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Highly active nanostructured CoS2/CoS
heterojunction electrocatalysts for aqueous
polysulfide/iodide redoxflow batteries
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Xuefeng Qian1& T. Leo Liu2

Aqueous polysulfide/iodide redoxflow batteries are attractive for scalable energy storage

due to their high energy density and low cost. However, their energy efficiency and power

density are usually limited by poor electrochemical kinetics of the redox reactions of poly-

sulfide/iodide ions on graphite electrodes, which has become the main obstacle for their

practical applications. Here, CoS2/CoS heterojunction nanoparticles with uneven charge

distribution, which are synthesized in situ on graphite felt by a one-step solvothermal pro-

cess, can significantly boost electrocatalytic activities of I−/I3−and S2−/Sx2−redox reactions

by improving absorptivity of charged ions and promoting charge transfer. The polysulfide/

iodideflow battery with the graphene felt-CoS2/CoS heterojunction can deliver a high energy

efficiency of 84.5% at a current density of 10 mA cm−2, a power density of 86.2 mW cm−2

and a stable energy efficiency retention of 96% after approximately 1000 h of continuous

operation.
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E
nergy storage technologies are crucial for effectively utilizing
intermittent renewable resources like solar and wind1–3.
Inorganic or organic redoxflow batteries (RFBs) have been

explored and advocated as a prospective technology for grid-scale
energy storage in virtue of their designflexibility in decoupling
power and energy, high power performance, and ease of scale-
up4–23. Nowadays, all-vanadium RFBs represent the current
state-of-the-art, but their system price is near 4-fold higher than
the price targets outlined by the Department of Energy of U.S.,
$10024. Besides developing abundant redox organic charge sto-
rage materials3, it remains highly technologically and economic-
ally attractive to advance theflow battery chemistries of abundant
and low cost redox active inorganic compounds such as iron salts,
halides, and sulfides2.

Cathode:3I 2e$I3E
θ¼0:54 V vs SHE ð1Þ

Anode:S24 þ2e$2S
2
2E

θ¼ 0:48 V vs SHE ð2Þ

Full cell:3IþS24 $I3þ2S
2
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I−/I3−and S2−/Sx2−couples are promising redox-active spe-
cies for high-energy-densityflow batteries on account of their
high solubility in water and low costs. Aqueous polysulfide/iodide
redoxflow batteries (SIFBs) have been studied but require further
development for practical energy storage25. The working princi-
ple of the proposed SIFB with polysulfide anolyte and iodide
catholyte can be depicted in Eqs.1–3. For example, Lu et al.
reported that an aqueous SIFB delivered an energy efficiency (EE)
of ca. 68% at 10 mA cm−2for 70 cycles25. However, the poor
electrocatalytic activities for the redox reactions of I−/I3−and
S2−/Sx2− on carbon material electrode usually restrict the EE
and power density of SIFBs. In fact, power density and
charge–discharge EE of a practicalflow battery are mainly limited
by the polarization derived from ohmic resistance, diffusion of
active materials, and charge transfer overpotential at electrodes.
Furthermore, larger overpotential at electrodes can lead to the
evolution of H2and O2in aqueous electrolyte, which results in
energy loss and safety problems3,26. In general, carbon materials
are used as electrodes in most RFBs owing to their high electronic
conductivity, good chemical stability, and economical cost27.
Thus enhancing the electrocatalytic activities of electrodes to
facilitate the I−/I3−and S2−/Sx2−redox reactions is an effective
way to boost the performances of SIFBs27,28.
Nowadays, regulating electronic structures of active sites via

different methods, such as forming solid solution, heteroatom
doping, phase controlling, and so on, can effectively improve the
catalytic activity by optimized host–guest electronic interactions

and the specific adsorption free energy for reactants29. From basic
semiconductor physics, two opposite space charge regions and a
built-infield will be formed when two semiconductors with dif-
ferent energy structure come into contact and reach thermo-
dynamic equilibrium state30. The strongly charged region of
in this heterojunction would have the potential to modulate the
absorption process of reactant species. Furthermore, the built-in
field would also contribute to the charge transfer during the
catalytic process. Therefore, the design and fabrication of semi-
conductor junctions would be a feasible strategy to improve the
activity of catalysts.
Metal sulfides (e.g., Co, Cu, Pb) with different compositions,

