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Abstract—The next-generation spectrum access system (SAS)
for the Citizens Broadband Radio Service band is equipped with
environmental sensors (ESCs) to detect the presence of non-
informed incumbent users, which allows the SAS to dynamically
reassign spectrum resource for low privilege users to avoid
interference. However, the performance of existing single-node
detection model is limited by the sensor’s geo-locations; whereas
a naive distributed sensing network with improved detection
accuracy introduces a high bandwidth overhead due to the
frequent communication of spectrum data. In addition, many
existing coherent spectrum sensing methods are not feasible for
CBRS band due to the unknown operational characteristics of
incumbent military wireless applications.

To address these issues, we propose a machine learning
based non-coherent spectrum sensing system: (F)eder(a)ted
(I)ncumbent Detection in CB(R)S (FalR). FalR leverages a
communication-efficient distributed learning framework, feder-
ated learning, for ESCs to collaborate and train a data-driven
machine learning model for incumbent detection under minimal
communication bandwidth. Our preliminary results show that
the federated learning method can exploit the spatial diversity of
ESCs and obtain an improved detection model comparing to a
naive distributed sensing and centralized model framework. We
evaluate the FalR model with a variety of spectrum waveforms at
varying SNRs. Our experiments showed that FaIR improves the
average detection accuracy compared to the single-node method,
using a fraction of the bandwidth compared to the naive multi-
node method.

Index Terms—CBRS, Incumbent User Detection, Environmen-
tal Sensing Capabilities, Federated Learning

I. INTRODUCTION

To address the increasing demand for connectivity in con-
gested wireless spectrum and to promote dynamic access to
spectrum resources, the Federal Communications Commission
(FCC) opened the protected spectrum in 3.5 GHz for cellular
carriers and opportunistic spectrum sharing. The newly opened
spectrum between 3550 MHz to 3700 MHz, also known
as Citizens Broadband Radio Service (CBRS) band, was
originally occupied by authorized federal and grandfathered
Fixed Satellite Service users. Under the rules promulgated by
the FCC, these users, now defined as the incumbent access
users, will share the spectrum with commercial users and other
licensed occupants of CBRS band. However, the incumbent
users still have the highest access privilege within the CBRS
band and will be protected from harmful interference from
users of lower access privileges.

To protect incumbent operations, the FCC prescribes an
automated frequency coordinator, known as Spectrum Ac-
cess System (SAS), to coordinate activities between users
in different access tiers. Similar to the case of Television

White Spaces management systems, the basic SAS maintains
a spectrum geo-database, which registers the locations and
operating frequencies of licensed users. The SAS leverages
the database to define protection contours for incumbent users.
Some incumbent users, such as Navy radar operators, are
ship-borne systems with the ability to move from shore to
sea. Therefor, the SAS is also equipped with Environmental
Sensing Capabilities (ESC) to enable ad-hoc detection of
incumbent users.

The ESCs are essentially spectrum sensors that monitor the
radio frequency activities within its bandwidth. The sensors
identify the unique radio waveform of the incumbent users and
report the detected events along with their geo-locations to the
SAS, which triggers protective measures. In specific cases, the
SAS would require low-tier users to reduce power below the
rule limits, force spectrum channel re-assignments, or cease all
communications to grant priority to incumbent operations [3].
In July 2019, the FCC approved Federated Wireless, Inc and
the collaboration of CommScope and Google to evaluate ESC
operations for the 3.5GHz Band [4]. The ESC experimentation
of both parties led the FCC to approve the Initial Commercial
Deployment (ICD)of the CBRS [5] shortly after.

Spatial diversity of the ESCs is critical in incumbent detec-
tion [15]. However, the proposal for the CBRS [3] authorizes a
single-node ESC model, which has limited performance when
being deployed across a vast region. Under a single-node ESC
model, the spectrum datum is collected from one ESC at a
fixed geo-location, therefore is prone to errors due to wireless
channel impairments such as noise, reflections, fading, and
obstructions. Also, a single-node ESC model needs to scan
the entire spectrum of the CBRS band, and may miss sporadic
signals due to limited sweep speed.

