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Abstract

Manipulating the dynamics of neural systems through targeted stimulation is a frontier
of research and clinical neuroscience; however, the control schemes considered for neural
systems are mismatched for the unique needs of manipulating neural dynamics. An
appropriate control method should respect the variability in neural systems,
incorporating moment to moment “input” to the neural dynamics and behaving based
on the current neural state, irrespective of the past trajectory. We propose such a
controller under a nonlinear state-space feedback framework that steers one dynamical
system to function as through it were another dynamical system entirely. This “myopic”
controller is formulated through a novel variant of a model reference control cost that
manipulates dynamics in a short-sighted manner that only sets a target trajectory of a
single time step into the future (hence its myopic nature), which omits the need to
pre-calculate a rigid and computationally costly neural feedback control solution. To
demonstrate the breadth of this control’s utility, two examples with distinctly different
applications in neuroscience are studied. First, we show the myopic control’s utility to
probe the causal link between dynamics and behavior for cognitive processes by
transforming a winner-take-all decision-making system to operate as a robust neural
integrator of evidence. Second, an unhealthy motor-like system containing an unwanted
beta-oscillation spiral attractor is controlled to function as a healthy motor system, a
relevant clinical example for neurological disorders.

Author summary

Stimulating a neural system and observing its effect through simultaneous observation 1

offers the promise to better understand how neural systems perform computations, as 2

well as for the treatment of neurological disorders. A powerful perspective for 3

understanding a neural system’s behavior undergoing stimulation is to conceptualize 4

them as dynamical systems, which considers the global effect that stimulation has on 5

the brain, rather than only assessing what impact it has on the recorded signal from the 6

brain. With this more comprehensive perspective comes a central challenge of 7

determining what requirements need to be satisfied to harness neural observations and 8

then stimulate to make one dynamical system function as another one entirely. This 9

could lead to applications such as neural stimulators that make a diseased brain behave 10
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like its healthy counterpart, or to make a neural system previously capable of only hasty 11

decision making to wait and accumulate more evidence for a more informed decision. In 12

this work we explore the implications of this new perspective on neural stimulation and 13

derive a simple prescription for using neural observations to inform stimulation protocol 14

that makes one neural system behave like another one. 15

Introduction 16

Advances in recording technology are making it possible to gain real-time access to 17

neural dynamics at different length and time scales [1, 2], allowing us to consider the 18

structure of the brain’s operation in ways that were previously inaccessible. Central to 19

that understanding of neural dynamics is the widely-held belief that dynamical systems 20

underlie all of the core operations of neural systems [3–6]. Dynamical systems are 21

systems of time-independent dynamics that drive the evolution of a set latent states 22

that may or may not be direclty observable, which in neural systems are proposed to 23

account for motor function [7], cognitive processes [8–10], and sensory processing [11]. 24

The controlled stimulation of neural systems offers not only a novel tool to 25

perturbatively study the underlying dynamical systems; but also shows tremendous 26

potential to treat a host of brain disorders, ranging from movement diseases such as 27

Parkinson’s disease and essential tremor [12,13], epilepsy [14,15], and even mood 28

disorders such as severe depression [16]. In particular, there has been recent success in 29

combining real-time neural data acquisition with closed-loop stimulation for treating 30

Parkinson’s disease [17, 18]. 31

Unfortunately, the current framework for manipulating neural systems is not 32

structured to deal with the unique challenges posed by controlling complex neural 33

dynamics. One of the central goals of control theory is to manipulate a system to mimic 34

some or all characteristics of a target system of dynamics, and nearly all control systems 35

accomplish this by controlling the system state to either track a specified target 36

trajectory or to regulate to a known set point [19]. Closed-loop control systems 37

specifically designed for neural systems also operate under this paradigm [20–22], and 38

clinical devices use even more simplistic open-loop or reactive protocols [15, 17, 23]. If 39

neural systems function as a dynamical system by nonlinearly filtering signals [24, 25], 40

then significant portions of the observed neural fluctuation would correspond to relevant 41

exogenous input signals to the system such as volition, memory or sensory information. 42

Such controls designed to move to or maintain a target state counteract any natural 43

fluctuation in neural trajectories, and create a rigid system that is no longer 44

dynamically computing. For example, when building neural prosthetics for an abnormal 45

motor-related brain area, it is crucial for the controlled neural activity to be close to 46

normal; however, simply controlling it to replay a fixed motor command would not 47

allow flexibly changing one’s mind mid action. Therefore, any control objective that 48

only considers externally set constraints through trajectory or set-point control would 49

be limited both in their application for treating neurodynamic diseases as well as for 50

studying neural computations in cases where preserving dynamic information processing 51

capability is important. 52

Given this perspective, we propose a new control objective called myopic control 53

that respects the unforeseeable variability in neural systems. The objective of myopic 54

control is for the controlled system to behave as a target neural dynamical system. This 55

is reminiscent of a well-developed field in control theory known as model reference 56

control (MRC) [19], though MRC has been widely used for trajectory-tracking problems. 57

Unlike MRC, myopic control is independent of the past trajectory and does not account 58

for the far future—given the current state of the system, it tries to behave as the target 59

dynamical system instantaneously. Additionally, our controller is constructed to be 60
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agnostic about the ideal behavior of the neural system. Its only purpose is to generate 61

the target dynamical system, and all of its emerging behaviors, as accurately as possible. 62

The controller does not assume the role of performing the bulk action on the state, 63

which is instead encompassed in the original dynamical system that presumably perform 64

some form of related dynamics well. This is especially important in the context of neural 65

dynamics performing a computation, where it would be undesirable for our controller to 66

first perform the computation itself by tracing out a predefined trajectory. Instead, 67

myopic control will assist that system’s natural ability to perform a neural computation. 68

The qualitative difference between our control scheme and trajectory-tracking 69

methods is depicted in Fig. 1. Given some target dynamical system, utilizing trajectory 70

control would force the neural system to follow a target trajectory, although not 71

through the true target dynamics. Scenarios may arise where trajectory control and 72

myopic control may be very similar (Fig. 1A), although there can be fundamental, 73

qualitative differences in the presence of noise or large disturbances due to exogenous 74

inputs (Fig. 1B). In that case, the trajectory resulting from trajectory control would not 75

be generated from the target dynamics, and forces the state to evolve toward the 76

pre-computed target state. In this way, our controller preserves the full neural 77

variability of our target dynamics, ranging from potentially different trajectories towards 78

the same fixed point to even allowing for potentially different behavior than expected. 79

Fig 1. Qualitative difference between our proposed myopic control of dynamics and
trajectory control. Here F is controlled to perform an example target dynamics G (e.g.,
perform a motor command) , where its gradient flow is given in gray and two attractors
are denoted as circles. A precomputed target trajectory xt through G is shown in black.
A) In the presence of small disturbances, the evolution of trajectory control forces the
system back to xt, whereas myopic control allows for natural deviations. B) A large
disturbance away from xt corresponding to an exogenous input that changes the target
attractor mid-trajectory could lead to entirely different behavior between the two
control methods. Only myopic control would capture the response of this disturbance
through the true dynamics of G, while trajectory control blindly follows xt.

