scaling—for example, because it saturates the server’s CPU

cores—the latency curve forms a “hockey stick” that shoots up

when the system cannot keep up with the load anymore. The

results indicate that Noria scales to a 2.5x–5x higher load than

the MySQL baseline. For the initial result (blue line with circles,

2.5x improvement), we use the exact same queries as the Lobste

.rs developers.

We then go a step further and remove all manual optimizations

from the queries (line with squares). For example, the original

application keeps upvotes and downvotes columns in the stories

table and updates them on every vote, so that read query evalua-

tion avoids doing a COUNT over votes. This is effectively a hand-

rolled “materialized view” of the vote count, but it requires the

developers to customize the application to update this column

whenever the vote count changes. In Noria, such hand-tuning

is unnecessary. Indeed, removing the hand-optimizations from

the queries, we see a 5x speed-up over MySQL. The difference

here comes from the fact that by not having to maintain these

auxiliary values in the base tables (but instead having Noria

maintain them in the data-flow), we avoid an extra UPDATE query

and parallelize the update processing.

To quantify how much Noria improves performance over exist-

ing approaches, we choose a single, common query (the join of

stories with vote counts) and issue that same query against

a number of common web backend setups. Here, 95% of the

requests are reads, and 5% are new votes, and we use a simi-

lar, skewed popularity distribution as the real Lobste.rs site

observes. We benchmark MariaDB; System Z, a commercial

database that supports materialized views; MariaDB with a

memcached look-aside cache; “memcached-only,” an unrealistic

deployment where the application stores vote counts directly in

memcached without any database interactions; and Noria with

four-way sharding for parallel processing.

All systems run entirely in-memory to avoid measuring the I/O

layer performance, and we set the databases to avoid transac-

tions and use the lowest isolation level. Figure 3 again shows

that Noria performs well: while the database-based systems do

not scale beyond 200,000 requests/sec, Noria scales all the way

to 14 million requests/sec. The unrealistic memcached-only

deployment, for comparison, scales to 8 million requests/sec but

then saturates the cores of the server.

Figure 2: Noria scales to a 5x higher load than MySQL for the Lobste.rs
website’s workload while using queries free of hand-tuning (2.5x with the
Lobste.rs’s developers’ original queries). Solid line shows median; dashed
is the 95th percentile.

Figure 3: Noria supports 14 million requests/sec for a read-heavy
(95% reads) workload, while other systems achieve only 200,000
 requests/sec—with the exception of an unrealistic memcached-only
setup that does strictly less work but still underperforms Noria.

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 21

SYSTEMS
Noria: A New Take on Fast Web Application Backends

Noria outperforms memcached because it uses a more efficient,

lock-free data structure to serve reads, but this is not fundamen-

tal (memcached could use the same data structure). Noria’s high

performance comes because reads directly hit the materialized

view, and because it processes writes efficiently through the

sharded, partially stateful, incremental data-flow.

When to Use Noria
Noria is designed for web applications that are read-heavy and

that can tolerate eventual consistency. The ubiquity of caches

in modern web application stacks suggest that eventual consis-

tency is often sufficient, although we are also working on ideas

for high-performance transactions on Noria. Noria also obviates

the need for transactions in some cases. The Lobste.rs develop-

ers, for example, only use transactions to ensure that a story’s

vote count is incremented atomically with the vote being stored.

Noria maintains the vote count internally in the data-flow, so

this transaction is no longer necessary.

Noria primarily targets applications whose working set fits in

memory when sharded and partitioned across many servers.

Old records in base tables are only on disk, but applications that

regularly need to access the full data set (e.g., full-text search)

would need additional support to work well in Noria.

How to Use Noria
Noria is open-source and available at https://pdos.csail.mit.edu

/noria. In many cases, you should only need to start up the Noria

MySQL adapter, point your application at it instead of MySQL,

and turn off all your caches. Noria will take care of the rest. The

Noria prototype is research code and still in development, but we

would like to hear how it works for other people!

References
[1]: J. Mertz and I. Nunes, “Understanding Application-Level

Caching in Web Applications: A Comprehensive Introduction

and Survey of State-of-the-Art Approaches,” in ACM Comput-

ing Surveys, vol. 50, no. 6 (November 2017), pp. 98:1–98:34.

[2]: J. Gjengset, M. Schwarzkopf, J. Behrens, L. T. Araújo,

M. Ek, E. Kohler, M. F. Kaashoek, and R. Morris, “Noria:

Dynamic, Partially-Stateful Data-Flow for High-Performance

Web Applications,” in Proceedings of 13th USENIX Confer-

ence on Operating Systems Design and Implementation (OSDI

’18), pp. 213–231: https://www.usenix.org/conference/osdi18

/presentation/gjengset.

[3] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,

H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Staf-

ford, T. Tung, and V. Venkataramani, “Scaling Memcache at

Facebook,” in Proceedings of the 10th USENIX Conference on

Networked Systems Design and Implementation (NSDI ’13),

pp. 385–398: https://www.usenix.org/conference/nsdi13

/technical-sessions/presentation/nishtala.

[4] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:

Distributed Data-Parallel Programs from Sequential Build-

ing Blocks,” SIGOPS Operating Systems Review, vol. 41, no. 3

(March 2007), pp. 59–72.

[5] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,

and M. Abadi, “Naiad: A Timely Dataflow System,” in Pro-

ceedings of the 24th ACM Symposium on Operating Systems

Principles (SOSP ’13), pp. 439–455.

[6] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M.

Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Leven-

berg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker,

V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng,

“TensorFlow: A System for Large-Scale Machine Learning,”

in Proceedings of the 12th USENIX Conference on Operating

Systems Design and Implementation (OSDI ’16). pp. 265–283:

https://www.usenix.org/system/files/conference/osdi16

/osdi16-abadi.pdf.

[7] RocksDB: https://rocksdb.org/.

