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Abstract

Manipulating the dynamics of neural systems through targeted stimulation is a frontier
of research and clinical neuroscience; however, the control schemes considered for neural
systems are mismatched for the unique needs of manipulating neural dynamics. An
appropriate control method should respect the variability in neural systems,
incorporating moment to moment “input” to the neural dynamics and behaving based
on the current neural state, irrespective of the past trajectory. We propose such a
controller under a nonlinear state-space feedback framework that steers one dynamical
system to function as through it were another dynamical system entirely. This “myopic’
controller is formulated through a novel variant of a model reference control cost that
manipulates dynamics in a short-sighted manner that only sets a target trajectory of a
single time step into the future (hence its myopic nature), which omits the need to
pre-calculate a rigid and computationally costly neural feedback control solution. To
demonstrate the breadth of this control’s utility, two examples with distinctly different
applications in neuroscience are studied. First, we show the myopic control’s utility to
probe the causal link between dynamics and behavior for cognitive processes by
transforming a winner-take-all decision-making system to operate as a robust neural
integrator of evidence. Second, an unhealthy motor-like system containing an unwanted
beta-oscillation spiral attractor is controlled to function as a healthy motor system, a
relevant clinical example for neurological disorders.

9

Author summary

Stimulating a neural system and observing its effect through simultaneous observation 1

offers the promise to better understand how neural systems perform computations, as 2
well as for the treatment of neurological disorders. A powerful perspective for 3
understanding a neural system’s behavior undergoing stimulation is to conceptualize 4
them as dynamical systems, which considers the global effect that stimulation has on 5
the brain, rather than only assessing what impact it has on the recorded signal from the
brain. With this more comprehensive perspective comes a central challenge of 7
determining what requirements need to be satisfied to harness neural observations and s
then stimulate to make one dynamical system function as another one entirely. This 9

could lead to applications such as neural stimulators that make a diseased brain behave 10
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like its healthy counterpart, or to make a neural system previously capable of only hasty
decision making to wait and accumulate more evidence for a more informed decision. In
this work we explore the implications of this new perspective on neural stimulation and
derive a simple prescription for using neural observations to inform stimulation protocol
that makes one neural system behave like another one.

Introduction

Advances in recording technology are making it possible to gain real-time access to
neural dynamics at different length and time scales [1,2], allowing us to consider the
structure of the brain’s operation in ways that were previously inaccessible. Central to
that understanding of neural dynamics is the widely-held belief that dynamical systems
underlie all of the core operations of neural systems [3-6]. Dynamical systems are
systems of time-independent dynamics that drive the evolution of a set latent states
that may or may not be direclty observable, which in neural systems are proposed to
account for motor function [7], cognitive processes [8-10], and sensory processing [11].
The controlled stimulation of neural systems offers not only a novel tool to
perturbatively study the underlying dynamical systems; but also shows tremendous
potential to treat a host of brain disorders, ranging from movement diseases such as
Parkinson’s disease and essential tremor [12,13], epilepsy [14, 15], and even mood
disorders such as severe depression [16]. In particular, there has been recent success in
combining real-time neural data acquisition with closed-loop stimulation for treating
Parkinson’s disease [17,18].

Unfortunately, the current framework for manipulating neural systems is not
structured to deal with the unique challenges posed by controlling complex neural
dynamics. One of the central goals of control theory is to manipulate a system to mimic
some or all characteristics of a target system of dynamics, and nearly all control systems
accomplish this by controlling the system state to either track a specified target
trajectory or to regulate to a known set point [19]. Closed-loop control systems
specifically designed for neural systems also operate under this paradigm [20-22], and
clinical devices use even more simplistic open-loop or reactive protocols [15,17,23]. If
neural systems function as a dynamical system by nonlinearly filtering signals [24, 25],
then significant portions of the observed neural fluctuation would correspond to relevant

exogenous input signals to the system such as volition, memory or sensory information.

Such controls designed to move to or maintain a target state counteract any natural
fluctuation in neural trajectories, and create a rigid system that is no longer
dynamically computing. For example, when building neural prosthetics for an abnormal
motor-related brain area, it is crucial for the controlled neural activity to be close to
normal; however, simply controlling it to replay a fixed motor command would not
allow flexibly changing one’s mind mid action. Therefore, any control objective that
only considers externally set constraints through trajectory or set-point control would
be limited both in their application for treating neurodynamic diseases as well as for
studying neural computations in cases where preserving dynamic information processing
capability is important.

Given this perspective, we propose a new control objective called myopic control
that respects the unforeseeable variability in neural systems. The objective of myopic
control is for the controlled system to behave as a target neural dynamical system. This
is reminiscent of a well-developed field in control theory known as model reference

control (MRC) [19], though MRC has been widely used for trajectory-tracking problems.

Unlike MRC, myopic control is independent of the past trajectory and does not account
for the far future—given the current state of the system, it tries to behave as the target
dynamical system instantaneously. Additionally, our controller is constructed to be
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agnostic about the ideal behavior of the neural system. Its only purpose is to generate

the target dynamical system, and all of its emerging behaviors, as accurately as possible.

The controller does not assume the role of performing the bulk action on the state,
which is instead encompassed in the original dynamical system that presumably perform
some form of related dynamics well. This is especially important in the context of neural
dynamics performing a computation, where it would be undesirable for our controller to
first perform the computation itself by tracing out a predefined trajectory. Instead,
myopic control will assist that system’s natural ability to perform a neural computation.
The qualitative difference between our control scheme and trajectory-tracking
methods is depicted in Fig. 1. Given some target dynamical system, utilizing trajectory
control would force the neural system to follow a target trajectory, although not
through the true target dynamics. Scenarios may arise where trajectory control and
myopic control may be very similar (Fig. 1A), although there can be fundamental,
qualitative differences in the presence of noise or large disturbances due to exogenous
inputs (Fig. 1B). In that case, the trajectory resulting from trajectory control would not
be generated from the target dynamics, and forces the state to evolve toward the
pre-computed target state. In this way, our controller preserves the full neural
variability of our target dynamics, ranging from potentially different trajectories towards
the same fixed point to even allowing for potentially different behavior than expected.

