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Modeling the Compressive
Buckling Strain as a Function of
the Nanocomposite Interphase
Thickness in a Carbon Nanotube
Sheet Wrapped Carbon Fiber
Composite
Polymer matrix composites have high strengths in tension. However, their compressive
strengths are much lower than their tensile strengths due to their weak fiber/matrix interfa-
cial shear strengths. We recently developed a new approach to fabricate composites by
overwrapping individual carbon fibers or fiber tows with a carbon nanotube sheet and sub-
sequently impregnate them into a matrix to enhance the interfacial shear strengths without
degrading the tensile strengths of the carbon fibers. In this study, a theoretical analysis is
conducted to identify the appropriate thickness of the nanocomposite interphase region
formed by carbon nanotubes embedded in a matrix. Fibers are modeled as an anisotropic
elastic material, and the nanocomposite interphase region and the matrix are considered as
isotropic. A microbuckling problem is solved for the unidirectional composite under com-
pression. The analytical solution is compared with finite element simulations for verifica-
tion. It is determined that the critical load at the onset of buckling is lower in an
anisotropic carbon fiber composite than in an isotropic fibfer composite due to lower trans-
verse properties in the fibers. An optimal thickness for nanocomposite interphase region is
determined, and this finding provides a guidance for the manufacture of composites using
aligned carbon nanotubes as fillers in the nanocomposite interphase region.
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1 Introduction
Low-density, high-strength composite materials play a critical

role in a wide range of areas including aerospace, defense,
sports, transportation, and renewable energy. Composites
provide improved energy efficiency, easier mobility, agility, and
desirable aesthetics. The high-tensile strengths in composites are
derived from fibers impregnated in the polymer matrix. Carbon
fibers are one of the most widely used fibers due to their high
strengths, electrical conductivity, corrosion resistance, and high
thermal conductivity. Carbon fiber composites are used in actua-
tors [1,2], structural materials [3], and large airliners [4,5].
However, the compressive strengths of composites are in
general much lower than their corresponding tensile strengths
due to the fact that under compression, the fibers tend to fail in
fiber microbuckling (or kinking) before compressive fracture
occurs [6–15]. An analytical model to calculate the compressive
strength was first proposed by Rosen [16] for unidirectional com-
posites. Subsequently, other models were developed to determine
the compressive strengths of composites. Based on the Rosen
work, a 3D analysis was conducted, and the numerical results
were consistent with the experimental data for aluminum and
steel-reinforced epoxy but not for graphite/epoxy and boron/
epoxy [17]. Unknown boundary conditions of the microbuckling
region and initial misalignment were also taken into account by
introducing factors in the Rosen model [18,19]. Fiber-matrix
bond condition and matrix slippage were considered in the
model [20] where a fiber was assumed as a beam resting on an
elastic foundation. Theory of elasticity was used to solve the
microbuckling problem and finite element analysis (FEA) was
carried out to verify closed-form solution [21]. Some recent
papers analyzed further the fiber microbuckling problems [22–
27]. In analysis, the fibers are usually considered as isotropic.
In practice, however, fibers are in general transversely isotropic
[28–30], determined by Raman spectroscopy, nanoindentation,
and micromechanics methods. In addition, fiber misalignment
and matrix yield are known to influence compressive strengths
in unidirectional composites [31,32].
In order to study properly the compressive strengths of compos-

ites, researchers focused on investigating the fiber/matrix interface.
A finite interphase region was assumed to exist between a fiber and
the matrix [33–36]. The published theoretical work considered
usually an interface rather than an interphase region, which is a
layer of material between carbon fiber and matrix that could have
mechanical properties different from the matrix. Recently, it was
determined that by enforcing the interphase region, compressive
strengths can be improved [37]. The grafting of carbon nanotubes
(CNTs) onto the surface of the carbon fibers through chemical
vapor deposition can improve the interfacial shear strength
(IFSS), resulting in interfacial shear strength 150% higher than
that of the composite without CNTs. However, this technique
usually leads to a degradation of carbon fiber in-plane properties
due to the chemical processing of the carbon fibers.
As an alternative approach, a novel method was introduced in