structures, or morphologies, including CuS31,32, CoS33–36,
PbS37,38, and Cu2S/reduced graphene oxide composites39, have
been shown to have high electrocatalytic activities toward I3−and
Sx2−redox systems. Cobalt sulfide has various chemical formulas
(e.g., CoS2,Co9S8, CoS, Co3S4, and Co4S3) and can form het-
erojunctions with each other due to their different energy struc-
tures. The built-infield of a heterojunction (Supplementary
Figs. 1 and 2 and Supplementary Table 1) can accelerate the
charge carriers and has been explored in photocatalysts, photo-
detection, photovoltaics, and light-emitting diodes40–44. Thus we
envisioned that the uneven charge distribution of semiconductor
junctions would improve the activity of cobalt sulfide-based
electrocatalysts via enhanced charge transfer activities. Herein
CoS2/CoS n-n heterojunction, with uneven charge distribution,
was fabricated and used as positive and negative electrodes to
electrochemically catalyze the I−/I3−and S2−/Sx2−redox reac-
tions. The polysulfide/iodideflow battery with the CoS2/CoS
heterojunction-modified graphite felt (GF) electrodes can deliver
a high EE of 84.5% at the current density of 10 mA cm−2, a power
density of 86.2 mW cm−2, and an EE retention of 96% after ca.
1000 h continuous working.

Results
Synthesis and characterization.CoS2,CoS,andCoS2/CoS het-
erojunction were synthesized from CoSO4•7H2O, urea, and sulfur
via tuning the ratio of dimethylformamide (DMF) and ethylene
glycol (EG) in a mixed solvent (see“Methods”for details). As
shown in Fig.1a, all diffraction peaks can be indexed well to cubic
CoS2(JCPDS 89–1492) and hexagonal CoS (JCPDS 65–3418) when
VEG/VDMF=0.5 and 2, respectively. Notably, mixed phases of cubic
CoS2and hexagonal CoS were obtained whenVEG/VDMF=
0.9. In Raman spectra, the characteristic peaks are at 292, 323,
and 393 cm−1, which match well with the reported value of CoS2
(Fig.1b)45. The peaks at 475, 517, and 676 cm−1represent the
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Fig. 1X-ray powder diffraction (XRD) and Raman characterization.aXRD patterns of the as-prepared cobalt sulfides compared with the standard patterns

of CoS2(JCPDS 89–1492) and CoS (JCPDS 65–3418).bRaman spectra of CoS2(blue), CoS2/CoS (magenta), and CoS (olive)
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Eg,F2g, andA1gmodes of CoS, respectively46. Both the char-
acteristic peaks of CoS2 (292 cm−1, 390 cm−1) and CoS
(477 cm−1, 678 cm−1) can be found in the obtained the CoS2/CoS
heterojunction spectrum. It is noted that the peaks corresponding
of CoS2slightly shifts from 393 cm−1of pure CoS2to 390 cm−1

of CoS2/CoS heterojunction. On the contrary, the peaks corre-
sponding of CoS slightly shifts from 475 cm−1of pure CoS to
477 cm−1of CoS2/CoS heterojunction. The opposite shifts of
CoS2and CoS diagnostic peaks in the Raman spectra imply an
opposite charge transfer due to the formation of a heterojunction.
Transmission electron microscopy (TEM) image (Fig.2a)

shows the CoS2/CoS particles of 100 nm in size. Clear lattice
fringes and the interface between CoS2and CoS without obvious
amorphous area confirmed the formation of heterojunction of
CoS2/CoS (Fig.2b, c). As shown in the high-angle annular dark-
field scanning transmission electron microscopy (HAADF-
STEM) image and elemental mappings in Fig.2d–g, uniform
distributions of Co and S are in accordance with the morphology
of the CoS2/CoS heterojunction. The line-scan energy-dispersive
X-ray spectroscopy (EDX) of the CoS2/CoS heterojunction
demonstrates that the atomic ratio of S and Co at the left of