In contrast to the single-node model, a multi-node ESC
model employs many sensor nodes to monitor the spectrum
simultaneously. Each ESC senses the spectrum from its loca-
tion and uploads the spectrum data to a central server. The
server analyzes the aggregated data to mitigate the errors due
to channel fading and improve the detection accuracy. As a
result, a naive multi-node ESC model is more accurate in terms
of detection but incurs a high communication overhead due to
the aggregation of raw spectrum data.

To better addresses the trade-off between accuracy and
communication efficiency, we propose a new ESC for the SAS
architecture: Federated Incumbent Detection in CBRS (FalR).
We employ a new distributed machine learning technique, Fed-
erated Learning, which allows the SAS to obtain a data-driven
machine learning model that captures the spectrum characters



of incumbent users, without aggregating the spectrum data
from ESC sensors. Our solution distributes the machine learn-
ing task to the ESC sensors, allowing the ESCs to collaborate
as a loosely coupled federation to train a machine learning
model. During training, the Federated Learning procedure
enables ESCs to acquire the current detection model from a
central server, evaluate it with the local spectrum data, and
updates the model parameters intermittently. The central server
collects the updates occasionally from the ESCs, computes
their average, and applies it to the current model. Throughout
the process, raw spectrum data are not uploaded to the central
server, which minimizes the communication overhead.

The contributions of the paper are as follows: (1) We
compared different spectrum sensing methods, e.g., coherent
vs. non-coherent and single-node vs. multi-node, for the task
of CBRS incumbent detection, in terms of accuracy, commu-
nication overhead, and robustness against unknown waveform.
(2) We proposed a distributed sensing architecture that allows
ESCs under geo-spatial constraints to build a machine learning
model for incumbent detection. We further provided a learning
scheme to minimize the communication overhead on the SAS
network, by customizing the federated learning framework.
(3) We evaluated the detection accuracy and communication
throughput of the proposed approach through extensive sim-
ulations with real-world data captured in laboratory environ-
ment. Our experiments showed that FalR improves the average
detection accuracy compared to the single-node method, using
a fraction of the bandwidth compared to the naive multi-node
method.

II. RELATED WORKS

Incumbent detection recently has seen much of its research
at federally approved laboratories. Matched filter detection
methods, coherent and non-coherent, and support vector ma-
chine have been used in [2] and [1] to detect field-measured
signals of in-band incumbent radar systems with out-of-band
and LTE interference. Both of which use the dataset acquired
under the 3.5 GHz Radar Waveform Capture final report
[7] [8] provided to Department of Commerce. Sensitivity
and placement of ESC sensors has been studied [15] for
improving ESC network design to protect protect incumbents
given sensor constraints.

In other wireless classification tasks, recent works from
Jiang et al. [10] and Kibria et al. [11] identify the practical use
of neural networks and learning algorithms in next generation
wireless networks. Hong and Katti [9] construct several SVMs
using power information and extracted feature vectors from
interfered signals to construct a novel decision tree. O’Shea et
al. [16], [17], [18] built a RNN to detect radio anomalies using
GNU Radio generated dataset, and deep convolutional/residual
networks for modulation classification in the latter works.

Rajendran et al. [21] showed that for high signal-to-noise
ratio (SNR) conditions, simple Long Short Term Memory
(LSTM) models performed well enough in side by side com-
parison to complex Convolutional Neural Networks (CNN)
LSTM models from [27] and that CNN models performed well

in low SNR conditions (below -2dB), as in [17]. The work of
Lees et al. [13] present an evaluation report on incumbent
SPN-43 Navy radar detection using classical signal detection
theory, deep neural networks, and machine learning algorithm
using a proprietary spectrogram dataset, rather than I/Q vector
data.

Federated learning has been gaining more traction from its
recent introduction in McMabhan et al. communication efficient
learning work [14]. Konecny et al [12] explored reducing
the communication costs between highly distributed sensor
networks with many distributed client nodes using methods
of quantization, random rotations, and sub-sampling.

