
Adjoint Dynamics of Stable Limit Cycle Neural Networks

Piotr A. Sokół, Ian Jordan, Eben Kadile, Il Memming Park∗

Department of Neurobiology and Behavior

Stony Brook University, NY, USA

{piotr.sokol, ian.jordan, eben.kadile, memming.park}@stonybrook.edu

Abstract

Exploding and vanishing gradient are both major

problems often faced when an artificial neural network

is trained with gradient descent. Inspired by the ubiq-

uity and robustness of nonlinear oscillations in biologi-

cal neural systems, we investigate the properties of their

artificial counterpart, the stable limit cycle neural net-

works. Using a continuous time dynamical system in-

terpretation of neural networks and backpropagation,

we show that stable limit cycle neural networks have

non-exploding gradients, and at least one effective non-

vanishing gradient dimension. We conjecture that limit

cycles can support the learning of long temporal depen-

dence in both biological and artificial neural networks.

1. Introduction

Due to the long, cascaded function compositions of the

forward computation in artificial neural networks, the

gradient signal often loses information as it is prop-

agated backwards through the network. This phe-

nomenon, known as the vanishing and exploding gra-

dient problem [1, 2], is exacerbated for deep feedfor-

ward neural networks (FNNs) and recurrent neural net-

works (RNNs). Additionally, forward computation of

FNN/RNNs are typically implemented with stable dy-

namics, which leads to perturbations being forgotten af-

ter a short period of time (or layers of network) [3].

1.1. Proposed solutions to the vanishing and ex-

ploding gradient problem

Many approaches, notably gradient clipping [2], batch

normalization [4], and special activation functions such

as ReLU, have been proposed to alleviate the explod-

ing gradient problem. At the same time, architec-

tures such as ResNet [5] and Neural ODE [6] and tai-

lored recurrent units such as LSTM [7, 8] and GRU [9]

have been used to tame the vanishing gradient problem.

∗This work was supported by NSF IIS-1734910 and Institute for

Advanced Computational Sciences (IACS) Jr. Researcher Award.

More recently, recurrent neural networks with special

norm-preserving weight constraints have also been pro-

posed [10, 11]. However, these approaches do not com-

pletely ensure the numerical and dynamical stability of

the backpropagating gradients.

1.2. Fine tuning problem in neural systems

A recurring idea for taming the vanishing gradient prob-

lem is to mimic a continuous attractor that does not for-

get. For example, LSTM without the forgetting gate

stores information in its cell state that implements a

continuous attractor, and the linear part of the unitary

RNNs preserves the magnitude of the state vector. Sim-

ilarly, many population dynamics models in theoret-

ical neuroscience, such as models of working mem-

ory are designed to have long temporal memory. But

unfortunately, the required fine tuning of parameters

makes neural networks that implement continuous at-

tractor using inherently nonlinear biophysical neurons

brittle [12, 13].

On the other hand, (nonlinear) oscillations can be

found throughout neural systems at multiple temporal

and spatial scales. Single neurons can show oscillations

of multiple time scales and recurrent connections with

delays and time constants generate oscillations in net-

works of a few neurons to large-scale oscillations de-

tectable in the field potentials. This ubiquity of oscil-

lation suggests that it is a robust dynamical phenomena

that does not require fine tuning. In this paper, we argue

that these spontaneous nonlinear oscillation dynamics

may provide a mechanism for long temporal network

state memory.

2. Background

2.1. Continuous-time neural networks

An n-dimensional RNN or an FNN with constant width

n can be written as,

xt+1 = f̃ (xt, θ) (1)

where x ∈ Rn denotes the state vector (for RNN) or the

activations (for FNN), and θ denotes the parameters of



the network. For the FNN, x0 corresponds to the input

of the network, and xT corresponds to the output where

T corresponds to the number of layers. If we instead

take x to be a function of a continuous time-variable,

then the above system is the Euler approximation of

the following ordinary differential equation (ODE) with

step-size 1 [14, 6]:

ẋ = f̃ (x(t), θ)−x(t)≕ f (x(t), θ) (2)

Let D f (x, θ) be the Jacobian of f evaluated at x

and θ, and φ(t) be a solution to equation (2) on the time

interval [0,T ]. The time evolution of a perturbation δ of

the system at time 0 defines the forward sensitivity of

x corresponding to the trajectory φ:

δ̇ =D f (φ(t), θ)δ (3)

The forward sensitivity will prove essential to our study

of continuous-time backpropagation.