line-scan spectrum is 2:1 for CoS2and suddenly changes to 1:1 for
CoS at the right of line-scan spectrum (Fig.2h).
To understand the formation of the CoS2/CoS heterojunction

and the charge distribution at the interface more clearly, line-scan
electron energy loss spectra (EELs) of Co L23edge (Fig.2i–k) in
the CoS2/CoS heterojunction and X-ray photoelectron spectra
(XPS) were further investigated. The chemical shift of Co L3edge
of 0.25 eV to lower energy at the heterojunction boundary was
observed, indicating the negatively charged characteristics
assigned to the side of CoS of the heterojunction. The
heterojunction interfaces of other CoS2/CoS nanoparticles also
have chemical shift evidenced by line-scan EELs spectra (as
shown in Supplementary Figs. 3 and 4). However, EELs line scan
across a single particle indicated that there is an unchanged
chemical state of Co species despite particle thickness (Supple-
mentary Fig. 5). In XPS, sharp peaks of Co 2p and S 2p are
detected in all samples (Supplementary Fig. 6), and Co is mainly
at a valence state of Co2+in all samples47. From the S 2p spectra
of pure CoS2and CoS (Supplementary Fig. 7), one can see the
typical peaks at 162.3 and 163.5 eV of the bridging S22−in CoS2
and the peaks at 161.5 and 162.7 eV of divalent sulfide (S2−)in
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CoS48–50. In the CoS2/CoS heterojunction, the broad S 2p
spectrum can befitted into two pairs of peaks corresponding to
bridging S22−of CoS2(162.4 and 163.5 eV) and divalent sulfide
(S2−) of CoS (161.3 and 162.7 eV) with a ratio of 1/0.17, which is
obtained by integrating peak areas. It is noted that the binding
energy of S 2p3/2(S2−) in CoS2/CoS heterojunction shifts slightly
to a lower binding energy by ca. 0.2 eV than that in CoS due to
extra negative charges in the region of CoS, while the binding
energy of S 2p3/2(S22−) is slightly higher than that in CoS251. The
opposite shift of S 2p3/2demonstrates the distribution of opposite
charges in CoS2/CoS because of the formation of a heterojunc-
tion. The EELs and XPS results confirm the uneven charge
distribution at the interface region of the CoS2/CoS
heterojunction.

Adsorption behaviors. The CoS2, CoS2/CoS, and CoS can be
uniformly assembled onto the GF to form an integrated GF-CoS2,
GF-CoS2/CoS, and GF-CoS electrodes, respectively (1.0 mg cm−2

loading, Supplementary Figs. 8–10). The adsorption behavior of
these electrodes to redox species is a critical factor of the elec-
trocatalytic process. As shown in Fig.3a, the NaI3aqueous
solution with GF-CoS2/CoS exhibits more obvious decoloration
than ones with the GF, GF-CoS2, and GF-CoS and nearly turns to
a colorless solution. In addition, the ultraviolet–visible (UV-Vis)
absorption of the NaI3solution after adsorption with GF-CoS2/
CoS, the typical absorption peaks of I3− ions are nearly dis-
appeared. The sharp contrasts indicate that CoS2/CoS hetero-
junction has remarkable adsorption effect on iodide species. The
adsorption capacity of the materials for polysulfides has also been
investigated (Fig.3b) and shows a similar sequence to their
absorptivity to iodide solutions.
To qualitatively elucidate the interactions between the (CoS2

(200), CoS (100) and the heterostructure CoS2(200)/CoS (100)
with iodide or polysulfide ions, density functional theory (DFT)

was used to calculate their adsorption energy (Table1, Supple-
mentary Figs. 11 and 12). The DFT results revealed that the
adsorption energies of the CoS2(200)/CoS (100) heterojunction
to polysulfide or iodide ions is higher than the individual pure
structures of CoS2 (200) and CoS (100) surface, which is
consistent with the experimental results. Constructing hetero-
junction improves the adsorption energy of the system and the
negative value of adsorption energy indicates that these adsorp-
tion processes are thermodynamically favorable. The above
results suggest the significantly promoted affinity of CoS2/CoS
heterojunction with polysulfide and iodide molecules in compar-
ison to CoS2or CoS.

