

⁵Equipe Labellisée par la Ligue Contre le Cancer, Université Paris Descartes, Université Paris Diderot, Université Sorbonne Paris Cité, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
⁶Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
⁷Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
⁸Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, China
⁹Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden

*Correspondence: deadoc80@gmail.com (L. Galluzzi).
<https://doi.org/10.1016/j.tcb.2019.03.005>

© 2019 Elsevier Ltd. All rights reserved.

References

1. Dietrich, J. *et al.* (2011) Corticosteroids in brain cancer patients: benefits and pitfalls. *Expert. Rev. Clin. Pharmacol.* 4, 233–242
2. Attal, M. *et al.* (2017) Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma. *N. Engl. J. Med.* 376, 1311–1320
3. Boutros, C. *et al.* (2016) Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. *Nat. Rev. Clin. Oncol.* 13, 473–486
4. Obradović, M.M.S. *et al.* (2019) Glucocorticoids promote breast cancer metastasis. *Nature* 567, 540–544
5. van der Pompe, G. *et al.* (1996) Elevated basal cortisol levels and attenuated ACTH and cortisol responses to a behavioral challenge in women with metastatic breast cancer. *Psychoneuroendocrinology* 21, 361–374
6. Li, C. *et al.* (2017) A ROR1-HER3-lncRNA signalling axis modulates the Hippo-YAP pathway to regulate bone metastasis. *Nat. Cell Biol.* 19, 106–119
7. Galluzzi, L. *et al.* (2019) WNT Signaling in cancer immuno-surveillance. *Trends Cell Biol.* 29, 44–65
8. Giles, A.J. *et al.* (2018) Dexamethasone-induced immunosuppression: mechanisms and implications for immunotherapy. *J. Immunother. Cancer* 6, 51
9. Kroemer, G. *et al.* (2015) Natural and therapy-induced immuno-surveillance in breast cancer. *Nat. Med.* 21, 1128–1138
10. Dai, J. *et al.* (2019) Acetylation blocks cGAS activity and inhibits self-DNA-induced autoimmunity. *Cell* 176, 1447–1460
11. Vanpouille-Box, C. *et al.* (2018) Cytosolic DNA sensing in organismal tumor control. *Cancer Cell* 34, 361–378

