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Abstract—Mobile apps nowadays are often packaged with
third-party ad libraries to monetize user data. Many mobile
ad networks exploit these mobile apps to extract sensitive
real-time geographical data about the users for location-based
targeted advertising. However, the massive collection of sensitive
information by the ad networks has raised serious privacy
concerns. Unfortunately, the extent and granularity of private
data collection of the location-based ad networks remain obscure.
In this work, we present a mobile tracking measurement study to
characterize the severity and significance of location-based pri-
vate data collection in mobile ad networks, by using an automated
fine-grained data collection instrument running across different
geographical areas. We perform extensive threat assessments for
different ad networks using 1,100 popular apps running across 10
different cities. This study discovers that the number of location-
based ads tend to be positively correlated with the population
density of locations, ad networks’ data collection behaviors differ
across different locations, and most ad networks are capable of
collecting precise location data. Detailed analysis further reveals
the significant impact of geolocation on the tracking behavior of
targeted ads, and a noteworthy security concern for advertising
organizations to aggregate different types of private user data
across multiple apps for a better targeted ad experience.

Index Terms—Ad networks; data privacy; location-based ad-
vertising; network traffic analysis.

I. INTRODUCTION

Digital advertising market has changed dramatically since
the invention of mobile devices. According to Statista [1],
while desktop ad spending remains roughly the same, mobile
ad spending has grown from 1.57 million U.S. dollars in
2011 to 50.84 billion dollars in 2017. The tremendous growth
is in sync with the increasing popularity of mobile devices
and apps. Based on the Flurry Analytics data [2], an average
U.S. consumer nowadays spends five hours a day on mobile
apps. Such extended mobile screen time allows ad networks
to collect detailed user profiles via ads-enabled mobile apps.
In particular, mobile advertising networks have been known to
collect data based on users’ locations, which allows advertisers
to launch targeted advertising campaigns. With a controlled ad
campaign experiment, a recent study [3] shows that location-
based ad campaign increases daily active users by 85%.

However, despite its popularity, the privacy implications of
location-based data collection require further scrutiny. Exist-
ing works on mobile privacy have focused on longitudinal
studying, i.e., how privacy leakage changes over time, using
methods such as static analysis [4], dynamic analysis [5],
network traffic analysis [6], and hybrid approaches [7]. But
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transverse studies regarding location-based data collection, i.e.,
how privacy leakage changes across locations, have not been
well investigated.

Compared to longitudinal studies, transverse studies collect
data samples across a wide range of locations at a specific
point in time. Such methodology poses a challenge for the
large-scale measurement. To obtain unbiased results, the re-
searchers must collect mobile traffic at multiple locations and
try to eliminate “time” as an independent variable. Not only
does such an experiment require a large number of devices and
location samples, but it also relies on effective location spoof-
ing to bypass the ad networks’ location verifications. Naive
approaches that spoof GPS signals can be easily detected
by cross-referencing the GPS coordinates with the devices’
network profiles or users’ regular activities.

To overcome the challenges, we construct an automated
fine-grained data collection instrument running across different
geographical areas. We identify the hot zones and cold zones
for mobile privacy study using the physical locations of the ad-
vertisers whose websites contain online tracking contents. Our
intuition is that mobile tracking originates from web tracking,
and therefore the advertisers engaging in web tracking also
likely adopt mobile tracking. To bypass location verification,
we consistently spoof the GPS coordinates, network profile,
and user activities, to let them appear coherent in the eyes of
ad networks.

Our instrument also allows us to understand how mobile
ad networks aggregate information across apps, by running
multiple apps packed with the same ad library. With the lack
of tracking cookies in mobile apps, ad networks incorporate ad
libraries in different mobile apps which request different sets
of permissions. By linking the permission profiles of different
active apps at different locations to the same ad network, we
could evaluate the extent to which the ad networks fuse users’
information for targeted advertising.

Based on our extensive measurement with real-world apps,
we make a number of interesting discoveries: 1) mobile web
ads and mobile in-app ads contact a similar set of popular
third-party domains; 2) although the mobile ad network traffic
are relatively secure, the low adoption of HTTPs at the
advertisers’ side still lead to the leakage of private information;
3) different ad networks present different private information
collection behaviors across different locations, some of which
reveal special interests in collecting particular types of private
information; 4) most ad networks can infer users’ precise lo-
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cations even without collecting fine-grained GPS coordinates.
This paper makes the following contributions.

e We design an efficient privacy leakage measurement
system to characterize fine-grained location-based mobile
tracking. The system can adjust the GPS locations and
network profiles, conduct traffic collection, and perform
detailed traffic analysis.

o We develop novel domain classification mechanisms to
accurately classify the collected domains into ad network
domains, advertiser domains, and location-based ad do-
mains.

o We identify the private data collection behaviors of ad
networks at the organization level. We find that there
is an alarmingly comprehensive set of users’ private
information that the ad network organizations can collect
by aggregating data from multiple apps.

o We expose ad networks’ information collection behaviors
across different locations. Our findings suggest that ad
networks manifest different private information collection
behaviors at different locations. Location leakage by
ad networks is particularly disconcerting, as most ad
networks can either collect or infer precise locations.

