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a b s t r a c t

Accurate forecasting of peak electricity load has long been an active area of research in electricity
markets, and power systems planning and operation. Unanticipated climate-induced surges in peak load
can lead to supply shortages causing frequent brownouts and blackouts, and large-scale socioeconomic
impacts. In this paper, the climate sensitivity of daily peak load is characterized by leveraging advanced
statistical machine learning algorithms. More specifically, a rigorously tested and validated predictive
model based on the Bayesian additive regression trees algorithm is proposed. Results from this study
revealed that maximum daily temperature followed by mean dew point temperature are the most
important predictors of the climate-sensitive portion of daily peak load. Among the non-climatic pre-
dictors, electricity price was found to have a strong positive association with the daily peak load. Eco-
nomic growth was observed to have an inverse association with the daily peak load. While the proposed
framework is established for the state of Texas, one of the most energy-intensive states with geographic
and demographic susceptibility to climatic change, the methodology can be extended to other states/
regions. The model can also be used to make short-term predictions of the climate-sensitive portion of
daily peak load.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Ensuring the resilience of the grid, considering a multi-
dimensional perspective [1], is of utmost importance to minimize
the socio-economic impacts in face of extreme events [2]. Accurate
estimates of peak electricity load is an integral component of
electric power system adequacy planning, contributing to its
resilience [3]. Unlike many other commodities, electricity cannot be
stored. Thus, supply and demand have to be matched in real-time
to ensure that power is available to the consumers when the
switch is turned on [4]. Adequate generation capacity and demand-
side resources have to be specifically planned and built, not only to
meet the maximum load and minimize blackout risks [5], but also
l and Systems Engineering,
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for efficient policy planning and implementation [6]. Accurate
forecasts of daily peak load can help electric utilities and energy
professionals make optimal resource allocation decisions, assess
the security of power systems, and adequately schedule mainte-
nance plans. Over- or under-estimation of daily peak load will
result in either excess or inadequate supply respectively, resulting
in inefficient investments and expenditure patterns. The evolution
of daily peak load is not deterministic and depends on many un-
certain, stochastic factors [7]d including climate variability, so-
cioeconomic condition, technology change, and population growth
as well as infrastructure and building types [8].

In this paper, a generalized, probabilistic predictive framework
is proposed, using a state-of-the-art Bayesian ensemble-of-trees
algorithm. The proposed framework is used to characterize the
sensitivity of daily peak load to climate, as climate variability and
change has been projected to have significant impacts on the
evolution of peak electricity load [9]. While the proposed data-
centric framework can be applied to any geographical area
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(contingent on data availability), geographical scope of the pro-
posed analysis is focused on a single state. The rationale for limiting
the spatial scope of this analysis is that the consumption patterns of
electricity consumers are generally a function of where and how
they live [10], and is influenced by regional differences in climate,
infrastructure systems, policies, and societal norms [11].

The state of Texas is selected as a case study due to a number of
reasons such as the state's infrastructure vulnerability to climate
and weather [12]. The climate variance in Texas is attributed to its
unique location and is considered to be the consequence of in-
teractions between several weather and climate factors such as the
movement of seasonal air masses (e.g., Arctic fronts) from Canada,
subtropical west-winds from the Pacific Ocean and Northern
Mexico, tropical cyclones or hurricanes from the Gulf of Mexico, a
high pressure system in the Atlantic Ocean (aka the Bermuda High)
and the movement of jet streams (see Fig. 1) [13].

According to the U.S. Energy Information Administration (EIA),
Texas produces more electricity than any other state, generating
almost twice as much as Florida which is the second highest
electricity-producing state [14]. More than three-quarter of the
state's electricity is generated by independent power producers
and industrial generators [14]. It is noteworthy that not only is
Texas the largest electricity generating state in the country, but also
one of the largest electricity consuming states, and has experienced
rapid growths in both electricity demand and generation in recent
years [14]. Texas experienced a notable population increase of
around four million people, making the state rank among the top
five largest growing states in the U.S [14]. With rapid population
growth in Dallas, Houston, Austin and San Antonio metropolitan
areas, the state of Texas has led the nation in terms of annual
population growth since 2006 [14].

The largest share of retail electricity sales in Texas belongs to the
residential sector [14], which is most sensitive to climate variability
and change [15]. A significant fraction of the households in the state
use electricity as their primary heating fuel in the winter [14]. The
demand for air conditioning is also substantially higher during the
hot summer months. In recent years, Texas has observed multiple
episodes of unexpected demand surge during periods of heat-
waves. The Electric Reliability Council of Texas (ERCOT) region
broke all previous records of peak demand during the 2016 hot
summer months across the state [14]. Texas, therefore, exhibits a
Fig. 1. A schematic of the weather and climate systems in the state of Texas [13].
very interesting case study for understanding the nexus between
climate variability and peak electricity load to inform adequate
investment decisions related to electric infrastructure capacity
expansions and/or reliable power systems planning and operation.