The paper is organized as follows. First, we formulate the goals of our control 80

objective for manipulating neural systems, then define myopic control for linear and 81

nonlinear dynamics. Next, we discuss some design features of how to construct the 82

target dynamics of a desired dynamical system to display expected or intended behavior, 83

and what types of difficulties may arise when trying to define healthy or desired neural 84

dynamics. We then demonstrate this control’s ability to make dynamical systems act as 85

though they were another system entirely through two relevant examples. First, a 86

winner-take-all decision-making model is transformed to operate as a robust neural 87

integrator of information when shown a stimulus in a forced, two-choice decision-making 88

task. Second, a “diseased” motor system containing an unwanted beta-oscillation state 89

is controlled to function as a healthy motor system, which is a motivating example for 90

the treatment of movement disorders or other diseases with an underlying neurological 91

state. 92

Materials and methods 93

Myopic dynamics control 94

Here we discuss the control problem of utilizing a dynamical system to behave as a 95

separate dynamical system. Using a Bayesian state-space modeling framework [26], we 96

are interested in the time evolution of a posterior distribution of time-dependent, 97

January 22, 2019 3/22



n-dimensional (latent) brain state xt that are governed by (stochastic) dynamics 98

F [xt, ut] ≡ Ft with an m−dimensional control signal ut, 99

xt+1 = xt + Ft + wt, (1)

where wt ∼ N (0, Q) is the state noise upon the dynamics. A second set of target 100

stochastic dynamics G[xt] ≡ Gt under which we would like our state to evolve, acts 101

analogously on the state as 102

xt+1 = xt + Gt + wt, (2)

The noise in both dynamics is the same, as we are considering transforming F into G 103

in the same physical neural system. In general, the control acts upon the dynamical 104

system latent states x that may not be directly observable, and would need to be 105

inferred from a set of observable variable to which the latent states are linked through 106

an observation model. The influence of the controls would also be manifested in the 107

observed neural observations that are relevant to experiments (e.g., calcium image 108

traces, local field potentials, etc.), though without loss of generality we have chosen to 109

simplify our dynamics by omitting an observation model. While neural observations 110

may contain much information about the system, generally speaking they are not 111

dynamical states. States of a dynamical system require no time dependence to fully 112

describe the system, unlike neural observations that may require a history to 113

understand the dynamics. These dynamics are in general nonlinear, and we denote their 114

Jacobians (linearization at the current state and stimulus) as 115

At=
∂F [x, u]

∂x

∣

∣

∣

∣

xt,ut

Ãt=
∂G[x]

∂x

∣

∣

∣

∣

xt

Bt=
∂F [x, u]

∂u

∣

∣

∣

∣

xt,u0

(3)

Arguably the most developed form of model-based control occurs for linear systems 116

with quadratic costs on the state and control, known as linear quadratic gaussian (LQG) 117

control [27]. Finite-time horizon LQG controllers are optimal for costs of the simplified 118

form 119

J =

T
∑

t=0

E
x

[

‖xt − xt‖
2
]

+ γuT
t ut, (4)

with linear dynamics F t = Axt +But + wt, and a regularization penalty factor γ is 120

added onto the control power. The goal of minimizing (4) is to balance tracking along a 121

target trajectory xt with the cost of implementing a control. The optimal LQG 122

controller form u∗

t = Kt(x− xt) with gain Kt is found by solving the associated 123

recursive Riccati equation from an end-point condition, and is a time-dependent 124

controller through the time-dependence on Kt [27]. 125

Generating target dynamics is similar in spirit to LQG-type costs, although instead 126

we are interested in minimizing the difference between the effect of target dynamics and 127

controlled dynamics alongside control costs. Requesting that the controlled dynamics of 128

Ft act as through they are in fact Gt can be written in a regularized, stepwise quadratic 129

form as 130

Jt = E
x

[

(Ft − Gt)
T (Ft − Gt)

]

+ γuT
t ut. (5)
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Note that this cost is defined at each time point t, and depends on the current state 131

(posterior) distribution over xt. Utilizing control to track a defined trajectory that is 132

generated from an uncontrolled set of target dynamics G is known as model reference 133

control (MRC), [19] although the costs associated with this control design are 134

traditionally limited to regulation of a controlled trajectory around a set point or 135

tracking of a predefined target trajectory evolving under G over a long time horizon. 136

Our cost in (5) is equivalent to MRC with a time horizon of T = 1, in which the control 137

effectively recreates a single step of a target trajectory from G. To our knowledge, this 138

simplified form of MRC is a major departure from the typical use of model reference 139

control. By weighting the difference between dynamics over a single time step, this 140

myopic (i.e., one-step) form negates the need to solve the Riccati equations, and the 141

derivative ∂J/∂ut can be straightforwardly calculated to identify the optimal myopic 142

control. 143

Our work in this paper focuses primarily on designing a controller that optimizes eq. 144

(5), which would be optimal for generating target dynamics over a single step. Since the 145

controller would no longer contain any time dependence (the dynamics Ft and Gt are 146

indexed by their current time, but are dependent upon the state xt only), it would 147

generate a dynamical system with the same state space. The qualitative advantages of 148

myopic control are depicted in Figure 1, in which the evolution of a trajectory-controlled 149

system tracking a defined trajectory xt in a target dynamical system G is compared to 150

the evolution of a myopically controlled system designed to perform the target 151

dynamics. In a noiseless environment, both trajectories would be identical; however, in 152

the presence of small disturbances away from xt, tracking control would correct the 153

trajectory in a distinctly non-dynamical fashion, evolving not through G but instead 154

forcing the system back onto xt in an unnatural manner (Fig. 1A). Myopic control 155

would instead lead trajectory through the natural dynamics of G, which may lead to the 156

same stable point, but through a distinctly different trajectory. Some disturbances may 157

lead to different behavior between the two control methods, though. Figure 1B shows 158

this scenario, in which a disturbance is corrected by trajectory control back toward xt, 159

while myopic control followed the flow of G, which lead it to a different attractor point. 160