Electrocatalytic activity investigation. The effect of the CoS2/
CoS heterojunction on the electrocatalytic activity of I−/I3−and
S2−/Sx2−redox reactions were studied by cyclic voltammogram
(CV). In Fig.4a, each curve exhibits a pair of peaks corresponding
to the redox reactions of I−/I3−couples using GF, CoS2, CoS, and
CoS2/CoS electrodes. The peak-to-peak separation (Epp) and peak
current density are vital parameter indicators to evaluate the
electrocatalytic property of electrodes52. The corresponding
parameters are listed in Table2. Compared with CoS2and CoS,
the smallestEpp(0.10 V) and highest peak current density of
CoS2/CoS indicate that the heterojunction is more effective to
facilitate the redox reaction of I−/I3−. The 1.15 value ofJOx/|JRed|
for CoS2/CoS also implies its better reversibility to I−/I3−redox
reaction. Two typical pairs of redox peaks of electrodes in Sup-
plementary Fig. 13 can be ascribed to the redox reaction of I−/I3−

and I3−/I5−. The linear relationship between peak currents and
the square root of scan rate (ν1/2, Supplementary Figs. 14 and 15)
indicates the diffusion-controlled process of the I−/I3− redox
reaction. The diffusion coefficientDof I−can be estimated by the
Berzins–Delahay equation (Supplementary Table 2), which fol-
lows an order of GF < CoS < CoS2< CoS2/CoS, being consistent
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Table 1 Surface calculation data of CoS2, CoS, and CoS2/CoS

Materials Typical surface Space group Lattice parameters Ead(Polysulfide)/eV Ead(Iodide)/eV

S62− S42− S22− S2− I3− I2 I

CoS2 (200) Pa-3 (205) a=b=c=5.506 −0.32 −0.24 −0.16 −0.11 −1.47 −0.18 −0.10
CoS (102) P63/mmc (194) a=b=3.347,

c=5.139
−0.28 −0.19 −0.11 −0.07 −1.23 −0.13 −0.07

CoS2/CoS
heterojunction

CoS2(200)/
CoS (102)

— — −0.63 −0.57 −0.34 −0.22 −2.13 −0.44 −0.22
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with the order of the electrode catalytic performances. Moreover,
the 200 consecutive CVs indicates the better stability of CoS2/CoS
than CoS2and CoS for the I−/I3−redox reaction (Supplementary
Fig. 16). As shown in Fig.4b, the CoS2/CoS electrode indeed
greatly enhanced the electrochemical reactivity of the polysulfide
couple and resulted in resolved multiple redox peaks of poly-
sulfides, which are integrated into one pair of asymmetry broad
peaks in case of other electrodes. The multiple electron transfers
are present in the potential range of ~−1.2 V–0.1 V vs Ag/AgCl,
which has the two oxidation peaks and three reduction peaks.
This suggests that the polysulfide may undergo more complicated
electrochemical reactions with likely involvement of more poly-
sulfide species, e.g., Sx2− (x=from 2 to 8), which has been
demonstrated in both aqueous and nonaqueous electrolytes53,54.

Flow battery studies. The schematic representation for the pro-
posed SIFB cell configuration is shown in Fig.5a. SIFB cells based
on GF, GF-CoS2, GF-CoS2/CoS, and GF-CoS as both positive and
negative electrodes were assembled. A combination of N115 and
N117 were used as the two-layer separator to promote the Na+

cation transport and limit the crossover of active species24. For
battery tests, the electrolyte volume was 5 mL for both 2.0 M NaI
+0.5 M I2catholyte and 2.0 M Na2S2anolyte and theflow rate
wasfixed at 10 mL min−1. Figure5b, c and Supplementary Fig. 17
show the galvanostatic cycling performance of the polysulfide/
iodideflow battery at 20 mA cm−2with the charge state of 50%
state of charge (SOC). The corresponding charge/discharge vol-
tage profiles of SIFBs are plotted in Supplementary Fig. 18. The
GF-CoS2/CoS displayed the highest EE value than others elec-
trodes at the same charge/discharge current density resulting
from the reduced charge/discharge overpotentials. The voltage
efficiency (VE) value is a derivative of the coulombic efficiency
(CE) and EE (VE=EE/CE). The SIFB with GF-CoS2/CoS