which a carbon fiber was wrapped by CNT sheet and then impreg-
nated into a polymer matrix, producing a nanocomposite layer in the
interphase region [38]. In this work, the compressive buckling of a
unidirectional polymer matrix composite containing a CNT
polymer nanocomposite interphase region is investigated. In the
study, the fiber is considered as anisotropic, and the interphase
region and the matrix are considered as isotropic. The results
obtained by modeling fiber as anisotropic are compared with an oth-
erwise isotropic fiber. We also investigate the effect of mechanical
properties and thickness of the interphase region on the compressive
strength. FEA simulations are carried out to compare with the the-
oretical results and study the effect of nanocomposite interphase on
the compressive strengths when the fiber volume fraction is high.
The approach is for the general case where there is an interphase
layer between fiber and matrix, with CNT nanocomposite inter-
phase layer being a special case of the interphase. The model

works for some of the other interphase layers including nanoclay
or graphene modified interphase.

2 Theoretical Analysis
We describe first the method for preparation of a CNT sheet

wrapped carbon fiber composite. In this process, at first, a CNT
forest is grown on a substrate. Next, the CNTs are pulled out
using a knife edge to allow CNT heads to bind to tails to form a
sheet. The CNT sheet drawn from the CNT forest is a mesoporous
aerogel with high-specific surface area [39], consequently a small
amount of CNT sheet by weight can be used to wrap around a
large volume of carbon fibers [38]. Figure 1 shows a self-supporting
long CNT sheet drawn from a carbon nanotube forest. The CNT
sheet is then used to wrap a carbon fiber. Figure 2(a) shows a sche-
matic diagram of a carbon fiber being wrapped around circumferen-
tially by a carbon nanotube sheet at a wrapping bias angle α. The
CNT wrapped carbon fiber is then embedded into a polymer
matrix. The inner ply of the CNT sheet adheres to the carbon
fiber via the van der Waals force. Figure 2(b) shows an SEM micro-
graph for a single carbon fiber. The bias angles used to wrap CNT
sheet around a carbon fiber are 30 deg and 45 deg in Figs. 2(c) and
2(d ), respectively. Then, the CNT sheet wrapped carbon fiber is
embedded into a polymer matrix, forming a nanocomposite of
CNT sheet and epoxy at the interphase region. Figures 3(a) and
3(b) show the surface topography observed by atomic force micros-
copy of a carbon fiber, and a CNT sheet scrolled carbon fiber
embedded in a polymer matrix separately.
Modulus measurement [40–42] was made using a cube corner

nanoindenter tip from the carbon fiber and outward to the nanocom-
posite and polymer with indents shown in Fig. 4(a). The modulus
increased from 3.1 GPa (neat polymer) to 24.7 GPa(nanocompo-
site) for the CNT sheet wrapped carbon fiber at a bias angle
0 deg, and 13.2 GPa for CNT sheet wrapped carbon fiber at a
bias angle 45 deg as shown in Fig. 4(b).
Based on these experiments, a theoretical model was established

to analyze the compressive buckling in order to optimize the thick-
ness of the nanocomposite interphase. The composite consists of
three regions occupied by fiber, nanocomposite (interphase
region), and matrix. Figure 5 shows a schematic diagram of the
three regions in a CNT wrapped carbon fiber composite. The fiber
is modeled as transversely isotropic, and the nanocomposite and the
matrix (e.g., epoxy) are modeled as an isotropic, linearly elastic
continuum, respectively. If the volume fraction of the fibers is
low and the fibers are dilute in the polymer matrix, the problem
can be simplified to a single fiber wrapped with CNT sheet impreg-
nated in an infinite matrix. A schematic diagram is shown in Fig. 5.
It is assumed that the binding at the fiber/interphase region and the
interphase region/matrix interface is perfect so that displacement
and stress are continuous at the interface. The composite is sub-
jected to a plane strain deformation in the x-y plane. Subscripts 1,
2, and 3 represent the fiber, interphase region, and matrix, respec-
tively. The entire composite laminate is assumed to be compressed
in the fiber direction by a rigid platen.
From the uniformly strained state to the perturbed state, two

deformation modes of are possible for the fiber. In this work, as
the fiber modulus is significantly higher than that of matrix, an