If this target dynamics were a decision-making computation, for example, myopic 161

control may have lead to a “wrong” decision; however, allowing a controlled neural 162

system to operate imperfectly in the perspective of modern control is precisely the type 163

of flexibility that should be achieved to maintain its natural operation. 164

In the following sections we derive the form of our myopic controller. Ideally, the 165

controller formulation will be distinct from the state estimator providing the feedback 166

signal, and leads us to consider variants of the controller that rely upon different 167

moments of the underlying state distribution. We first begin with the case of linear 168

dynamics to demonstrate the simplified form of myopic control and its properties, then 169

move the more applicable nonlinear case. 170

Linear dynamics 171

Here we demonstrate that the myopic controller for linear dynamics depends only upon 172

the mean of the state distribution, and thus the state estimator and controller design 173

are separable for myopic control. 174

Theorem 1. If target and controlled dynamics are linear in state x and control u, then 175

myopic control depends only upon state mean E[x]. 176

Proof. Let the linear dynamics under control and the target dynamics be 177
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F t = Axt +But + wt (6)

Gt = Ãxt + wt, (7)

where the state distribution over x has first and second central moments E[xt] = µt, 178

E[(xt − µt)
2] = Σt, and the state noise is normal with wt ∼ N (0, Q). Expanding the 179

dynamics cost in (5) gives 180

J =E
x

[

|(A− Ã)xt +But)|
2
]

+ γuT
t ut

=Tr
[

|(A− Ã)|2Σt

]

+ µT
t (A− Ã)TBut+

uT
t B

T (A− Ã)µt + uT
t (B

TB + γIm)ut, (8)

where Im is the m×m identity matrix. By examining (8) it is clear that regardless 181

of the distribution over x, the cost depends only upon the first two moments of the 182

distribution of x. Maximizing (8) yields the optimal linear myopic controller form u∗

tlin
, 183

which depends only upon the state mean, 184

u∗

tlin
= −2(BTB + γIm)−1BT (A− Ã)µt. (9)

185

Nonlinear dynamics controller with a moment expansion approximation 186

For nonlinear dynamics, simply differentiating (5) leads to an ill-suited expression for a 187

controller, since there is an implicit dependence of the controller upon itself through F . 188

One approximation to alleviate this is to expand the nonlinear dynamics about null 189

control (u0 = 0) to first order, with the form 190

F [xt, ut] ≈F [xt, u0] +Bt(ut − u0)

≡ft +Btut (10)

where ft ≡ f [xt] ≡ F [xt, u0] and for the remainder of the work Bt ≡ B[xt, x0] is the 191

Jacobian of F as in eq. (3). This leads to an expression for the derivative of J and 192

myopic controller as 193

∂J

∂ut

≈ E
x
[2(fT

t + uT
t B

T
t )Bt − 2GT

t Bt] + 2γuT
t (11)

u∗

t = −(E
x
[BT

t Bt] + γIm)−1
E
x
[BT

t (ft − Gt)]. (12)

The expectations in (12) depend upon the state distribution of xt, although it would 194

be desirable if akin to LQG that the controller was separated from state estimation, and 195

only depended upon low-order moments of x. To construct such a controller we will 196

expand Ex[·] in terms of the mean and covariance of xt; in general, the terms in this 197

expansion will contain Jacobian matrices, higher order derivatives, and state vectors 198

that are all evaluated at the distribution mean µt, multiplied by the covariance Σt in 199

some form. For example, the Jacobian Bt is expanded as 200
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B[xt] = B[µt + (xt − µt)]

≈ B[µt] +B′[µt](xt − µt) +
1

2
(xt − µt)

TB′′[µt](xt − µt), (13)

and would follow similarly for the other terms in Ex[·]. Such an approximation is 201

valid when the deviations from our estimated state µt are small, and in this regime only 202

low-order moments are necessary. It is assumed that state estimation to obtain µt and 203

Σt can be performed regularly enough in practice to operate in the regime such that 204

(13) is valid, and we will consequently consider two forms of nonlinear myopic control. 205

First-order myopic control will include only terms dependent upon state mean, just as 206

in the linear dynamics case of the previous section. Second-order myopic control will 207

analogously depend upon both µt and Σt. In each controller the terms f,G, B and 208

derivatives B′

t = ∂Bt/∂xt, B
′′

t = ∂2Bt/∂x
2
t , will all be evaluated at the distribution 209

mean µt and null control u0 = 0, so we will temporarily drop the functional dependence 210

of these terms in the notation. The prime notation will indicate a derivative with 211

respect to state. 212

The first expectation in (12) includes only terms relating to B. Expanding and 213

keeping terms up to second order gives 214

E
x
[B[x]TB[x]] = E

x
[B[µ+ (x− µ)]TB[µ+ (x− µ)]]

≈BTB +
1

2
BTTr3,4[B

′′Σ]+

1

2
Tr3,4[B

′′TΣ]B + Tr3,4[B
′TB′Σ], (14)

where Tr3,4 denotes the partial trace over dimensions 3 and 4. For an 215

(n×m× n× n) tensor T this operation maps to an (n×m) matrix M = Tr3,4[T] as 216

Mj,k =
∑

i

Tj,k,i,i. (15)

Similarly, expanding Ex[B
T
x (f [x]− G[x])] up to second order yields 217

E
x
[BT [µ+ (x− µ)](f [µ+ (x− µ)]− G[µ+ (x− µ)])]

=BT (f − G) +
1

4
BTTr2,3[(f

′′ − G′′)Σ]+

BTTr2,3[B
′T(f ′ − G′)Σ] +

1

2
Tr3,4[B

′′TΣ](f − G). (16)

(12), (14), and (16) define our second-order nonlinear myopic controller u2nd, and 218

simply omitting the covariance-dependent terms gives first order controller expansions, 219

E
x
[B[x]TB[x]]1st order = B[µ]TB[µ] (17)

E
x
[BT

x (f [x]− G[x])]1st order = B[µ]T (f [µ]− G[µ]). (18)

First-order control u1st is attractive for its simplicity, and it is important to ask 220

under what circumstances would first-order control outperform second-order control? 221
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First, if Tr(Σt) is very small (i.e., small uncertainty about the state xt), then 222

second-order terms are negligible. Second, by noting that nearly all second-order terms 223

contain derivatives of B, f and G, another regime in which first-order control may be 224

superior is under “super smooth” dynamics in which the magnitude of successive 225

derivatives is smaller than the previous one (e.g. ‖B‖ > ‖B′‖ > ‖B′′‖). Moreover, if 226

the control portion of the Jacobian B is state-independent, then second-order control 227

only has one covariance-dependent term in Ex[B
T
x (f [x]− G[x])], 228

B[µ]T (f [µ]− G[µ]) +
1

4
B[µ]TTr2,3[(f

′′[µ]− G′′[µ])Σ]. (19)

Evaluating controller performance 229

The performance of a myopic controller is formally benchmarked by the regularized cost 230

in (5), although it is important to isolate a cost describing the performance of only the 231

dynamics. The cost of expected mean performance is denoted by J̃µt
, and is given by 232

J̃µt
= [(F [µ̂t, u

∗

t ]− G[µ̂t])
T (F [µ̂t, u

∗

t ]− G[µ̂t])]. (20)