II. RELATED WORK

The existing privacy research on the mobile ad networks
mainly focuses on the malicious uses of advertising contents,
which include malicious adSDKs and malicious ad creative.
Earlier studies suggested that adSDKs often have poor security
and exhibit fraudulent behaviors [8]. Researchers have raised
concerns of malicious advertisers recently [9], [10], who can
obscure the apps’ background to hide malicious activities. In
response, ad networks are rapidly improving their screening
process to filter out malicious ads and require a minimum num-
ber of targeted audiences to prevent individual targeting [10].

Demetriou et al. [11] present the first measurement system
to reveal the potential risk of ad libraries in mobile apps.
Recently, researchers have discovered that the third-party ad
libraries in mobile apps misuse their inherited permission and
access rights to learn and track users’ private information
without explicit consent [6], [7]. Both static and dynamic
analyses tools have been developed to detect privacy leakage
in mobile apps.

Static analysis approaches. Static analysis is largely scal-
able and has a low overhead to perform, and it identifies
potential privacy leakage through application code analysis.
Static analysis of application binaries has been used to detect
malicious data flows [4], malware classification [12], and user
activity analysis [13]. The changes across different versions
of ad libraries [14] have made the mobile systems more
vulnerable because of the adjustments in permission requests
across platform/app versions.

Dynamic analysis approaches. Existing studies have pro-
vided useful tools to identify the misuse of privacy data
through dynamic tainting analysis [5]. The location leakage
through location-based services (LBS) has been analyzed [15],
[16]. In this paper, we analyze apps across different cities
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Fig. 1: Mobile advertisement ecosystem.

in United States to understand the behaviors of mobile ad
networks across different locations. We also consider cross-
application privacy leakage by aggregating the collected pri-
vate information from the same ad domain across multiple
apps. For improving the coverage of dynamic analysis, re-
searchers have developed “UI Monkeys” to automate the input
generation. Customizable tools like Android Studio’s Monkey!
and Appium? allow researchers to provide a customized sim-
ulation of app interactions.

III. BACKGROUND

A. Mobile Advertisement Ecosystem

The digital advertising ecosystem consists of four types of
entities: audiences and publishers, sell-side platforms (SSPs),
demand-side platforms (DSPs), and advertisers, as shown in
Fig. 1. Audiences are the users who watch the ads when they
interact with the contents of a publisher. Publishers are the
owners of websites or apps that serve ads, which include SSP
toolkits, such as analytic scripts and advertising libraries (i.e.,
adSDKs for Mobile). DSPs facilitate purchasing ad slots and
serving ads on behalf of an advertiser. SSPs facilitate selling
the ad spaces to the highest bidder in a publisher’s content
by auctioning them to DSPs. Advertisers are entities that have
ads to display. Advertisers may upload the actual ad content,
known as ad creatives, to a DSP, or host them on their servers
and provide URLs for the DSP to display.

In the web ad environment, the third party cookie has been
the universal tool for tracking host information to provide tar-
geted ads. Any website that uses the ad domain can access the
cookie of this particular ad domain, which allows for cross-site
targeted advertising. In contrast, mobile in-app ad environment
does not use shared cookies for tracking. Instead, the mobile
advertisement ecosystem relies on application stimulus, which
collects private data protected by permissions. Our analysis
includes a detailed inspection of the tracking data that comes
through as macro parameters in the Uniform Resource Locator
(URL) of the network communications from mobile devices.

Apparently, the more information SSPs can provide to the
bidders, the higher bids they will get. Therefore, SSPs are
motivated to collect a variety of information, such as: mobile

Ihttps://developer.android.com/studio/test/monkey
Zhttp://appium.io/docs/en/about-appium/intro/
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TABLE I: List of PII categories and types

Unique Identifier Advertising ID, Android ID (device ID),
hardware serial, IMEI, IMSI, MAC address
data of birth (DOB), email address, first and
last name, gender

GPS location, IP address, zip code

username, password

Personal Information

Location-related
User Credentials

TABLE II: Supported location granularity of top 30 mobile ad
networks

Supported finest location granularity | # of ad networks
Up to country level 7

Up to city and business address level | 15

Up to zip code level 4

Precise Address level 4

advertising identifiers (MAIDs), locations, network profiles,
device types, etc.

