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The security policies for a multiverse database are rooted

in application-specific notions of data visibility. Consider a

class discussion forum (e.g., Piazza [20]) that allows students

to post questions that are anonymous to other students, but

not anonymous to instructors. A multiverse database might

express this privacy policy as follows:

table: Post,

-- user sees public posts and her own anonymous posts in full

-- (`ctx`, a universe-specific context, holds the user's ID)

allow: [ WHERE Post.anon = 0,

WHERE Post.anon = 1 AND Post.author = ctx.UID ],

-- hide author of anonymous posts unless user is class staff

rewrite: [

{ predicate: WHERE Post.anon = 1 AND Post.class

NOT IN (SELECT class FROM Enrollment

WHERE role = "instructor" AND uid = ctx.UID),

column: Post.author,

replacement: "Anonymous" } ],

Given this policy, application code executing on a user’s be-

half can issue arbitrary queries without risking data leakage:

unless the user is on the class staff, all anonymous posts con-

sistently appear to have author “Anonymous” in every query.

When a user issues multiple queries—e.g., one selecting and

one counting a users’ posts—the multiverse database returns

semantically consistent results based on the contents of the

user’s universe. This removes, for example, a real-world incon-

sistency observed in Piazza, where students’ total post count

includes private posts invisible to the user [13]. Since mul-

tiverse databases transparently apply transformations in the

database, application code need not be aware of them and can

assume that it is talking to a conventional database.

Multiverse database privacy policies are general and user-

extensible. Like row-level security [22] and view grants, they

can hide rows and columns from individual users; like role-

based access control, they can apply policies to groups of

users; and like column masks [15], they can transform col-

umn values. But multiverse databases potentially also support

powerful policies beyond the capabilities of existing solu-

tions: for example, we are exploring policies that expose only

differentially-private information about underlying tables.

A key challenge for the multiverse approach is query perfor-

mance and space efficiency with many users. Web applications

require fast reads, and applying policies on all data at query

execution time is therefore unattractive. Applying the poli-

cies to the entire database ahead of time, however, explodes

the space footprint with many users, and requires an update

strategy when the underlying data changes. Fortunately, re-

cent research on dataflow systems provides the key missing

enabler for a multiverse database: dynamic, partially-stateful

dataflows [11]. Stateful dataflow systems scale well when pre-

computing complex functions of dynamically changing data,

and efficiently apply incremental updates. Partial state allows

a dataflow to execute without materializing the full results

and internal dataflow state. This permits selectively deferring

parts of the computation to later read processing, and enables

caching, therefore maintaining fast common-case reads at a

modest, rather than explosive, space overhead. A dynamic

dataflow can add new queries to the existing computation at

runtime, offering the same query flexibility as classic databases

within a streaming, incremental dataflow computation.

We describe a multiverse design that builds on this tech-

nology and realizes multiverse storage as a joint dataflow

computation (§4). It transparently shares computation and

policy-compliant intermediate data between users’ universes,

and relies on partial statefulness to grant the system freedom

to choose what to precompute and cache, and what to compute

on query execution. Initial results with an early prototype are

encouraging (§5), and the multiverse approach and our design

raise interesting questions for future research (§6).

2 Existing approaches

Multiverse database universes, in effect, are per-user views of

the database defined by privacy policies. Databases have relied

on views as a security primitive since at least the 1970s [10,

14], but existing database views cannot substitute for the mul-

tiverse model. Defining views that specific users can access

affords flexibility, but has the drawback that application devel-

opers must understand the view definitions and know which

views to query. Algorithms to restate user queries in terms

of authorized views mitigate this burden, but cannot map

all queries and may spuriously reject queries even though

the views support them [23]. Transparent query rewriting ap-

proaches, by contrast, avoid predefined views. Instead, they

dynamically insert restrictions congruent with access policies

into queries on execution [5, 8, 17]. Both view-based and

query rewriting approaches increase the final query’s complex-

ity, slowing it down (e.g., by 3–10× in Qapla [17]).

Given the lack of performant database mechanisms, re-

searchers have devised other techniques to apply privacy poli-

cies in web applications. General information flow control

(IFC) provides a powerful approach that makes applications

correct by construction [16, 30], but significantly complicates

development. Domain-specific IFC systems can statically re-

ject application code in violation of privacy policies [9] or

extract policy-compliant implementations using program syn-

thesis techniques [21], but couple privacy policies to a single

program, while database techniques allow arbitrary queries.

Other solutions embed multi-valued (“faceted”) execution in

common languages like Scala and Python, resolving data to

concrete, policy-compliant values only on output [28, 29].

This has the advantage of keeping the application code policy-

agnostic, but comes with substantial memory and runtime

overheads, as the execution evaluates all alternative outcomes.