This cost is easy to compute and provides information about the mean behavior of 233

the control, although it ignores the variability of the state distribution Σt. A more 234

informative cost incorporates the impact of the entire distribution of x, denoted by J̃t as 235

J̃t =E
x
[(F [xt, u

∗

t ]− G[xt])
T (F [xt, u

∗

t ]− G[xt])]. (21)

This is simply the log-mean squared error of the controlled dynamics. We estimate 236

(21) through Monte Carlo integration assuming the maximum entropy distribution at 237

each time point given the first two moments, i.e., a normal distribution N(µ̂t, Σ̂t). 238

Design principles for targeted dynamical systems 239

Myopic control omits the requirement of supplying a target neural trajectory or set 240

point in the neural state space, which resonates with our design requirement of a 241

future-agnostic controller that need not prescribe what the brain should be doing 242

precisely. 243

Balancing the simplicity and ease of myopic control, though, is the relative 244

complexity in designing a target dynamical system Gt. At first glance, it may seem as 245

though we have merely shifted complications of controlling neural dynamics. However, 246

this perspective more clearly frames the goal of neural dynamics control, and we believe 247

that it identifies a general design question yet to be seriously considered by the neural 248

processing community: Given a rough sketch of neural dynamics and a desire to change 249

them, what is an appropriate target dynamical system? 250

The choice of G can roughly be broken down into three design problems for 251

dynamical systems: i) removal or avoidance of an unwanted feature, ii) addition of a 252

desired feature, and iii) modification of an existing feature. For example, there may be 253

attractors (representing macrostates) in F indicative of a dysfunctional behavior that 254

should be avoided for healthy brain function, such as limit cycle attractors. Or, one may 255

wish to introduce additional attractor macrostates in a decision-making system in order 256

to support robust neural integration of evidence [28]. We will consider both of these 257

scenarios in the following sections. Our ideal design approach used here is summarized 258

in Figure 2, which is to use multiplicative filters upon the controlled dynamics F to 259
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preserve desired features, with the addition of either barrier functions to remove 260

undesirable aspects of F or to prevent access into that region of state space. 261

Alternatively an additive function could be utilized to introduce new features. Care 262

must be taken with the shape and positioning of the additive barrier or extra feature 263

though, as any zero crossings of this additive term will introduce fixed points into the 264

dynamics. In the example case in Figure 2, a barrier function is used to remove an 265

undesirable feature of the dynamical system by producing a net rightward gradient flow 266

in the low x1 region of state space, where the zero crossing of the barrier function is 267

aligned with other fixed points of the system that are denoted in blue. Under this 268

strategy, we can also view modification of an existing feature as simply a removing it 269

and replacing it with the desired one. 270

Fig 2. Design strategy for creating target dynamics G. Green and blue regions
represent features of the original dynamics F that are to be maintained, while an
undesirable feature is denoted with orange. A multiplicative filter removes the
unwanted feature, while an additive barrier function prevents access to unwanted state
space by enforcing a gradient flow toward desirable regions with well-behaved dynamics.

Numerical methods 271

In the follow sections we detail the dynamics of each dynamical system in the examples. 272

Since the primary objective of this work is to understand the performance of the myopic 273

controller, in both examples we used a simple state estimator to calculate x̂t and Σ̂t, 274

employing extended Kalman filtering (EKF) within Tensorflow assuming a noisy 275

observation of the state as yt = xt + vt, where vt ∼ N(0, R) and R is a diagonal 276

covariance matrix. For lags in observations and control signal calculation, state 277

prediction was performed by propagating x̂t via, 278

x̂t+1 = x̂t + F [x̂t, ut], (22)

and covariance was estimated through sampling of time-evolved state predictions 279

x
(i)
t ∼ N(x̂t, Σ̂t) that also evolve in time using (22), 280

Σ̂t+1 =
1

M − 1

[

M
∑

i=1

x
(i)
t+1 − µt+1

]





M
∑

j=1

x
(j)
t+1 − µt+1





T

(23)

µt+1 =
1

M

M
∑

k=1

x
(k)
t+1. (24)

Beta oscillation disease states 281

The diseased state dynamics are a modification of a dynamical system used to describe 282

linear integrate-and-fire neurons as a limit cycle attractor [6]. The specific limit cycle 283

attractor is based upon the post-saddle-node bifurcation behavior at large current in the 284

INa,p + IK model from Ch. 4 of [6] (eqs. 4.1-4.2). The high-threshold parameters in [6] 285

were utilized to generate the attractor, and the external current was tuned to generate a 286

beta oscillation. The beta oscillation dynamics of state X = [X1, X2]
T (omitting state 287

and observation noise, for succinctness) are 288
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Flimit cycle =
∂

∂t

[

X1

X2

]

(25)

∂X̃1

∂t
=
C1

C0
(I − gl(X̃1 − El)−

gNam∞(X̃1 − ENa)− gkX2(X̃1 − Ek)) (26)

∂X2

∂t
= C2

n∞ −X2

τ
(27)

p∞ =
1

1 + exp(
Vp∞−X̃1

kp∞
)
, p ∈ [m,n] (28)

with parameters C0 = 1, I = 10, El = −80, ENa = 60, Ek = −90, gNa = 20, 289

gk = 10, gL = 8, τ = 1, Vm,∞ = −20, Vn,∞ = −25, km∞ = 15, kn∞ = 5. The original 290

dynamics for X2 corresponded to an activation variable in an integrate-and-fire model, 291

and as such were scaled to operate at the order of magnitude X2 ∈ [0, 1]; however, X1 292

was originally a voltage variable, and we rescaled it such that X̃1 = 180X1 − 80. The 293

magnitude of these dynamics were also scaled with C1 = 0.88 and C2 = 160 to reflect 294

this change in X1. 295

The three stable points of the dynamics were added to the limit cycle attractor 296

dynamics as two sets of gaussian-weighted Gabor functions centered at the three stable 297

points m1 = [0.9, 0.25], m2 = [0.9, 0.50], m3 = [0.9, 0.75] with a width of the gaussian 298

envelope L = 0.2. This portion of the dynamics was structured and scaled as 299

Fa =
3

∑

i=1

−





200 sin
(

π(X1−mi,1)
L

)

100 sin
(

π(X2−mi,2)
L

)



 e−
2(X−mi)

T (X−mi)

L2 . (29)

To combine the stable attractors and limit cycle attractors in a smooth fashion we 300

adopted our design strategy of filtering out regions of the limit cycle attractor in the 301

stable attractors regions around m1,m2, and m3, and added in the stable attractors. 302

Finally, the state-independent control signal was added linearly to give the controlled 303

dynamics with ∆t = 10−4s as 304

Fdiseased[X,u] = ∆t(Flimit cycleΠ
3
i=1Bi(X) + Fa) + u(t) (30)

Bi(X) = 1− exp

(

−
2(X −mi)

T (X −mi)

(1.5L)2

)

. (31)