B. Problem Definition

The goal of this research is to gain insights into the different
privacy leakage behaviors of multiple ad libraries across
different apps, organizations, and locations, and evaluate if
the cross-application ad libraries can correlate the multiple
instances of leaked private information for more precise ad
targeting. We combine and analyze traffic from different
domains that belong to the same organization to achieve a
more accurate estimation of collected information by these
organizations.

Personally identifiable information (PII) has been defined
by NIST in 2010 as “any information that can be used to
distinguish or trace an individual’s identity”. Such information
is often collected by the third-party services or ad networks
without users’ consent. Leveraging existing studies [6], [7],
[17], we summarize a PII list containing 15 elements. We
categorize these private elements into four categories, includ-
ing: (1) unique identifier, (2) personal information, (3) location
information, and (4) user credentials, as listed in Table I. As
shown in Table II, among the top 30 mobile ad networks
we surveyed, 23 ad networks provide fine-grained location-
based targeted ads tailored for different cities, zip codes, or
precise addresses, within which only 4 ad networks provide
targeted ads for precise addresses. Therefore, our measurement
switches across different cities for studying location-based
mobile tracking.

C. Threat Model

We define three main threats that induce users’ PII leaks for
mobile ad networks.
Threat from an organization with multiple domains. Popu-
lar ad networks usually contain multiple third-party services to
aggregate more comprehensive private information from dif-
ferent domains. Thus, the ad networks are able to collect users’
private information across multiple apps. The organization-
level privacy leakage study is of utmost importance to under-
stand the power of these organizations.
Threat from adware. Some app developers may collect
sensitive information via ad network libraries or other third-
party services either directly or indirectly. It is difficult to tell

whether such collection is necessary for the app’s functionality.
Specifically, adware has been designed to actively collect
private information to serve more ads.

Threat from network eavesdroppers. Network eavesdrop-
pers may get private information by monitoring the network
communications. Some of the private information may be
leaked in plaintext via HTTP. In our study, we try to evaluate
the severity of such privacy leakage and understand what
information an eavesdropper can obtain.

IV. LOCATION-BASED MEASUREMENT PLATFORM

Our measurement platform mainly consists of two compo-
nents: location-based traffic measurement and traffic analysis,
as shown in Fig. 2. In-app advertising and mobile web
advertising both have their advantages and limitations in the
eyes of advertisers. According to eMarketer [18], mobile apps
account for nearly 86% of time spent using smartphones. But
a few top apps dominate the app usage. Meanwhile, mobile
web advertising may have less usage time, but there are more
websites than apps on the market. Some large publisher either
do not have apps or their customers tend to use websites more.
Thus, in-app and mobile web advertising are both popular in
today’s mobile advertising ecosystem, which guide the design
of our traffic measurement system.

A. Traffic Measurement

Our traffic measurement consists of mobile devices, a
wireless router, and a workstation. Mitmproxy [19] is used
to intercept the traffic generated by mobile apps. We install
Mitmproxy certificate on the mobile device to decrypt the
HTTPs traffic. We also use Monkey, a popular input gen-
eration tool used extensively [7], [17], to automate the app
interaction by randomly injecting user event sequences. We
let Monkey interact with each app for five minutes in order to
generate enough traffic for analysis. Many apps require users
to log in with a username and password. To avoid excessive
manual efforts, we record and replay the login events using
RERAN [20] for such apps.

All the traffic between the app and its contacted server
would go through the Mitmproxy and the router, where the
traffic is intercepted and logged. Mitmproxy is capable of
performing TLS interception to record the plaintext of HTTPs
requests. For apps that prevent TLS interception using SSL
pinning, we use JustTrustMe [21] to pass certification verifi-
cation using SSL unpinning technique.

The location-based study requires a system to generate
genuine location information for large-scale measurement. We
use Inspeckage module in Xposed framework to change the lo-
cations. To automate the location change, we use Selenium to
automatically change the GPS locations through Inspeckage’s
web interface. Many ad networks cross reference the GPS
coordinates with the device’s IP address. Therefore, We set
up a VPN service using ExpressVPN to fake the IP addresses,
which are configured to match the faked GPS locations.

As for the study of mobile web tracking, we aim to identify
advertisers engaging in location-based ads. Thus, we query the
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Fig. 2: The proposed platform consists of traffic measurement and traffic analysis. Mitmproxy has been set up as a transparent
HTTPS proxy. © The mobile client initiates a connection to the server. @ The router redirects the connection to mitmproxy. @
mitmproxy dynamically generates certificates for the connected hosts and signs it with its own certificate. @ The mitmproxy
connects to the server via router, and establishes a TLS connection. ® The server with the matched certificate responds to the
client. ® @ ® The router will redirect the response to the mitmproxy, and then forward it to the client.