Fig 1. Qualitative difference between our proposed myopic control of dynamics and
trajectory control. Here F is controlled to perform an example target dynamics G (e.g.,
perform a motor command) , where its gradient flow is given in gray and two attractors

are denoted as circles. A precomputed target trajectory x¢ through G is shown in black.

A) In the presence of small disturbances, the evolution of trajectory control forces the
system back to x¢, whereas myopic control allows for natural deviations. B) A large
disturbance away from x¢ corresponding to an exogenous input that changes the target
attractor mid-trajectory could lead to entirely different behavior between the two
control methods. Only myopic control would capture the response of this disturbance
through the true dynamics of G, while trajectory control blindly follows x4.

The paper is organized as follows. First, we formulate the goals of our control
objective for manipulating neural systems, then define myopic control for linear and
nonlinear dynamics. Next, we discuss some design features of how to construct the
target dynamics of a desired dynamical system to display expected or intended behavior,
and what types of difficulties may arise when trying to define healthy or desired neural
dynamics. We then demonstrate this control’s ability to make dynamical systems act as
though they were another system entirely through two relevant examples. First, a
winner-take-all decision-making model is transformed to operate as a robust neural
integrator of information when shown a stimulus in a forced, two-choice decision-making
task. Second, a “diseased” motor system containing an unwanted beta-oscillation state
is controlled to function as a healthy motor system, which is a motivating example for
the treatment of movement disorders or other diseases with an underlying neurological
state.

Materials and methods

Myopic dynamics control

Here we discuss the control problem of utilizing a dynamical system to behave as a
separate dynamical system. Using a Bayesian state-space modeling framework [26], we
are interested in the time evolution of a posterior distribution of time-dependent,
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n-dimensional (latent) brain state x; that are governed by (stochastic) dynamics
Flat, us) = Fp with an m—dimensional control signal uy,

Tep1 = Ty + Fy + wy, (1)

where wy; ~ N(0, Q) is the state noise upon the dynamics. A second set of target
stochastic dynamics G[z;] = G; under which we would like our state to evolve, acts
analogously on the state as

Ti41 = Ty + Gt + wy, (2)

The noise in both dynamics is the same, as we are considering transforming F into G
in the same physical neural system. In general, the control acts upon the dynamical
system latent states x that may not be directly observable, and would need to be
inferred from a set of observable variable to which the latent states are linked through
an observation model. The influence of the controls would also be manifested in the
observed neural observations that are relevant to experiments (e.g., calcium image
traces, local field potentials, etc.), though without loss of generality we have chosen to
simplify our dynamics by omitting an observation model. While neural observations
may contain much information about the system, generally speaking they are not
dynamical states. States of a dynamical system require no time dependence to fully
describe the system, unlike neural observations that may require a history to
understand the dynamics. These dynamics are in general nonlinear, and we denote their
Jacobians (linearization at the current state and stimulus) as

_ OF|x,ul
A= ox

Tt Ut

_ OF|x,ul
5,= %7104 (3)

Tt Zt,U0

Arguably the most developed form of model-based control occurs for linear systems
with quadratic costs on the state and control, known as linear quadratic gaussian (LQG)
control [27]. Finite-time horizon LQG controllers are optimal for costs of the simplified
form

J =

T
t=0

B [l — ] + e, @

with linear dynamics F; = Axy + Buy + wq, and a regularization penalty factor = is
added onto the control power. The goal of minimizing (4) is to balance tracking along a
target trajectory x¢ with the cost of implementing a control. The optimal LQG
controller form u; = K¢(z — x¢) with gain K; is found by solving the associated
recursive Riccati equation from an end-point condition, and is a time-dependent
controller through the time-dependence on Ky [27].

Generating target dynamics is similar in spirit to LQG-type costs, although instead
we are interested in minimizing the difference between the effect of target dynamics and
controlled dynamics alongside control costs. Requesting that the controlled dynamics of

Fi act as through they are in fact G; can be written in a regularized, stepwise quadratic
form as

Jt=E [(Fe = G)" (Fi = Go)] +uf we. (5)
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Note that this cost is defined at each time point ¢, and depends on the current state
(posterior) distribution over ;. Utilizing control to track a defined trajectory that is
generated from an uncontrolled set of target dynamics G is known as model reference
control (MRC), [19] although the costs associated with this control design are
traditionally limited to regulation of a controlled trajectory around a set point or
tracking of a predefined target trajectory evolving under G over a long time horizon.
Our cost in (5) is equivalent to MRC with a time horizon of T'= 1, in which the control
effectively recreates a single step of a target trajectory from G. To our knowledge, this
simplified form of MRC is a major departure from the typical use of model reference
control. By weighting the difference between dynamics over a single time step, this
myopic (i.e., one-step) form negates the need to solve the Riccati equations, and the
derivative 0.J/0u; can be straightforwardly calculated to identify the optimal myopic
control.

Our work in this paper focuses primarily on designing a controller that optimizes eq.

(5), which would be optimal for generating target dynamics over a single step. Since the
controller would no longer contain any time dependence (the dynamics F; and G; are
indexed by their current time, but are dependent upon the state x; only), it would
generate a dynamical system with the same state space. The qualitative advantages of
myopic control are depicted in Figure 1, in which the evolution of a trajectory-controlled
system tracking a defined trajectory x; in a target dynamical system G is compared to
the evolution of a myopically controlled system designed to perform the target
dynamics. In a noiseless environment, both trajectories would be identical; however, in
the presence of small disturbances away from x¢, tracking control would correct the
trajectory in a distinctly non-dynamical fashion, evolving not through G but instead
forcing the system back onto x¢ in an unnatural manner (Fig. 1A). Myopic control
would instead lead trajectory through the natural dynamics of G, which may lead to the
same stable point, but through a distinctly different trajectory. Some disturbances may
lead to different behavior between the two control methods, though. Figure 1B shows
this scenario, in which a disturbance is corrected by trajectory control back toward xg,

while myopic control followed the flow of G, which lead it to a different attractor point.

If this target dynamics were a decision-making computation, for example, myopic
control may have lead to a “wrong” decision; however, allowing a controlled neural
system to operate imperfectly in the perspective of modern control is precisely the type
of flexibility that should be achieved to maintain its natural operation.