delivered an EE of 71.6% at 20 mA cm−2and 84.0% capacity
retention for 60 cycles, which is significantly higher than the one
with bare GF electrodes (47.8% EE). The SIFBs with GF-CoS2and
GF-CoS delivered an EE of 68.9% and 69.4% at 20 mA cm−2and
58.5% and 68.6% capacity retention for 60 cycles, respectively.
Furthermore, the trend of CE, VE, and EE over current densities
of SIFBs are outlined in Supplementary Figs. 19 and 20. CE stayed
above ca. 91% at all current densities. The EE of GF-CoS2/CoS
decreased from 72.0 % for 15 mA cm−2to 55.9% for 50 mA
cm−2. The observed trends for the VE and EE typically attribute
to the increased cell overpotential at higher current densities. In
addition, GF-CoS2/CoS electrode has the highest EE of 84.5% at
10 mA cm−2, and the EE retention was 96% after 500 cycles of
continuous working at 10% SOC (ca. 1000 h) with multiple
electrolyte refreshments (Supplementary Fig. 21). As shown in
Fig.5d, the discharge polarization curves and power density
curves of SIFBs clearly reveal that the GF-CoS2/CoS electrode has
the highest power density of 86.2 mW cm−2compared to GF
(8.9 mW cm−2), GF-CoS2 (44.6 mW cm−2), and GF-CoS
(56.6 mW cm−2), respectively. The charge and discharge polar-
ization curves of SIFBs shows that the open circuit voltage of the
GF-CoS2/CoS cell is 1.03 V, which is in good agreement with the
theoretical value of 1.02 V. And the hysteresis voltage between
charge and discharge processes of the SIFB cell using GF-CoS2/
CoS electrodes is smaller than other electrodes under the same
current density (Fig.5e). Electrochemical impedance spectro-
scopy (EIS) was used to investigate the charge transfer resistance
(Rct) and evaluate the electrode activity. The EIS plots of the
SIFBs with different electrodes are simulated (Fig.5f) and the
results are summarized in Table3. In the Nyquist plot of elec-
trodes, a semicircle is observed, which corresponds toRctat the
electrolyte/electrode interface55. It is clearly seen that theRct1s are
3.66, 1.03, 0.46, and 0.84Ωcm2, respectively, for GF, GF-CoS2,
GF-CoS2/CoS, and GF-CoS electrodes. TheRct2s are 36.6, 4.19,
2.40, and 2.83Ωcm2, respectively, for GF, GF-CoS2, GF-CoS2/
CoS, and GF-CoS electrodes. These results further illustrate that
the CoS2/CoS heterojunction can facilitate the charge transfer
process and improve diffusion dynamics, whichfits well with the
CV experiments. To evaluate the stability of electrodes, the
catholyte of SIFBs based on the GF-CoS2GF-CoS2/CoS, and GF-
CoS electrodes were sampled after 60 cycles and further tested by
the inductively coupled plasma spectroscopy (ICP). The ICP
results showed that no cobalt was detected in the catholyte of GF-
CoS2/CoS and GF-CoS electrodes and 0.3 ppm cobalt was
detected using GF-CoS2electrode, which confirms the good sta-
bility of GF-CoS2/CoS electrode and no particles were fallen off.
Supplementary Fig. 22 exhibits that the surface morphology of
the GF-CoS2/CoS electrode after 60 cycles at a current density of
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Table 2 Parameters obtained from CV curves for I−/I3−on
GF, CoS2, CoS2/CoS, and CoS, respectively

Samples JOx
[mA cm−2]

JRed
[mA cm−2]

JOx/|JRed| EOx
[V]

ERed
[V]

Epp
[V]

GF 3.02 −1.58 1.91 0.61 0.38 0.23
CoS2 4.38 −3.79 1.16 0.54 0.44 0.10
CoS2/CoS 6.72 −5.85 1.15 0.54 0.44 0.10
CoS 3.04 −3.48 0.87 0.53 0.42 0.11

CVcyclic voltammogram,JRedthe cathodic peak current density,JOxthe anodic peak current
density,Epppeak-to-peak separation
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20 mA cm−2still maintained its integrity similar to the fresh one.
All of the results discussed above demonstrate remarkable power
densities and promising long-term cycling stability of the
GF-CoS2/CoS electrode.