3 The multiverse approach

A multiverse database consists of a base universe, which rep-

resents the database without any read-side privacy policies ap-

plied, and many user universes, which are transformed copies

of the database. Each user universe corresponds to the database

view of a specific principal, typically an end-user authenticated
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4.2 Sharing state and computation

A key challenge for multiverse databases is limiting the com-

putation required on writes (which risks growing with the

number of system users) and the space required to store user

universes (which risks growing as fast or faster). Fortunately,

the partially-stateful dataflow model can express optimizations

that share computation and cached data between universes. Ex-

pressing the multiverse database as a joint partially-stateful

dataflow is crucial to harnessing these optimizations. In the

following, we showcase some promising optimizations that

we have found to be beneficial, but this list is likely neither

exhaustive nor sufficient for all applications and policies.

Group policies. Applications often have roles that cover mul-

tiple users, such as “students” and “instructors”. These user

groups have their own privacy policies. A group policy might

e.g., allow teaching assistants (TAs) to see anonymous posts

in classes they teach:

group: "TAs",

-- define TA group for each class

membership: SELECT uid, class_id AS GID FROM Enrollment

WHERE role = "TA",

policies: [

-- show anonymous posts to TAs

-- (`ctx` is a group universe context, holds the group ID)

{ table: Post,

allow: WHERE Post.anonymous = 1 AND ctx.GID = Post.class } ],

Note that this policy is a data-dependent group template: it

defines one TA group per class (via GID from membership),

i.e., adding a new class to Enrollment creates a new group.

Instead of computing this policy once on the boundary to

each group member’s user universe, the system applies the

privacy policy once for all members. To achieve this, the sys-

tem creates a group universe for each group, and routes inputs

to queries affected by the group policy through this universe.

From the group universe, records flow into each group mem-

ber’s user universe; at that boundary, user-specific policy op-

erators may further restrict an individual’s view, or a union

with another path that applies a complementary user-specific

policy may widen access. Using a group universe requires only

one copy of the enforcement operators for the group’s policies

(rather than as many copies as the group has members), and

shares cached, policy-compliant data in the group universe.

Sharing between queries. Web applications often issue sim-

ilar queries for many users, and these queries share at least

some privacy policies and results. By reasoning about all users’

queries as a joint dataflow, the system can detect such sharing:

when identical dataflow paths exist, they can be merged. All

users and queries share computation in the base universe, so

the system aims to maximize the computation in that universe

by pushing the universe boundary as far “down” the queries’

dataflow as possible while still maintaining correctness. Fig-

ure 2b shows how the system shares filter and sum operators

in an identical query issued for both Alice and Bob. In this

example, a privacy policy (which depends only on data in

the group columns preserved by the sum) can be applied late,

keeping most of the query’s dataflow in the base universe.

Sharing across universes. Often, applications actually issue

identical queries on behalf of many users, such as a query to

retrieve the ten most recent posts to a class. Due to privacy

policies, the queries’ results may vary for different users, but

they often overlap in part (e.g., all public posts). Instead of stor-

ing copies of identical records in many universes, the system

can share these records across universes. It achieves this by

backing logically distinct—but, in query terms, functionally

equivalent—dataflow vertices with a shared physical record

store. If a record reaches a vertex backed by such a store in

universe u, the record’s arrival indicates that u has access to it,

so the system exposes the shared copy to universe u.

Partial materialization. As web applications are read-heavy,

precomputing privacy policies and query results on write pro-

cessing is more efficient than recomputing them on each read.

To save space, however, the multiverse database may choose

to precompute only part of a query (e.g., privacy policies

only). The partially-stateful dataflow model allows the sys-

tem to choose dynamically what results to precompute and

cache, and how much computation to perform during read

query execution. To achieve this, the system can decide which

stateful operators in a given query to materialize, and which

to compute on the fly on reads using the deferred evalua-

tion supported by partially-stateful dataflow (through “up-

queries” [11]). Partially-stateful dataflow also supports evict-

ing records from operators’ state, which helps further restrict

cached results to frequently-read records. The specific choice

of what to materialize may vary according to a query’s popu-

larity, overall system load, and the available memory.

4.3 Dynamic universe creation

At any time, many users of a web application are likely inactive.

During those times, the multiverse database need not maintain

a universe for these users. Instead, it should create and destroy

user universes on demand—e.g., on application-level session

creation and termination. For an interactive user experience,

the creation and destruction of user universes must be fast and

permit other users to concurrently interact with the database.

Partially-stateful dataflow supports downtime-free dataflow

changes, which make this feasible: a new user universe starts

out with empty state and populates itself as queries execute.

This bootstrapping can be fast, as the user universe can often

derive its data efficiently from cached intermediate results in

the base or group universes. Creation and destruction of group

universes relies on the same live dataflow change mechanisms.