III. SAS AND INCUMBENT DETECTION

Based on the FCC rules, wireless users in CBRS band must
connect to the SAS to allow dynamic spectrum coordination.
These users can have full access to their allocated CBRS chan-
nels if no incumbent operators present within the spectrum.
The SAS leverage the ESC for detecting the incumbent wave-
form presence within the CBRS band and manages spectrum
allocation/reallocation for all CBRS devices.

The ESC sensors monitor the spectrum and periodically
send the spectrum data to the SAS. Once detecting the
presence of incumbent waveform within the spectrum data,
the SAS enforces FCC policy by re-assigning the wireless
channels, requesting the CBRS devices to back off from the
interfering frequency or demanding them to cease transmission
as necessary.

However, incumbent detection in CBRS band is difficult, as
the majority of incumbent systems are for military purposes
and have dynamic or unknown operational characteristics. For
instance, NTIAs Office of Spectrum Management and Institute
for Telecommunication Sciences has researched the incumbent
radar emissions characteristics for several use cases in ESC de-
ployment, and found that the radar signal characteristics vary
from system to system [22]. In reality, federal radar systems
are not required to submit parameter details or characteristics
of the transmission signal per the conditions provided in [3].

As a result, existing proposals for SAS mostly rely on
non-coherent methods, such as energy, pulse width, pulse
reception rate, and beam scanning interval [23], which require
little prior knowledge of the signals transmitted. However, the
detection accuracy of these methods is lower compared to
coherent approaches due to the limit of SNR wall [26]. To
improve the performance, recent results in machine learning
show that non-coherent signal detectors can be augmented by
sophisticated data-driven models such as deep neural networks
[17]. Unfortunately, the training process to obtain such models
often requires a large volume of spectrum data, which cannot
be accommodated by existing SAS network infrastructure.

IV. SYSTEM DESIGN GOALS

To improve detection accuracy and lower communication
overhead, we propose a distributed CBRS SAS system with
non-coherent incumbent detection capability. The method in-
tegrates a deep learning model with a distributed federated



learning framework to achieve accurate waveform classifi-
cation with minimal communication bandwidth. The design
goals of the system are listed as the following.

Non-coherent Detection An essential feature of our design
is the detection method remains non-coherent and requires no
prior knowledge of the incumbent signals. Per the FCC condi-
tions provided in [3], federal radar systems operating in CBRS
band do not have to provide the SAS with parameter details or
characteristics of the transmission signals. This ruling limits
the choices of CBRS incumbent detection to non-coherent
methods, which are not robust against variations in channel
noise and fading processes [26]. However, this disadvantage
can be partially addressed through self-adaptive algorithms,
such as machine learning, which automatic reconfigure the
detector parameters based on observed data [13], [17], [19].

Distributed Detection Our design aims to construct a data-
driven model of the incumbent signals through a distributed
multi-node approach. The detection capability of a single ESC
can be affected by wireless channel impairments such as noise,
spatial diffusion, fading, interference, noise, or the mobility of
incumbent users. An ESC sensor experiencing shadowing or
fading effects cannot distinguish between a vacant spectrum
and deeply faded incumbent signals. A distributed sensing
strategy compensates the wireless channel effects by placing
the ESC sensors across the region of interest. The spatial
diversity increases the likelihood for sensors to capture clear
samples of the incumbent signals, which allows the machine
learning algorithm to build an accurate signal model to facil-
itate detection.

Low Communication Overhead Centralized spectrum
sensing strategies are taxing to the SAS network since the
ESCs need to transfer a large volume of spectrum data to the
central SAS server for model training. Based on the database
maintained by the Wireless Innovation Forum, many ESCs
will be deployed into areas in remote locations, often under
extreme topography, congested wireless traffic, or lack of cel-
lular network connections. As a result, the backhaul of the SAS
network permits limited bandwidth for data communication,
which is not suitable for centralized data aggregation or data-
intensive distributed schemes. Federated learning by design
requires neither data aggregation nor the participation of every
client during model training [14], which significantly reduce
the data throughput on the SAS network.

