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Abstract—The next-generation spectrum access system (SAS)
for the Citizens Broadband Radio Service band is equipped with
environmental sensors (ESCs) to detect the presence of non-
informed incumbent users, which allows the SAS to dynamically
reassign spectrum resource for low privilege users to avoid
interference. However, the performance of existing single-node
detection model is limited by the sensor’s geo-locations; whereas
a naive distributed sensing network with improved detection
accuracy introduces a high bandwidth overhead due to the
frequent communication of spectrum data. In addition, many
existing coherent spectrum sensing methods are not feasible for
CBRS band due to the unknown operational characteristics of
incumbent military wireless applications.

To address these issues, we propose a machine learning
based non-coherent spectrum sensing system: (F)eder(a)ted
(I)ncumbent Detection in CB(R)S (FaIR). FaIR leverages a
communication-efficient distributed learning framework, feder-
ated learning, for ESCs to collaborate and train a data-driven
machine learning model for incumbent detection under minimal
communication bandwidth. Our preliminary results show that
the federated learning method can exploit the spatial diversity of
ESCs and obtain an improved detection model comparing to a
naive distributed sensing and centralized model framework. We
evaluate the FaIR model with a variety of spectrum waveforms at
varying SNRs. Our experiments showed that FaIR improves the
average detection accuracy compared to the single-node method,
using a fraction of the bandwidth compared to the naive multi-
node method.

Index Terms—CBRS, Incumbent User Detection, Environmen-
tal Sensing Capabilities, Federated Learning

I. INTRODUCTION

To address the increasing demand for connectivity in con-

gested wireless spectrum and to promote dynamic access to

spectrum resources, the Federal Communications Commission

(FCC) opened the protected spectrum in 3.5 GHz for cellular

carriers and opportunistic spectrum sharing. The newly opened

spectrum between 3550 MHz to 3700 MHz, also known

as Citizens Broadband Radio Service (CBRS) band, was

originally occupied by authorized federal and grandfathered

Fixed Satellite Service users. Under the rules promulgated by

the FCC, these users, now defined as the incumbent access

users, will share the spectrum with commercial users and other

licensed occupants of CBRS band. However, the incumbent

users still have the highest access privilege within the CBRS

band and will be protected from harmful interference from

users of lower access privileges.

To protect incumbent operations, the FCC prescribes an

automated frequency coordinator, known as Spectrum Ac-

cess System (SAS), to coordinate activities between users

in different access tiers. Similar to the case of Television

White Spaces management systems, the basic SAS maintains

a spectrum geo-database, which registers the locations and

operating frequencies of licensed users. The SAS leverages

the database to define protection contours for incumbent users.

Some incumbent users, such as Navy radar operators, are

ship-borne systems with the ability to move from shore to

sea. Therefor, the SAS is also equipped with Environmental

Sensing Capabilities (ESC) to enable ad-hoc detection of

incumbent users.

The ESCs are essentially spectrum sensors that monitor the

radio frequency activities within its bandwidth. The sensors

identify the unique radio waveform of the incumbent users and

report the detected events along with their geo-locations to the

SAS, which triggers protective measures. In specific cases, the

SAS would require low-tier users to reduce power below the

rule limits, force spectrum channel re-assignments, or cease all

communications to grant priority to incumbent operations [3].

In July 2019, the FCC approved Federated Wireless, Inc and

the collaboration of CommScope and Google to evaluate ESC

operations for the 3.5GHz Band [4]. The ESC experimentation

of both parties led the FCC to approve the Initial Commercial

Deployment (ICD)of the CBRS [5] shortly after.

Spatial diversity of the ESCs is critical in incumbent detec-

tion [15]. However, the proposal for the CBRS [3] authorizes a

single-node ESC model, which has limited performance when

being deployed across a vast region. Under a single-node ESC

model, the spectrum datum is collected from one ESC at a

fixed geo-location, therefore is prone to errors due to wireless

channel impairments such as noise, reflections, fading, and

obstructions. Also, a single-node ESC model needs to scan

the entire spectrum of the CBRS band, and may miss sporadic

signals due to limited sweep speed.