Yelp Fusion API and select local businesses in different cities
whose websites support mobile browsers. We use the proxy
service Crawlera to query the websites with fake mobile user
agents, and record sites that return no user agent errors.

B. Traffic Analysis

During traffic analysis, we focus on identifying and ex-
tracting information from network traffic related to the ad
networks. We propose a comprehensive domain classification
mechanism to extract the third-party domains, ad network
domains, advertise domains, and location-based ad domains.
Third-party domain identification. Domains can be classi-
fied as first-party domains and third-party domains, and the
owner of first-party domains are the app’s owner. We propose
an empirical method utilizing domain counts to identify third-
party domains, based on the observation that third-party do-
mains appear more frequently across multiple apps than first-
party domains. Specifically, for each app in our dataset, we
first extract the developer information in the app’s webpage.
Then, we identify the maximal number of apps that have been
developed by the same developer, which we assume will use
the same first-party domains. This number is defined as the
threshold for identifying the third-party domains. After we
extract all the domains in the traffic of all apps, we count the
appearance of each unique domain across multiple apps. To
avoid bias, we only count once if the domain appears multiple
times in each app. We identify all the third-party domains,
whose number of appearance is higher than the threshold (in
our case, 9). As it is possible that potential third-party domains
may be counted less than the threshold, we use other methods
described below to help catch the missing third-party domains.
Ad network identification. We first generate a list of ad
network domains using the publicly available information and
two domain organization mapping list on GitHub [22], [23].
This list will be used to identify the ad networks appeared
in the collected traffic. There are some unpopular ad networks
that are not included in any lists. To identify all the possible ad
network domains in our traffic, we utilize the DuckDuckGo
search engine to query each domain and get corresponding
descriptive information if available. Bi-grams and tri-grams
of the descriptive texts are used as their features to classify

the domains into ad network domains and non-ad network
domains. We construct our training and testing set using 2,000
non-ad network domains from Alexa, and 2,000 randomly
picked ad network related domains from EasyList. In the end,
the domain classification accuracy reaches around 70%.

To improve the classification performance, we propose to
use three classification engines, i.e., VirusTotal, McAfee, and
OpenDNS, to generate the domain classification result to be
our ground truth. These engines are capable of categorizing the
domains and quantifying their overall safety. For each unique
domain we find in the traffic, we query the classification
engines and get the related information such as category,
subdomains, and the feedback of Whois lookup for the queried
domains. If any of the engines considers the domain as an ad
network domain, we add it to our ad network domain list.

We evaluate the performance using our ground-truth data
with labels, and the domain classification accuracy can reach
92%. Although this list may not cover all the ad networks
in the market since these engines cannot recognize all the
domains, we consider it to be sufficient for our study. The ad
network results contain not only all the popular ad networks in
AppBrain [24], but also many small ad networks which have
insignificant market shares.

Advertiser domain identification. The advertiser domains
can also be observed in the traffic served by the ad networks.
The advertiser domains are associated with businesses that
post ads through ad networks. In order to identify advertisers,
we refer to the three popular domain categorization services
mentioned above. If any of these three services categorize
the domain into advertisements (ad networks), application
and software download, web analytics, and other web related
categories, we consider them as non-advertisers. We consider
all the remaining domains associated with other categories
(shopping, education, travel, etc) as advertiser domains, and
remove the ones that could not complete the categorization
of all three engines. To further improve the accuracy of the
advertiser list, we utilize Yelp API and query the top 1,000
business domains for each category (if available) at different
locations. We add any domains that appeared in our Yelp
results to enrich our advertiser domain list.
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Algorithm 1 PII Leakage Identification Algorithm

INPUT: Predefined PII list (according to Table I), Domain organization mapping list.
OUTPUT: PII leakage of each app

1: for each App do

2 for each location do

3 Extract Gets and Posts URLs from captured traffic flows

4 Extract key-value pairs from the URLs

5: Match the key-value pairs with hashed PII values in PII list
6: if find a match then
7.
8
9

Log the key-value pair as a PII leakage for the app
Extract domains associated with the key-value pair
: Match domains to the domain organization mapping list
10: if find a match then

11: Log the key-value pair as a PII leakage for the matched organization
12: else