In the following sections we derive the form of our myopic controller. Ideally, the
controller formulation will be distinct from the state estimator providing the feedback
signal, and leads us to consider variants of the controller that rely upon different
moments of the underlying state distribution. We first begin with the case of linear
dynamics to demonstrate the simplified form of myopic control and its properties, then
move the more applicable nonlinear case.

Linear dynamics

Here we demonstrate that the myopic controller for linear dynamics depends only upon
the mean of the state distribution, and thus the state estimator and controller design
are separable for myopic control.

Theorem 1. If target and controlled dynamics are linear in state x and control u, then
myopic control depends only upon state mean E[z].

Proof. Let the linear dynamics under control and the target dynamics be
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-Ft :Axt+But+wt (6)
Ge = Axy + wy, (7)

where the state distribution over x has first and second central moments E[z;] = u,
E[(z¢ — pt)?] = 3¢, and the state noise is normal with w; ~ N(0, Q). Expanding the
dynamics cost in (5) gives

J :IE [|(A — Az, + But)ﬂ + yul uy
—Tr [\(A . A)|2zt} + 4T (A~ AT Bu,+
uf BT (A = Ay + uf (BT B+ 71 )us, (®)

where I,,, is the m x m identity matrix. By examining (8) it is clear that regardless
of the distribution over z, the cost depends only upon the first two moments of the
distribution of z. Maximizing (8) yields the optimal linear myopic controller form wu;, ,
which depends only upon the state mean,

u;in = 72(BTB + 'yIm)*lBT(A — A)py. (9)

O

Nonlinear dynamics controller with a moment expansion approximation

For nonlinear dynamics, simply differentiating (5) leads to an ill-suited expression for a

controller, since there is an implicit dependence of the controller upon itself through F.

One approximation to alleviate this is to expand the nonlinear dynamics about null
control (ug = 0) to first order, with the form

Flae, us] = Flae, uo] + By(ur — uo)
Eft + Btut (10)
where f; = flxt] = Flae, uo] and for the remainder of the work By = B[z, x0] is the

Jacobian of F as in eq. (3). This leads to an expression for the derivative of J and
myopic controller as

é%%::gp(ﬁr4—u?B?)By72g;BJ*%27U? (11)
uj = —(EIB B.] + 1) ' EB/ (fi — Gu)). (12)

The expectations in (12) depend upon the state distribution of x;, although it would
be desirable if akin to LQG that the controller was separated from state estimation, and
only depended upon low-order moments of x. To construct such a controller we will
expand E,[-] in terms of the mean and covariance of x;; in general, the terms in this
expansion will contain Jacobian matrices, higher order derivatives, and state vectors
that are all evaluated at the distribution mean g, multiplied by the covariance ¥; in
some form. For example, the Jacobian B; is expanded as
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Blzy] = Blut + (x¢ — pt)]

~ Bl + B/[Mt](xt — pie) + %(Jﬁt - Mt)TB”[Mt](%t — fit), (13)

and would follow similarly for the other terms in E;[-]. Such an approximation is
valid when the deviations from our estimated state u; are small, and in this regime only
low-order moments are necessary. It is assumed that state estimation to obtain u; and
>4 can be performed regularly enough in practice to operate in the regime such that
(13) is valid, and we will consequently consider two forms of nonlinear myopic control.
First-order myopic control will include only terms dependent upon state mean, just as
in the linear dynamics case of the previous section. Second-order myopic control will
analogously depend upon both p; and ¥;. In each controller the terms f,G, B and
derivatives B; = 0B;/0xy, B] = 0*B;/dx?, will all be evaluated at the distribution
mean p; and null control uy = 0, so we will temporarily drop the functional dependence
of these terms in the notation. The prime notation will indicate a derivative with
respect to state.

The first expectation in (12) includes only terms relating to B. Expanding and
keeping terms up to second order gives

E[Blz]" Bla]] = E[Blu + (z — )] Blu + (z — p)]]

x x

1
zBTBA—iBTﬂ34B”m+

1

§EQAEWQB+TnAB”EEL (14)

where Tr3 4 denotes the partial trace over dimensions 3 and 4. For an
(n x m x n x n) tensor T this operation maps to an (n x m) matrix M = Trs 4[T] as

M;., ::jgjizhkjﬁ. (15)

Similarly, expanding E,[BZ(f[z] — G[x])] up to second order yields

E[B [+ (x — w)](fln+ (x — w)] — Glu+ (x — p)))]

xT

=BT(f ~ G) + { B Ty [(t" ~ G")5]+
Bﬁbjgﬂf—gﬂﬂ+;mwmwmﬁ—g) (16)

(12), (14), and (16) define our second-order nonlinear myopic controller ugpq, and
simply omitting the covariance-dependent terms gives first order controller expansions,

]E[B[I}TB[I]hst order — B[H]TB[H] (17)

x

E[B; (fl2] = Gla]))ist order = Blu]" (f[1] — G[u))- (18)

x

First-order control uig is attractive for its simplicity, and it is important to ask
under what circumstances would first-order control outperform second-order control?
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First, if Tr(X;) is very small (i.e., small uncertainty about the state x;), then
second-order terms are negligible. Second, by noting that nearly all second-order terms
contain derivatives of B, f and G, another regime in which first-order control may be
superior is under “super smooth” dynamics in which the magnitude of successive
derivatives is smaller than the previous one (e.g. | B|| > ||B’| > ||B"||). Moreover, if
the control portion of the Jacobian B is state-independent, then second-order control
only has one covariance-dependent term in E,[BX(f[z] — G[x])],

Blu)" (flu] = Glu]) + EB[M]TTrz,s[(f”[u] = G"[uD)x]. (19)

Evaluating controller performance

The performance of a myopic controller is formally benchmarked by the regularized cost
in (5), although it is important to isolate a cost describing the performance of only the
dynamics. The cost of expected mean performance is denoted by J,,, and is given by

Jug = ((Flie;ui] = Gline])" (Fliae, u] = Gline])]- (20)

This cost is easy to compute and provides information about the mean behavior of
the control, although it ignores the variability of the state distribution ;. A more
informative cost incorporates the impact of the entire distribution of x, denoted by J; as

Jo =E[(Flar, uy] = Glad)" (Floe, w7] = Glaa])]- (21)
This is simply the log-mean squared error of the controlled dynamics. We estimate

(21) through Monte Carlo integration assuming the maximum entropy distribution at

each time point given the first two moments, i.e., a normal distribution N (i, 3¢).