In contrast to the single-node model, a multi-node ESC

model employs many sensor nodes to monitor the spectrum

simultaneously. Each ESC senses the spectrum from its loca-

tion and uploads the spectrum data to a central server. The

server analyzes the aggregated data to mitigate the errors due

to channel fading and improve the detection accuracy. As a

result, a naive multi-node ESC model is more accurate in terms

of detection but incurs a high communication overhead due to

the aggregation of raw spectrum data.

To better addresses the trade-off between accuracy and

communication efficiency, we propose a new ESC for the SAS

architecture: Federated Incumbent Detection in CBRS (FaIR).

We employ a new distributed machine learning technique, Fed-

erated Learning, which allows the SAS to obtain a data-driven

machine learning model that captures the spectrum characters



of incumbent users, without aggregating the spectrum data

from ESC sensors. Our solution distributes the machine learn-

ing task to the ESC sensors, allowing the ESCs to collaborate

as a loosely coupled federation to train a machine learning

model. During training, the Federated Learning procedure

enables ESCs to acquire the current detection model from a

central server, evaluate it with the local spectrum data, and

updates the model parameters intermittently. The central server

collects the updates occasionally from the ESCs, computes

their average, and applies it to the current model. Throughout

the process, raw spectrum data are not uploaded to the central

server, which minimizes the communication overhead.

The contributions of the paper are as follows: (1) We

compared different spectrum sensing methods, e.g., coherent

vs. non-coherent and single-node vs. multi-node, for the task

of CBRS incumbent detection, in terms of accuracy, commu-

nication overhead, and robustness against unknown waveform.

(2) We proposed a distributed sensing architecture that allows

ESCs under geo-spatial constraints to build a machine learning

model for incumbent detection. We further provided a learning

scheme to minimize the communication overhead on the SAS

network, by customizing the federated learning framework.

(3) We evaluated the detection accuracy and communication

throughput of the proposed approach through extensive sim-

ulations with real-world data captured in laboratory environ-

ment. Our experiments showed that FaIR improves the average

detection accuracy compared to the single-node method, using

a fraction of the bandwidth compared to the naive multi-node

method.

II. RELATED WORKS

Incumbent detection recently has seen much of its research

at federally approved laboratories. Matched filter detection

methods, coherent and non-coherent, and support vector ma-

chine have been used in [2] and [1] to detect field-measured

signals of in-band incumbent radar systems with out-of-band

and LTE interference. Both of which use the dataset acquired

under the 3.5 GHz Radar Waveform Capture final report

[7] [8] provided to Department of Commerce. Sensitivity

and placement of ESC sensors has been studied [15] for

improving ESC network design to protect protect incumbents

given sensor constraints.

In other wireless classification tasks, recent works from

Jiang et al. [10] and Kibria et al. [11] identify the practical use

of neural networks and learning algorithms in next generation

wireless networks. Hong and Katti [9] construct several SVMs

using power information and extracted feature vectors from

interfered signals to construct a novel decision tree. O’Shea et

al. [16], [17], [18] built a RNN to detect radio anomalies using

GNU Radio generated dataset, and deep convolutional/residual

networks for modulation classification in the latter works.

Rajendran et al. [21] showed that for high signal-to-noise

ratio (SNR) conditions, simple Long Short Term Memory

(LSTM) models performed well enough in side by side com-

parison to complex Convolutional Neural Networks (CNN)

LSTM models from [27] and that CNN models performed well

in low SNR conditions (below -2dB), as in [17]. The work of

Lees et al. [13] present an evaluation report on incumbent

SPN-43 Navy radar detection using classical signal detection

theory, deep neural networks, and machine learning algorithm

using a proprietary spectrogram dataset, rather than I/Q vector

data.

Federated learning has been gaining more traction from its

recent introduction in McMahan et al. communication efficient

learning work [14]. Konecny et al [12] explored reducing

the communication costs between highly distributed sensor

networks with many distributed client nodes using methods

of quantization, random rotations, and sub-sampling.

III. SAS AND INCUMBENT DETECTION

Based on the FCC rules, wireless users in CBRS band must

connect to the SAS to allow dynamic spectrum coordination.

These users can have full access to their allocated CBRS chan-

nels if no incumbent operators present within the spectrum.