The healthy dynamics were designed by using the approach of Section to encourage 305

the dynamics to stay near stable attractors, and avoid the limit-cycle attractor. We 306

designed a hyperbolic tangent filter function FF preserve the stable points, and a 307

barrier function B to encourage state movement away from the limit cycle 308

FF =
1

2

[

tanh(a(x−mi,1)) + 1 0
0 tanh(a(x−mi,1)) + 1

]

(32)

B =
1

2

[

tanh(−a(x−mi,1)) + 1
0

]

. (33)

Both the filtering function and barrier function have their zeros at the intersection of 309

the stable points, to avoid introducing additional unwanted stable points. The scale 310
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factor a = 20π creates a steep barrier. The healthy dynamics are then calculated by 311

filtering on null-controlled unhealthy dynamics as 312

Fhealthy = FF (Fdiseased[X,u = 0]) + B. (34)

The state noise covariance Q = 10−5I2 was chosen to allow for noise-assisted 313

departure of the uncontrolled dynamics from the stable points an into the limit cycle 314

attractor. Observation noise covariances R ∈ [10−6I2, 10
−5I2, 10

−4I2] were used. 315

Winner-take-all and robust neural integrator dynamics 316

The Winner-take-all dynamics are based upon the state-space description in [29], in 317

which two sub-populations of excitatory neurons X1 and X2 have a reduced-state 318

dynamical description for decision-making of the direction of a random moving dot 319

visual stimulus. The dynamics for the two-dimensional state driven by control signals 320

u(t) = [u1(t), u2(t)]
T are given by 321

dXi

dt
= −

Xi

τs
+ α(1−Xi)Hi (35)

Hi =
axi − b

1− exp[−d(axi − b)]
(36)

x1 = J11X1 − J12X2 + I0 + u1(t) + I1 (37)

x1 = J22X2 − J21X1 + I0 + u2(t) + I2. (38)

The visual stimulus is represented as input current I1 and I2 to each population 322

with stimulus strength µ0 = 30Hz and directional percent of coherence c′, 323

Ii = JAµ0

(

1±
c′

100

)

. (39)

High activity of a state X1 corresponds to decision due to activity of that 324

sub-population of neurons with positive-signed coherence of the stimulus, and X2 325

alternative has high activity for negative-sign coherence of the stimulus, indicating the 326

direction of the stimulus. Parameter values reported in [29] were used. The controls to 327

the system u1(t) and u2(t) were modeled as additional input currents to the 328

sub-populations. 329

The target neural dynamics of a robust neural integrator are based conceptually 330

upon [28], and their state space description is modeled as a set of hyperbolic tangents 331

that generate interwoven nullclines. The two states X1 and X2 have gradients given by 332

dXi

dt
= τ

[

tanh
(π

a
[±u− 2(X̃2 − 0.5)]

)

+BCi

]

+ Ii (40)

u = a sin

(

(n− 1)π

L
X̃1 + π

)

, i ∈ [1(+), 2(−)].

The nullcline shapes u are defined by n− 1 nodes over a length L, and have a 333

hyperbolic tangent on each side in state space. (40) use a rotated set of state-space 334

coordinates X̃i given by a rotation matrix [X̃1, X̃2]
T = M([X1, X2]

T −R0), where M 335

rotates by the angle π/4 and R0 = [L/2, 1]T . The boundary conditions BC1 and BC2 336

enforce the final fixed points of the neural integrator line to be global attractors, and 337

are given by additional hyperbolic tangents of the form 338
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BC1 =10 tanh

(

−
(n− 1)π

b
(X1 + c)

)

−

10 tanh

(

−
(n− 1)π

b
(X1 − [c+ L+ a/4])

)

(41)

BC2 =10 tanh
(

−
π

d
(X2 + c)

)

+

10 tanh
(

−
π

d
(X2 − [L+ c])

)

. (42)

The parameters of the model were chosen to roughly match the magnitude and 339

fixed-point locations of the winner-take-all dynamics. τ = 1e−3 (i.e., 1ms timesteps), 340

a = 0.2, n = 7, L = 0.7, b = 4/3, c = 0.083, d = 1.2. The stimuli to the robust neural 341

integrator I1 and I2 were given by 342

[I1, I2] = sign(c′)[δ(1 + |c′|/100),−δ(1 + |c′|/100)], (43)

where δ = 7.5e− 4. The state noise covariance Q = 5× 10−5I2 was chosen to allow 343

the robust neural integrator to utilize the state noise to transition from one stable point 344

to another, and observation noise covariances R ∈ [10−6I2, 10
−5I2, 10

−4I2] were used. 345

Results 346

In the following examples we demonstrate the ability of myopic control to match the 347

dynamics of several relevant dynamical systems for neural computations. Simulations to 348

benchmark the performance of myopic control were conducted using Tensorflow 349

(Python API). System details can be found in the methods section, and code for the 350

myopic controller is available at https://github.com/catniplab/myopiccontrol. 351

Robust neural integration from winner-take-all dynamics 352

We first deal with controlling neural computations for decision making, and 353

demonstrate how myopic control can be used to change a winner-take-all (WTA) 354

decision-making dynamics and convert it into a robust neural integrator (RNI). WTA 355

dynamics for a simple, forced two-choice decision-making process function through a 356

dynamical system where stimulus modulates the dynamics to flow toward one of two 357

stable attractors. As time progresses, the neural state is driven toward one of the two 358

stable attractors, each comprising a separate decision. In contrast, a robust neural 359

integrator has multiple fixed points in between those two final stable attractors that 360

allow for a stable, intermediate representation of accumulated evidence—creating 361

robustness against uncertainty in stimulus and small internal perturbations. 362

We implemented a well-known approximation of a WTA dynamical system 363

underlying two populations of spiking, excitatory neurons connected through strong 364

recurrent inhibitory neurons, and our control for this system is an external injected 365

current into each excitatory population [29]. Our target dynamics embody a 366

low-dimensional analogue of the robust neural integration model suggested by Koulakov 367

and coworkers [28]. Our RNI dynamical system is conceptually quite simple: Two 368

sinusoidal nullclines that are interwoven can generate alternating stable and unstable 369

fixed points, and with the addition of boundary conditions on the final stable fixed 370

points can generate a dynamical system with a line of stable fixed points. The phase 371

portraits for each system are shown in Figure 3. 372
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Fig 3. Phase portraits for the A) winner-take-all dynamics and B) robust neural
integrator. The magnitude is plotted on a logarithmic scale for easier visualization, and
arrows give gradient direction. Streamlines are depicted in cyan. The nullclines of each
dynamical system are shown in black. The RNI system is formulated as an extension of
the tangling of nullclines in the WTA dynamics, where additional crossings of the
nullclines result in stable points.

Table 1. Accuracy of decision making for an uncertain stimulus .