Design principles for targeted dynamical systems

Myopic control omits the requirement of supplying a target neural trajectory or set
point in the neural state space, which resonates with our design requirement of a
future-agnostic controller that need not prescribe what the brain should be doing
precisely.

Balancing the simplicity and ease of myopic control, though, is the relative
complexity in designing a target dynamical system G;. At first glance, it may seem as
though we have merely shifted complications of controlling neural dynamics. However,
this perspective more clearly frames the goal of neural dynamics control, and we believe
that it identifies a general design question yet to be seriously considered by the neural
processing community: Given a rough sketch of neural dynamics and a desire to change
them, what is an appropriate target dynamical system?

The choice of G can roughly be broken down into three design problems for
dynamical systems: i) removal or avoidance of an unwanted feature, ii) addition of a
desired feature, and iii) modification of an existing feature. For example, there may be
attractors (representing macrostates) in F indicative of a dysfunctional behavior that
should be avoided for healthy brain function, such as limit cycle attractors. Or, one may
wish to introduce additional attractor macrostates in a decision-making system in order
to support robust neural integration of evidence [28]. We will consider both of these
scenarios in the following sections. Our ideal design approach used here is summarized
in Figure 2, which is to use multiplicative filters upon the controlled dynamics F to
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preserve desired features, with the addition of either barrier functions to remove
undesirable aspects of F or to prevent access into that region of state space.
Alternatively an additive function could be utilized to introduce new features. Care
must be taken with the shape and positioning of the additive barrier or extra feature
though, as any zero crossings of this additive term will introduce fixed points into the
dynamics. In the example case in Figure 2, a barrier function is used to remove an
undesirable feature of the dynamical system by producing a net rightward gradient flow
in the low x; region of state space, where the zero crossing of the barrier function is
aligned with other fixed points of the system that are denoted in blue. Under this
strategy, we can also view modification of an existing feature as simply a removing it
and replacing it with the desired one.

Fig 2. Design strategy for creating target dynamics G. Green and blue regions
represent features of the original dynamics F that are to be maintained, while an
undesirable feature is denoted with orange. A multiplicative filter removes the
unwanted feature, while an additive barrier function prevents access to unwanted state
space by enforcing a gradient flow toward desirable regions with well-behaved dynamics.

Numerical methods

In the follow sections we detail the dynamics of each dynamical system in the examples.

Since the primary objective of this work is to understand the performance of the myopic
controller, in both examples we used a simple state estimator to calculate Z; and it,
employing extended Kalman filtering (EKF) within Tensorflow assuming a noisy
observation of the state as y; = x; + v, where v; ~ N(0, R) and R is a diagonal
covariance matrix. For lags in observations and control signal calculation, state
prediction was performed by propagating Z; via,

Ty = Tp + FTe, ue], (22)

and covariance was estimated through sampling of time-evolved state predictions
xiz) ~ N (24, %) that also evolve in time using (22),

T

M M
. 1 i .
S = g S| [ 208 - e )
i=1 =1
1 M
k
Heet =7 > ah (24)
k=1

Beta oscillation disease states

The diseased state dynamics are a modification of a dynamical system used to describe
linear integrate-and-fire neurons as a limit cycle attractor [6]. The specific limit cycle
attractor is based upon the post-saddle-node bifurcation behavior at large current in the
INap + Ik model from Ch. 4 of [6] (egs. 4.1-4.2). The high-threshold parameters in [6]
were utilized to generate the attractor, and the external current was tuned to generate a
beta oscillation. The beta oscillation dynamics of state X = [X1, X»]T (omitting state
and observation noise, for succinctness) are
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0] X
Hlimit cycle = a |: X; :| (25)

X, O .
LN - (X - B)-
T Co( g (X1 — E1)
INaMeo(X1 — Ena) — g Xa(X1 — Ey)) (26)
3X2 Neo — XQ
= 2
ot o T (27)
1
Poo = v AN pE [mvn} (28)
1+ exp( L=

with parameters Cy = 1, I = 10, E; = =80, En, = 60, Ex, = —90, gno = 20,

9 =10,9r =8, 7 =1, Vi oo = =20, Vi 00 = =25, koo = 15, kpoo = 5. The original
dynamics for X5 corresponded to an activation variable in an integrate-and-fire model,
and as such were scaled to operate at the order of magnitude X5 € [0, 1]; however, X3
was originally a voltage variable, and we rescaled it such that X, = 180X, — 80. The
magnitude of these dynamics were also scaled with C; = 0.88 and C5 = 160 to reflect
this change in X;.

The three stable points of the dynamics were added to the limit cycle attractor
dynamics as two sets of gaussian-weighted Gabor functions centered at the three stable
points m1 = [0.9,0.25], mg = [0.9,0.50], m3 = [0.9,0.75] with a width of the gaussian
envelope L = 0.2. This portion of the dynamics was structured and scaled as

3 200 sin M _2(x—mpT(x—my)
Fa=) - T O = (29)
=1 100 sin | ——=—=-
To combine the stable attractors and limit cycle attractors in a smooth fashion we
adopted our design strategy of filtering out regions of the limit cycle attractor in the
stable attractors regions around mi, ms, and mg, and added in the stable attractors.
Finally, the state-independent control signal was added linearly to give the controlled
dynamics with At = 107%s as

]:diseased [X; U] - At(J:.limit cycleH?:lBi (X) + fa) + U(t) (30)
. 2(X — ml)T(X — ml)
Bi(X)=1—exp (— (15L)2 ) . (31)

The healthy dynamics were designed by using the approach of Section to encourage
the dynamics to stay near stable attractors, and avoid the limit-cycle attractor. We
designed a hyperbolic tangent filter function F'F' preserve the stable points, and a
barrier function B to encourage state movement away from the limit cycle

1| tanh(a(z —m41)) +1 0
FE= 2 [ “ 0 v tanh(a(z —m; 1)) +1 (32)
1| tanh(—a(z —m; 1)) +1
B = 5 [ 0 (33)

Both the filtering function and barrier function have their zeros at the intersection of
the stable points, to avoid introducing additional unwanted stable points. The scale
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factor a = 207 creates a steep barrier. The healthy dynamics are then calculated by
filtering on null-controlled unhealthy dynamics as

]:healthy = FF(]:diseased [X7 u = OD + B. (34)

The state noise covariance @ = 1075, was chosen to allow for noise-assisted
departure of the uncontrolled dynamics from the stable points an into the limit cycle
attractor. Observation noise covariances R € [107615, 107515, 10~%1;] were used.