Fig. 1 Photograph of a CNT sheet drawn from a CNT forest
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antisymmetric mode prevails, as identified in the previous studies
[15,43]. The fiber displacements under the perturbation should
satisfy the antisymmetric conditions.

u1(x1, y1) = −u1(x1, y1)
v1(x1, y1) = v1(x1, − y1)

(1)

At first, when an aligned fiber/CNTs-reinforced composite is sub-
jected to uniaxially applied uniform strain, the corresponding stress
in dimensionless form for the interphase region and the matrix is

given by si = σ/2Gi (i= 2, 3), where σxi is the stress in the xi direc-
tion and Gi is the shear modulus. Note that i= 1 for the fiber, i= 2
for the matrix/CNT interphase region, and i= 3 for the matrix.
When the fiber is assumed to be transversely isotropic, the
number of independent material constants reduces to five; they
are Efx1 Efy1 Gx1y1 νx1y1 and νy1z1 Equilibrium equations for the
solid with a small perturbation are well documented [43]. Neglect-
ing body forces, the equilibrium equations governing the incremen-
tal stresses due to the perturbation are

∂(σx − ωzσ0xy + ωyσ0xz)
∂x

+
∂(σxy − ωzσ0y + ωyσ0yz)

∂y
+
∂(σxz − ωzσ0yz + ωyσ0z )

∂z
= 0

∂(σxy − ωxσ0xz + ωzσ0x )
∂x

+
∂(σy − ωxσ0yz + ωzσ0xy)

∂y
+
∂(σyz − ωxσ0z + ωzσ0zx)

∂z
= 0

∂(σxz − ωyσ0x + ωxσ0xy)
∂x

+
∂(σyz − ωyσ0xy + ωxσ0y )

∂y
+
∂(σz − ωyσ0xz + ωxσ0yz)

∂z
= 0

(2)

Fig. 2 CNT sheet wrapping a single carbon fiber: (a) a schematic
diagram showing a CNT scrolling a carbon fiber, (b) SEM images of
the single carbon fiber, (c) SEM micrograph showing a segment of
the single carbon fiber with α=30 deg wrapping bias angle, and
(d) SEM micrograph showing segment of the single carbon fiber with
α=45 degwrapping bias angle (Courtesy: University of Texas-Dallas).

Fig. 3 Surface topographs taken by atomic force microscopy of (a) a single carbon fiber
and (b) CNT scrolled single carbon fiber when embedded in polymer matrix after polishing
(Courtesy: University of Texas-Dallas).
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In Eq. (2), the superscript “0” indicates the unbuckled state and the
symbols without superscript represent the perturbed state. Note that
ωz = (1/2)(∂u/∂y − ∂v/∂x), ωx = ωy = 0, in a plane strain problem,
where u and v are independent of z and ω is zero. With the nonzero
component σ0x = −σx, the above equations are simplified to the fol-
lowing equations:

∂σx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

= 0

∂(σxy − ωzσx)
∂x

+
∂σy
∂y

+
∂σyz
∂z

= 0

∂σxz
∂x

+
∂σyz
∂y

+
∂σz
∂z

= 0

(3)

In the next step, Eq. (3) and the strain displacement relationships
εx = ∂u/∂x, εy = ∂v/∂y, and εxy = (1/2)(∂v/∂x + ∂u/∂y) are
applied to the fiber, interphase region, and matrix individually.

2.1 Governing Equations for the Carbon Fiber. The fiber is
considered as a homogeneous, linearly elastic, and transversely

isotropic solid. The nanocomposite interphase region and the
matrix are considered as homogeneous and linearly isotropic. The
constitutive equations for the transversely isotropic fiber are
given by

σx1
σy1
σz1

⎡
⎣

⎤
⎦ =

(−υ2y1 z1+1)E fx1

Δ ϕ 0

ϕ (1−υy1x1υx1y1 )Efy1
Δ 0

0 0 2Gx1y1

⎡
⎢⎣

⎤
⎥⎦ εx1

εy1
εz1

⎡
⎣

⎤
⎦ (4)

where Δ and ϕ are given as

Δ = (υy1z1 + 1)(1 − υy1z1 − 2υy1x1υx1y1 )