High Detection Accuracy Correctly detecting and avoiding
the incumbent users is imperative to successful operations
in the CBRS band. A fine-tuned detector ensures accurate
detection and fast reaction from the SAS, which can be
achieved through an iterative algorithm optimizing the model
parameters. The use of federated averaging, (discussed in
VI-A), provides regularization benefits similar to the dropout
techniques [14], which improves the training algorithm’s ro-
bustness against data noise and produces more accurate models
for incumbent detection.
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Fig. 1: FalR integrated into the SAS architecture.

V. THE FAIR ARCHITECTURE

The FalR is an intelligent SAS architecture, which leverages
the computation power of ESC sensors to enable machine
learning based incumbent detection. It comprises of three main
components as shown in Figure 1: 1) multiple ESC sensors
deployed at different locations, e.g., the FalR Sensor/s (FS/s);
2) a federated SAS server, e.g., the FalR Master (FM). 3) the
network between FSs and FM, e.g., the FalR network.

1) FalR Sensors: (FSs) are distributed across the region
with commercial devices operating in the CBRS band. As
a distributed sensor, the FS offers a sensing solution to
the unique environment of the CBRS devices. The sensors
geo-location allows the sensor to learn a unique spectrum
environment. The disturbed sensors run both a federated global
model and the new localized model to evaluate performance
and select the optimal model to deploy.

2) FalR Master: (FM) is the centralized server that learns
from the distributed FS by using a technique called federated
averaging. The server controls the frequency of the federated
averaging protocol. The FM also provides each FS with an
initial base model to initialize the learning process for each
FS.

3) FalR Network: facilitates the interaction between the
FSs and FM. The FM provides each FS sensor with a
base model to apply a technique known as transfer learning,
known to benefit a distributed learning environment [6], which
initializes the neural network parameters, wg. Then, the sensor
applies new spectrum data to the model to learn the unique
environment. The FS trains its own local neural network
until satisfactory performance is evaluated and then the FS is
determined eligible to send parameter updates to the FM server
to be averaged. The participation in the federated averaging
protocol is strictly up to the clients, where not every client
participates. The server then averages the weight contributions
of participating clients. We discuss the advantage on the SAS
communication load using the federated averaging protocol of
FalR in Section VII-E.

VI. DETECT INCUMBENT SIGNALS THROUGH FAIR

To detect incumbent signals, the FalR employs the federated
learning techniques to train a classification model to differen-



tiate the waveform captures in CBRS band. The decentralized
approach, known as federated learning, coined by McMahan
et al. [14], allows training to continue at the client level.
Over time, clients contribute new parameter updates to build
a centralized model. Federated learning is characterized as
a low-communication as clients participate according to a
determined criterion. A naive distributed sensing network
that generates a heavy traffic load would be taxing to the
SAS. Thus, the defined federated learning framework details
a communication efficient method to minimize the congestion
in the SAS.

A. Model Learning

The objective function of the detection model is to classify a
waveform, x; as one of the known waveforms of certain mod-
ulation scheme, y;. In particular, our interests is to identify the
modulation scheme of the incumbent operator. Therefore, we
construct our neural networks to minimize the loss I(x;, y;; w)
of each client model due to some prediction with model
parameters w on the waveform and the predicted modulation.

If we have C' distributed ESC clients and K eligible par-
ticipants for federated averaging where nj, defines the sample
size for a participant, k¥ € K. Then we want to minimize the
loss function for each sensor, k&, such that

: 1 &

Juin, Jr(w) where Ji(w) = - ;l(m,,yz,w),
The aggregated loss function of the entire system can be
defined as F(w) = Zszl Ik (w).

A common approach use in distributed learning, as in
[24] and [20], is to take the gradients V.J(w) , of each
participating client, Vk € K, training step and average them
at the server to update the model Wit = Wt — nVF(w) ,
for VF(w) = Y5, =V Jy(w).