13: Log the key-value pair as a PII leakage for “Others” organization
14: end if

15: end if

16: end for

17: end for

18: Return PII leakage results

Location-based ad domain identification. After classifying
the advertisers’ domains, we move on to identify whether the
advertiser’s related ads are location-based ads. Our goal is
to associate the location of the advertiser domain with the
location of the served ads. For example, if the ads appear in the
area served by the advertiser, it is considered as location-based.
The service area of the advertiser can be derived by querying
Yelp. But simply relying on Yelp’s query results may not be
sufficient in identifying the local businesses. To differentiate
between the local businesses and all other advertisers, we
crawl all the advertiser domains and check if the front page
of each domain contains the city name where the served ads
appear. By combining the yelp local business list and web
crawling result, we can identify the location-based ad domains.
PII leakage identification. Mitmproxy provides a standard
method of reading and parsing the captured traffic. We use
Mitmproxy to extract the information from the traffic flows
including the domains and any PIIs. The leakage identifi-
cation algorithm is presented in Algorithm 1. We first ex-
tract the HTTP/HTTPs request URL, response URL, and
request/response contents. By integrating the domain organiza-
tion mapping lists mentioned above [22], [23], we generate a
complete leakage parameter dictionary for every organization.
Then, we look up the leakage parameter dictionary to identify
the known PIIs values (including hashed values with MDS5,
SHA1, SHA256, and SHA512) and evaluate the severity of
ad networks’ PII leakage at different levels including app-level
and organization-level across different locations.

V. MEASUREMENT RESULTS AND ANALYSIS

In this section, we present our measurement results based
on extensive experiments. We first compare the mobile web ad
tracking and in-app ad tracking behaviors. Then, we expose
the organization-level cross-app privacy leakage based on the
traffic analysis results. Finally, we study the ad networks’
data collection behaviors across different locations, i.e., dif-
ferent cities, rural/urban areas. We use 8 Moto G4 mobile
devices with the Android 4.4.4 (compatible with JustTrustMe)
or Android 7.1.2 framework to automatically launch traffic

measurement and analysis. For apps that fail to run on Android
4.4.4, we rerun them on Android 7.1.2 without SSL unpinning.

A. Measurement Dataset

We have collected two traffic datasets to facilitate the mea-
surement study. Dataset_1 contains traffic from 1,100 popular
apps running at two locations (i.e., Lincoln, Nebraska and New
York City), while Dataset_2 contains the traffic from 110 apps
(randomly selected from the 1,100 apps of Dataset_1) running
across 10 different locations, detailed in Table VIII. Within
these two datasets, we removed the apps that fail to generate
network traffic in all the locations. In the end, we collect 63.0
GB traffic data: Dataset_1 contains 814,117 traffic flows from
1,026 apps across 2 locations, and Dataset_2 contains 535,655
traffic flows from 110 apps across 10 locations.

B. Mobile Web Ad Tracking vs. In-app Ad Tracking

Mobile web ad tracking allows ad networks to collect users’

private information during web browsing activities. We collect
the HTTP request/response URLs related to mobile web ad
tracking and compare them against in-app ad tracking results.
Finding 1: mobile web ads and in-app ads contact a
similar set of popular third-party domains. For both types
of ad tracking, googleapis.com is the most popular third-party
domain. Despite such similarities, we also find some third-
party domains (especially these ad network domains) only
exist in the mobile traffic for in-app ads, such as flurry.com,
unity3d.com, applovin.com, mopub.com, etc. The reason is
that: different from in-app ad tracking that tracks both ad
networks’ and advertisers’ domains, web ad tracking only
tracks the advertisers’ domains.
Finding 2: mobile web ads have a significantly lower
adoption rate of HTTPs than mobile in-app ads. We also
compare the total percentage of HTTP/HTTPs traffic flows
originated from domains related to web and in-app location-
based ads. As shown in Table III, we can see that HTTP traffic
dominates in the mobile web ad traffic. The reason is that
many landing pages contain third-party HTTP content, which
can cause mixed-content errors if the landing pages upgrade
to HTTPs. The low adoption rate of HTTPs in mobile web ads
is likely to continue as long as third parties continue to use
HTTP by default. On the other hand, mobile in-app ads mostly
carry HTTPs traffic. The reason is that in-app ads do not use
HTTP referrer headers to indicate the sources of the redirected
traffic, and thus will not incur mixed-content errors. Without
such legacy issue, mobile in-app ads tend to adopt HTTPs for
secure app-server communications.

TABLE III: Comparison of HTTP/HTTPs traffic from web/in-
app advertiser domains

HTTP traffic (web/in-app)
84.8% / 18.48%

HTTPs traffic (web/in-app)
15.2% / 81.52%

Finding 3: mobile web ads request location via landing
URLs leading to privacy leakage concerns. In our web
ad traffic, we discover a significant amount of advertisers
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Fig. 3: Heatmap of location requests in landing URLs on the
island of Oahu and Lincoln.