ϕ =
(1 + υy1z1 )υy1x1 )Efx1

Δ

(5)

Equation (4) and the strain displacement relationships are then sub-
stituted into Eq. (3), yielding the following equations:

(1 − υ2y1z1 )Efx1

Δ
∂2u1
∂x21

+ Gx1y1
∂2u1
∂y21

+ (Gx1y1 + ϕ)
∂2v1
∂x1y1

= 0

Gx1y1 −
σx1
2

( ) ∂2v1
∂x21

+
(1 − υy1x1υx1y1 )E fx2

Δ
∂2v1
∂y21

= 0

(6)

Displacements of the fiber are antisymmetric about x1, and there-
fore, Eq. (6) has a solution in the following form:

u1(x1, y1) = f (y1) sin (αx1)
v1(x1, y1) = g(y1) cos (αx1)

(7)

where α = 2/λw and λw is the buckle wavelength. Then, substituting
Eq. (7) into Eq. (6) and eliminating g(y1) yield the following equa-
tion for f (y1):

a1
∂4f (y1)
∂y41

+ a2α2
∂2f (y1)
∂y21

+ a3α4f (y1) = 0 (8)

Similarly, eliminating f (y1) gives an equation for g(y1).

a1
∂4g(y1)
∂y41

+ a2α2
∂2g(y1)
∂y21

+ a3α4g(y1) = 0 (9)

Fig. 4 (a) SEM images indents of composite with CNT at bias angle 0 deg and (b) Young’s modulus of the nano-
composite and the matrix [47]. Note that the measured fiber modulus is lower than the actual value as the fiber
anisotropy, and the compliant matrix are not considered in the nanoindentation measurement. (Courtesy: Univer-
sity of Texas-Dallas).

Fig. 5 Configuration of a composite under unidirectional com-
pression in the fiber direction
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where a1, a2, and a3 are constants given as

a1=−Gx1y1
(1−υy1x1υx1y1 )Efx1

Δ

a2=
(1−υy1x1υx1y1 )(1−υ2y1z1 )Efx1Efy1

Δ2 −Gx1y1σx1 −
σx1
2
ϕ−2Gx1y1ϕ−ϕ2

a3=
(−1+υ2y1z1 )Efx1

Δ
−
σx1
2
+Gx1y1

( )
(10)

The solutions to Eqs. (8) and (9) are

u1(x1, y1) = ( − B1 + k1D1)sinh(β1αy1) sin (αx1)
v1(x1, y1) = (B1m1 + D1)cosh(β1αy1) cos (αx1)

(11)

where β1 =



























−a2/2a1 +














a22 − 4a1a3

√√
and k1 and m1 are calculated

by the following equations:

m1 =
(1 − υ2y1z1 )Efx1

Δ
− Gx1y1β

2
1

( )/
((Gx1y1 + ϕ)β1)

k1 = (Gx1y1 + ϕ)β1 −
(1 − υ2y1z1 )Efx1

Δ
+ Gx1y1β

2
1

( )/ (12)

2.2 Governing Equations for the Interphase Region and the
Matrix. The generalized Hook’s law for the linearly isotropic
interphase region and matrix takes the following form:

σmn = λδmnεkk + 2Gemn (13)

where m, n, and k are indices representing x2, y2, and z2 and x3, y3,
and z3, λ is the Lamé constant, G is the shear modulus. Substitution
of Eq. (13) into Eq. (3) yields the following equations:

(λi + 2Gi)
∂2ui
∂x2i

+ Gi
∂2ui
∂y2i

+ (λi + Gi)
∂2vi
∂xiyi

= 0

(λi + 2Gi)
∂2vi
∂y2i

+ Gi −
σxi
2

( ) ∂2vi
∂x2i

+ λi + Gi +
σxi
2

( ) ∂2vi
∂xiyi

= 0

(14)

In Eq. (14), the index i takes the values of 2 or 3; 2 indicates the
interphase region while 3 represents the matrix. A similar method
is used to solve Eq. (14), and the displacement fields for the inter-
phase region and the matrix are obtained. In the interphase
region, the solution is given as

u2(x2, y2) = [−B2 sinh (αy2) − A2 cosh (αy2)
+ k2D2 sinh (μ2αy2) + k2C2 cosh (μ2αy2)] sin (αx2)

v2(x2, y2) = [A2 sinh (αy2) + B2 cosh (αy2)
+ C2 sinh (μ2αy2) + D2 cosh (μ2αy2)] cos (αx2)

(15)

where k2 = μ2(β2 + 0.5)/0.5μ22 − β2 − 1, β2 = λ2/2G2 and μ2=







1 − s22

√
.