The proposed data-centric predictive framework goes beyond
the existing deterministic models with linear architecture, and uses
the state-of-the-art statistical learning techniques to probabilisti-
cally assess the climate sensitivity of daily peak load in the state of
Texas. The models' performance is evaluated based on both
goodness-of-fit and out-of-sample predictive accuracy to ensure
high generalization performance as well as its ability to explain the
variance in the historical data. Then, the ‘best model’, selected
based on both the generalizablity and goodness-of-fit principles,
was used to characterize the climate-sensitivity of daily peak load
in Texas.

The structure of this paper is as follows. In Section 2, a brief
overview of the existing literature is presented, highlighting the
current knowledge gaps. The data used in the analyses is discussed
in Section 3. Sections 4 and 5 outline themethodologies and results.
Section 6 concludes the paper by summarizing the key findings and
delineating the future research directions.

2. Literature review

There exists a significant body of literature in power system load
forecasting. The bulk of the existing research in this area has pri-
marily focused on short-term load forecasting (STLF). The goal of
STLF is to predict the future hourly and daily loads for a service area
of interest, and plays a key role in various electricity system oper-
ations planning such as identifying optimum spinning reserve ca-
pacity as well as conducting reliability analysis and security
assessment.

STLF has been modeled using a wide range of approaches
including (a) simulation; (b) time series models; (c) regression
analysis and statistical machine learning; and (d) and hybrid
models. Below is a brief outline of the current state of knowledge in
short-term load forecasting. The review starts with highlighting
studies based on simpler generalized linear regression and time-
series models and then progresses to more complex approaches
based hybrid modeling techniques as well as machine learning
techniques.

Haida and Muto [16] presented a regression-based daily peak
load forecasting method consisting of a regression model to predict
the nominal load, and a learning method to predict the residual
load. Haida et al. [17] expanded this model by introducing two
trend processing techniques designed to reduce errors in transi-
tional seasons. Ramanathan et al. [18] leveraged multivariate
regression modeling using historical data for the Puget Sound Po-
wer and Light Company. In this research, the statistical models
were trained using the hourly load and weather observations
during the fall and winter months of 1983e1990, in order to esti-
mate short-term peak load. More specifically, a number of multiple
linear regression (MLR) models were developed for each hour of
the day. The lead-time for the forecast models ranged from 16 to
40 h into the future.

Alfares and Nazeeruddin [19] presented a regression-based
daily peak load forecasting method for a whole year, including
holidays. To forecast load precisely throughout a year, various
seasonal factors were considered. In the winter season, average
wind chill factor was also added as an explanatory variable. In the
transitional seasons (e.g., spring and fall), a transformation tech-
nique was used; and for holidays, a holiday effect load was
deducted from the normal load.

Papalexopoulos et al. [20] developed a hybrid regression-based
approach to improve the short-term system load forecasting for the
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Pacific Gas and Electric Company in California. The initial model
consisted of an autoregressive integrated moving average (ARIMA)
peak load model and a MLR peak load model, which used historical
data from last 15 days in the inland valley and mountain regions.
The results from these two models were combined using a
weighted average scheme in the initial model. The improvedmodel
removed the ARIMA peak forecast model and only relied on the
MLR model. Amjady [21] proposed a time series model for short-
term hourly forecasting of peak load. The results revealed that
the proposed ARIMA model provided a better fit to the actual
hourly peak load compared to the artificial neural network (ANN)
models. Auffhammer et al. [9] used a time-series model to
parameterize the relationship between peak electricity load and
temperature, and estimated temperature response functions for
daily peak load and total daily energy consumption for the entire
U.S. They found peak load, at both the daily and annual levels, to be
more sensitive to climate change than the total daily consumption.
Their results showed that the impacts of climate variability on peak
load varied substantially across geographical space, driven by dif-
ferences in the distribution of heating and cooling degree days as
well as differences in heating and cooling technologies.

Fan et al. [22] used a MLR methodology along with eight other
modelsdincluding ARIMA, support vector regression (SVR),
random forests (RF), multi-layer perceptron (MLP), boosting tree
(BT), multivariate adaptive regression splines (MARS), and k-near-
est neighbors (kNN)dfor predicting the next-day commercial en-
ergy consumption and peak electricity loads for the tallest
buildings in Hong Kong. The authors concluded that SVR and RF
models outperformed traditional statistical models such as MLR
and ARIMAmodels. The analysis identified the peak power demand
and daily energy consumption of seven days and fourteen days
before the prediction day as the top four most important inputs for
the predictive models based on the random forest algorithm.