4.4 Consistency

Enforcing privacy policies to all records that cross into a user

universe makes the multiverse database semantically consis-

tent: different queries will not expose contradictory results that

are impossible to see with a classic database.
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reads/sec writes/sec

Multiverse database 129.7k 3.7k

MySQL (with AP) 1.1k 8.8k

MySQL (without AP) 10.6k 8.8k

Figure 3. Our prototype achieves high read throughput com-

pared to MySQL queries that execute privacy policies inline.

Write throughput is lower than MySQL’s as the multiverse

database does more work on writes.

The actual consistency observed by clients reading from the

multiverse database’s caches at runtime, however, depends on

the guarantees offered by the underlying dataflow implementa-

tion. Dataflow systems can guarantee strong consistency—i.e.,

that updates take effect in all queries at the same logical time

and reads always see a consistent snapshot—using progress

tracking protocols [18]. Global progress tracking requires coor-

dination between parallel processors, which reduces scalability

and may be costly for a multiverse database’s large dataflows.

Uncoordinated, eventually-consistent dataflow scales well [11,

§8.3], but makes no guarantees as to when different universes

and queries see the effects of an update to the base universe.

Hence, data-dependent policies may temporarily expose data

to a user universe in such a regime: a new record might race

with an update that makes a data-dependent policy hide it.

A multiverse database can somewhat restrict coordination,

however: since no client ever combines data from different

user universes, the system can allow state in different user

universes to diverge. Dataflow models that support such local

coordination are an interesting direction for future research.

5 Proof of concept

We have implemented an early prototype multiverse database

based on our design as an extension to Noria [11]. The proto-

type implements row suppression, rewrite, and group policies,

and relies on Noria’s automatic reuse of dataflow operators [11,

§5.1] to realize the sharing described in §4, with exception of

the shared record store. We added about 2,000 lines to Noria’s

Rust implementation and ran experiments at revision 15f0492.

We measure the prototype’s performance for a Piazza-style

class forum and a privacy policy that allows TAs to see anony-

mous posts on a database containing 1M posts and 1,000

classes. For reads, the benchmark repeatedly queries all posts

authored by different users, and write operations insert new

posts into a class. We compare: (a) our prototype with 5,000

active user universes; (b) MySQL running the same workload

with privacy policies inlined in the query; and (c) MySQL

without any privacy policies. Our prototype currently materi-

alizes the full query results in memory, and its base database

tables are stored in RocksDB [24].

Figure 3 shows the results. As expected, reads from the

multiverse database’s precomputed, cached results are fast.

By contrast, evaluating the privacy policy as part of the query

slows down MySQL reads by 9.6× compared to issuing a

straight query; with simpler policies, such as one that merely

filters other users’ anonymous posts, MySQL sees a smaller

slowdown. The write throughput of our prototype is roughly

half of what MySQL supports, and though the precise differ-

ence is largely an implementation artifact, this is an encourag-

ing result. A multiverse database fundamentally must do more

work on writes than MySQL’s inserts, as writes must propagate

through the dataflow. In this experiment, the dataflow fully

updates 5,000 user universes; making some state partial would

increase write throughput at the expense of slower reads.

Finally, we measured process memory use as we increased

the number of active universes from one to 5,000. The memory

footprint increased from 0.5 GB with one universe to 1.1 GB

with 5,000 universes; this 600 MB footprint is about half of

the 1.2 GB needed without group universes. However, this

overhead can be reduced further: for example, a separate mi-

crobenchmark showed that using a shared record store for

identical queries reduces their space footprint by 94%.

These results are encouraging, but a realistic multiverse

database must further reduce memory overhead and efficiently

run millions of user universes across machines. Neither Noria

nor any other current dataflow system support execution of

the huge dataflows that such a deployment requires. In partic-

ular, changes to the dataflow must avoid full traversals of the

dataflow graph for faster universe creation.

6 Discussion and research directions

Our prototype shows that the promise of multiverse databases

is within reach, even for challenging applications with high per-

formance requirements. Flexible, application-specific privacy

policies are expressed within the store, and therefore obeyed

transparently by applications, with an easy query interface and

little to no query execution overhead. Furthermore, though

challenges remain, the partially-stateful dataflow model can

express key optimizations that limit multiverses’ space over-

head. We believe the multiverse model can make even complex

web applications robust to accidental information exposure

and therefore faster to safely build. Moreover, the multiverse

concept suggests interesting directions for future research.

Write authorization policies. Our current prototype only ap-

plies privacy polices to read queries and allows all users to

write to database tables without enforcing any privacy policies.