Winner-take-all and robust neural integrator dynamics

The Winner-take-all dynamics are based upon the state-space description in [29], in
which two sub-populations of excitatory neurons X; and X5 have a reduced-state
dynamical description for decision-making of the direction of a random moving dot
visual stimulus. The dynamics for the two-dimensional state driven by control signals
u(t) = [u1(t),uz(t)]T are given by

dX; X;
= a1 — X)H;
dt Ts ol ) (35)
ar; — b

H, = 36
" 1—exp|—d(az; — b)] (36)
x1=JuX1 — JieXo+ Io+ui(t)+ I (37)
T, = JooXo — Jn Xy + Iy + ’LLQ(t) + I. (38)

The visual stimulus is represented as input current I; and I to each population
with stimulus strength o = 30H 2 and directional percent of coherence ¢/,

c/
I = Jaug (1 + 100) . (39)

High activity of a state X corresponds to decision due to activity of that
sub-population of neurons with positive-signed coherence of the stimulus, and X5
alternative has high activity for negative-sign coherence of the stimulus, indicating the
direction of the stimulus. Parameter values reported in [29] were used. The controls to
the system wuq(t) and us(t) were modeled as additional input currents to the
sub-populations.

The target neural dynamics of a robust neural integrator are based conceptually
upon [28], and their state space description is modeled as a set of hyperbolic tangents
that generate interwoven nullclines. The two states X; and X5 have gradients given by

dX;
dt

= 7 |tanh Z[:I:u72()2270.5)] + BC;| + I; (40)
ot (3 )+ BC]

u:mm<@;;Merd,ieuumm—n

The nullcline shapes u are defined by n — 1 nodes over a length L, and have a
hyperbolic tangent on each side in state space. (40) use a rotated set of state-space
coordinates X; given by a rotation matrix [X;, Xo]7 = M([X1, X2]T — Ry), where M
rotates by the angle 7/4 and Ry = [L/2,1]T. The boundary conditions BC; and BCs
enforce the final fixed points of the neural integrator line to be global attractors, and
are given by additional hyperbolic tangents of the form
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BC, =10tanh X1 + c)) -

(-5
10tanh.( [c4—1;+-a/4n) (41)
(-3

BC5 =10 tanh (Xa+c¢ ) +

10tmﬂ1(—E(X2—[L—%d)). (42)

The parameters of the model were chosen to roughly match the magnitude and
fixed-point locations of the winner-take-all dynamics. 7 = 1le™3 (i.e., 1ms timesteps),
a=02,n=7,L=0.7,b=4/3, c=0.083, d =1.2. The stimuli to the robust neural
integrator I; and I were given by

[I1, I3] = sign(¢)[6(1 + |/|/100), —=&(1 + |¢'] /100)], (43)

where § = 7.5¢ — 4. The state noise covariance Q = 5 x 107°I, was chosen to allow
the robust neural integrator to utilize the state noise to transition from one stable point
to another, and observation noise covariances R € [107615,107515,107*I,] were used.

Results

In the following examples we demonstrate the ability of myopic control to match the
dynamics of several relevant dynamical systems for neural computations. Simulations to
benchmark the performance of myopic control were conducted using Tensorflow
(Python API). System details can be found in the methods section, and code for the
myopic controller is available at https://github.com/catniplab/myopiccontrol.

Robust neural integration from winner-take-all dynamics

We first deal with controlling neural computations for decision making, and
demonstrate how myopic control can be used to change a winner-take-all (WTA)
decision-making dynamics and convert it into a robust neural integrator (RNI). WTA
dynamics for a simple, forced two-choice decision-making process function through a
dynamical system where stimulus modulates the dynamics to flow toward one of two
stable attractors. As time progresses, the neural state is driven toward one of the two
stable attractors, each comprising a separate decision. In contrast, a robust neural
integrator has multiple fixed points in between those two final stable attractors that
allow for a stable, intermediate representation of accumulated evidence—creating
robustness against uncertainty in stimulus and small internal perturbations.

We implemented a well-known approximation of a WTA dynamical system
underlying two populations of spiking, excitatory neurons connected through strong
recurrent inhibitory neurons, and our control for this system is an external injected
current into each excitatory population [29]. Our target dynamics embody a
low-dimensional analogue of the robust neural integration model suggested by Koulakov
and coworkers [28]. Our RNI dynamical system is conceptually quite simple: Two
sinusoidal nullclines that are interwoven can generate alternating stable and unstable
fixed points, and with the addition of boundary conditions on the final stable fixed
points can generate a dynamical system with a line of stable fixed points. The phase
portraits for each system are shown in Figure 3.
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Fig 3. Phase portraits for the A) winner-take-all dynamics and B) robust neural
integrator. The magnitude is plotted on a logarithmic scale for easier visualization, and
arrows give gradient direction. Streamlines are depicted in cyan. The nullclines of each
dynamical system are shown in black. The RNI system is formulated as an extension of
the tangling of nullclines in the WTA dynamics, where additional crossings of the
nullclines result in stable points.

Table 1. Accuracy of decision making for an uncertain stimulus .