Sigauke and Chikobvu [23] developed a predictive model for
daily peak demand in South Africa, using the multivariate adaptive
regression splines (MARS) methodology. They demonstrated the
model's capability of yielding a significantly lower root mean
square error (RMSE) when compared to piecewise regression-
based models. Liu et al. [24] developed a semi-parametric, two-
component modeling procedure for forecasting hourly load in the
eastern United States. The developed model consisted of a
nonparametric component and a parametric ARIMA component.
The model estimation was carried out using a modified back-fitting
algorithm and was found to have a high predictive performance.

Lusis et al. [25] assessed the effects of calendar dates and fore-
cast granularity (length of each forecast interval) on the accuracy of
day-ahead household load forecast using various statistical
learning techniques. Their statistical analysis demonstrated that
the model based on regression trees yielded a better overall ability
to predict the household load for the next 24 h.

Chen et al. [26] applied a hybrid SVR model, both with and
without multi-resolution wavelet decomposition (MWD) pre-
processing, to predict hourly electric power load in a hotel build-
ing. With 15-dimensional parameters of 29 clustered days as the
training sample, a nonlinear SVRmodel was developed. Al-Musaylh
et al. [27] evaluated the performance of data-driven models based
on MARS, SVR and ARIMA algorithms, for predicting short-term
electricity demand using Queensland area's aggregated demand
data from the Australian Energy Market Operator. For identifying
significant inputs for the three prediction horizons (0.5 h, 1.0 h, and
24.0 h), they changed the electricity demand data by applying
partial autocorrelation functions. They found that the model based
on the MARS algorithm yielded the most accurate results for 0.5 h
and 1.0 h forecasts, whereas the SVR model was better for a 24.0 h
horizon.
Beccali [28] used Elman's recurrent ANN algorithm to predict
(with a 1 h lead time) the intensity of the electric power supplied to
households in a suburban area of Palermo (Italy) between June 1,
2002 and September 10, 2003. The forecasting performance of the
model was tested by comparing the model predictions with the
electric current intensity recorded during a summer week. The
research pointed out the importance of a thermal discomfort index
for a simple but effective evaluation of the conditions affecting the
occupant behavior, and thus influencing the household electricity
consumption related to the use of heating, ventilation and air
conditioning (HVAC) appliances.

Saini and Soni [29] predicted daily peak load using a feed for-
ward neural network (FFNN) based upon the conjugate gradient
(CG) back propagation methods. They incorporated the effects of
previous day peak load information, the type of day, and eleven
weather parameters. The training dataset was selected using a
growing window concept. To reduce the redundancies in the input
space, principal component analysis (PCA) was leveraged. The
resulting dataset was used to train a 3-layered neural network
(NN). By comparing four different techniques, they concluded one-
step secant back propagation algorithm (OSS-BP) to be the best
learning technique for peak load forecasting.

Mukherjee and Nateghi [10] investigated the predictive perfor-
mance of several different parametric and non-parametric statis-
tical learning methodsde.g., generalized linear model (GLM),
generalized additive model (GAM), multivariate adaptive regres-
sion splines (MARS), random forest (RF) and Bayesian additive
regression trees (BART)dto investigate the nexus between total
electricity consumption and climate variability. They found that the
model based on the BART algorithm outperformed all the other
statistical learning methods.

Despite the significant recent advances in the field, as outlined
above, some knowledge gaps remain. More specifically, many of the
existing models focus primarily on forecasting the load (with
various lead times), and do not necessarily focus on characterizing
the climate-demand nexus, which is the focus of this study. In
addition, the models that focus on capturing the sensitivity of daily
peak load to climate variability either (a) are based on ‘rigid’
modeling assumptions (e.g., based on multiple linear regression
and/or time series modeling); which while interpretable, tend to
underperform in terms of predictive accuracy [30], or (b) focus
primarily on developing accurate predictive models with very little
emphasis on model inferencing and interpretation. This paper aims
to bridge these gaps by proposing a generalized, probabilistic pre-
dictive frameworkdgrounded in statistical learning theory to (a)
develop an accurate predictive model, based on both in-sample-fit
and out-of-sample predictive accuracy, (b) identify the key pre-
dictors of the climate-sensitive portion of daily peak demand, and
(c) characterize and interpret the relationship between the key
climate predictors and the daily peak load. While the state of Texas
is selected as a case study to demonstrate the applicability of the
proposed framework, the methodologies presented in this paper
are generalizable to other regions.

3. Data source, description, and visualization

This section summarizes the data used to train, test and validate
our daily peak load prediction models. The explanatory variables
are discussed in Section 3.1, the response variable is summarized in
Section 3.2, and the full data-set is presented in Section 3.3.

3.1. Input data (explanatory variables) preparation

The two categories of explanatory variables, namely, the
weather time-series, and the socio-economic data are used as input
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variables in this analysis. The datasets are described in the
following subsections.