Discussion
In summary, the CoS2/CoS n-n heterojunction with uneven
charge distribution was prepared by a rationally designed sol-
vothermal system via simply adjusting the proportion of DMF
and EG in the mixed solvent and employed as highly active
electrocatalysts in aqueous SIFBs. The charged surfaces derived
from space charge regions of the CoS2/CoS heterojunction can
enhance the electrochemical activities of I−/I3− and S2−/Sx2−

redox reactions by the improved absorptivity to charged ions and
promoted the charge transfer process. Therefore, theflow cell
with the GF-CoS2/CoS electrode gives a high EE of 84.5% at
10 mA cm−2and the EE retention of 96% after ca. 1000 h con-
tinuous working. Moreover, the GF-CoS2/CoS electrode has a

much higher power density of 86.2 mW cm−2compared to GF
electrode (8.9 mW cm−2). The design of heterojunction electro-
catalysts would offer an effective strategy to enhance the perfor-
mance and competitiveness of SIFBs and other RFBs.

Methods
Materials. Sodium iodide (NaI, 99%), sodium sulfide nonahydrate (Na2S∙9H2O,
>98%), sodium chloride, sublimed sulfur (99.5%), sulfuric acid (H2SO4, 98%),
hydrogen peroxide (H2O2, 30 wt% in H2O), CoSO4∙7H2O, urea, DMF, and EG were
purchased from Sinopharm Chemical Reagent Co., Ltd. Iodine (I2, 99.8%) was
purchased from Shanghai Titan Scientific Co., Ltd. Nafion membrane (N115 and
N117, Dupont, DE, USA) was received from Innochem. Sodium polysulfide
(Na2Sx) electrolytes were prepared by mixing stoichiometric ratios of Na2S and S at
room temperature. Sodium triiodide (NaI3) electrolytes were prepared by mixing
stoichiometric ratios of NaI and I2at room temperature.

Synthesis of the electrode materials. Prior to synthesis, the as-received GF
(Beijing Jinglong Carbon Technology Co., Ltd.) wasfirst soaked overnight in 6 M
H2SO4. It was rinsed with deionized (DI) water until the effluent pH is near 7 and
then heat treated at 300 °C for 2 h. The CoS2/CoS heterojunction was synthesized
by a facile and one-step hydrothermal method. In a typical procedure, 2 mmol
CoSO4∙7H2O, 10 mmol urea, and 25 mmol sublimed sulfur were mixed in 70 mL
mixed solution of EG and DMF (VEG/VDMF=0.9). The precursor solution was
magnetically stirred for 1 h and subsequently added into a 100 mL Teflon-lined
autoclave. The autoclave was kept at 180 °C for 12 h in an oven. After cooling
down, the product was collected by centrifugation, washed with DI water and
absolute ethanol several times, and dried at 60 °C for 12 h under vacuum. Similarly,
to obtain the GF-CoS2/CoS electrode, the GF (1.3 cm × 1.3 cm × 3 mm) was placed
inside the precursor solution and the reaction temperature was kept at 180 °C for
12 h. After cooling down, the GF loaded with CoS2/CoS heterojunction was washed
in an ultrasonic cleaner by water several times until no obvious CoS2/CoS particles
were observed in the wastewater stream andfinally dried at 60 °C for 12 h under
vacuum. For comparison, the pure CoS2and CoS were also synthesized using a
similar process via tuning the mixed solvent of DMF and EG. When VEG/VDMF=
0.5 and 2, the products were CoS2nanospheres and CoS, respectively. Similarly, in
the GF-CoS2and GF-CoS electrode experiments, the GFs were inserted into the
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Fig. 5Configuration and performance of the polysulfide/iodide redoxflow batteries (SIFBs).aScheme of the proposed SIFB cell configuration.bThefirst

charge and discharge curves of SIFBs based on graphite felt (GF), GF-CoS2, GF-CoS2/CoS, and GF-CoS electrodes with N115 and N117 as the separator at