Dynamics Accuracy % decisions made control power P (mean =+ std)
1. RNI 91 % 91 % -

2. Myopic control 92 % 92 % 2.05 + 0.87

3. Uncontrolled 41 % 89 % -

4. Trajectory control 0% 99 % 1.65 £ 0.42

A comparison between first-order myopic control and a trajectory control approach
(i.e., a control optimized for (4)) is presented in Figure 4. Specifically, we show that
trajectory control possess shortcomings when dealing with particular decision-making
tasks. Trajectory control approaches have an additional hurdle above myopic control in
that there must be some policy in place to decide to which target x; should evolve. The
only way that trajectory control can help the neural system make an informed decision
is by integrating the stimulus, itself, which assumes a role in the neural computation.
Here, we allow the controller to observe and integrate 20ms of coherence at the
beginning of the trial, and then use that information to prescribe a target point in state
space (either the final + or — coherence decision points in Fig. 3). In this simulation
the time-varying stimulus ¢’ is initially uncertain, beginning with a small positive
coherence for 500 ms and then changing to negative coherence for 500 ms, finally
settling to a stronger negative coherence of ¢’ = —12% for the remainder of a 1s trial,
shown inset in Fig. 4. Both the target dynamics of robust neural integrator and myopic
control to mimic it can adequately handle this “change-of-mind” in stimulus and
eventually evolve its neural state to the negative coherence choice, but trajectory
control system instead incorporates only the initial stimulus to incorrectly choose the
positive coherence choice. Furthermore, it then holds it there with control, in spite of
receiving new stimulus information that in some cases could have even been caught in
the WTA system (Fig. 4, green).

An intuitive way to compare the performance of trajectory control vs. myopic
control for decision making is to count the number of correct decisions made, which is
summarized in Table 1, alongside the total power of the controls, calculated as

Accuracy for each control type calculated as percentage of correct fixed points
chosen (noted in Fig. 3), and percentage decided as number of trials in which the state
evolved to within a close radius of a decision point (radius = 0.15). Examining the
accuracy of each method in the table, it is clear that this is an extreme case of how
poorly trajectory control can perform, where even uncontrolled dynamics sometimes
was able to change its mind and choose the correct stimulus. This is a specific example
of our qualitative arguments against trajectory control that were shown in Fig. 1, in
which markedly different behavior can be artificially enforced. Moreover, the total
power required by the control signals is comparable, indicating that myopic control did
not require substantially more power to perform the target dynamics

Quantitative performance of myopic control of a sample of 500 trials is summarized
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Fig 4. Example trajectories of controlled dynamics for an initially uncertain stimulus
(inset). Trajectory controls with a policy to decide which decision to make by
integrating the initial few ms of coherence signal not only steal the role of
computational integration from the dynamical system, but in the presence of an initially
uncertain stimulus perform poorly by making the wrong decision (red) where even a
WTA system (green) can somewhat cope with a changing stimulus. Myopic control
(blue) can integrate the incoming information just as the target RNI dynamics (black).
inset: coherence for the change of mind stimulus. a final decision would be made by
integrating the signal, signified by the gray region. Vertical line at 20ms indicates the
portion of the signal integrated to decide on a target point for trajectory control.

in Figure 5. Sample trajectories for uncontrolled, first-order controlled, and healthy
dynamics are shown in Fig. 5A under the influence of an increasingly stronger
time-dependent stimulus, denoted by coherence ¢’. Both the RNI and controlled system
linger at an intermediate stable nodes before coherence has increased enough to make a
more informed decision, indicated by the progression to the decision node. In contrast,
the uncontrolled trajectory evolves straight to the decision without any intermediate
stability at low coherence.

Fig 5. A) Example trajectory of controlled dynamics for evidence accumulation.
Nullclines and stable points (dots) of the neural integrator shown in black, with
unstable nodes shown as diamonds. B) Average time dependence of log-performance of
expected cost in eq. (20) for winner-take-all to robust neural integrator dynamics with
first-order control, SNR of 7dB, and fixed coherence ¢’ = —6%. Example trials are
shown in gray, and trial-averaged mean plotted in black. C) Control signals during the
evidence accumulation with first-order control. D) Similar control signals for
fixed-coherence trial. E) Violin plots showing distribution of time-averaged,
log-performance for a lag in observations. F) Similar violin plots as in E), but for for
varying observation noise strength, shown by signal-to-noise ratios (SNR) of system
noise to observation noise, and including null control (¢; = 0). In both E) and F) *
indicates p < 0.001 for a two-sample t-test. Unless otherwise noted, samples are not
significantly different. ** : p = 0.009.

Importantly, the controlled dynamics demonstrate the intermediate stability
behavior found in robust neural integrators. Figure 5B summarizes the log-cost of 500
trials of first-order control with a fixed stimulus coherence of ¢/ = —6%, where
prototypical trials are shown in gray alongside the trial average in black. The control
signals for the increasing coherence demonstration (Fig. 5A) and for the benchmark
trajectories (Fig. 5B) are plotted in 5C and 5D, respectively. Again, promising and
modest control amplitudes are observed in both cases. Finally, figures 5E and 5F show
the time-averaged, log-performance for varying observation lag and noise strengths.
Comparable to the previous section we see that second order control performs
equivalently to first order across increasing observation lag and noise. However, the
time-averaged distributions at low observation lag have quite long-tailed, unimodal
distributions, and have negligible performance at a lag of 50 steps (note that At is an
order of magnitude higher for this system, which corresponds to a 50ms-ahead
prediction). There is some change to a bimodal distribution for increasing observation
noise in this system, but the notable feature is the increasingly long distribution tail for
second-order control, which gives the opportunity for inferior performance as compared
to first-order control.
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Avoiding beta-oscillation disease states

Here, we aim to preserve an original set of dynamical features in F while avoiding an
unwanted regime of state space containing undesirable dynamics. This paradigm can
act as the basis of state-space control for neurological disorders, where regions of state
space may be associated with disease symptoms [30,31]. Utilizing myopic control as a
therapy for neurological disorders lends itself to considering which features of neural
dynamics are undesirable, rather than discerning which features of the dynamical
system are lacking. For example, tremors in Parkinson’s disease (PD) are associated
with a characteristic beta oscillation (i.e., 13-30 Hz) of the local field potential in the
subthalamic nucleus, and state-of-the art feedback control strategies use this signal to
trigger deep brain stimulation (DBS) until the beta oscillation subsides [18]. Similar
neural signatures are also present for epilepsy [14,15]. A model “diseased” system with
three stable fixed points representing three possible voluntary movement command was
constructed with an additional, unwanted spiral attractor representing the beta
oscillation macrostate. Difficulty in initiating voluntary motion (bradykinesia) in PD
patients could be due to strong attractive macrostate [32,33]. Using myopic control, we
manipulated the dynamics to match the target dynamics of a healthy system structured
using the design principles from section to avoid the avoid beta oscillation state while
preserving the fixed points of the system. The phase portrait of the target dynamics are
shown in Figure 6.