We define w}, as the weight parameters of of the k'"
participant and W as the weight parameters of the aggregated
global model at time ¢. Since a constant communication of
gradient updates after every training step would put a strain
the SAS, we take advantage of an equivalent form such
that for each client update, we have that Vk € K, w,i“ =
Wt — VJi(w'). Then we can write the average of all clients
weights as Wil = ,Ile %‘wt,jl. This allows each client
to perform multiple local updates, w! ™ = w} — nJy,(w}), on
local training data before sending updated parameters to the
centralized server. This result is called federated averaging and
provides communication-efficiency to a distributed learning

framework.

B. Signal Classification

When the distributed ESCs are trained, they can leverage the
distributed learning framework to detect the incumbent user in
new spectrum data. Once the incumbent user is detected, the
FalR network reports to the SAS for spectrum reassignment
when detected.

Fig. 2: Test environment using SDR to generate modulated
waveforms and capture using our federated sensing architec-
ture.

VII. EXPERIMENT PERFORMANCE AND EVALUATION

We evaluated the detection accuracy and communication
throughput of the FalR through extensive simulations with
real-world data captured in laboratory environment. The per-
formance of the FalR architecture is evaluated based on the
problem of signal modulation detection.

A. Test Environment

Our laboratory setup, as shown in Figure 2 is designed to
test and build spectrum sensing environments using waveforms
generated by signal generators and software-defined radios
(SDRs)s. We created one incumbent user using a Keysight
N5192A signal generator and two lower-tier users using two
Ettus N210 USRPs. We created two ESC sensors using two
additional Ettus N210 USRPs and a Keysight N9010B spec-
trum analyzer. Through the internal network, this setup allows
us to generate the synthetic modulated waveforms, capture
the results at the ESC sensors, and analyze fading effects at
different positions.

B. Dataset

The public use of CBRS is in its infancy. Currently, there
is infrequent occupancy within spectrum, i.e. occasional Navy
Radar systems, which are difficult to obtain. Also, there is
no publicly available I/Q CBRS data, including datasets with
incumbent waveforms. However, we assume (Navy) radar
systems to be identified as unique pulse modulated radar
or a radar systems that is not modulated, e.g. continuous
wave radar (Doppler). With the test environment in Figure
2, we generate synthetic versions of real-world modulated
waveforms by transmitting a generated signal over the channel
and capturing the signal under incurred channel affects. Our
synthetic waveform generation and waveform captures are
similar to the work of O’shea et. al. [19] using GNU Radio.

The captured waveforms are used in conjunction with the
signals in the RML2018.10a [18] dataset, a recent modulation
dataset used for waveform modulation learning tasks, to show
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Fig. 3: Performance evaluation of the optimal client for shal-
low CNN, VGG, and ResNet algorithms on 11 modulations
detecting 11 modulation schemes.

the strength of federated learning in detecting unique signals.
The dataset used to train the federated model and client
models has 2 million modulated samples containing 24
different modulated classifications. The data consist of signal
I/Q vectors where the modulated signals are generated at a 4
samples/symbol and sample length of 1024, i.e. 2x1024 1/Q
vector.

C. Deep Learning Models

First, a base model is selected for the FalR architecture.
The base model is the deep learning architecture selected
for the distributed network (i.e. ResNets). We explore the
use of several SoA deep neural network architectures found
in recent literature including shallow convolutional neural
network (CNN) [19], deep CNN (in the style of the VGG
CNN) [25], and residual network (ResNet) [18]. For brevity,
we direct the reader to the references above for the neural
network builds.

D. Results

The base model is trained on 400,000 randomly sampled
data from our lab environment captures and the RML2018.10a
dataset. The training set then contains a randomly sampled
distribution of different signal to noise ratio spectrum captures
for each modulation class. We select the number of clients,
FalR sensors, to be 10. Each client then runs transfer learning
with a unique 60,000 samples. To demonstrate performance
of federated learning, clients submit their parameter updates
after some time, 7. Then, the server aggregates the client
model weights, takes the federated average, and generates a
new global model. The new global model is evaluated with a
unique test set, unique to all sensors k € K.