3.1.1. Weather data
Daily weather data was obtained from the National Climatic

Data Center (NCDC) ranging from 01-January-2002 to 31-
December-2017 from multiple weather stations across the
geographical area of Texas. The various weather variables (see
Table 1) include: daily mean temperature (TEMP), mean dew point
temperature for the day (DEWP), daily mean sea level pressure
(SLP), mean visibility for the day (VISB), daily mean wind speed
(WDSP), maximum daily sustained wind speed (MXSPD),
maximum daily temperature (TMAX), minimum daily temperature
(TMIN), and daily total precipitation (PRCP).

3.1.2. Socio-economic data
Socio-economic datawas obtained from the U.S. Bureau of Labor

Statistics (BLS) [31]. The data include variables such as per capita
real gross state product (GSP) and unemployment percentage for
the state of Texas as observed in a particular year. Monthly elec-
tricity price for the state of Texas was obtained from the U.S. Energy
Information Administration (form EIA-826). The socio-economic
variables are added to the analysis to serve as control variables in
the models. Such non-climatic variables control for the socio-
economic changes in the state of Texas over the period of analysis
(2002e2017), and thus help to isolate the climate-induced effects
on the electricity demand [10].

3.2. Response variable preprocessing

Hourly load data for the state of Texas was obtained from the
“Hourly Load Data Archives” reported by the Electric Reliability
Table 1
Weather variables description.

Field Description Unit

TEMP Mean temperature for the day Fahrenheit
DEWP Mean dew point temperature for the day Fahrenheit
SLP Mean sea level pressure for the day Millibars to tenths
VISB Mean visibility for the day Miles to tenths
WDSP Mean wind speed for the day knots to tenths
MXSPD Maximum sustained wind speed of the day knots to tenths
TMAX Maximum daily temperature Fahrenheit
TMIN Minimum daily temperature Fahrenheit
PRCP Total daily precipitation Inches

Fig. 2. Daily peak electricity load (a) before det
Council of Texas (ERCOT) [32]. Also, the daily electricity sales data
was extracted for the state of Texas from the U.S. Energy Informa-
tion Administration (EIA) database [14]. To obtain the daily peak
load data, maximum of the hourly loads recorded in a day, over the
period of 01 January 2002e31 December 2017 was estimated.
Similar to previous studies [33], the estimated daily peak load time-
series data was detrended. Detrending was performed to remove
the effect of population increase and technological growth over the
years, and thus isolating the influence of climate factors on the daily
peak electricity load. In order to detrend the response variable, the
yearly average of the daily peak load was first calculated for the
entire period of study in the following way [33]:

P ¼
X2017

y¼2002

X365
d¼1

Eðd; yÞ (1)

The adjustment factor Fadj for each year was calculated from:

Fadj ¼ PðyÞ�1
X365
d¼1

Eðd; yÞ (2)

Daily peak load data was adjusted by dividing it by the adjust-
ment factor for that year, i.e.,

Eadjðd; yÞ ¼
Eðd; yÞ
Fadj

(3)

In all the equations above, y denotes the variable “year” and
d denotes the variable “day”. The final analysis and model devel-
opment were conducted with the trend-adjusted daily peak load
data.

Fig. 2 (a) and (b) show the raw and detrended daily peak loads,
respectively. It is evident that the slight upward linear trend in
Fig. 2 (a) is removed after applying the de-trending methodology
(Fig. 2 (b)). The trend-adjusted daily peak load time-series varies
seasonally over the months, signaling climate sensitivity of the
daily peak electricity load (Fig. 3).

Fig. 3 shows the violin plot of daily peak electricity load across
the months. A violin plot combines a box-plot and a kernel density
plot in one graph. More specifically, in a violin plot, a rotated kernel
density plot is overlain on the two sides of a box-plot. Fig. 3 shows
that there are significant seasonal variations in peak electricity
load. It is observed that in TX, the daily peak load is much higher
during the summer months, which is expected since the use of air-
conditioning is highest during the hottest days of summer, and
rending (left), (b) after detrending (right).



Fig. 3. Violin-plot of response variable for different months.
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lowest during the temperate winter months and intermediate
seasons (i.e., fall and spring).
3.3. Final dataset

The final dataset was created by combining the daily peak
electricity load, weather variables, and socio-economic informa-
tion, as described in Sections 3.1 and 3.2 above. Also, the days of the
week is included as a control variable since there are important
differences in electricity load patterns between weekdays and
weekends. The load on different weekdays can also be quite
different. For example, Mondays and Fridays (adjacent to week-
ends) may have structurally different loads than Tuesday through
Thursday. This is particularly true during the summer season. The
summary statistics of the response data is presented in Table 2.