2.2. Adjoint dynamics and backpropagation

To study the backpropagating gradient, we define the

adjoint system of the trajectory φ as,

ψ̇ = −D f (φ(t), θ)⊤ψ. (4)

Note that both (3) and (4) are time varying linear dy-

namical systems. In [15], it was shown that, for all

t ∈ [0,T ], the scalar ψ(t)⊤δ(t) remains constant. This

reveals that x and ψ jointly follow Hamiltonian dynam-

ics, where the Hamiltonian is given byH = ψ⊤ f (x, θ).

Importantly, the adjoint dynamics strongly relates

to the backpropagating gradient. Suppose we have a

cost function L : Rn → R, which we evaluate on the

terminal point φ(T ), then we may compute the deriva-

tive of L(φ(T )) with respect to the initial condition φ(0)

using the adjoint system. More precisely, if we have

the initial condition φ(0) = α and we obtain the termi-

nal condition β = φ(T ) by solving (2), we may com-

pute ∇αL(β) by setting the terminal condition ψ(T ) =

∇xL(β), where ∇x denotes the standard gradient, and

then integrating backwards in time to obtain ψ(0). This

integration of the adjoint system backwards in time is

the continuous time analog of backpropagating the gra-

dient of an error function through a network. In general,

dL

dθ
= ψ⊤(0)

∂ f (φ(0))

∂θ
+

∫ T

0

ψ⊤(t)
∂ f (φ(t))

∂θ
dt (5)

where ψ(T ) = ∂C/∂φ(T ). Hence, if the adjoint inte-

grated backwards in time vanishes or explodes, so does

the gradient.

2.3. Forward sensitivity and adjoint dynamics

As hinted above, the dynamics of the forward sensitiv-

ity and backward integrated adjoint dynamics behave

equivalently. First consider the n-dimensional, inhomo-

geneous, time varying, linear system

ż = A(t)z+w(t), z(0) = c (6)

where A(t) is bounded. A classic result shows that the

solution of 6 can be written given the solutions of the

corresponding homogeneous system [16].

Lemma 1 (Solution of a linear inhomogeneous system).

For a system of the form (6), with a matrix differential

equation describing the homogeneous dynamics

Ẏ = A(t)Y (7)

the solution of the inhomogeneous dynamics is given by

z(t) = Y(t)c+
∫ t

0
Y(t)Y−1(τ)w(τ)dτ.

Note that Y(t) is non-singular, allowing us to study

its matrix inverse. Using d(Y−1) = −Y−1(dY)Y−1, de-

noting Ψ(t) =
(

Y−1
)⊤

we have,

Ψ̇ = −A⊤(t)Ψ (8)

which corresponds to (4). Any product of the

form Y(t)Y−1(τ) can be equivalently be expressed as
(

Ψ(τ)Ψ(t)−1
)⊤

. Furthermore, we can rewrite the solu-

tion to equation (6) in the following equivalent form:

z(t) = Y(t)c+

∫ t

0

Y(t)Ψ⊤ (τ) w(τ)dτ (9)

This reveals that Ψ and Y have equivalent dynamics.

Running Y−1(t) forward in time is the same as running

Y(t) backwards in time. We now identify the two linear

time-varying systems with forward sensitivity and the

adjoint systems, which allows us to state the following:

Proposition 2. Given the dynamical system ẋ = f (x, θ),

for any trajectory, the dynamics of the forward sensitiv-

ity, δ(t), are equivalent to the dynamics of the adjoint

running backwards in time, ψ(−t).

3. Result

Using the adjoint we can express the gradient of the

loss function with respect to the parameters as defined

in (5). As noted in [2], the difficulty in optimizing this

object primarily stems from computing the adjoint (as

a continuous-time analogue for the Jacobian matrices).

Therefore we investigate the applicability of using limit

cycle initializations to circumvent adjoint instability.

From proposition 2, it is easy to verify the con-

clusions of [1] that stable fixed points induce vanish-

ing gradients, since the time-reversed dynamics of the

adjoint is also stable. The converse also holds for ex-

panding dynamics and exploding gradients. Although

the continuous-time versions of many RNNs, e.g. tanh

RNNs and GRU-RNN [14], are ultimately bounded in



-1 0 1

x1

-1

0

1
x2

terminal pointasymptotically stable eigenfunction

marginally stable eigenfunction

time derivative

flow

Figure 1: Phase portrait and adjoint state trajectories of a 2D

limit cycle RNN. The flow φ of ẋ along with its time derivative

φ̇, and the two eigenfunctions of the adjoint Ψ.

the state space, the corresponding time-reversed adjoint

dynamics can be unbounded. However, if the dynam-

ics of forward computation forms a stable limit cycle,

we can show that the time-reversed adjoint dynamics is

nontrivially periodic (hence bounded).