Dynamics Accuracy % decisions made control power P (mean ± std)

1. RNI 91 % 91 % -
2. Myopic control 92 % 92 % 2.05 ± 0.87
3. Uncontrolled 41 % 89 % -
4. Trajectory control 0 % 99 % 1.65 ± 0.42

A comparison between first-order myopic control and a trajectory control approach 373

(i.e., a control optimized for (4)) is presented in Figure 4. Specifically, we show that 374

trajectory control possess shortcomings when dealing with particular decision-making 375

tasks. Trajectory control approaches have an additional hurdle above myopic control in 376

that there must be some policy in place to decide to which target xt should evolve. The 377

only way that trajectory control can help the neural system make an informed decision 378

is by integrating the stimulus, itself, which assumes a role in the neural computation. 379

Here, we allow the controller to observe and integrate 20ms of coherence at the 380

beginning of the trial, and then use that information to prescribe a target point in state 381

space (either the final + or − coherence decision points in Fig. 3). In this simulation 382

the time-varying stimulus c′ is initially uncertain, beginning with a small positive 383

coherence for 500 ms and then changing to negative coherence for 500 ms, finally 384

settling to a stronger negative coherence of c′ = −12% for the remainder of a 1s trial, 385

shown inset in Fig. 4. Both the target dynamics of robust neural integrator and myopic 386

control to mimic it can adequately handle this “change-of-mind” in stimulus and 387

eventually evolve its neural state to the negative coherence choice, but trajectory 388

control system instead incorporates only the initial stimulus to incorrectly choose the 389

positive coherence choice. Furthermore, it then holds it there with control, in spite of 390

receiving new stimulus information that in some cases could have even been caught in 391

the WTA system (Fig. 4, green). 392

An intuitive way to compare the performance of trajectory control vs. myopic
control for decision making is to count the number of correct decisions made, which is
summarized in Table 1, alongside the total power of the controls, calculated as

P =
∑

i,m

|um(ti)|
2. (44)

Accuracy for each control type calculated as percentage of correct fixed points 393

chosen (noted in Fig. 3), and percentage decided as number of trials in which the state 394

evolved to within a close radius of a decision point (radius = 0.15). Examining the 395

accuracy of each method in the table, it is clear that this is an extreme case of how 396

poorly trajectory control can perform, where even uncontrolled dynamics sometimes 397

was able to change its mind and choose the correct stimulus. This is a specific example 398

of our qualitative arguments against trajectory control that were shown in Fig. 1, in 399

which markedly different behavior can be artificially enforced. Moreover, the total 400

power required by the control signals is comparable, indicating that myopic control did 401

not require substantially more power to perform the target dynamics 402

Quantitative performance of myopic control of a sample of 500 trials is summarized 403
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Fig 4. Example trajectories of controlled dynamics for an initially uncertain stimulus
(inset). Trajectory controls with a policy to decide which decision to make by
integrating the initial few ms of coherence signal not only steal the role of
computational integration from the dynamical system, but in the presence of an initially
uncertain stimulus perform poorly by making the wrong decision (red) where even a
WTA system (green) can somewhat cope with a changing stimulus. Myopic control
(blue) can integrate the incoming information just as the target RNI dynamics (black).
inset: coherence for the change of mind stimulus. a final decision would be made by
integrating the signal, signified by the gray region. Vertical line at 20ms indicates the
portion of the signal integrated to decide on a target point for trajectory control.

in Figure 5. Sample trajectories for uncontrolled, first-order controlled, and healthy 404

dynamics are shown in Fig. 5A under the influence of an increasingly stronger 405

time-dependent stimulus, denoted by coherence c′. Both the RNI and controlled system 406

linger at an intermediate stable nodes before coherence has increased enough to make a 407

more informed decision, indicated by the progression to the decision node. In contrast, 408

the uncontrolled trajectory evolves straight to the decision without any intermediate 409

stability at low coherence. 410

Fig 5. A) Example trajectory of controlled dynamics for evidence accumulation.
Nullclines and stable points (dots) of the neural integrator shown in black, with
unstable nodes shown as diamonds. B) Average time dependence of log-performance of
expected cost in eq. (20) for winner-take-all to robust neural integrator dynamics with
first-order control, SNR of 7dB, and fixed coherence c′ = −6%. Example trials are
shown in gray, and trial-averaged mean plotted in black. C) Control signals during the
evidence accumulation with first-order control. D) Similar control signals for
fixed-coherence trial. E) Violin plots showing distribution of time-averaged,
log-performance for a lag in observations. F) Similar violin plots as in E), but for for
varying observation noise strength, shown by signal-to-noise ratios (SNR) of system
noise to observation noise, and including null control (ct = 0). In both E) and F) *
indicates p < 0.001 for a two-sample t-test. Unless otherwise noted, samples are not
significantly different. ** : p = 0.009.

Importantly, the controlled dynamics demonstrate the intermediate stability 411

behavior found in robust neural integrators. Figure 5B summarizes the log-cost of 500 412

trials of first-order control with a fixed stimulus coherence of c′ = −6%, where 413

prototypical trials are shown in gray alongside the trial average in black. The control 414

signals for the increasing coherence demonstration (Fig. 5A) and for the benchmark 415

trajectories (Fig. 5B) are plotted in 5C and 5D, respectively. Again, promising and 416

modest control amplitudes are observed in both cases. Finally, figures 5E and 5F show 417

the time-averaged, log-performance for varying observation lag and noise strengths. 418

Comparable to the previous section we see that second order control performs 419

equivalently to first order across increasing observation lag and noise. However, the 420

time-averaged distributions at low observation lag have quite long-tailed, unimodal 421

distributions, and have negligible performance at a lag of 50 steps (note that ∆t is an 422

order of magnitude higher for this system, which corresponds to a 50ms-ahead 423

prediction). There is some change to a bimodal distribution for increasing observation 424

noise in this system, but the notable feature is the increasingly long distribution tail for 425

second-order control, which gives the opportunity for inferior performance as compared 426

to first-order control. 427
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Avoiding beta-oscillation disease states 428

Here, we aim to preserve an original set of dynamical features in F while avoiding an 429

unwanted regime of state space containing undesirable dynamics. This paradigm can 430

act as the basis of state-space control for neurological disorders, where regions of state 431

space may be associated with disease symptoms [30,31]. Utilizing myopic control as a 432

therapy for neurological disorders lends itself to considering which features of neural 433

dynamics are undesirable, rather than discerning which features of the dynamical 434

system are lacking. For example, tremors in Parkinson’s disease (PD) are associated 435

with a characteristic beta oscillation (i.e., 13-30 Hz) of the local field potential in the 436

subthalamic nucleus, and state-of-the art feedback control strategies use this signal to 437

trigger deep brain stimulation (DBS) until the beta oscillation subsides [18]. Similar 438

neural signatures are also present for epilepsy [14,15]. A model “diseased” system with 439

three stable fixed points representing three possible voluntary movement command was 440

constructed with an additional, unwanted spiral attractor representing the beta 441

oscillation macrostate. Difficulty in initiating voluntary motion (bradykinesia) in PD 442

patients could be due to strong attractive macrostate [32, 33]. Using myopic control, we 443

manipulated the dynamics to match the target dynamics of a healthy system structured 444

using the design principles from section to avoid the avoid beta oscillation state while 445

preserving the fixed points of the system. The phase portrait of the target dynamics are 446

shown in Figure 6. 447

Fig 6. Phase portraits for diseased and healthy dynamical systems. Color denotes the
magnitude of the dynamics F and G, and the direction is shown by the arrows.
Streamlines are shown in cyan. The diseased system contains three stable points, but
also a spiral attractor at small values of X1 and X2. The target healthy dynamics has
been designed to contain slightly repulsive dynamics in the original spiral attractor
region, but still maintains its stable points.