Spotlight

Phosphoinositides Break Microtubule Dynamics Symmetry in the Phragmoplast

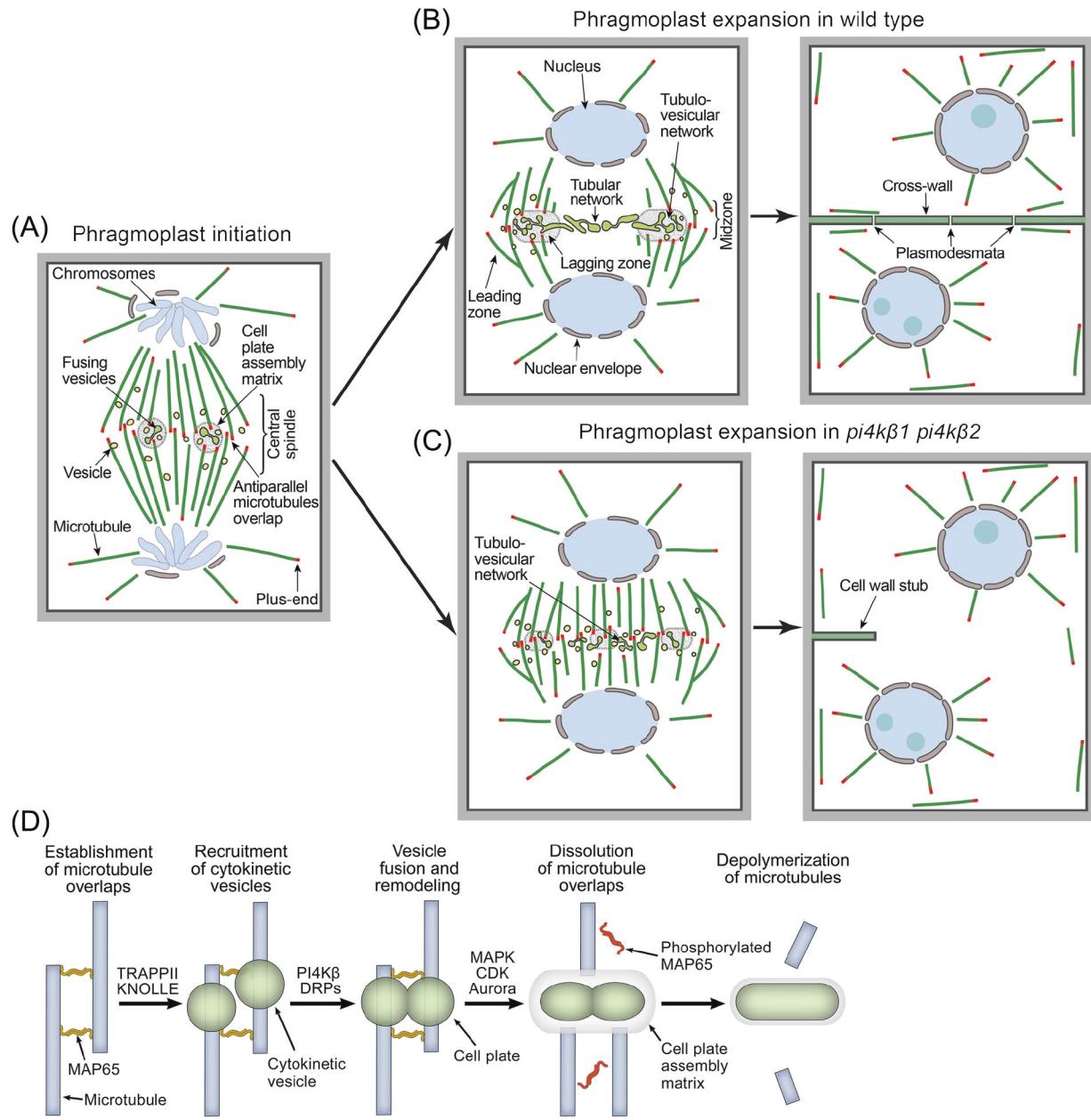
Andrei Smertenko ^{1,*}

Plant cytokinesis rely on asymmetric behavior of microtubules: bulk polymerization at the phragmoplast

leading zone and bulk depolymerization at the phragmoplast lagging zone. Recent findings demonstrate that phosphatidylinositol 4-kinase beta (PI4K β) plays an essential role in this asymmetry by facilitating the establishment of the phragmoplast lagging zone.

Plant cytokinesis depends on the centrifugal expansion of a specialized microtubule structure, the phragmoplast (Figure 1A,B). The expansion is driven by the asymmetry of microtubule dynamics whereby bulk polymerization at the phragmoplast leading zone and bulk depolymerization at the lagging zone occur. Microtubule behavior in the phragmoplast correlates with cell-plate assembly stages (Figure 1A,B,D). The initial delivery and fusion of cytokinetic vesicles (Stage I) is accompanied by the establishment of the antiparallel microtubule overlap. During Stage II (the tubulovesicular network), the overlaps disappear and microtubule ends terminate at the ribosome-free cell-plate assembly matrix. Consolidation of membranes into the tubular network during Stage III triggers microtubule depolymerization. The subsequent two stages, formation of the fenestrated sheet (Stage IV) and cell-plate maturation that results in a functional cross-wall (Stage V), occur without microtubules [1,2].

Phragmoplast expansion necessitates coordination between the processes of microtubule dynamics (polymerization-depolymerization), membrane trafficking, and the deposition of oligosaccharides in the phragmoplast midzone [1]. However, the mechanism by which microtubule organization perceives transitions between cell-plate assembly stages remains a mystery.


Experimental data suggest the existence of a ‘quality control mechanism’ in the cell plate that prevents premature

microtubule depolymerization (reviewed in [3]). For example, cell-plate assembly failure following treatment with inhibitors of exocytosis (brefeldin A) or vesicle fusion (caffeine) prevents the depolymerization of microtubules, resulting in larger, disk-shaped phragmoplasts (reviewed in [3,4]). By contrast, ectopic stabilization of microtubules with Taxol reduces the rate of phragmoplast expansion but does not prevent microtubule depolymerization in the distal zone [5]. Therefore, the asymmetry of microtubule dynamics and organization could be governed by the chemical composition of the cell plate.