TABLE IV: Number of unique domains identified in each
category

Dataset All domains | Top-level Ad Location-based
domains domains ad domains

Dataset_1 | 7,208 2,532 970 208

Dataset_2 | 4,398 1,760 539 141

who seek location information via the landing URLs’ macro
parameters, without explicitly expressing their purposes. These
reckless behaviors allow eavesdroppers to collect and infer
sensitive information about users by observing the ad traffic
passing through the network. Fig. 3 shows the heatmap of
location requests (with hot zones and cold zones) in landing
URLs of mobile web ads on the island of Oahu and Lincoln.
We can see that the location requests tend to be positively
related to the population distribution. These observations mo-
tivate us to further investigate the privacy leakage through
mobile ad networks across different organizations, as well as
various locations with an emphasis on the hot zones.

C. Organization-level Cross-app Privacy Leakage

The advertising organizations usually own multiple ad
networks, and it is conceivable that they tend to aggregate
data from these ad networks to achieve a better user pro-
filing for targeted ad delivery. In this section, we expose
the organization-level data collection behaviors of popular
ad networks. We also identify the different organization-level
privacy leakage behaviors across different locations.

AppBrain [24] provides a list of the ad network popularity
based on the number of installs of related apps. Similarly,
we rank these ad networks based on the collected network
traffic of Dataset_1. The result indicates that AdMob (i.e.,
Google ad network) is observed in the traffic flows of 601 (i.e.,
58.58%) app, demonstrating the wild popularity of Google’s
ad network. Moreover, Unity 3d, ranked second, is observed
in 180 (17.54%) apps’ traffic flows. This result is consistent
with the ad network popularity list of AppBrain website.

Table IV presents the number of domains identified in
each domain category. Within all the domains in Dataset_1
(or Dataset_2), we identify 2,532 (or 1,760) unique top-level
domains by combining multiple sub-domains. These domains
belong to 496 (or 247) different organizations. Using the
domain classification methods in Section IV-B, we can identify

1000 Total Ads

M Total Location-
based Ads

800

600

400

Leakage Flow Count

200

Fig. 4: Number of total ads and location based ads in each
city (Dataset_2).

TABLE V: Top 10 ad organization list of PII leakage severity
in all locations sorted by average PII leakage flow count per

app.

Organization | Average # of PII | # of PII Leakage Types
Leakage per app

LKQD 3,399 3
AOL 360 3
Facebook 322 11
SpotX 279 6
Tapjoy 211 9
Heyzap 184 6
Google 80 15
AppsFlyer 70 7
MoPub 54 2
Applovin 37 2

970 (or 539) unique ad domains and 208 (or 141) unique
location-based ad domains, respectively. Location-based ad-
vertisement constitutes 21.44% (or 26.16%) of all the captured
advertisements.

Finding 4: the number of location-based ads across dif-
ferent cities is positively correlated with the population
density. Fig. 4 shows the number of location-based ads in each
city based on the Dataset_2. The result shows that the number
of location-based ads is positively related with the population
density of the cities, which is similar to the phenomenon
observed in the mobile web ad marketing environment. A
similar trend is also observed with Dataset_1. In New York,
we identified 782 unique advertisers and 173 unique location-
based advertisers, while in Lincoln we identified 322 unique
advertisers and 72 unique location-based advertisers.

We examine the app-level privacy leakage and find that
Game apps are leaking private information over a large number
of flows, and they leak different types of PII information.
These top-ranked apps all interact with multiple ad networks
(i.e., 8 ad networks on average), and the organizations behind
these ad networks are able to aggregate a considerable amount
of private information.

Finding 5: Popular ad networks generally collect more
diverse types of PII data. For data aggregation at the
organization level, Table V shows the top 10 list of the ad
organizations ranked by the PII leakage severity in terms
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of average leakage flow counts per app (i.e., total leakage
flow counts of an ad network divided by the number of apps
associated with this ad network) across all the locations. In
general, the result indicates that some popular ad networks
(e.g., Facebook) generate a large amount of PII leakage flows
per app. A considerable number of flows from LKQD, a
video ad platform (which is included in multiple apps, such as
cjvg.santabiblia and com.july.ndtv), leak private information,
although it only leaks three different types of PII information.
The top 5 ad organizations ranked by the number of unique
PII leakage types are: Google, Facebook, Amazon, ironSource,
and Tapjoy. This indicates that the big companies with popular
ad networks collect most types of privacy information. It is
worth noting that Amazon collects 11 types of PII information,
while we only find 736 flows carrying private information that
are associated with Amazon ad domain within our datasets.

TABLE VI: Location related privacy leakage observed in
Dataset_1

City name GPS IP address Zip code | Total
New York 32,826 29,161 5,857 67,844
Lincoln 25,761 20,765 4,691 51,217

TABLE VII: The mean and standard deviation (STD) of PII
leakage flow across 10 locations

PII Type Mean STD
Advertising ID 7,762.22 2,311.37
IP address 1,585.85 922.73
GPS 2,072.31 804.21
MAC address 778.83 751.83
Android ID 1,214.82 245.68
email 407.72 103.26
gender 112.69 50.59
IMEI 93.35 46.13
Hardware serial 13.17 4.95

TABLE VIII: PII leakage severity at each location.