For the matrix, the solution is given by

u3(x3, y3) = [B3e
−αy3 − k3D3e

−μ3αy3 ] sin (αx3)
v3(x3, y3) = [B3e

−αy3 + D3e
−μ3αy3 ] cos (αx3)

(16)

where k3 = μ3(β3 + 0.5)/0.5μ23 − β3 − 1, β3 = λ3/2G3 and μ3=







1 − s23

√
, and Bi, Di (i= 1, 2, 3) and A2, C2 are eight unknown

constants.

2.3 Application of Boundary Conditions. The force bound-
ary conditions for Eq. (3) are given below:

Δfx = (σx − ωzσ◦xy + ωyσ◦xz)κ + (σxy − ωzσ◦y + ωyσ◦yz)θ

+ (σxz − ωzσ◦yz + ωyσ◦z )μ

Δfy = (σxy − ωxσ◦xz + ωzσ◦x )κ + (σy − ωxσ◦yz + ωzσ◦xy)θ

+ (σyz − ωxσ◦z + ωzσ◦zx)μ
Δfz = (σxz − ωyσ◦x + ωxσ◦xy)κ + (σyz − ωyσ◦xy + ωxσ◦y )θ

+ (σz − ωyσ◦xz + ωxσ◦yz)μ

(17)

The displacements and traction vectors are assumed to be continu-
ous at the fiber/interphase region and interphase region/matrix
boundary, and the continuity conditions are given as below. At
the interface between carbon fiber and interphase region, where
y1 =D/2, y2=−t/2 as shown in Fig. 5,

u1 − u2 = 0

v1 − v2 = 0

Δfx1 − Δfx2 = 0

Δfy1 − Δfy2 = 0

(18)

At the interface between the CNT/matrix nanocomposite interphase
region and the neat resin, that is, at y2= t/2 and y3= 0 in Fig. 5,

u2 − u3 = 0

v2 − v3 = 0

Δfx2 − Δfx3 = 0

Δfy2 − Δfy3 = 0

(19)

The displacement fields provided in Eqs. (11), (15), and (16) and
traction Eq. (17) are substituted into Eqs. (18) and (19) to obtain
eight linear algebraic homogeneous equations, which are used to
determine the eight unknown constants Bi, Di (i= 1, 2, 3) and A2,
C2. The determinant of the matrix M should be zero for nontrivial
solutions. Once the critical stress and its corresponding buckling
wavelength are found, the eight constants can be determined up
to an arbitrary constant. The matrix M is

M =

−n1 −n2 0 k1n1 k2n3 0 c2 −k2c3
−m1c1 −c2 0 c1 −c3 0 n2 n3
t1c1 2G2c2 0 t2c1 t5c3 0 −2G2n2 −t5n3
t3n1 2G2n2 0 t4n4 t6n3 0 −2G2c2 −t6c3
0 −n2 −1 0 k2n3 k3 −c2 k2c3
0 c2 −1 0 c3 −1 n2 n3

0 −2G2c2 2G3 0 −t5c3 t8 −2G2n2 −t5n3
0 2G2n2 2G3 0 t6n3 t6 2G2c2 t6c3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

where ni (i= 1, 2, 3, 4) and tj (j= 1, 2, 3,…, 8) are defined as
follows:

n1 = sinh (β1h1), c1 = cosh (β1h1)
n2 = sinh (h2), c2 = cosh (h2)
n3 = sinh (μ2h2), c3 = cosh (μ2h2)
n4 = sinh (μ1h1), t1 =G12(−m1 − β1)
t2 =G12(k1μ1 − 1), t5 =G2(1 − k2μ2)

t3 =
−(1 + υ23)υ21E1 + (1 − υ21υ12)E2m1β1

Δ
,

t4 =
(1 + υ23)υ21E1k1 + (1 − υ21υ12)E2β1

Δ
,

t6 = λ2k2 + λ2μ2 + 2G2μ2,
t7 =G2(k2μ2 − 1), t8 = −G3(k3μ3 − 1)