Fig 6. Phase portraits for diseased and healthy dynamical systems. Color denotes the
magnitude of the dynamics F and G, and the direction is shown by the arrows.
Streamlines are shown in cyan. The diseased system contains three stable points, but
also a spiral attractor at small values of X; and Xs. The target healthy dynamics has
been designed to contain slightly repulsive dynamics in the original spiral attractor
region, but still maintains its stable points.

The overall performance of myopic control is summarized in Fig. 7. A sample of 500
trials points was initialized in the asymptotic distribution of the PD limit-cycle
attractor, and state estimation was performed for 100ms in the absence of control before
the control was switched on. Monitoring log[jt] in Figure 7A, individual trials reflect
the initial oscillatory behavior of being in the disease state before sharply declining,
whereas the trial-averaged behavior shows the overall improvement due to control. This
remarkable removal of disease-state behavior is further demonstrated in state-space
trajectory of a typical trial (Fig. 7B). Once control is switched on the target dynamics
successfully lead it out of the limit cycle and into a stable attractor point. A
spectrogram of the state X; for an analogous, longer simulation is shown in Fig. 7 D.
There, a beta oscillation endured for 1s, and then myopic control was switched on to
evolve to a stable point. The spectrogram reflects the oscillations during the
uncontrolled period, and once the control is switched on it subsides and leaves only
low-frequency components as it moves toward the stable point. The optimal control
signal for the colored trajectory in Fig7A in shown in Fig. 7C. it is modest in amplitude
relative to the magnitude of the dynamics, and has a straightforward waveform,
demonstrating that given only minimal additional consideration to constraints on the
control signal that myopic control could feasibly, efficiently, and safely be implemented
in living subjects.

Finally, we benchmarked the performance of first- and second-order control as
compared to uncontrolled dynamics by calculating distributions of the time-averaged
log-cost E;szl 1og(jt) for varying lags between state observation and control signal
calculation (Fig. 7TE), and for different observation noise strength (Fig. 7F). While there
is a interesting trend in the stretching of bimodal distribution into a near unimodal one
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Fig 7. A) Time-dependent performance of first-order control for small observation
noise (SNR 10dB). Instances of simulations are shown in gray, while the mean behavior
is given in black. A representative trial has been singled out in blue and red for
additional analysis. Initial trajectories are uncontrolled (blue), and allowed to fall into
the asymptotic distribution of the limit cycle before control is switched on (red). Costs
are plotted as time-locked 100ms before the control is switched on. B) Trajectory of
typical trial through state space shown before and after the control is implemented,
demonstrating a move back towards healthy state space. C) Control signal of a
representative trial. D) Spectrogram of X; for an analogous, longer simulation of
uncontrolled evolution for 1s (noted by vertical line), and myopic control for final 1s .
E) Violin plots showing distribution of time-averaged log-performance for a lag in
observations, requiring state prediction. Horizontal line corresponds to the average
log-loss of null control. F) Similar violin plots as in E), but for for varying observation
noise strength, and including null control (u; = [0,0]). In both E) and F) * indicates
p < 0.001 for a two-sample t-test. Unless otherwise noted, samples are not significantly
different.

at high observation lag, we observed no impactful difference between first- and
second-order control with an increasing delay of observations. Similarly, there is a
transition to a distinct bimodal distribution at large signal to noise, though both
controllers perform similarly.

Discussion

Here we developed a perspective on what features are necessary for a flexible control of
any dynamical system underlying neural computation. The controller should function to
assist the dynamical system performing the computation, not taking on the role of a
dynamical system, itself. In order for the controlled dynamics to function as a separate
dynamical system on its own, we proposed a myopic control scheme that alternatively
manipulates the dynamics to function as a set of target dynamics over a single time
step, as opposed to trajectory-tracking controllers that function over a finite time
horizon and must first perform the neural computation on their own. We developed an
approximation of this control for nonlinear dynamics that is separable from state
estimation, provided direction about design principles for how to construct a targeted
dynamical system, and demonstrated its application in two varied scenarios. In both
examples, first order control performed comparably to second-order control, showing the
potential to generate feasible control signals that function under practical conditions.
The base of our controller formulation is reminiscent of the model-based control and
model reference (adaptive) control (MRAC). Utilizing model-based control alongside
quality state estimation [30] to manipulate neural dynamics is an attractive strategy
that can harness machine learning methods to build effective, patient-specific statistical
models of the brain by using real-time patient data, which could then be used as
precision medical treatment [34,35]. The initial efforts of MRAC focused heavily on
adaptive update rules for estimating the parameters of different forms of target plants
(dynamics, in our work), and predominantly one adaptive controller form was utilized:
strictly positive real (SPR) Lyapunov design. This form of controller depended on a
SPR transfer function formulation of its plant dynamics, as was designed to guarantee
bounded control signals that can track target trajectories or regulate to a fixed point
from a target plant. Our controller structure is similar in form to SPR control and
could benefit from the similar extensions that took place in MRAC, such as analysis of
the Lyapunov stability to rigorously establish safe bounds on the control [19] and the
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use of neural networks capable of handling nonlinear plant dynamics [36,37].

This is not the first neural controller to consider neural variability as an important
component to preserve in neural systems. Todorov and Jordan suggested a “minimal
intervention principle” for neural systems that allows for deviations from a target
trajectory, provided that they do not interfere with the target task [38]. The target was
considered as a single point in state space, and their formulation allowed for high
redundancy in the number of optimal trajectories that reached the target with the same
cost. Their controller only corrects the trajectory when failing to act would result in a
worse-than-optimal cost. While this is the only instance of control that acknowledges
and respects neural variability during control, even prescribing a single point in state
space as a target falls short of the general goals accomplished by myopic control to
generate an entire target dynamics. For example, returning to the qualitative operation
of myopic control in Fig. 1B, minimal intervention control would perform comparably
to trajectory control by forcing state evolution in a non-dynamical fashion, while also
restricting the neural variability that lead to an alternative fixed point.