Fig. 4 depicts the correlation among all the selected predictors as
well as the trend-adjusted response variable. In this figure, each of
the variables included in the analysis is shown on the diagonal. At
the bottom of the diagonal, the bivariate scatter plots with a fitted
line, and at the top of the diagonal, the value of the correlationwith
the associated significance levels (as stars) are displayed. The sig-
nificance level is denoted by stars, representing p-values of 0.001
(***), 0.01 (**), and 0.05 (*). The size of the numbers in the top di-
agonal represent the degree of correlation, with larger numbers
(and sizes) indicating higher correlation levels and smaller
numbers (and sizes) representing lower correlation levels. Fig. 4
reveals that the relationship between most of the predictors and
the daily peak load (response variable) is not linear. Thus, analyzing
the sensitivity of daily peak load using linear regressionmodels will
likely miss the potentially statistically significant non-linear re-
lationships. Significant linear correlations are observed between
the WDSP (mean wind speed) and MXSPD (maximum sustained
wind speed)dwith a Pearson correlation of 0.78dand between the
PC.-Real.GDP (per capita gross domestic product) and the PCT.U-
nemployment (percentage of unemployment)dwith a Pearson
correlation of �0.48. Moreover, the temperature variables DEWP,
TMAX, TEMP and TMIN are highly correlated with one another
(Pearson correlation coefficient: r>0:8). Therefore, to reduce
Table 2
Descriptive statistics of daily peak load (GW) during 01/01/2002e12/31/2017.

Mean Median Std. Dev. Kurtosis Skewness Min. Max.

36.26 34.27 9.02 0.44 0.89 19.27 71.09
masking effects due to correlation, three separate models are
developed: a model with DEWP and TMAX, a second model using
TMIN, a third model using TEMP, keeping all the other predictor
variables same in all the models (details described in Section 5).

4. Methodology

This section presents the generalized research framework pro-
posed in this study, and provides a brief theoretical background of
the models developed to evaluate the climate sensitivity of the
daily peak load for the state of Texas.

4.1. Research framework

In this research, a generalized, probabilistic predictive frame-
work is leveraged to evaluate the climate sensitivity of the daily
peak load. Fig. 5 describes the various steps and flow of the pro-
posed research. As discussed before, data on hourly electricity de-
mand (from which the daily peak load was calculated) was
collected for the state of Texas, together with various climate and
weather variables as well as socio-economic information. Several
types of data transformation techniques were implemented
including (i) trend-adjustment of the peak load data, (ii) spatio-
temporal aggregation for the climate and weather data, and (iii)
inflation-adjustment on the socio-economic data, as needed. The
datasets were then aggregated from various sources using year,
month, and day as the key variables to generate the “Final Dataset”.
This step was followed by the model development phase which is
described in the subsequent subsections. As evident from this
framework, while data specific to the state of Texas was used to
demonstrate the applicability of the proposed research, the
approach and methodology is transferable and can be extended to
other geographical regions.

4.2. Statistical learning and model development

Supervised learning theory is leveraged to characterize the
climate-daily peak load nexus. Broadly speaking, the goal of su-
pervised learning is to estimate a function capable of predicting a
statistical moment of a target variable (e.g., daily peak load)
conditioned on one ormore predictor variables (e.g, various climate
variables), such that the loss function of interest (measuring the
distance between the predictions and the observed values) is
minimized. Supervised statistical learning methods can be para-
metric, semi-parametric or non-parametric. Parametric models
generally assume a particular functional form that relates the input
variables to the response. The assumed functional forms help with
ease of estimation and model interpretability, but come at the cost
of predictive accuracy since the assumptions (such as normality
and linearity) often do not hold for real data. Non-parametric
models do not make many assumptions about the distribution of
the response variable or the shape of the function relating the
response to the predictors. Instead, they use the data in novel ways
to approximate the dependencies. Their predictive power is
generally superior to parametric models owing to their better
approximation of the true functional forms. Moreover, non-
parametric methods are data-intensive and highly dependent on
data quality. In this research, the data is trained with a range of
parametric and non-parametric supervised learning models to
investigate the sensitivity of daily peak load to climate change.
More specifically, the data is trained with generalized linear models
(GLM), generalized additive models (GAM), multi-adaptive
regression splines (MARS), and ensemble tree based models
including random forest (RF), Bayesian additive regression trees
(BART) and neural network (NN). While the overview of each of



Fig. 4. Correlation matrix plot.
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these algorithms is discussed in Appendix A, a brief explanation of
the BARTalgorithm is provided in the following section since it was
found to best capture the daily peak loadeclimate nexus.
4.2.1. Bayesian Additive Regression Trees (BART)
BART is a non-parametric, Bayesian, sum-of-trees model as

shown in the equation below [34].

y¼
Xm
i¼1

g
�
x; Tj;Mj

�þ ε; where ε � N
�
0; s2

�
(4)

gðx; T;MÞ is the function which assigns the parameters of the ter-
minal nodes of trees to the predictors x. Regularization priors are
used to control model's complexity and restrict the overwhelming
influence of the large tree components. Regularization priors
eliminate an individual tree's effect of being unduly influential on
the sum-of-trees model [34].