(21)

where h1= αD/2 and h2=αt/2.
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3 Finite Element Analysis
In the analytical model for the analysis to determine the onset of

buckling of fiber, the matrix is assumed to be infinitely thick.
Without loss of generality and considering not to use an excessively
long computational time for the finite element analysis, the matrix

thickness is set to 50 times of the thickness of the fiber, and a periodic
boundary condition is used at the two vertical edges. The analysis
is conducted on ABAQUS 6.14 to compare with the theoretical
results for the critical strain and buckling behavior. The fiber is mod-
eled as a transversely isotropic linearly elastic material and the fol-
lowing parameters are used [44]: E fx1 = 276GPa, Efy1 = 19.5GPa,
Gx1y1 = 70GPa, υx1y1 = 0.28, and υy1z1 = 0.7. The interphase
region and the matrix are modeled as an isotropic, linearly elastic,
and homogeneous material. The properties at the interphase region
are considered to change with the volume fraction of the CNT
sheet in the matrix, the Young’s modulus in the interphase region
increases as the volume fraction of the CNT sheet increases. The
Poisson’s ratio changes with CNT volume fraction as well [45].
An eight-node quadratic plane strain element is used for the fiber,
interphase region and matrix. There are 1000 elements along the
fiber direction, resulting in very small characteristic element
lengths compared with the buckling wavelength. The total number
of elements used is 50,000. In order to ensure the accuracy of the
buckling strain, there are more than three elements along the thick-
ness direction of the fiber and interphase region, and a mesh conver-
gence study was conducted to ensure that mesh independence was
achieved. The antisymmetric buckling modes observed from the
finite element analysis are shown in Fig. 6, providing verification
for assumption of antisymmetric buckling models assumed in the
theoretical model development.

4 Results and Discussion
Parametric analysis was conducted using both the analytical

model and FEA to examine the role of the thickness of the inter-
phase region on the mechanical properties, and compressive strain
at the onset of buckling. In Figs. 7–10, the solid lines represent the-
oretical results, and the symbols represent FEA simulation results. It
is observed that the buckling strains versus buckle half-wavelength
(0.5 λw/D) curves of modeling fiber as anisotropic or isotropic are
quite different, as shown in Fig. 7. It is seen that for a fixed buckle
half-wavelength, the buckling strain determined by modeling the
fiber as anisotropic is significantly lower than that determined by
modeling fiber as isotropic due to considering the lower trans-
versely shear modulus. Figure 7 shows that the ratio of the isotropic
model to anisotropic model buckling strain reaches a maximum dif-
ference of 57.5% at buckle half-wavelength 16, and Kardomateas
and Simitses [46] observed that critical load from finite elements
were as much as almost one-fifth with Euler load being for graph-
ite/epoxy sandwich construction. The parameters used to determine
the buckling strain and buckle half-wavelength are as follows:

Fig. 6 Antisymmetric buckling mode obtained from linear buck-
ling analysis in finite element analysis

Fig. 7 Comparison of the buckling strain in logarithmic scale for
the unidirectional composite for two situations where the carbon
fiber is modeled as an anisotropic or as an isotropic material. In
both anisotropic and isotropic models, the carbon fiber longitu-
dinal modulus is set equal. It is seen that assuming isotropic
behavior for a carbon fiber over-estimates the critical strain at
buckling.