20 mA cm−2with the 50% state of charge (SOC).cThe galvanostatic cycling energy efficiency of the SIFBs at 20 mA cm−2.dThe discharge polarization

and power density curves of the SIFBs at 50% SOC.eThe polarization curves of both charge and discharge with the sameflow cell at 50% SOC.fThe

electrochemical impedance spectroscopic (EIS) plots of SIFBs with GF, GF-CoS2, GF-CoS2/CoS, and GF-CoS electrodes in the frequency range of 100 kHz

to 100 mHz with 5 mV ac oscillation

Table 3 Summary of simulation results from EIS spectra of
GF, GF-CoS2, GF-CoS2/CoS, and GF-CoS electrodes,
respectively

Electrode Rs[Ωcm2] Rct1[Ωcm2] Rct2[Ωcm2]

GF 6.39 3.66 36.6
GF-CoS2 6.74 1.03 4.19
GF-CoS2/CoS 4.84 0.46 2.40
GF-CoS 6.26 0.84 2.83

EISelectrochemical impedance spectroscopy,GFgraphite felt
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corresponding precursor solution and the reaction temperature was kept at 180 °C
for 12 h. Finally, the GF-CoS2and GF-CoS electrodes were collected. Their mass
loadings on GF were calculated through the weight change of the GF. The mass
loadings of CoS2, CoS2/CoS, and CoS on the GF were 1.07, 0.83, and 1.12 mg cm−2,
respectively.

Assembly of aqueous SIFBs. The Supplementary Fig. 23 showed the configura-
tions of aqueous SIFB cells. Theflow cell used in this study was similar to previous
literature reports with interdigitatedflowfields and a geometric active area of
1.69 cm2(1.3 × 1.3 cm2)1. Carbon papers (Beijing Jinglong Carbon Technology Co.,
Ltd.) were used as the current collector. The GF, GF-CoS2, GF-CoS2/CoS, and GF-
CoS electrodes were used as both positive and negative electrodes. Commercially
available Nafion membranes (N115 and N117) were utilized as separators. First,
membranes were treated with 5% H2O2under 80 °C for 1 h and then were
transferred to 5% H2SO4at 80 °C for 1 h. Finally, 1 M NaOH aqueous solution was
used to change the H-type (i.e., proton conductive) Nafion membranes to Na-type
(i.e., Na+conductive) under 80 °C for 2 h. The membranes were rinsed in DI water
for 30 min to wash away the chemicals after each step. Electrolytes were prepared at
room temperature under continuously bubbling argon gas for 30 min to prevent
oxidation by oxygen before the use. Two half cell bodies with the GF, GF-CoS2, GF-
CoS2/CoS, or GF-CoS electrodes as both positive and negative electrodes and the
Nafion membrane (N115 and N117) in between were assembled in the ambient air.
A peristaltic pump (BT100LC, Baoding Chuang Rui Precision Pump Co., Ltd) was
used to drive electrolytes through theflow cell and reservoirs. Silicone tube
(1.6 mm inner diameter) was used to circulate the electrolyte through the system.

Characterization. The as-prepared products were characterized on an XRD
(Bruker-D8 advance) equipped with a Cu Kαradiation source (λ=1.5418 Å) at a
scanning rate of 6 ° min−1; X-ray tube voltage and current were set at 40 kV and
40 mA, respectively. SEM, TEM, and HAADF-STEM images were taken with an
FEI Nova NanoSEM NPE218, JEM-2100, and JEM-ARM200F, respectively. The
samples were prepared by dropping ethanol dispersion of samples onto carbon-
coated copper TEM grids using pipettes and dried under ambient condition. EELs
were recorded using an FEI Talos F200X equipped with super-EDX and energy
filter (Gatan GIF Quantum ER 965) operated at 200 kV under STEM mode. By
using Gatan Quantum 965 with dual EELs capability, both low- and high-loss
region were collected near simultaneously, which allows accurate measurement of
chemical shifts as EELs SI analysis was carried out. XPS was performed on an AXIS
ULTRA DLD X-ray photoelectron spectrometer. UV-Vis absorption spectrum was
obtained from Lambda 750S (Perkin Elmer, Inc., USA). Elemental content was
tested by EDX and ICP-optical emission spectroscopy (iCAP7600). Raman spectra
were recorded by a DXR Raman spectrophotometer (Thermo Fisher Scientific) at
an excitation radiation wavelength of 532 nm.