City name # of PII leakage Ad networks with maxi-
mal collected PII
Las Vegas 22,328 AdMob
Albuquerque 17,699 LKQD
Honolulu 16,996 LKQD
Washington, D.C. 16,005 LKQD
Charleston 14,576 AdMob
Blacksburg 14,069 AdMob
Houston 13,095 AdMob
Los Angeles 11,875 LKQD
Lincoln 10,808 AdMob
New York 10,140 AdMob

TABLE IX: The PII type that is most frequently leaked by the
ad networks based on 2 datasets.

PII Type Ad Network Collected Times
Advertising ID LKQD 72,185

IP Address LKQD 34,584

GPS LKQD 28976

MAC address Tapjoy 5,364

Android ID Tapjoy 7,690

email Google 4,403

gender Appodealx 343

IMEI Fyber 87

Hardware Series Charboost 27

D. Location-based Private Data Collection of Ad Networks

Ad networks extensively collect users’ location information.
Table VI shows that the ad networks collect location infor-
mation in the format of GPS, IP address, and zip code. We
observe that New York has more location-related leakage com-
pared with Lincoln. This result complies with our assumption
that ad networks in larger cities will initiate more location
related requests and collect more location data. The experiment
with Dataset_2 presents similar phenomenon, which we omit
here due to page limitation.

Before we unveil the details of ad network collection

behaviors across different locations, we evaluate the difference
among the leaked PIIs across different locations. Table VII
shows the mean and standard deviation for the number of
PII leakage flows of each PII type to measure the magnitude
of the differences across 10 locations. From this table, we
can see that the number of PII collections varies significantly
across locations, while the Advertising ID, IP address, and
GPS location are the most collected PII types for these mobile
ad networks. This observation indicates that the ad networks
behave differently in collecting users’ private information
across different locations.
Finding 6: The number of ad networks’ PII leakage flows
differs across different cities. To further identify the private
data collection behaviors of ad networks across different
locations, we extract the traffic flows related to the ad domains,
measure the total number of PII leakage flows and the number
of PII leakage types at each location. Table VIII shows the
number of PII leakage flows vary across different locations.
In addition, AdMob collects the maximal number of privacy-
leaking flows within 6 cities. It is worth noting that AdMob
collects the most privacy-leaking flows in almost all cities,
while LKQD collects the most privacy-leaking flows in 4
cities, but it keeps quiet (i.e., collects negligible amount of
privacy-leaking flows) in other cities, maybe due to its failure
in the ad space bidding in these cities. Fig. 5 shows the
different number of PII leakage types of ad networks across
different locations. Overall, AdMob collects the most types of
PIIs across all locations.

These ad networks present different behaviors across dif-
ferent locations, and we suspect that different ad networks
may be interested in different PII types. In Table IX, we
show the number of times that each ad network collects the
corresponding PII information. We show the ad network with
the maximal collection times, which indicates that the ad
network is most interested in the corresponding PII. LKQD
has the most interests in the Advertising ID, IP address, and
GPS, while Google is most interested in email address.

We examine the privacy policy of all the ad networks, and
we find that all the ad networks claim to collect both fine-
grained location (GPS) data and coarse-grained location (IP
address) data, which we have confirmed using our measure-
ment study. Even though all the ad networks claim to collect
both fine-grained and coarse-grained location data, they are
still different from each other in terms of the number of
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Fig. 5: The leaking PII types of top 10 ad networks across different locations.

decimals in the collected GPS location data. To put it into
context, when the decimals of GPS data are 3 digits, it can be
used to identify the neighborhood or street which is precise
to 111.32 meters at the equator. Moreover, when it reaches
to 6 digits, it can be used to identify the individuals with the
precision of 111.21 millimeters at the equator.

TABLE X: The ad networks’ location leakage severity.

Ad Networks # of decimals in | # of wvalid
collected GPS decimals

Sitescout, Mopub, Google, Ap- 15 8

podeal, mediabrix.com, adsrvr.org,

Amazon

Nexage, algovid.com, adhigh.net, | 14 8

LKQD, fqtag.com, AdColony

xAd, Flashtalking 13 8

Facebook, advertising.com 8 8

1rx.io, PubMatic 7 7

OpenX, Yandex, Inneractive, 6 6

SpotX, Casale Media, Unity 3D,

smartadserver.com, StreamRail,

Smaato

Vungle, AdBuddiz, Heyzap, Ap- | 3 3

plovin

Adform, Millenial Media, InMobi 1 1

Finding 7: most ad networks collect fine-grained GPS
location data. Table X presents all the ad network location
leakage severity. Among the 35 ad networks, 28 of them
have collected user’s fine-grained location (i.e., the number
of decimals is greater than or equal to 6). We consider these
ad networks to be aggressive in collecting precise locations
since they have the ability to locate individuals very precisely.
As a result, these ad networks can provide advertisers with a
precise location targeting service. Moreover, among these ad
networks, 7 of them collect location data with the 15 digits
decimal accuracy, indicates at least 7 digits in the GPS data
are useless. Potential malicious ad network or attacker can take
advantage of these extra digits to embed some users’ sensitive
information and send to the server without getting spotted.

