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Abstract

In this poster we present the results of [1]. We consider the problem of detecting chaotic behaviors
in discrete dynamical systems. We propose an algebraic criterion for determining whether all the zeros
of a given polynomial are outside the unit circle in the complex plane. This criterion is used to deduce
critical algebraic conditions for the occurrence of chaos in multi-dimensional discrete systems based on
Marotto’s theorem. Using these algebraic conditions we reduce the problem of analyzing chaos induced
by snapback repeller to an algebraic problem, and introduce an algorithmic approach to solve this
problem by means of symbolic computation. The proposed approach is effective as shown by several
examples and can be used to determine the possibility that all the fixed points are snapback repellers.

1 Introduction

We focus on the following class of n-dimensional discrete dynamical systems

x(k + 1) = f(µ,x(k)), (1)

where f : Rn → Rn is a C1 nonlinear map with parameters µ from R, the real number field. Let f t denote
the t times of compositions of f with itself. A point x, is said to be a p-periodic point of f if fp(x) = x
but f t(x) 6= x for p > t ≥ 1. If p = 1, i.e., f(x) = x, then x is called a fixed point. Let f ′(x) and |f ′(x)|
be the Jacobian matrix of f at the point x and its determinant respectively.

In what follows, we will describe the notion of snapback repeller and Marotto’s theorem. We consider
a C1 nonlinear map f of (1). Define Br(x) as the closed ball of radius r centered at x under certain norm
|| · || in Rn. We say that a fixed x̄ is a repelling fixed point of f with respect to the norm || · || if there exists
a constant s > 1 such that ||f(x)− f(y)|| > s · ||x− y|| for any x,y ∈ Br(x̄) with x 6= y, where Br(x̄) is
defined on this norm || · ||, called a repelling neighborhood of x̄.

Definition 1 Let x̄ be a repelling fixed point of f in Br(x̄) for some r > 0. We say that x̄ is a snapback
repeller of f if there exist a point x0 ∈ Br(x̄) with x0 6= x̄ and an integer m > 1, such that xm = x̄ and
|f ′(xk)| 6= 0 for 1 ≤ k ≤ m, where xk = fk(x0).
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The point x0 in this definition is called a snapback point of f . Under this definition, the following
theorem by Marotto holds [5, 6].

Theorem 1 If f possesses a snapback repeller, then f is chaotic in the following sense: There exist (i) a
positive integer N such that for each integer p ≥ N , f has a periodic point of period p; (ii) a “scrambled
set” of f , i.e., an uncountable set S containing no periodic points of f such that

(a) f(S) ⊂ S,
(b) lim sup

k→∞
‖ fk(u)− fk(v) ‖> 0, for all u,v ∈ S with u 6= v,

(c) lim sup
k→∞

‖ fk(u)− fk(vp) ‖> 0, for all u ∈ S and any periodic point vp of f ;

(iii) an uncountable subset S0 of S such that lim inf
k→∞

‖ fk(u)− fk(v) ‖= 0, for every u,v ∈ S0.

Marotto’s theorem is significant in extending the analytic theory of chaos from one-dimension to multi-
dimension. It is also effective in applications, for example, in finding the chaotic regimes (parameter
ranges) for dynamical systems. Focusing on practical applications, there exist two directions to confirm
that a repelling fixed point is a snapback repeller for multi-dimensional maps. The first one is to find the
repelling neighborhood U of the repeller x̄ and a preimage point x̄0 of x̄ lying in U , i.e., with fm(x̄0) = x̄,
x0 ∈ U and x0 6= x̄, for some m > 1. Therefore, deriving an estimation of the repelling neighborhood
for a repeller becomes the key part in utilizing this theorem. Moreover, a computable norm is needed
for practical application. The second direction is to construct the preimages {x̄−k}∞k=1 of x̄, such that
f(x̄−k) = x̄−k+1, k ≥ 2, f(x̄−1) = x̄, lim

k→∞
f(x̄−k) = x̄. We call such an orbit {x̄−k}∞k=1 a (degenerate)

homoclinic orbit for the repeller x̄. The existence of such a homoclinic orbit guarantees the existence of a
snapback point in the repeller neighborhood of repeller x̄. Marotto’s theorem thus holds without knowing
the repelling region of the fixed point.

In this work we focus on the first direction on the study of snapback repeller by quoting the following
lemma from [2] which can be used to determine a repelling fixed point of f under the Euclidean norm.

Lemma 1 Let x̄ be a fixed point of f which is continuously differentiable in Br(x̄). If

λ > 1, for all eigenvalues λ of
(
f ′(x̄)

)T
f ′(x̄), (2)

then there exist s > 1 and r′ ∈ (0, r] such that ||f(x) − f(y)||2 > s · ||x − y||2, for all x,y ∈ Br′(x̄) with

x 6= y, and all eigenvalues of
(
f ′(x)

)T
f ′(x) exceed one for all x ∈ Br′(x̄).

Our objective in this paper is to present a symbolic computation approach to detect the chaotic behavior
of system (1) by using Marotto’s theorem. In Sections 2-3, we present the main results of [1]. Section 4
shows some experiments. In conclusion, we summarize the results.

2 Zeros Distribution with Respect to the Unit Circle

Our aim is to derive the algebraic criterion for all zeros of the characteristic polynomial of
(
f ′(x)

)T
f ′(x)

to be outside the unit circle (OUC). To this end, we will use a sequence of symmetric polynomials of
descending degrees for the characteristic polynomial, see [9].