The overall performance of myopic control is summarized in Fig. 7. A sample of 500 448

trials points was initialized in the asymptotic distribution of the PD limit-cycle 449

attractor, and state estimation was performed for 100ms in the absence of control before 450

the control was switched on. Monitoring log[J̃t] in Figure 7A, individual trials reflect 451

the initial oscillatory behavior of being in the disease state before sharply declining, 452

whereas the trial-averaged behavior shows the overall improvement due to control. This 453

remarkable removal of disease-state behavior is further demonstrated in state-space 454

trajectory of a typical trial (Fig. 7B). Once control is switched on the target dynamics 455

successfully lead it out of the limit cycle and into a stable attractor point. A 456

spectrogram of the state X1 for an analogous, longer simulation is shown in Fig. 7 D. 457

There, a beta oscillation endured for 1s, and then myopic control was switched on to 458

evolve to a stable point. The spectrogram reflects the oscillations during the 459

uncontrolled period, and once the control is switched on it subsides and leaves only 460

low-frequency components as it moves toward the stable point. The optimal control 461

signal for the colored trajectory in Fig7A in shown in Fig. 7C. it is modest in amplitude 462

relative to the magnitude of the dynamics, and has a straightforward waveform, 463

demonstrating that given only minimal additional consideration to constraints on the 464

control signal that myopic control could feasibly, efficiently, and safely be implemented 465

in living subjects. 466

Finally, we benchmarked the performance of first- and second-order control as 467

compared to uncontrolled dynamics by calculating distributions of the time-averaged 468

log-cost
∑T

i=1 log(J̃t) for varying lags between state observation and control signal 469

calculation (Fig. 7E), and for different observation noise strength (Fig. 7F). While there 470

is a interesting trend in the stretching of bimodal distribution into a near unimodal one 471
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Fig 7. A) Time-dependent performance of first-order control for small observation
noise (SNR 10dB). Instances of simulations are shown in gray, while the mean behavior
is given in black. A representative trial has been singled out in blue and red for
additional analysis. Initial trajectories are uncontrolled (blue), and allowed to fall into
the asymptotic distribution of the limit cycle before control is switched on (red). Costs
are plotted as time-locked 100ms before the control is switched on. B) Trajectory of
typical trial through state space shown before and after the control is implemented,
demonstrating a move back towards healthy state space. C) Control signal of a
representative trial. D) Spectrogram of X1 for an analogous, longer simulation of
uncontrolled evolution for 1s (noted by vertical line), and myopic control for final 1s .
E) Violin plots showing distribution of time-averaged log-performance for a lag in
observations, requiring state prediction. Horizontal line corresponds to the average
log-loss of null control. F) Similar violin plots as in E), but for for varying observation
noise strength, and including null control (ut = [0, 0]). In both E) and F) * indicates
p < 0.001 for a two-sample t-test. Unless otherwise noted, samples are not significantly
different.

at high observation lag, we observed no impactful difference between first- and 472

second-order control with an increasing delay of observations. Similarly, there is a 473

transition to a distinct bimodal distribution at large signal to noise, though both 474

controllers perform similarly. 475

Discussion 476

Here we developed a perspective on what features are necessary for a flexible control of 477

any dynamical system underlying neural computation. The controller should function to 478

assist the dynamical system performing the computation, not taking on the role of a 479

dynamical system, itself. In order for the controlled dynamics to function as a separate 480

dynamical system on its own, we proposed a myopic control scheme that alternatively 481

manipulates the dynamics to function as a set of target dynamics over a single time 482

step, as opposed to trajectory-tracking controllers that function over a finite time 483

horizon and must first perform the neural computation on their own. We developed an 484

approximation of this control for nonlinear dynamics that is separable from state 485

estimation, provided direction about design principles for how to construct a targeted 486

dynamical system, and demonstrated its application in two varied scenarios. In both 487

examples, first order control performed comparably to second-order control, showing the 488

potential to generate feasible control signals that function under practical conditions. 489

The base of our controller formulation is reminiscent of the model-based control and 490

model reference (adaptive) control (MRAC). Utilizing model-based control alongside 491

quality state estimation [30] to manipulate neural dynamics is an attractive strategy 492

that can harness machine learning methods to build effective, patient-specific statistical 493

models of the brain by using real-time patient data, which could then be used as 494

precision medical treatment [34,35]. The initial efforts of MRAC focused heavily on 495

adaptive update rules for estimating the parameters of different forms of target plants 496

(dynamics, in our work), and predominantly one adaptive controller form was utilized: 497

strictly positive real (SPR) Lyapunov design. This form of controller depended on a 498

SPR transfer function formulation of its plant dynamics, as was designed to guarantee 499

bounded control signals that can track target trajectories or regulate to a fixed point 500

from a target plant. Our controller structure is similar in form to SPR control and 501

could benefit from the similar extensions that took place in MRAC, such as analysis of 502

the Lyapunov stability to rigorously establish safe bounds on the control [19] and the 503
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use of neural networks capable of handling nonlinear plant dynamics [36, 37]. 504