E. Rural Area vs. Urban Area Location-based Mobile Track-
ing

The aforementioned experiments prove the different track-
ing behaviors of mobile ad networks across different cities. As
shown in Table II, most ad networks support location-based
ads with respect to different cities. We set up an experiment
to verify whether these ad networks behave the same at rural

area and urban area in the same city. We select 10 popular
apps, which collectively include 29 ad libraries. We also pick
two locations, i.e., the Downtown and Lake Ray Roberts, in a
large city Dallas for comparison. We further randomly pick 5
points in the Downtown area, and 5 points in the Lake area.
To avoid the time variability, two comparative tests (i.e., one
in Downtown and one in Lake) are performed simultaneously
using the same apps with the same recorded user inputs. We
run each app for 10 minutes, test it 10 times at each point,
and collect the network traffic.

Finding 8: A more diverse group of mobile ad networks
operate in rural area, which results in more PII leakage.
We notice similar number of PII leakage for most PII types
at these two different locations, while significant difference
can be observed for four PII types as shown in Table XI.
Generally, the rural area (i.e., Lake) collects more PII data
than the urban area (i.e., Downtown), which is counterintuitive.
Delving into the traffic, we notice a more diverse group of ad
networks in the Lake area, who collect more PII information.
Notably, LKQD and Tappx collect most of the PII information
in the Lake area, but both never show up in the Downtown
area. This can be attributed to the less competition in the
Lake area for the ad bidding system, which brings in “less
competitive ” players in mobile ad business. On the other hand,
the Downtown area is a highly competitive area for mobile ad
networks, where “more competitive” players win with a high
probability.

TABLE XI: Location related privacy leakage for rural/urban
area

Location Average # | Average # | Average # of | Average # of
of GPS of IP Ad ID Android ID

Downtown 10 42 35 22

Lake 47 144 131 210

VI. DISCUSSIONS AND FUTURE WORK

SSL pinning and input automation. We investigate the pri-
vate data collection behaviors of ad networks across different
locations. We use real devices for our measurement study
to avoid the emulation detection of some sophisticated apps.
Higher version of Android system has implemented a stricter
rule in preventing SSL unpinning, in which the developers can
prevent traffic interception by trusting only specific/allowed
certificates. As a result, we cannot decrypt HTTPs traffic from
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several apps which only work with high Android version.
Also, SSL unpinning does not work with all the apps, This
is a common limitation of traffic analysis on Android devices.
Our results are based on the traffic of the apps that could
be captured. We also use Monkey to automate the user input
generation, and the proposed study will benefit from the
advancement of input generation tools [25] to improve the
coverage.

App execution time. Our automated platform only executes
one app for 5 or 10 minutes. However, in location-based
advertising, the app’s execution time can be a key element that
impacts the traffic collection results. Some advertisers prefer
to provide their location-based ads during a specific time of
the day so that they can maximize the effectiveness of their ad
delivery. For future study, we will record all the timestamps of
our traffic and find out which period of time is the “golden”
collection time for different ad networks, and how these ad
networks’ behaviors will change at a different time.

Traffic obfuscation. Obfuscation has been used by apps to
encrypt users’ private data like username, password, or email.
As mentioned in Section IV-B, we hash all the known PII
values with different hash functions to match traffic. However,
if the malicious ad networks or attackers intentionally try to
evade our analysis, they can steal the users’ PII without getting
spotted by using customized hash functions or encryptions.

VII. CONCLUSION

In this paper, we present a measurement study for privacy
leakage in location-based mobile advertising service. We pro-
posed and implemented a transverse measurement platform
for mobile ad networks capable of location spoofing, domain
classification, and privacy leakage detection. We performed
extensive threat measurements and assessments with the col-
lected traffic data. Our findings show that mobile web tracking
and in-app tracking share a similar set of third-party domains,
and the exceedingly high percentage of HTTP requests in
mobile web ads becomes a vulnerable point inciting eaves-
dropping attacks. Our results verified that ad networks perform
differently across different locations, and most ad networks
can extract precise locations. Alarmingly, there is little corre-
lation between ad network size and their location information
leakage severity since both large and small ad networks could
collect or infer fine-grained location information.
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