But applications need write-side policies, too: otherwise users

might, for instance, change their own role. For example, Pi-

azza may need a write policy specifying that only instructors

can enroll other users as instructors or TAs:

table: Enrollment,

-- only allow existing instructors to make other users instructors

write: [ {

column: Enrollment.role,

values: [ "instructor", "TA" ]

predicate: WHERE ctx.UID IN (SELECT uid FROM Enrollment

WHERE role = "instructor"), } ]
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A multiverse database might apply such write authorization

policies in several ways. The simplest is perhaps to check

permissions when applying writes to tables, just like today’s

databases do. This allows policies that prohibit writes that

users might exploit to raise their privileges, and simple filters

on the data written or current table contents are sufficient to

support policies like the Piazza one. An alternative approach

with more expressive power might feed writes through a pol-

icy dataflow before applying them to the base universe. This

supports write authorization policies dependent on data in

other tables and policies that require complex computation.

Such an approach raises consistency challenges, however: an

eventually-consistent write authorization dataflow might er-

roneously admit writes because the policy evaluation itself

might observe temporarily inconsistent or intermediate state

via data-dependencies. Hence, a write authorization dataflow

may require transactional abstractions that atomically process

updates until they are admitted to the base universe or rejected.

Differentially-private aggregations. A privacy policy may

permit users to run aggregate queries over sensitive records

that they cannot see individually. For example, a medical web

application might allow a user to query the number of patients

with diabetes by ZIP code, even if this user is not authorized

to view individual records:

SELECT COUNT(*) FROM diagnoses

WHERE diagnosis = "diabetes" GROUP BY zip;

The policy might further desire that revealing such aggregates

leaks no information about whether any individual, hidden

patient record is part of the aggregate. A multiverse database

can rewrite any aggregation that matches such a privacy pol-

icy into a differentially-private (DP) aggregation. DP adds

noise to the output to hide the impact of individual records,

and in the multiverse database setting must allow for continu-

ous updates to underlying data. The continuous, event-based

DP algorithm by Chan et al. [7] is suitable for a streaming

dataflow setting, and we implemented a prototype COUNT op-

erator using this algorithm. In microbenchmark experiments,

the operator’s output was within 5% of the true count after

processing about 5,000 updates. Yet, open research questions

remain: for example, how do DP aggregation policies compose

with other policies? Does a DP policy prohibit other, unrelated

queries (e.g., joins)? How should the system handle multiple

DP aggregations over the same table?

User-defined policy operators. Our prototype currently de-

fines privacy policies using SQL expressions. This is sufficient

for common policies, such as matching against a privacy con-

trol list (ACL) stored in a database table. Some applications’

privacy policies, however, may rely on external information

(e.g., an ACL file) or custom behavior (e.g., a user-defined

function). The multiverse database’s policy language ought

to permit such custom functions, but the right API is an open

question: custom operators must satisfy dataflow operator re-

quirements (e.g., determinism), and they must correctly com-

pose with other privacy policies. A domain-specific language

for writing such operators, offering access to a limited API to

external state, might be a promising starting point.

Policy correctness. Both write-side and read-side privacy

policies must be consistent and complete. Developer error

can yield policies with non-obvious internal contradictions,

or with gaps that leak information. For applications that have

large policies consisting of many clauses, checking the policies

by hand is impractical, and automated tools will be required.

Such policy tools should detect impossible (i.e., contradictory),

and incomplete policies (i.e., those not covering all cases). We

believe that developing a sound policy-checker for a multiverse

database, perhaps using ideas similar to Amazon’s SMT-based

policy checker for AWS [3], is an interesting challenge.

Verified policy compilation. The multiverse database’s TCB

includes the privacy policy, as well as the logic that compiles

it into dataflow and injects enforcement operators into queries.

Ideally, these transformations would be formally verified to en-

sure that the final dataflow indeed enforces the privacy policy.

Recent advances in constructing formally-verified just-in-time

compilers [26] may provide some ideas, although the multi-

verse database must also reason about the existing dataflow.

For example, transforming a new policy into a functionally-

correct joint dataflow may require adding new dataflow nodes

into existing queries.

Universe peepholes. Applications sometimes let users as-

sume other users’ identities, but this begets bugs such as Face-

book’s recent access token exposure [6], which allowed users

to view other users’ access tokens via the site’s “View Profile

As” feature. In a multiverse database, it might be tempting

to support such a “View As” feature by temporarily allowing

Bob to access Alice’s universe, but this is dangerous: Alice’s

access tokens are visible inside her universe (and only there)!

Plausible solutions might involve creating a temporary “ex-

tension universe” to Alice’s universe, and applying a privacy

policy that blinds the tokens at that boundary.

7 Conclusion

Multiverse databases are a promising approach that makes

common bugs in today’s web applications harmless. Our initial

results indicate that a large, dynamic, and partially-stateful

dataflow can support practical multiverse databases that are

easy to use and achieve good performance and acceptable

overheads. We are excited to further explore the multiverse

database paradigm and associated research directions.
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