This is not the first neural controller to consider neural variability as an important 505

component to preserve in neural systems. Todorov and Jordan suggested a “minimal 506

intervention principle” for neural systems that allows for deviations from a target 507

trajectory, provided that they do not interfere with the target task [38]. The target was 508

considered as a single point in state space, and their formulation allowed for high 509

redundancy in the number of optimal trajectories that reached the target with the same 510

cost. Their controller only corrects the trajectory when failing to act would result in a 511

worse-than-optimal cost. While this is the only instance of control that acknowledges 512

and respects neural variability during control, even prescribing a single point in state 513

space as a target falls short of the general goals accomplished by myopic control to 514

generate an entire target dynamics. For example, returning to the qualitative operation 515

of myopic control in Fig. 1B, minimal intervention control would perform comparably 516

to trajectory control by forcing state evolution in a non-dynamical fashion, while also 517

restricting the neural variability that lead to an alternative fixed point. 518

An important feature of myopic control was its modular design. We studied a form 519

in which only low-order moments of the state distribution were used in the controller, 520

which decoupled the controller form from state estimation and allowed for any state 521

estimator to be implemented. First-order control is considerably more straightforward 522

to use because of its lack of higher-order derivatives on the dynamics, which may also 523

come with a benefit being a more robust controller during practical instances in which 524

the dynamics must be inferred from data. Operating in the perturbative regime x− x̂t 525

through regular state estimation small would ensure that first-order methods are 526

successful. 527

A key issue that dictates myopic control’s qualitative success is the choice or design 528

of target dynamics. Target dynamics could be designed by modifying the current 529

dynamics through either addition, removal, or modification of specific features in the 530

state space. There is an appeal to omitting features, as this approach resembles 531

lesioning studies that aim to infer causal importance to behavior. In our beta oscillation 532

example, omitting the limit cycle appeared to be the safest and most practical approach. 533

However, if more experimentally accurate understanding of the Parkinsonian dynamics 534

suggests that omitting a limit cycle could introduce unwanted behavior, it may be more 535

prudent to modify the limit cycle with an exit pathway. Still, one may wish to study 536

the extent of a neural system’s computational flexibility by adding features as we did 537

with our decision-making example. 538

It should be noted the adding in new features can be a tedious process in practice, as 539

it took considerable parameter tuning to create our robust neural integrator system. 540

Additionally, we considered only two-dimensional systems, but interesting dynamical 541

systems may in fact lie in higher dimensions [8]. Our design approach of filtering 542

functions is general enough to extend to high dimensions, though implementing them in 543

practice may take additional care. Removing features with smoothed versions of step 544

functions would still work, as would adding stable points with gabor functions, though 545

they would need to be high-dimensional analogues. Visualization and analysis tools for 546

high-dimensional spaces could help determine the hypervolumes to omit, and how 547

(an)isotropic the features must be. 548

Myopic control is certainly not the only form of controlled stimulation of neural 549

systems, and it is important to note how these methods differ from our perspective. 550

One of most successful applications of neural stimulation is in the field of 551

neuroprosthetics, where implants mimic afferent sensory inputs such as cochlear or 552

retinal implants, or translate efferent outputs into motor actions for artificial limbs [39]. 553

The control strategies behind these technologies are complex and varied compared to 554

myopic control [20], though this is required in part because the goal of neuroprosthetics 555
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is distinctly different: the controlled (de)coding of these neural signals do not constitute 556

a dynamical system, but rather interacts with the pre-existing normal neural dynamics 557

of the area as inputs. Neural prosthetics for cognitive function, for example, memory 558

processing in hippocampus [40], are much more amenable to myopic control scheme, 559

since the normal function of the neural system constitutes a dynamical system. 560

Deep brain stimulation (DBS) for neurological disorders (e.g., Parkinson’s disease) is 561

a control application within the scope of myopic control, as we demonstrated with our 562

first example study. A recent approach to DBS that harnesses neural recordings uses a 563

model-free method to simply reduce beta-band oscillations seen in local field potential 564

recordings in the basal ganglia [18], a potential neural signal related to PD 565

symptoms [41,42]. The disadvantage to such a heuristic approach is that the link 566

between beta oscillations in basal ganglia and cortex, let alone its relationship to actual 567

PD symptoms, is still not fully understood. Moreover, other feedback targets are being 568

actively considered as well [17, 31]. Myopic control allows us to causally investigate the 569

role of neural signatures correlated with the disease—we can specifically target fixes to 570

the abnormal dynamics for beta oscillations, for example, and improve our 571

understanding of the disease and also improve treatments. 572

Our first example was motivated from a position of understanding neural dynamical 573

systems for evidence accumulation and decision making, and more generally to 574

demonstrate its application as a tool to causally investigate cognitive processes. Several 575

models of evidence accumulation have been considered in the context of using variability 576

in spiking dynamics of lateral intraparietal cortex (LIP) in monkeys [43–45], and one 577

future experiment could attempt myopic control using different models for the control 578

systems to produces a given target system, say RNI. Performing myopic control in that 579

context would be a more powerful approach than perturbative, random stimulation of 580

the system to simply infer parameters of an underlying dynamical model represented in 581

LIP. Additionally, a more sophisticated experiment could attempt to utilize controlled 582

stimulation to force the opposite decision of a target dynamics; the success of which 583

would not only provide evidence that the controller is operating based upon the correct 584

dynamical systems model, but would also constitute a substantial advance in the control 585

of cognitive dynamics. 586

The history of advances in model reference adaptive control (MRAC) provides a 587

strong template for how myopic controllers for neural dynamics control could be 588

developed. Our work here assumed a known model for the controlled dynamics, and 589

future work should integrate adaptive estimation of the controlled dynamics, themselves, 590

into the controller. In particular, as an extension of the initial neural network structures 591

used to perform MRAC [36,37], there is opportunity to utilize deep networks that 592

accomplish adaptive estimation these dynamics and their states within a neural-network 593

myopic controller architecture [46–48]. 594

A larger and more immediate question is what steps must be taken to implement 595

myopic control experimentally? The most important underlying component is access to 596

quality neural measurements. That is why recent work combining neural stimulation 597

and observation as in [49] is so vital. In our work we assumed that the ground-truth 598

neural dynamics for both the controlled dynamics F and the target dynamics G were 599

known, but in practice they must estimated from neural measurements. We 600

demonstrated that first-order myopic control can function well, which necessitates 601

estimation of only the state mean over higher order moments, but first order control 602

also requires estimating the full dynamics in (18). 603

The timescale of the underlying neural computation also suggests practical 604

consideration. Since myopic control is designed as an online control, the state 605

estimations and estimation of the dynamics must be fast in order to implement in real 606

time. Longer time constants for processes that are characterized by a smaller total 607

January 22, 2019 18/22



dynamics Ft lead to slower changes in neural state, which allow for more accurate 608

online state estimation, and thus a more accurate control signal. Akin to a slower 609

moving target in state space, the less the dynamics have progressed, the more 610

up-to-date that state information will be, and the better the control performance for 611

slower dynamical processes. This motivated our demonstration that myopic control can 612

still function well with a lag between neural observations and control implementation. 613

Moreover, estimating latent state dynamics is a difficult task altogether [3], and 614

would likely need to be performed prior to control use, with adaptive updates to the 615

dynamics estimation occurring online. Taking into consideration a generic framework i) 616

signal processing (e.g., spike sorting), ii) control signal calculation, and iii) delivery of 617

stimulation; it seems reasonable to assume ∼5 ms of time required for myopic control, 618

which is comparable to other closed-loop control estimates [50]. In this regime of time 619

lags of less than 5 ms, myopic control was demonstrated to perform well, which is 620

promising for its implementation. 621
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