The SAS leverage the ESC for detecting the incumbent wave-

form presence within the CBRS band and manages spectrum

allocation/reallocation for all CBRS devices.

The ESC sensors monitor the spectrum and periodically

send the spectrum data to the SAS. Once detecting the

presence of incumbent waveform within the spectrum data,

the SAS enforces FCC policy by re-assigning the wireless

channels, requesting the CBRS devices to back off from the

interfering frequency or demanding them to cease transmission

as necessary.

However, incumbent detection in CBRS band is difficult, as

the majority of incumbent systems are for military purposes

and have dynamic or unknown operational characteristics. For

instance, NTIAs Office of Spectrum Management and Institute

for Telecommunication Sciences has researched the incumbent

radar emissions characteristics for several use cases in ESC de-

ployment, and found that the radar signal characteristics vary

from system to system [22]. In reality, federal radar systems

are not required to submit parameter details or characteristics

of the transmission signal per the conditions provided in [3].

As a result, existing proposals for SAS mostly rely on

non-coherent methods, such as energy, pulse width, pulse

reception rate, and beam scanning interval [23], which require

little prior knowledge of the signals transmitted. However, the

detection accuracy of these methods is lower compared to

coherent approaches due to the limit of SNR wall [26]. To

improve the performance, recent results in machine learning

show that non-coherent signal detectors can be augmented by

sophisticated data-driven models such as deep neural networks

[17]. Unfortunately, the training process to obtain such models

often requires a large volume of spectrum data, which cannot

be accommodated by existing SAS network infrastructure.

IV. SYSTEM DESIGN GOALS

To improve detection accuracy and lower communication

overhead, we propose a distributed CBRS SAS system with

non-coherent incumbent detection capability. The method in-

tegrates a deep learning model with a distributed federated



learning framework to achieve accurate waveform classifi-

cation with minimal communication bandwidth. The design

goals of the system are listed as the following.

Non-coherent Detection An essential feature of our design

is the detection method remains non-coherent and requires no

prior knowledge of the incumbent signals. Per the FCC condi-

tions provided in [3], federal radar systems operating in CBRS

band do not have to provide the SAS with parameter details or

characteristics of the transmission signals. This ruling limits

the choices of CBRS incumbent detection to non-coherent

methods, which are not robust against variations in channel

noise and fading processes [26]. However, this disadvantage

can be partially addressed through self-adaptive algorithms,

such as machine learning, which automatic reconfigure the

detector parameters based on observed data [13], [17], [19].

Distributed Detection Our design aims to construct a data-

driven model of the incumbent signals through a distributed

multi-node approach. The detection capability of a single ESC

can be affected by wireless channel impairments such as noise,

spatial diffusion, fading, interference, noise, or the mobility of

incumbent users. An ESC sensor experiencing shadowing or

fading effects cannot distinguish between a vacant spectrum

and deeply faded incumbent signals. A distributed sensing

strategy compensates the wireless channel effects by placing

the ESC sensors across the region of interest. The spatial

diversity increases the likelihood for sensors to capture clear

samples of the incumbent signals, which allows the machine

learning algorithm to build an accurate signal model to facil-

itate detection.

Low Communication Overhead Centralized spectrum

sensing strategies are taxing to the SAS network since the

ESCs need to transfer a large volume of spectrum data to the

central SAS server for model training. Based on the database

maintained by the Wireless Innovation Forum, many ESCs

will be deployed into areas in remote locations, often under

extreme topography, congested wireless traffic, or lack of cel-

lular network connections. As a result, the backhaul of the SAS

network permits limited bandwidth for data communication,

which is not suitable for centralized data aggregation or data-

intensive distributed schemes. Federated learning by design

requires neither data aggregation nor the participation of every

client during model training [14], which significantly reduce

the data throughput on the SAS network.

High Detection Accuracy Correctly detecting and avoiding

the incumbent users is imperative to successful operations

in the CBRS band. A fine-tuned detector ensures accurate

detection and fast reaction from the SAS, which can be

achieved through an iterative algorithm optimizing the model

parameters. The use of federated averaging, (discussed in

VI-A), provides regularization benefits similar to the dropout

techniques [14], which improves the training algorithm’s ro-

bustness against data noise and produces more accurate models

for incumbent detection.