Extensions of Lyapunov’s direct method can be

used to show that the stability of limit cycles depends

on parts of the spectrum of the forward sensitivity [17].

Unlike in the analysis of equilibria of differential equa-

tions, the eigenvalues that determine the stability of the

periodic orbit are the ones associated with eigenvectors

lying in a plane traverse to the flow. To see this, let

us define the mondromy matrix C of a T -periodic limit

cycle, φ(t) as [16]:

C :=

∫ t0+T

t0

D f (φ(τ))dτ (10)

and let ∆(t) be the fundamental matrix solution to the

forward sensitivity, with ∆(t0) = I. Then ∆ satisfies

∆(t0 +T ) = C∆(t0). Importantly, we also have that the

second time derivative of the flow of (2) satisfies

φ̈(t) =D f (φ(t))φ̇(t). (11)

Thus the function φ̇(t) is a trajectory of the forward

sensitivity dynamics (3). The fact that φ̇(t) is T -periodic

and the identity from (11) allow us to write

φ̇(t) = φ̇(t+T ) =Cφ̇(t)

which in turn implies that φ̇(t) is an eigenfunction of

C with eigenvalue 1. We can now state our two main

theorems.

Theorem 3 (Andronov-Witt [17]). Let φ(t) be a non-

trivial, periodic solution of (2) with period T . If the

0 10 20 30 40 50

t

-1

-0.5

0

0.5

1

x
2

-1

-0.5

0

0.5

1

x
1

0 10 20 30 40 50

t

-1

-0.5

0

0.5

1

x
2

Figure 2: Time series of the trajectories presented in Fig. 1.

Recall that the adjoint dynamics ψ are solved backward in

time.

eigenvalue of C which is equal to unity, has algebraic

multiplicity one and if the absolute values of all remain-

ing characteristic multipliers of C are less than unity,

then the solution φ(t) is Lyapunov stable.

Moreover, for hyperbolic systems Theorem 3 de-

fines an equivalent condition on the stability of the for-

ward sensitivity.

Theorem 4. If the periodic trajectory associated with

a forward-stable limit cycle is hyperbolic, then the pe-

riodic, non-autonomous system defining the forward

sensitivity (3) is bounded-input bounded-output stable.

Moreover, the flow of the forward sensitivity ϕ has one

marginally stable [18] eigenfunction which is the time

derivative φ̇(t) of the flow of the original dynamics

ẋ= f (x). The remaining n−1 eigenfunctions are asymp-

totically stable.

Consider a globally stable limit cycle neural net-

work such that without any input the state evolution al-

ways converges to a limit cycle. Near the limit cycle,

the neural network is governed by Theorem 4 which

implies that the backpropagating gradient converges to

a periodic orbit. Hence, it does not vanish nor explode.

As a demonstration, we take a vanilla 2-

dimensional tanh-RNN that exhibits a globally attract-

ing limit cycle [14, 19]. In Fig. 1, the black trajec-

tory in the state space represents the stable limit cycle.

Its derivative and corresponding adjoint dynamics have

same asymptotic behavior: oscillating periodically as

seen in Fig. 2. If the adjoint is initialized on the asymp-

totically stable manifold, it quickly decays to the origin

(magenta in Figs). Although the adjoint is non-zero in

both cardinal dimensions, interestingly, effectively only



one dimension (associated with the marginally stable

eigenfunction) conveys the gradient.

One practical usage could be to use them as initial-

ization, akin to the ideas of critical or orthogonal ini-

tialization [20]. To construct a larger dimensional sys-

tem, one can take a direct sum of independent 2-D sta-

ble limit cycle neural networks. If the problem has long

temporal dependence, the phase of nonlinear oscillators

can retain the information over much longer (theoreti-

cally infinite) time interval. However, during training,

the network may quickly bifurcate out of stable limit

cycle behavior [21].

4. Discussion

Inspired by neural oscillations, we have proposed sta-

ble limit cycle neural network as a new component in

designing FNN/RNN systems, for instance, but not lim-

ited to, as an initialization scheme. This adds to the

prior research on phasor neural network [22].