Figure 3 shows the performance of the best performing
clients using the VGG, ResNet, and Shallow CNN algorithms
at varying SNRs. The best performing architecture is the
VGG network, surpassing 70% accuracy at a SNR of 2dB.
The ResNet performance is slightly below that of the VGG
network. The Shallow CNN, with the most poor performance,
displays the benefit of deep convolutional architectures.
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Fig. 4: Performance evaluation of the federated average model
compared to the optimal distributed sensor for shallow CNN
and VGG algorithms detecting 11 modulation schemes.

Figure 4 demonstrates the improved accuracy of using a fed-
erated approach vs selecting the best performirllg model from
the set of participating sensors, i.e. Wit = 37 | Zeqpitt vs
Wit = w;t“, where w;t“ is selected as the optimal edge
sensor from the set of all participating sensors, i, k € K.

We show that federated learning performs as well as current
state of the art research. We expect that federated learning can
improve performance in deployment, where sensors would be
distributed across different locations of a county. We expect
from the results of adding more clients to increase the gap
between a single client model performance and the federated
average model as a result from neural networks behavior given
a larger training set. This topic is a topic for future work in
this study.

E. Communication Load

To analyze the communication-efficiency of the FalR, we
first look at the communication load of the naive distributed
sensing framework. To generate a centralized model in the
naive disturbed sensing framework, the sensors collect raw
spectrum data and send the data through the ESC network
to build a centralized model. The clients are in-sync with
the server for real-time model building with k client sensors
and nj samples per client. We determine the communication
load over some time interval for the naive distributed sensing
framework to be N x D,, where N = Zle ng is the
number of waveform samples and D,, is the data size of the
waveforms, assumed to be the same for each sample.

Similarly, we can determine communication load for the
FalR architecture and the out-of-sync server updates via the
federated averaging protocol. We have the same number of
clients k, the server requests the federated averaging protocol
M -many times, and the clients parameter/weight has data size
Dy.. Then the communication load for the FalR arcitecture is
(kM) * Dj. With a complex deep learning network, generally
D,, < Dj, however the number of updates kM << N. That is,
kM is significantly smaller than N and therefore the volume
of the naive distributed sensing model is much larger.

Communication efficiency of the FalR frame work is
achieved by the following. First, sending weight parameter



updates does not congest the SAS by eliminating frequent raw
spectrum data communicating to a centralized server. Second,
allowing the FS to train over many captured waveforms before
averaging rather than averaging at every iteration, detailed in
Section VI-A, reduces the volume of communication to the
server. Last, not every FS participates in the federated averag-
ing protocol, only those that meet satisfactory conditions.

VIII. CONCLUSION

In this work, we provide a new SAS architecture for
communication efficient incumbent detection in CBRS band,
FalR. FalR augments existing non-coherent spectrum sens-
ing methods with data-driven machine learning model to
accurately detect incumbent users with unknown operational
parameters. It leverages a distributed sensing framework to
collects multiple CBRS spectrum data at different locations
to minimize errors due to channel noise and fading effect.
Most importantly, FalR demonstrates the feasibility to use
communication-efficient learning protocols, such as federated
averaging, to significantly reduce the communication overhead
without jeopardizing the incumbent detection accuracy.

Our preliminary results show that state of the art spectrum
classification algorithms in a federated learning environment
performs very well using our test environment generated and
captured waveform of In-phase and Quadrature (I/Q) data and
a recent radio classification dataset [18]. Our experiments
using a deep learning networks trained on 11 modulated
signals at varying SNRs shows improved accuracy from a the
optimal single client model to the federated averaged model
of 76.92% to 78.63% respectively.

IX. FUTURE WORK

The emerging field of deep learning for spectrum appli-
cations has limited dataset resources and, to our knowledge,
no dataset that is publicly available for CBRS (3.5-3.7 GHz)
learning tasks specifically. Our laboratory testbed allows us to
collect and generate real world-data in the CBRS. We plan
to collect more waveform data monitored from distributed
sensors to analyze the true potential of federated learning in
the CBRS. We would also like to investigate the relationship
of accuracy and client participation in the federated averaging.
We believe there to be a positive relationship between the num-
ber of clients and the federated averaged model performance
based on our small subset of client participation results.
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