Lipid composition in the cell plate may act as a potential regulator of microtubules in the phragmoplast. For example, mutations in enzymes that are responsible for sterol biosynthesis impair cell-plate assembly, such as sterol methyltransferase, *smt1/cph* [6], and cyclopropylsterol isomerase1-1, *cpi1-1* [7]. Inhibition of the synthesis of long-chain sphingolipids with fumonisin B1 also prevents the fusion of cytokinetic vesicles [8].

Recent work by Lin *et al.* [9] demonstrates the importance of phosphatidylinositol phosphates in phragmoplast asymmetry. A double knockout of PI4K β , *pi4k81* *pi4k82*, results in cytokinetic failure and the appearance of multinucleated cells (ca 10%) in the root apical meristem. Electron microscopy revealed an accumulation of vesicles in the midzone that apparently failed to fuse. These results indicate that the product of PI4K β , phosphatidylinositol 4,5-bisphosphate [$\text{PtdIns}(4,5)\text{P}_2$], plays a role in establishing the tubulovesicular network during Stage II of cell-plate assembly.

According to the current cytokinesis model (Figure 1D), inhibition of cytokinetic vesicle fusion in the leading zone would slow cytokinesis and prevent the dissolution of the antiparallel microtubule overlaps. Consistent with this prediction, Lin

Trends In Cell Biology

Figure 1. Phragmoplast Expansion in Control and *pi4kβ1 pi4kβ2* Mutant Cells. (A) During phragmoplast initiation, antiparallel microtubule overlaps form in all parts of the central spindle. Cytokinetic vesicles accumulate and fuse in this region, giving rise to the partition between daughter cells, the cell plate. The central spindle gives rise to the phragmoplast midzone. (B) During phragmoplast expansion, cytokinetic vesicles coalesce in the phragmoplast leading zone. Some microtubules form antiparallel overlaps. Vesicle fusion results in a tubulo-vesicular network surrounded by the cell-plate assembly matrix. Next, cell-plate assembly progresses to the tubular network stage, which triggers bulk microtubule depolymerization. (C) The tubulo-vesicular network fails to form in the expanding phragmoplast of *pi4kβ1 pi4kβ2* and the lagging zone is not established. The phragmoplast expands, but the antiparallel microtubule overlaps persist throughout the midzone. Consequently, cytokinesis in the mutant culminates with the cell-wall stubs instead of the cross-wall. (D) MAP65 stabilizes antiparallel microtubule overlaps, which recruit cytokinetic vesicles with the aid of the tethering complex TRAPP II and the syntaxin KNOLLE. Vesicles fuse and undergo remodeling through the activity of dynamin-related proteins (DRPs); PI4Kβ2 could facilitate vesicle fusion and remodeling by a PtdIns(4,5)P₂-dependent increase of membrane rigidity. PI4Kβ2 acts upstream of the signal that causes dissolution of the antiparallel overlaps. Vesicle fusion promotes MAP65 phosphorylation by the MAPK, CDK, and Aurora kinases, phosphorylated MAP65 dissociates from the microtubules, and microtubules are stabilized through interaction with the cell-plate assembly matrix. The establishment of the tubular network and the deposition of oligosaccharides in the cell-plate lumen (mostly callose) trigger the depolymerization of microtubules.

et al. report slower phragmoplast expansion in *pi4k61 pi4k62* and persistence of the antiparallel microtubule marker MAP65-3 through the midzone of the expanding phragmoplast. These findings mean that: (i) the cell plate in *pi4k61 pi4k62* fails to produce the signal for dissolution of the overlaps; and (ii) PtdIns(4,5)P2-dependent processes in the phragmoplast act upstream of CDK, MAPK, and Aurora kinase, which collectively control the binding of MAP65 to microtubules (Figure 1D). Furthermore, these findings provide further experimental support for the existence of checkpoints in cell-plate assembly that prevent premature microtubule reorganization in the midzone.