4.2.2. Predictive accuracy vs. model interpretability
As mentioned earlier, flexible non-parametric methods gener-

ally have higher predictive power than the parametric models. The
improved predictive power, however, comes at the cost of ease of
interpretability. Partial dependence plots (PDPs) are efficient
methods of conducting variable inference for non-parametric
models. PDPs help in understanding the individual effects of the
predictor variables (xj) on the response variable in a ceteris paribus
condition (i.e. controlling for all the other predictors). Mathemati-
cally, the estimated partial dependence function is given as [35]:

bf �xj� ¼ 1
n

Xn
i¼1

bf �xj; x�j; i
�

(5)



Fig. 5. Research framework.
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Here, bf denotes the statistical model; n denotes the number of
observations in the training dataset; x�j denotes all the variables
except xj . The estimated PDP of the predictor xj provides the
average value of the function bf when xj is fixed and x�j varies over
its marginal distribution.
4.3. Bias variance trade off

The generalization performance of a predictive model hinges on
the ability to simultaneously minimize the bias and variance of the
model. Cross validation is one of the most widely used methods for
balancing bias and variance [30]. The method of k-fold cross vali-
dation is used to estimate predictive accuracy. K-fold cross-
validation involves randomly dividing the data into k equally-
sized subsets. In each iteration, the model is fitted to all the data
subsets except the kth held-out subset, and the predictive accuracy
is calculated based on the model's performance on the kth held-out
subset. In this paper, the out-of-sample model performance was
estimated using a 20% holdout cross validation approach. The out-
of-samplemean square error (MSE) andmean absolute error (MAE)
are then calculated using the following formula [10]:

MSEout�of�sample ¼
1
k

�Xn
k¼1

1
m

�Xm
i¼1

�
yi;k � byi;k�2

�	
(6)

MAEout�of�sample ¼
1
k

�Xn
k¼1

1
m





Xm
i¼1

�
yi;k � byi;k�






	

(7)

k¼ number of times cross validation is performed; m¼ number of
holdouts during each cross validation yi;k ¼ ith actual observation
that was randomly holdout during the kth cross-validationbyi;k ¼ predicted ith observation during the kth cross validation us-
ing the model developed using the training set data during the kth

cross validation.
The model selection is conducted based on both in-sample fit

and out-of-sample predictive accuracy. The in-sample error is
measured using the in-sample MSE, MAE, and adjusted R2 while
the out-of-sample error was measured using the out-of-sample
MSE and MAE as discussed above.

5. Results

Using each algorithm described in the methodology section,
three sets of models are developed, namely, one using TMAX and
DEWP (Model 1) [i.e., not including TEMP and TMIN], one using
TEMP (Model 2) [i.e., excluding DEWP, TMAX, and TMIN], and
finally a model using TMIN (Model 3) alone [i.e., excluding DEWP,
TMAX, and TEMP], while keeping the non-temperature variables
the same in all the models. The rationale for the development of
three separate models are: 1) including highly correlated variables
within the same model could mask the individual effects of the
variables while inferencing; and 2) assessing separate models can
help identify which temperature variable(s) best capture(s) the
climate sensitivity of daily peak load. The results showed that the
model with DEWP and TMAX outperformed the other two models.
This is not surprising since (1) DEWP accounts for humidity which
has been shown to be a key predictor of the electricity demand for
space conditioning [10]; and (2) using TMAX can help capture
temperature extremes in Texas which have occurred with a higher
frequency in recent years leading to unanticipated demand surges
during the hot spells [36].

5.1. Model performance

Table 3 summarizes the goodness-of-fit and predictive perfor-
mance of each of the trained models. The percentage improvement
(%imp) metric is also provided in Table 4, indicating the percentage
improvement yielded by each of the trained models over having no
statistical model and using the historical average as a predictor (i.e.,
the ‘mean-only’ model).

The predictive model is selected based on the BARTalgorithm as
the final model, since it outperformed all the other models in terms
of out-of-sample predictive accuracy (Tables 3 and 4). In terms of
in-sample goodness of fit, the model based on the Random Forest
algorithm ranked top, indicating potential over-fitting of the data
(Table 3).

To further examine the performance of the final best model



Table 3
Comparative assessment of the model performance.