Fig. 1: FaIR integrated into the SAS architecture.

V. THE FAIR ARCHITECTURE

The FaIR is an intelligent SAS architecture, which leverages

the computation power of ESC sensors to enable machine

learning based incumbent detection. It comprises of three main

components as shown in Figure 1: 1) multiple ESC sensors

deployed at different locations, e.g., the FaIR Sensor/s (FS/s);

2) a federated SAS server, e.g., the FaIR Master (FM). 3) the

network between FSs and FM, e.g., the FaIR network.

1) FaIR Sensors: (FSs) are distributed across the region

with commercial devices operating in the CBRS band. As

a distributed sensor, the FS offers a sensing solution to

the unique environment of the CBRS devices. The sensors

geo-location allows the sensor to learn a unique spectrum

environment. The disturbed sensors run both a federated global

model and the new localized model to evaluate performance

and select the optimal model to deploy.

2) FaIR Master: (FM) is the centralized server that learns

from the distributed FS by using a technique called federated

averaging. The server controls the frequency of the federated

averaging protocol. The FM also provides each FS with an

initial base model to initialize the learning process for each

FS.

3) FaIR Network: facilitates the interaction between the

FSs and FM. The FM provides each FS sensor with a

base model to apply a technique known as transfer learning,

known to benefit a distributed learning environment [6], which

initializes the neural network parameters, w0. Then, the sensor

applies new spectrum data to the model to learn the unique

environment. The FS trains its own local neural network

until satisfactory performance is evaluated and then the FS is

determined eligible to send parameter updates to the FM server

to be averaged. The participation in the federated averaging

protocol is strictly up to the clients, where not every client

participates. The server then averages the weight contributions

of participating clients. We discuss the advantage on the SAS

communication load using the federated averaging protocol of

FaIR in Section VII-E.

VI. DETECT INCUMBENT SIGNALS THROUGH FAIR

To detect incumbent signals, the FaIR employs the federated

learning techniques to train a classification model to differen-



tiate the waveform captures in CBRS band. The decentralized

approach, known as federated learning, coined by McMahan

et al. [14], allows training to continue at the client level.

Over time, clients contribute new parameter updates to build

a centralized model. Federated learning is characterized as

a low-communication as clients participate according to a

determined criterion. A naive distributed sensing network

that generates a heavy traffic load would be taxing to the

SAS. Thus, the defined federated learning framework details

a communication efficient method to minimize the congestion

in the SAS.

A. Model Learning

The objective function of the detection model is to classify a

waveform, xi as one of the known waveforms of certain mod-

ulation scheme, yi. In particular, our interests is to identify the

modulation scheme of the incumbent operator. Therefore, we

construct our neural networks to minimize the loss l(xi, yi;w)
of each client model due to some prediction with model

parameters w on the waveform and the predicted modulation.

If we have C distributed ESC clients and K eligible par-

ticipants for federated averaging where nk defines the sample

size for a participant, k ∈ K. Then we want to minimize the

loss function for each sensor, k, such that

min
w∈Rd

Jk(w) where Jk(w) =
1

nk

nk∑

i=1

l(xi, yi;w),

The aggregated loss function of the entire system can be

defined as F (w) =
∑

K

k=1

nk

n
Jk(w).

A common approach use in distributed learning, as in

[24] and [20], is to take the gradients ∇Jk(w) , of each

participating client, ∀k ∈ K, training step and average them

at the server to update the model W t+1 = W t − η∇F (w) ,

for ∇F (w) =
∑

K

k=1

nk

n
∇Jk(w).

We define wt

k
as the weight parameters of of the kth

participant and W t as the weight parameters of the aggregated

global model at time t. Since a constant communication of

gradient updates after every training step would put a strain

the SAS, we take advantage of an equivalent form such

that for each client update, we have that ∀k ∈ K,wt+1

k
=

W t −∇Jk(w
t). Then we can write the average of all clients

weights as W t+1 =
∑

K

k=1

nk

n
wt+1

k
. This allows each client

to perform multiple local updates, wt+1

k
= wt

k
− ηJk(w

t

k
), on

local training data before sending updated parameters to the

centralized server. This result is called federated averaging and

provides communication-efficiency to a distributed learning

framework.