Fig. 8 Simulations and theoretical analysis are carried on at the same situation for both cases: (a) the buckling
strain versus t/D for “soft” interphase region (Ei<Em) and (b) the buckling strain versus t/D for “stiff” interphase
region (Ei>Em). Here, Em0=3.5 GPa and E3

′
=Em/Em0.
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Young’s modulus of the matrix Em is 3.5 GPa, Poisson’s ratio of the
matrix υm is 0.38, Young’s modulus of the interphase region Ei

is 20 GPa, Poisson’s ratio of the interphase region υi is 0.33, and
t/D= 0.07.
The effect of the interphase thickness was studied by changing

the ratio of the interphase thickness to the fiber diameter. The
result comparison is shown in Figs. 8(a) and 8(b). An excellent
agreement has been reached between FEA results and the theoreti-
cal solution on the buckling strain, providing verification of the the-
oretical bucking analysis for a composite with a transversely
isotropic fiber embedded in a surrounding nanocomposite inter-
phase region and outer matrix. In FEA simulations, the maximum
ratio of the interphase thickness to the fiber diameter is set at 1,
the fiber diameter D= 5 μm is fixed. In Fig. 8(a), when the ratio
t/D increases, the buckling strain decreases in the case where the
interphase region modulus 2.5 GPa is less than the matrix
modulus, in a situation of a “soft” interphase region. The result indi-
cates that a “soft” interphase region does not provide sufficient
support for the carbon fibers under compression, making it prone
to buckle. It is noted that the buckling strain increases with the
increase of matrix modulus in Fig. 8(a). A stiffer lateral support it
provides makes the carbon fiber more resilient to buckling under

compression. However, a reversed trend is observed in the case
where the interphase region modulus is 25 GPa, larger than the
matrix modulus, in a situation of (“stiff” interphase region in
Fig. 8(b)). Figure 8(b) shows that wrapping CNTs on single
carbon fiber increase the buckling strain, which increase linearly
with the interphase thickness. The buckling strain increases by
35.9%, 36.3%, and 25.5% when the interphase thickness equals
the fiber diameter for E′

3 = 1.0, E′
3 = 2.6, and E′

3 = 4.3, respectively,
in comparison with the baseline data when the fiber is surrounded
by neat matrix. The higher matrix Young’s modulus can help
improve the buckling strain regardless of the interphase region
property, both as shown in Figs. 8(a) and 8(b). It is seen that a
thicker interphase region (a larger t/D) induces a larger wavelength
for the “soft” and “stiff” interphase region in Figs. 9(a) and 9(b), to
allow the buckle half-wavelength to decrease as the Young’s
modulus in the matrix increases. Figure 10 shows the results for
the buckling strain as a function of the ratio of the interphase
region modulus to matrix modulus from both theoretical analysis
and FEA simulations. It is seen that Ei/Em almost does not affect
the buckling strain when the interphase thickness is very small.
When the interphase thickness is comparable with the fiber dia-
meter, the buckling strain increases with interphase Young’s
modulus initially, and it does not change much subsequently.
There is an optimal Young’s modulus in the interphase region
around 17.5 GPa for such a composite since the buckling strain dif-
ference is only 1% for the interphase region modulus 17.5 GPa and
38.5 GPa, the last point in the graph, which can be achieved by con-
trolling the volume fraction of CNTs and epoxy and the CNT sheet
wrapping bias angle.

5 Finite Element Analysis for the Case of High Fiber
Volume Fraction
The theoretical solution is derived under the assumption of

neglecting the interactions between neighboring fibers, in other
words, it is valid only for the case of dilute fibers where fiber
volume fraction is low. When the fiber volume fraction is high,
such as the typical 60%, the theoretical solution is not valid
anymore. In the case of high volume fraction for fibers in a compos-
ite, the effect of the CNT sheet on the buckling strain is herein
studied by three-dimensional finite element analysis using ABAQUS

6.14. Periodic boundary conditions are used in all directions of
the representative volume element except along the fiber longitudi-
nal direction, and the C3D20R element is used in the simulation.
The total fiber volume fraction is kept the same for different

Fig. 9 Simulation and theoretical analysis are carried on at the same situation for both cases: (a) the buckle half-
wavelength versus t/D for “soft” interphase region (Ei<Em) and (b) the buckle half-wavelength versus t/D for
“stiff” interphase region (Ei>Em). Here Em0=3.5 GPa and E3

′
=Em/Em0.