Visualized adsorption test. The GF, GF-CoS2, GF-CoS2/CoS, and GF-CoS with
the same mass were added into 10 mL of iodide (5.2 mM NaI+1.3 mM I2)or
polysulfide (12 mM Na2S2) aqueous solution separately, and the mixtures were
vigorously stirred 12 h to realize through adsorption. The UV-Vis spectroscopy of
the solutions was further recorded for comparison.

Electrochemical measurements. CV tests were performed in a three-electrode
configuration with a Zahner Zennium CIMPS-1 electrochemical workstation. For
fabrication of the working electrodes, 10 mg of catalysts (for example, CoS2/CoS)
was dispersed in 500μL of DI water, 500μL of isopropanol, and 20μL of 5 wt%
Nafion solution to form a homogeneous ink. Ten microliters of the catalyst ink was
loaded onto a glassy carbon electrode of 3 mm in diameter. Then the electrode was
dried at room temperature. The electrochemical studies were recorded with a
three-electrode system containing an aqueous solution of 4 mM NaI+0.5 M NaCl
or 0.06 M Na2S+0.02 M S+0.5 M NaCl at a scan rate of 50 mV s−1at room
temperature, in which Pt sheet and Ag/AgCl electrode worked as the counter
electrode and the reference electrode, respectively. The Mott–Schottky plot was
characterized in a three-electrode system containing a 0.5 mol L−1Na2SO4solu-
tion, in which Pt worked as the counter electrode, the samples as the working
electrode, and Ag/AgCl as the reference electrode, respectively.

Flow cell tests. The galvanostatic characterizations of the SIFB cells were con-
ducted on battery testing system (LAND, CT2001A, Wuhan LAND electronics Co.,
Ltd). The electrolyte volume was 5 mL for both 2.0 M NaI+0.5 M I2catholyte and
2.0 M Na2S2anolyte and the electrolyteflow rate wasfixed at 10 mL min−1

throughout all the experiments. The theoretical capacity was calculated by cath-
olyte (the iodide part), which was 5 mL of 2.0 M NaI+0.5 M I2, with a nominal
capacity of 134 mAh. The charge process is limited to the capacity-limiting factor
for the full cell. Theflow cell was galvanostatically charged to 50% SOC (capacity
cutoff) and discharge to 0.1 V voltage cutoff. Theflow cell was operated at current
densities from 15 to 50 mA cm−2. During the cycle test, the electrolytes arefilled
with N2. The extended cycling experiment was conducted at 20 mA cm−2. Using
the Zahner Zennium CIMPS-1 electrochemical workstation, at the charged state,
the EIS measurement was conceived in the frequency range of 100 kHz to 100 MHz
with 5 mV ac oscillation.

Computational methods. In order to optimize both CoS2and CoS structures, the
exchange correlation function, Perdew, Burke, and Ernzerhof of the generalized
gradient approximation with Koelling–Hamon relativistic treatment and spin
polarization assumption is employed. Broyden–Fletcher–Goldfarb–Shanno geo-
metry optimization is used for cell optimization (atfixed internal stress). The
interaction between valence electrons and the ionic core is described by using On-
The-Fly-Generation ultra soft pseudo potential. The kinetic cutoff energy for
convergence test is 300 eV, ak-point set mesh (3 × 3 × 1) parameter is used for
Brillouin zone sampling56,57. The threshold for self-consistentfield iterations used
is 2.0 × 10−6eV atom−1. The convergence tolerance parameters of the optimized
calculation are the tolerance for energy 2.0 × 10−5eV atom−1, the maximum force
of 0.05 eV Å−1, and maximum displacement of 2 × 10−3Å58,59.

Data availability
The data underlying Figs. 1, 2a–g, and 6d, 6f and Supplementary Figs. 3–5 and 21 are
provided as a Source Datafile. The other data that support thefindings of this study are

available from the corresponding author on reasonable request.
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