An important feature of myopic control was its modular design. We studied a form
in which only low-order moments of the state distribution were used in the controller,
which decoupled the controller form from state estimation and allowed for any state
estimator to be implemented. First-order control is considerably more straightforward
to use because of its lack of higher-order derivatives on the dynamics, which may also
come with a benefit being a more robust controller during practical instances in which
the dynamics must be inferred from data. Operating in the perturbative regime = —
through regular state estimation small would ensure that first-order methods are
successful.

A key issue that dictates myopic control’s qualitative success is the choice or design
of target dynamics. Target dynamics could be designed by modifying the current
dynamics through either addition, removal, or modification of specific features in the
state space. There is an appeal to omitting features, as this approach resembles
lesioning studies that aim to infer causal importance to behavior. In our beta oscillation

example, omitting the limit cycle appeared to be the safest and most practical approach.

However, if more experimentally accurate understanding of the Parkinsonian dynamics
suggests that omitting a limit cycle could introduce unwanted behavior, it may be more
prudent to modify the limit cycle with an exit pathway. Still, one may wish to study
the extent of a neural system’s computational flexibility by adding features as we did
with our decision-making example.

It should be noted the adding in new features can be a tedious process in practice, as
it took considerable parameter tuning to create our robust neural integrator system.
Additionally, we considered only two-dimensional systems, but interesting dynamical
systems may in fact lie in higher dimensions [8]. Our design approach of filtering
functions is general enough to extend to high dimensions, though implementing them in
practice may take additional care. Removing features with smoothed versions of step
functions would still work, as would adding stable points with gabor functions, though
they would need to be high-dimensional analogues. Visualization and analysis tools for
high-dimensional spaces could help determine the hypervolumes to omit, and how
(an)isotropic the features must be.

Myopic control is certainly not the only form of controlled stimulation of neural
systems, and it is important to note how these methods differ from our perspective.
One of most successful applications of neural stimulation is in the field of
neuroprosthetics, where implants mimic afferent sensory inputs such as cochlear or

retinal implants, or translate efferent outputs into motor actions for artificial limbs [39].

The control strategies behind these technologies are complex and varied compared to
myopic control [20], though this is required in part because the goal of neuroprosthetics
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is distinctly different: the controlled (de)coding of these neural signals do not constitute
a dynamical system, but rather interacts with the pre-existing normal neural dynamics
of the area as inputs. Neural prosthetics for cognitive function, for example, memory
processing in hippocampus [40], are much more amenable to myopic control scheme,
since the normal function of the neural system constitutes a dynamical system.

Deep brain stimulation (DBS) for neurological disorders (e.g., Parkinson’s disease) is
a control application within the scope of myopic control, as we demonstrated with our
first example study. A recent approach to DBS that harnesses neural recordings uses a
model-free method to simply reduce beta-band oscillations seen in local field potential
recordings in the basal ganglia [18], a potential neural signal related to PD
symptoms [41,42]. The disadvantage to such a heuristic approach is that the link
between beta oscillations in basal ganglia and cortex, let alone its relationship to actual
PD symptoms, is still not fully understood. Moreover, other feedback targets are being
actively considered as well [17,31]. Myopic control allows us to causally investigate the
role of neural signatures correlated with the disease—we can specifically target fixes to
the abnormal dynamics for beta oscillations, for example, and improve our
understanding of the disease and also improve treatments.

Our first example was motivated from a position of understanding neural dynamical
systems for evidence accumulation and decision making, and more generally to
demonstrate its application as a tool to causally investigate cognitive processes. Several
models of evidence accumulation have been considered in the context of using variability
in spiking dynamics of lateral intraparietal cortex (LIP) in monkeys [43-45], and one
future experiment could attempt myopic control using different models for the control
systems to produces a given target system, say RNI. Performing myopic control in that
context would be a more powerful approach than perturbative, random stimulation of
the system to simply infer parameters of an underlying dynamical model represented in
LIP. Additionally, a more sophisticated experiment could attempt to utilize controlled
stimulation to force the opposite decision of a target dynamics; the success of which
would not only provide evidence that the controller is operating based upon the correct
dynamical systems model, but would also constitute a substantial advance in the control
of cognitive dynamics.

The history of advances in model reference adaptive control (MRAC) provides a
strong template for how myopic controllers for neural dynamics control could be
developed. Our work here assumed a known model for the controlled dynamics, and
future work should integrate adaptive estimation of the controlled dynamics, themselves,
into the controller. In particular, as an extension of the initial neural network structures
used to perform MRAC [36,37], there is opportunity to utilize deep networks that
accomplish adaptive estimation these dynamics and their states within a neural-network
myopic controller architecture [46-48].

A larger and more immediate question is what steps must be taken to implement
myopic control experimentally? The most important underlying component is access to
quality neural measurements. That is why recent work combining neural stimulation
and observation as in [49] is so vital. In our work we assumed that the ground-truth
neural dynamics for both the controlled dynamics F and the target dynamics G were
known, but in practice they must estimated from neural measurements. We
demonstrated that first-order myopic control can function well, which necessitates
estimation of only the state mean over higher order moments, but first order control
also requires estimating the full dynamics in (18).

The timescale of the underlying neural computation also suggests practical
consideration. Since myopic control is designed as an online control, the state
estimations and estimation of the dynamics must be fast in order to implement in real
time. Longer time constants for processes that are characterized by a smaller total
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dynamics F; lead to slower changes in neural state, which allow for more accurate
online state estimation, and thus a more accurate control signal. Akin to a slower
moving target in state space, the less the dynamics have progressed, the more
up-to-date that state information will be, and the better the control performance for
slower dynamical processes. This motivated our demonstration that myopic control can
still function well with a lag between neural observations and control implementation.

Moreover, estimating latent state dynamics is a difficult task altogether [3], and
would likely need to be performed prior to control use, with adaptive updates to the
dynamics estimation occurring online. Taking into consideration a generic framework 1)
signal processing (e.g., spike sorting), ii) control signal calculation, and iii) delivery of
stimulation; it seems reasonable to assume ~5 ms of time required for myopic control,
which is comparable to other closed-loop control estimates [50]. In this regime of time
lags of less than 5 ms, myopic control was demonstrated to perform well, which is
promising for its implementation.
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