# Models R2 In-sample err. Out-of-sample
err.

RMSE MAE RMSE MAE

1 Mean-only -NA -NA -NA 9.399 8.202
2 GLM 0.526 6.499 5.375 6.494 5.363
3 GAM 0.874 3.337 2.626 3.379 2.660
4 MARS-1 0.861 3.518 2.761 3.530 2.772
5 MARS-2 0.880 3.264 2.542 3.274 2.545
6 MARS-3 0.886 3.186 2.487 3.239 2.515
7 MARS-4 0.886 3.186 2.487 3.240 2.516
8 RF 0.980 1.350 1.044 3.112 2.441
9 BART 0.930 2.500 1.928 2.866 2.213
10 NN 0.899 3.000 2.316 3.382 2.641

Table 4
Models' percentage improvement over the ‘null’ (i.e., mean-only) model.

Models Out-of-sample error (%imp)

RMSE MAE

GLM 31 35
GAM 64 68
MARS-1 62 66
MARS-2 65 69
MARS-3 66 69
MARS-4 65 69
RF 67 70
BART 69 73
NN 64 68

Fig. 7. QQ-plot of the BART model (the red dashed lines in the QQ-plot represent 95%
confidence intervals). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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(based on BART), the model predictions versus observed values of
daily peak load (Fig. 6) is plotted. The 95% credible intervals provide
56.09% coverage for all the observations (Fig. 6a) whereas the 95%
prediction interval offers a 97.09% coverage (Fig. 6b).

The observed deviations at the tails of the Q� Q plot of the
residuals (Fig. 7) is attributable to other unobserved variables
(probably non-climatic factors) that influence the daily peak load
demand, but are not captured in the climate-peak load nexus
model presented in this paper.
5.2. Model inference

The ranking of the important predictors influencing daily peak
electricity load is given in Fig. 8. The figure helps identify maximum
temperature (TMAX) as the most important predictor followed by
mean dew point temperature (DEWP), total monthly electricity
price (Tot.Price.Monthly), and per capita real gross state product
(PC.Real.GDP).
Fig. 6. a. In-Sample fitted vs. actual values using 95% Credible Intervals.
The partial dependencies between the top six key predictors and
daily peak load are plotted in the following sub-sections to char-
acterize the marginal influence of the key predictors on the daily
peak electricity demand.

5.2.1. Influence of maximum temperature and dew point
temperature

The PDP of daily peak electricity load versus the maximum
temperature (TMAX) (Fig. 9a) shows an initial inverse relationship
between load and increasing temperatures until 70+F/21+C and
then an increasing trend thereafter. The marginal plot indicates
that for a 30+F/17 �C increase in TMAX (70+F/21+C d 100+F/38+C),
the daily peak load increases by 20 GW. Peak load is relatively
insensitive to maximum temperature in the range of 67+F/19+C to
74+F/23+C since the need for space heating or cooling is minimum
during the temperate ranges. The increasing trend associated with
temperatures less than 67+F/19+C indicates increasing peak load
due to increased space heating during the colder winter days.

Fig. 9b illustrates the PDP of daily peak electricity load versus
the average daily dew point temperature. Three distinct regions are
apparent in the figure. For days with colder dew point tempera-
tures (i.e., colder and humid winter days with temperatures below
30+F/-1+C) the daily peak load increases as the dew point tem-
perature decreases. This can be attributed to increased demand for
space heating with decreasing temperatures. The peak load is
b. In-Sample fitted vs. actual values using 95% Prediction Intervals.



Fig. 8. The ranking of the importance of the explanatory variables in contributing to the accuracy of the final best model.

Fig. 9. a. Influence of mean dew point temperature and b. Influence of maximum temperature on daily peak load.

Fig. 10. Influence of total monthly electricity price on daily peak load.
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minimum for DEWP in the range of 30+F/-1+C d 40+F/4+C and
rapidly increases for warmer days (i.e. DEWP above 40+F/4+C).

5.2.2. Relationship with electricity price
Electricity price is found to be one of the most important non-

climatic predictor of daily peak load. As discussed before, elec-
tricity price (along with other socio-economic variables) is used as
a ‘control variable’ to isolate the effect of climate on daily peak
demand. However, since it is found to be among the key predictors
of daily peak demand, a brief discussion of its relationship with the
response variable is included. Fig. 10 shows that the daily peak
electricity load exhibit a positive correlation with the monthly
mean electricity price which is in line with the existing literature
[37] that indicates higher prices are charged during times of peak
demands.

5.2.3. Relationship with per capita gross state product
Fig.11 shows that the peak electricity load is decreasingwith the

economic growth in terms of per capita real gross domestic product
(PC.Real.GDP). Economic growth is positively associatedwith socio-
technical advancements such as more investments in new energy-
efficient equipment. Moreover, with the significant growth of cyber
infrastructure and development of IOTs (internet of things), the key
driver of economy has shifted away from heavy manufacturing
industries to cyber business and service-oriented industry. A recent
study by the American Council for an energy efficient economy
argued that since the mid-1990s, much of the observed downward
trend in the energy demand intensity associated with the economic



Fig. 11. Influence of per capita gross state product on daily peak load. Fig. 13. Influence of maximum sustained wind speed (Knots to tenth) reported for the
day on daily peak load.
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growth can be attributed to the growth of such less energy-
intensive cyber businesses [38].