Fig. 10 The buckling strain versus Young’smodulus ratio of the
interphase region to the matrix. The dark arrows indicate the
modulus of 17.5 GPa at the interphase region.
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ratios of t/D. To achieve this, the volume fraction of the matrix
decreases as t/D increases as shown in Fig. 11. Simulations are
carried out for the case of “stiff” interphase region where Ei=
25 GPa, Em= 15 GPa, and the mechanical properties of fiber
remained the same. As shown in Fig. 12, the buckling strain
increases as the thickness of carbon nanotube sheet thickness
increases when the carbon fiber volume fraction is high, which is
consistent with the previous results for low fiber volume fraction.
Compared with the buckling strain for carbon fiber composite
(t/D= 0), the buckling strain of carbon nanotube sheet wrapped
carbon fiber composite increases by 41.1% when t/D= 0.1. In com-
parison, the buckling strain improves only by 2.8% for dilute fibers
when fiber volume fraction is low at the same t/D ratio. Hence, the
buckling strain improves more when the carbon fiber volume frac-
tion is high. In conclusion, adding CNT nanocomposite layer
between carbon fiber and matrix improves significantly the
bucking strain when the fiber volume fraction is high.

6 Summary and Conclusions
A theoretical model for studying the compressive buckling strain

of a unidirectional carbon-fiber/epoxy composite was presented. In
the model, the composite is considered to consist of three constitu-
ents: fiber, nanocomposite (CNT/matrix interphase region), and
matrix. The fiber, nanocomposite, and matrix (e.g., epoxy) are
modeled as a transversely isotropic and isotropic elastic continuum,
respectively. The analysis is conducted under a plane strain condi-
tion applying a small perturbation in the field equations. Perfect
bonding is assumed at the fiber/nanocomposite interface and nano-
composite/matrix interface to make sure displacement and traction
are continuous at the interface. Buckling strain and corresponding

wavelength for antisymmetric deformation mode are obtained
from the analysis. Finally, comparing the buckling strain deter-
mined by modeling fiber as anisotropic with modeling fiber as iso-
tropic, the current model predicts lower buckling strain. FEA
simulations were carried out to simulate the same buckling
problem for model verification, and they show consistent results
with the theoretical analysis. The effects of the nanocomposite
thickness, Young’s modulus of the interphase region, and matrix
on the buckling strain and wavelengths were discussed. Wrapping
CNT sheet on carbon fiber is shown to help improve the compres-
sive strength as long as Young’s modulus in the nanocompsite inter-
phase region is higher than the matrix, which is readily achievable
by controlling the volume fraction of CNT and the wrapping bias
angle. The optimum interphase region thickness is equal to the
fiber diameter under the assumption that the property of the fiber
dominates the properties of composites for low fiber volume frac-
tion. When the fiber volume fraction is high, such as 60% a value
around a typical high-strength composite, adding nanocomposite
between fiber and matrix has a more significant effect on improving
compressive strength. These observations are further corroborated
by molecular dynamics simulations reported elsewhere [47].
In summary, the theoretical analysis provides an effective tool

for designing interphase in a composite through analysis of the
compressive behavior of the composite with the consideration of
the transversely isotropic fibers, and the analysis indicates that
adding nanocomposite between fiber and matrix can improve sig-
nificantly the compressive strength even when the fiber volume
fraction is large.
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Nomenclature
t = thickness of the CNT/polymer matrix interphase region
D = diameter of a fiber
Ei = Young’s modulus in the i direction and i∈ {1, 2, 3}
Gij = shear modulus in the i–j plane, i, j∈ {1, 2, 3} and i≠ j

x, y, z = Cartesian coordinates for the fiber, interphase region,
and matrix

u, v, w = displacements in the x, y, and z directions, respectively
CNTs = carbon nanotubes
IFSS = interfacial shear strength
FEA = finite element analysis

xi, yi, zi = Cartesian coordinates for the fiber, interphase region,
and matrix for i= 1, 2, 3, respectively

ui, vi, wi = displacements in the fiber, interphase region, and
matrix for i= 1, 2, 3, respectively

Δfx, Δfy = traction components in the x and y directions
Δfz = traction components in the z-direction
εij = strain components

κ, θ, μ = direction cosines of the normal to the boundary
element

σij = stress components
υij = Poisson’s ratio in the i–j plane
λ = Lamé constant

λw = buckling wavelength
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