One brain region where such putative computation

may occur is the olivo-cerebellar loop. This system is

known to play a strong role in motor learning, as well as

more abstract temporal sequence learning tasks. More-

over, the inferior olivary neurons exhibit non-linear os-

cillations. There are a natural abundance of tasks with

periodicity and long temporal dependence, including

motor behaviors, such as walking, as well as tasks re-

quiring well-timed responses. We conjecture that stable

limit cycle dynamics could allow for temporal learning

in the cerebellum.

References

[1] Yoshu Bengio, Patrice Simard, and Paolo Frasconi,

“Learning long-term dependencies with gradient de-

scent is difficult,” IEEE Trans. Neural Netw., vol. 5, no.

2, pp. 157–166, 1994.

[2] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio,

“On the difficulty of training recurrent neural networks,”

in International Conference on Machine Learning, Feb.

2013, pp. 1310–1318.

[3] Wolfgang Maass and Eduardo D Sontag, “Neural sys-

tems as nonlinear filters,” Neural Comput., vol. 12, no.

8, pp. 1743–1772, Aug. 2000.

[4] Sergey Ioffe and Christian Szegedy, “Batch normaliza-

tion: Accelerating deep network training by reducing in-

ternal covariate shift,” in International Conference on

Machine Learning, 2015.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 770–778.

[6] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and

David K Duvenaud, “Neural ordinary differential equa-

tions,” in Advances in Neural Information Process-

ing Systems 31, S Bengio, H Wallach, H Larochelle,

K Grauman, N Cesa-Bianchi, and R Garnett, Eds., pp.

6571–6583. Curran Associates, Inc., 2018.

[7] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-

term memory,” Neural Comput., vol. 9, no. 8, pp. 1735–

1780, Nov. 1997.

[8] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins,

“Learning to forget: continual prediction with LSTM,”

Neural Comput., vol. 12, no. 10, pp. 2451–2471, Oct.

2000.

[9] Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-

cehre, Dzmitry Bahdanau, Fethi Bougares, Holger

Schwenk, and Yoshua Bengio, “Learning phrase rep-

resentations using RNN Encoder-Decoder for statistical

machine translation,” June 2014.

[10] Martin Arjovsky, Amar Shah, and Yoshua Bengio, “Uni-

tary evolution recurrent neural networks,” Nov. 2015.

[11] Eugene Vorontsov, Chiheb Trabelsi, Samuel Kadoury,

and Chris Pal, “On orthogonality and learning recurrent

networks with long term dependencies,” Jan. 2017.

[12] David MacNeil and Chris Eliasmith, “Fine-tuning and

the stability of recurrent neural networks,” PLoS One,

vol. 6, no. 9, pp. e22885, Sept. 2011.

[13] Joel Zylberberg and Ben W Strowbridge, “Mechanisms

of persistent activity in cortical circuits: Possible neural

substrates for working memory,” Annu. Rev. Neurosci.,

vol. 40, pp. 603–627, July 2017.

[14] Ian D Jordan, Piotr Aleksander Sokol, and Il Memming

Park, “Gated recurrent units viewed through the lens of

continuous time dynamical systems,” June 2019.

[15] Lev Semenovich Pontryagin, Vladimir Grigorevich

Boltyanskii, Revaz Valerianovich Gamkrelidze, and Ev-

genii Frolovich Mishchenko, Mathematical theory of

optimal processes, Macmillan company, 1964.

[16] Carmen Chicone, Ordinary Differential Equations with

Applications, Springer Science & Business Media, Sept.

2006.

[17] Lev Semenovich Pontryagin, Ordinary Differential

Equations: Adiwes International Series in Mathematics,

Pergamon, May 2014.

[18] Gene F. Franklin, J. David Powell, and Abbas Emami-

Naeini, Feedback Control of Dynamic Systems, Pearson,

Boston, 7 edition edition, May 2014.

[19] Randall D Beer, “On the dynamics of small Continuous-

Time recurrent neural networks,” Adapt. Behav., vol. 3,

no. 4, pp. 469–509, Mar. 1995.

[20] Piotr Sokol and Il Memming Park, “Information geom-

etry of orthogonal initializations and training,” (under

review), Nov. 2019.

[21] Kenji Doya, “Bifurcations in the learning of recurrent

neural networks,” in [Proceedings] 1992 IEEE Interna-

tional Symposium on Circuits and Systems, May 1992,

vol. 6, pp. 2777–2780.

[22] André J Noest, “Phasor neural networks,” in Neural In-

formation Processing Systems, D Z Anderson, Ed. 1988,

pp. 584–591, American Institute of Physics.