In addition to slowed expansion, phragmoplast microtubule depolymerization was inhibited in *pi4k61 pi4k62* cells resulting in large, disk-shaped phragmoplasts that resembled those induced by treatment with brefeldin A or caffeine (reviewed in [3,4]). This phenotype indicates a failure to establish the phragmoplast lagging zone. Hence, inhibition of the assembly of the tubulovesicular network prevents destabilization of the antiparallel microtubule overlaps and all downstream cell-plate assembly stages (Figure 1C,D). Interestingly, however, even with failure to remodel the cell plate, delivery of the cytokinetic vesicles is not disrupted and the phragmoplast continues to expand (Figure 1C). These findings indicate that: (i) the production of the cytokinetic vesicles is independent of the

cell-plate assembly rate; (ii) the rate of phragmoplast expansion is limited by membrane fusion and remodeling rather than by the availability of the cytokinetic vesicles; and (iii) PtdIns(4,5)P2 is not essential for the delivery of vesicles to the midzone.

The key question remains: how does PtdIns(4,5)P2 contribute to the assembly of the cell plate? Phosphoinositides could rigidify the plasma membrane and in doing so provide a counterforce for the conformational changes of dynamin that facilitate clathrin-dependent endocytosis [10]. Dynamin-related proteins decorate dumbbell-shaped membrane compartments at the phragmoplast leading edge [1]. Plausibly, PtdIns(4,5)P2 facilitates vesicle fusion and the subsequent dynamin-dependent remodeling during assembly of the tubulovesicular network.

In conclusion, PI4K β 2 and its product PtdIns(4,5)P2 appear to play a role in the tubulovesicular network assembly. However, careful structural analysis of the cell plate in *pi4k61 pi4k62* is necessary to test this hypothesis. Future work on the *pi4k61 pi4k62* mutant would facilitate understanding the role of crosstalk between cell-plate assembly and microtubule organization in the generation and maintenance of phragmoplast asymmetry.

Acknowledgments

This work was supported by National Science Foundation CAREER award #1751204 and USDA-NIFA

hatch project WNP00826. The author is grateful to Dr Mark Hubbard for editing the manuscript. He apologizes to all authors whose primary research could not be cited here due to space limitations.

¹Institute of Biological Chemistry, College of Human, Agricultural, and Natural Resource Sciences, Washington State University, Pullman, WA 99164, USA

*Correspondence:
andrei.smertenko@wsu.edu (A. Smertenko).
<https://doi.org/10.1016/j.tcb.2019.03.002>

© 2019 Elsevier Ltd. All rights reserved.

References

1. Segui-Simarro, J.M. *et al.* (2007) Plant cytokinesis – insights gained from electron tomography studies. In *Cell Division Control in Plants* (Vol. 9) (Verma, D.P.S. and Hong, Z., eds), pp. 251–287, Springer
2. Smertenko, A. *et al.* (2017) Plant cytokinesis: terminology for structures and processes. *Trends Cell Biol.* 27, 885–894
3. Smertenko, A. *et al.* (2018) Phragmoplast microtubule dynamics – a game of zones. *J. Cell Sci.* 131, jcs.203331
4. Yasuhara, H. and Shibaoka, H. (2000) Inhibition of cell-plate formation by brefeldin A inhibited the depolymerization of microtubules in the central region of the phragmoplast. *Plant Cell Physiol.* 41, 300–310
5. Yasuhara, H. *et al.* (1993) Effects of Taxol on the development of the cell plate and of the phragmoplast in tobacco BY-2 cells. *Plant Cell Physiol.* 34, 21–29
6. Schrick, K. *et al.* (2004) A link between sterol biosynthesis, the cell wall, and cellulose in *Arabidopsis*. *Plant J.* 38, 227–243
7. Men, S. *et al.* (2008) Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. *Nat. Cell Biol.* 10, 237–244
8. Molino, D. *et al.* (2014) Inhibition of very long acyl chain sphingolipid synthesis modifies membrane dynamics during plant cytokinesis. *Biochim. Biophys. Acta* 1842, 1422–1430
9. Lin, F. *et al.* (2019) A dual role for cell plate-associated PI4K β in endocytosis and phragmoplast dynamics during plant somatic cytokinesis. *EMBO J.* 38, e100303
10. Heilmann, M. and Heilmann, I. (2015) Plant phosphoinositides – complex networks controlling growth and adaptation. *Biochim. Biophys. Acta* 1851, 759–769