5.2.4. Relationship of unemployment with peak load
The association of unemployment with the daily peak load

(Fig. 12) shows a random fluctuation. Although there is no signifi-
cant upward or downward trend in the marginal peak load with
increasing unemployment rates, the levels of uncertainty changes.
The uncertainty bands (shaded gray area) are wider at the higher
percentage of unemployment, indicating a higher variability in
peak loads associated with higher unemployment rates.

5.2.5. Influence of maximum sustained wind speed
Daily peak electricity load has an inverse relationship with

increasing maximum sustained wind speeds (Fig. 13). This is intu-
itive, as sustained winds lower the feels-like temperature, and in-
crease the rate of evaporation from the human body as well as the
built environment, and therefore, creating a cooling effect. Thus,
during breezy/windy days the lower daily peak loads is attributable
to lower electricity demands for space cooling [39].

6. Conclusion

Effective adequacy planning in the electricity sector is requisite
for achieving grid resilience, as it helps minimize significant supply
surplus/shortages and thusmitigates unpredictable electricity price
hikes and rolling blackouts, which often result in large-scale socio-
economic losses. Effective adequacy planning hinges on access to
accurate forecasts of demand patterns, particularly under
Fig. 12. Influence of PCT. Unemployment (%) on daily peak load.
exogenous shocks such as climate variability and change.
In this paper, the climate sensitivity of daily peak load is

investigated using advanced machine learning algorithms. A
generalized probabilsitic predictive framework is proposeddbased
on a Bayesian tree-ensemble algorithmdto assess the climate
sensitivity of peak load and to identify its key predictors. Although
the proposed model is used to characterize the climate sensitivity
of the daily peak load, it can also be leveraged for short-term (daily)
peak load predictions as it outperforms all the other models in
regards to explaining the variations in data as well as out-of-sample
predictions.

The results revealed that maximum daily temperature followed
by mean dew point temperature of a day are the most important
predictors of the climate sensitive portion of the daily peak load in
the state of Texas. Moreover, it is observed that when themaximum
temperatures lie in the range of 67+F (19+C)d 74+F(23+C) and dew
point temperatures in the range of 30+F(-1+C) d 40+F(4+C), the
peak load is relatively temperature-insensitive. The results also
indicated an inverse relationship between sustained wind speeds
and daily peak load, with peak daily loads decreasing at higher
sustained wind speeds. This inverse relationship is attributable to
the cooling effect of the sustained winds.

Among the non-climatic predictors, the socio-economic vari-
ables such as electricity price, per capita gross domestic product,
and percentage of unemployed populations were found to have a
strong association with the daily peak load. The results indicated a
strong positive association between the daily peak load and the
electricity price, whereas the association between percent unem-
ployed and the daily peak load was more uncertain. Economic
growth was observed to have an inverse association with the peak
load, mostly attributable to increased investments in energy effi-
cient equipment as well as amove away frommanufacturing-heavy
industry to service/cyber industry.

The proposed framework in this study is transferable to other
service areas, and can be used by utility planners and operators
across the country to characterize the climate sensitivity of peak
load. Moreover, the inferences from the Texas case study is of
particular interest to the stakeholders in the ERCOT region that
have faced frequent supply inadequacy risks during the more
frequent episodes of heatwaves over the past decade. The study
results demonstrate that the existing approaches based on para-
metric models (prevalent in many regions of the country including
ERCOT) underperform in terms of predictive accuracy and thereby
might underestimate the requisite reserve margins. Moreover, the
existing approaches based on air temperature alone (that do not
account for humidity levels) lead to understating the climate-
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sensitivity of peak load in the state, with big implications for grid
resilience in the ERCOT region.
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Nomenclature

BART: Bayesian Additive Regression Trees
DEWP: Mean Dew Point for the Day
GAM: Generalized Additive Model
GLM: Generalized Linear Model
GDP: Gross Domestic Product (millions of USD measured in 2009 real dollars)
GW: Gigawatt-hour
MAE: Mean Absolute Error
MARS: Multi Adaptive Regression Spline
MXSPD: Maximum Sustained Wind Speed for the Day
NN: Neural Network
PRCP: Total Daily Precipitation
RF: Random Forest
RMSE: Root Mean Squared Error
SLP: Mean Sea Level Pressure for the Day
TEMP: Mean Temperature for the Day
TMIN: Minimum Daily Temperature
TMAX: Maximum Daily Temperature
VISB: Mean Visibility for the Day
WDSP: Mean Wind Speed for the Day
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