Let

D(λ) = d0 + d1λ+ . . .+ dnλ
n (3)

be this characteristic polynomial, where di = di(µ,x), i = 0, . . . , n. Then denote by D∗(λ) the reciprocated
polynomial of D(λ), namely, D∗(λ) = λnD(λ−1) = dn + dn−1λ+ · · ·+ d0λ

n.

2



Bo Huang, Wei Niu

Given the polynomial D(λ), we assign to it a sequence of n+ 1 polynomials Tn(λ), Tn−1(λ), · · · , T0(λ)
according to the following formal definition:

Tn(λ) = D(λ) +D∗(λ), Tn−1(λ) = [D(λ)−D∗(λ)]/(λ− 1),

Tk−2(λ) = λ−1[δk(λ+ 1)Tk−1(λ)− Tk(λ)], k = n, n− 1, . . . , 2,

where δk = Tk(0)/Tk−1(0). The recursion requires the normal conditions Tn−i(0) 6= 0, i = 0, 1, . . . , n. The
construction is interrupted when a Tk(0) = 0 occurs, and in [9], such singular cases can be classified into
two types. The following theorem is the main result of [1] and it shows that there is no need to consider
such singular cases.

Theorem 2 All zeros of D(λ) are OUC if and only if the normal conditions Tn−i(0) 6= 0, i = 0, 1, . . . , n
hold and νn = Var{Tn(1), . . . , T0(1)} = n.

3 Semi-Algebraic Systems for Marotto’s theorem

It should be noticed that the repelling neighbourhood Br′(x̄) in Lemma 1 can be found by a series of inequal-
ities and inequations automatically. In fact, we take Br′(x̄) as Br′(x̄) =

{
V ar{Ti(1)|x̄

}
= n, Tn−i(0)|x̄ 6=

0, i = 0, . . . , n} (ie., the solution space of the inequality set {V ar{Ti(1)|x̄} = n, Tn−i(0)|x̄ 6= 0, i = 0, . . . , n}
consists of a repelling neighbourhood). Note that there may have four cases for the sign variation pattern
of the polynomials in the sequence {Tk(1)}nk=0 at two different points. The following result of [1] tells us
that only two cases may occur for any x ∈ Br′(x̄) for sufficiently small r′ > 0.

Lemma 2 The sign variation pattern of the polynomials in the sequence {Tk(1)}nk=0 for any point in the
repelling neighbourhood Br′(x̄) remains consistent for sufficiently small r′ > 0.

The following result is the main theorem for detecting the chaotic behavior of system (1).

Theorem 3 For a general n-dimensional discrete system (1), the system is chaotic in the sense of Marotto
if one of the following semi-algebraic systems to have at least one real solution:

Ψj :



x̄− f(µ, x̄) = 0, fm(x0)− x̄ = 0,

(−1)i+j−1Tn−i(1)|x̄ > 0, i = 0, . . . , n,

(−1)i+j−1Tn−i(1)|x0 > 0, i = 0, . . . , n,

Tn−i(0)|x0 6= 0, Tn−i(0)|x̄ 6= 0, i = 0, . . . , n,

x0 6= x̄, |f ′(xk)| 6= 0, k = 1, . . . ,m,

(4)

where j = 1, 2, µ and x̄ are respectively the parameters and fixed point of system (1) and m (m ≥ 2) is a
given positive integer number.

In Theorem 3, what we want to find are the conditions on the parameters µ for each of the semi-
algebraic system (4) to have at least one real solution. In [1], we propose a systematic approach for solving
semi-algebraic systems and analyzing the chaotic behavior by using methods of symbolic computation.
This approach is based on the one for solving semi-algebraic systems proposed by Wang and Xia [3] and
then developed by Niu [8]. There are several packages or software for realization of certain steps in our
approach. For example, the method of discriminant varieties of Lazard and Rouillier [4] (implemented as
a Maple package DV by Moroz and Rouillier), and the Maple package DISCOVERER, developed by Xia,
implements the methods of Yang and Xia [7] for real solution classification.
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4 Experiments

We analyze the chaotic behavior for a concrete practical system by using symbolic computations in order
to illustrate its feasibility. More experiments and remarks can be found in [1].

We consider an extension of Mira 2 map which takes the form

xn+1 = Axn + yn, yn+1 = x2n +Byn, (5)

where A and B are nonzero numbers. Solving the corresponding semi-algebraic systems Ψ1 and Ψ2 of (5)
by taking m = 2 based on the methods of symbolic computation, we can obtain that the semi-algebraic
system Ψ1 or Ψ2 has at least one real solution if and only if one of the following conditions holds:

C1 = [0 < R1, 0 < R2], C2 = [R3 < 0, 0 < R4].

The explicit conditions of C1 and C2 can be found in [1]. Then map (5) is chaotic in the sense of Marotto
if one of the conditions C1 or C2 holds.

5 Conclusion

We have presented an approach to analyze the occurrence of snapback repeller of systems (1) automatically
by using symbolic computation. Theoretically, we give a necessary and sufficient algebraic condition for all
the zeros of a given polynomial to be OUC. Then with the aid of this condition, we reduce the analysis of
Marotto’s theorem to the solution of some semi-algebraic systems and introduce a systematical approach
for analyzing the conditions on the parameters under which a snapback repeller exists. Moreover, in our
approach, the procedure for the iteration can be done by computer automatically (m times). Besides, our
approach can be used to determine the possibility that all the fixed points are snapback repellers due to
the inexplicit computation of the fixed points of (1).
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