B. Signal Classification

When the distributed ESCs are trained, they can leverage the

distributed learning framework to detect the incumbent user in

new spectrum data. Once the incumbent user is detected, the

FaIR network reports to the SAS for spectrum reassignment

when detected.

Fig. 2: Test environment using SDR to generate modulated

waveforms and capture using our federated sensing architec-

ture.

VII. EXPERIMENT PERFORMANCE AND EVALUATION

We evaluated the detection accuracy and communication

throughput of the FaIR through extensive simulations with

real-world data captured in laboratory environment. The per-

formance of the FaIR architecture is evaluated based on the

problem of signal modulation detection.

A. Test Environment

Our laboratory setup, as shown in Figure 2 is designed to

test and build spectrum sensing environments using waveforms

generated by signal generators and software-defined radios

(SDRs)s. We created one incumbent user using a Keysight

N5192A signal generator and two lower-tier users using two

Ettus N210 USRPs. We created two ESC sensors using two

additional Ettus N210 USRPs and a Keysight N9010B spec-

trum analyzer. Through the internal network, this setup allows

us to generate the synthetic modulated waveforms, capture

the results at the ESC sensors, and analyze fading effects at

different positions.

B. Dataset

The public use of CBRS is in its infancy. Currently, there

is infrequent occupancy within spectrum, i.e. occasional Navy

Radar systems, which are difficult to obtain. Also, there is

no publicly available I/Q CBRS data, including datasets with

incumbent waveforms. However, we assume (Navy) radar

systems to be identified as unique pulse modulated radar

or a radar systems that is not modulated, e.g. continuous

wave radar (Doppler). With the test environment in Figure

2, we generate synthetic versions of real-world modulated

waveforms by transmitting a generated signal over the channel

and capturing the signal under incurred channel affects. Our

synthetic waveform generation and waveform captures are

similar to the work of O’shea et. al. [19] using GNU Radio.

The captured waveforms are used in conjunction with the

signals in the RML2018.10a [18] dataset, a recent modulation

dataset used for waveform modulation learning tasks, to show





updates does not congest the SAS by eliminating frequent raw

spectrum data communicating to a centralized server. Second,

allowing the FS to train over many captured waveforms before

averaging rather than averaging at every iteration, detailed in

Section VI-A, reduces the volume of communication to the

server. Last, not every FS participates in the federated averag-

ing protocol, only those that meet satisfactory conditions.

VIII. CONCLUSION

In this work, we provide a new SAS architecture for

communication efficient incumbent detection in CBRS band,

FaIR. FaIR augments existing non-coherent spectrum sens-

ing methods with data-driven machine learning model to

accurately detect incumbent users with unknown operational

parameters. It leverages a distributed sensing framework to

collects multiple CBRS spectrum data at different locations

to minimize errors due to channel noise and fading effect.

Most importantly, FaIR demonstrates the feasibility to use

communication-efficient learning protocols, such as federated

averaging, to significantly reduce the communication overhead

without jeopardizing the incumbent detection accuracy.

Our preliminary results show that state of the art spectrum

classification algorithms in a federated learning environment

performs very well using our test environment generated and

captured waveform of In-phase and Quadrature (I/Q) data and

a recent radio classification dataset [18]. Our experiments

using a deep learning networks trained on 11 modulated

signals at varying SNRs shows improved accuracy from a the

optimal single client model to the federated averaged model

of 76.92% to 78.63% respectively.

IX. FUTURE WORK

The emerging field of deep learning for spectrum appli-

cations has limited dataset resources and, to our knowledge,

no dataset that is publicly available for CBRS (3.5-3.7 GHz)

learning tasks specifically. Our laboratory testbed allows us to

collect and generate real world-data in the CBRS. We plan

to collect more waveform data monitored from distributed

sensors to analyze the true potential of federated learning in

the CBRS. We would also like to investigate the relationship

of accuracy and client participation in the federated averaging.

We believe there to be a positive relationship between the num-

ber of clients and the federated averaged model performance

based on our small subset of client participation results.
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