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3The Department of Computer Science & Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA

Abstract—Mobile apps nowadays are often packaged with

third-party ad libraries to monetize user data. Many mobile

ad networks exploit these mobile apps to extract sensitive

real-time geographical data about the users for location-based

targeted advertising. However, the massive collection of sensitive

information by the ad networks has raised serious privacy

concerns. Unfortunately, the extent and granularity of private

data collection of the location-based ad networks remain obscure.
In this work, we present a mobile tracking measurement study to

characterize the severity and significance of location-based pri-

vate data collection in mobile ad networks, by using an automated

fine-grained data collection instrument running across different

geographical areas. We perform extensive threat assessments for

different ad networks using 1,100 popular apps running across 10

different cities. This study discovers that the number of location-

based ads tend to be positively correlated with the population

density of locations, ad networks’ data collection behaviors differ

across different locations, and most ad networks are capable of

collecting precise location data. Detailed analysis further reveals

the significant impact of geolocation on the tracking behavior of

targeted ads, and a noteworthy security concern for advertising

organizations to aggregate different types of private user data

across multiple apps for a better targeted ad experience.

Index Terms—Ad networks; data privacy; location-based ad-

vertising; network traffic analysis.

I. INTRODUCTION

Digital advertising market has changed dramatically since

the invention of mobile devices. According to Statista [1],

while desktop ad spending remains roughly the same, mobile

ad spending has grown from 1.57 million U.S. dollars in

2011 to 50.84 billion dollars in 2017. The tremendous growth

is in sync with the increasing popularity of mobile devices

and apps. Based on the Flurry Analytics data [2], an average

U.S. consumer nowadays spends five hours a day on mobile

apps. Such extended mobile screen time allows ad networks

to collect detailed user profiles via ads-enabled mobile apps.

In particular, mobile advertising networks have been known to

collect data based on users’ locations, which allows advertisers

to launch targeted advertising campaigns. With a controlled ad

campaign experiment, a recent study [3] shows that location-

based ad campaign increases daily active users by 85%.

However, despite its popularity, the privacy implications of

location-based data collection require further scrutiny. Exist-

ing works on mobile privacy have focused on longitudinal

studying, i.e., how privacy leakage changes over time, using

methods such as static analysis [4], dynamic analysis [5],

network traffic analysis [6], and hybrid approaches [7]. But

transverse studies regarding location-based data collection, i.e.,

how privacy leakage changes across locations, have not been

well investigated.

Compared to longitudinal studies, transverse studies collect

data samples across a wide range of locations at a specific

point in time. Such methodology poses a challenge for the

large-scale measurement. To obtain unbiased results, the re-

searchers must collect mobile traffic at multiple locations and

try to eliminate “time” as an independent variable. Not only

does such an experiment require a large number of devices and

location samples, but it also relies on effective location spoof-

ing to bypass the ad networks’ location verifications. Naive

approaches that spoof GPS signals can be easily detected

by cross-referencing the GPS coordinates with the devices’

network profiles or users’ regular activities.

To overcome the challenges, we construct an automated

fine-grained data collection instrument running across different

geographical areas. We identify the hot zones and cold zones

for mobile privacy study using the physical locations of the ad-

vertisers whose websites contain online tracking contents. Our

intuition is that mobile tracking originates from web tracking,

and therefore the advertisers engaging in web tracking also

likely adopt mobile tracking. To bypass location verification,

we consistently spoof the GPS coordinates, network profile,

and user activities, to let them appear coherent in the eyes of

ad networks.

Our instrument also allows us to understand how mobile

ad networks aggregate information across apps, by running

multiple apps packed with the same ad library. With the lack

of tracking cookies in mobile apps, ad networks incorporate ad

libraries in different mobile apps which request different sets

of permissions. By linking the permission profiles of different

active apps at different locations to the same ad network, we

could evaluate the extent to which the ad networks fuse users’

information for targeted advertising.

Based on our extensive measurement with real-world apps,

we make a number of interesting discoveries: 1) mobile web

ads and mobile in-app ads contact a similar set of popular

third-party domains; 2) although the mobile ad network traffic

are relatively secure, the low adoption of HTTPs at the

advertisers’ side still lead to the leakage of private information;

3) different ad networks present different private information

collection behaviors across different locations, some of which

reveal special interests in collecting particular types of private

information; 4) most ad networks can infer users’ precise lo-
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cations even without collecting fine-grained GPS coordinates.

This paper makes the following contributions.

• We design an efficient privacy leakage measurement

system to characterize fine-grained location-based mobile

tracking. The system can adjust the GPS locations and

network profiles, conduct traffic collection, and perform

detailed traffic analysis.

• We develop novel domain classification mechanisms to

accurately classify the collected domains into ad network

domains, advertiser domains, and location-based ad do-

mains.

• We identify the private data collection behaviors of ad

networks at the organization level. We find that there

is an alarmingly comprehensive set of users’ private

information that the ad network organizations can collect

by aggregating data from multiple apps.

• We expose ad networks’ information collection behaviors

across different locations. Our findings suggest that ad

networks manifest different private information collection

behaviors at different locations. Location leakage by

ad networks is particularly disconcerting, as most ad

networks can either collect or infer precise locations.

II. RELATED WORK

The existing privacy research on the mobile ad networks

mainly focuses on the malicious uses of advertising contents,

which include malicious adSDKs and malicious ad creative.

Earlier studies suggested that adSDKs often have poor security

and exhibit fraudulent behaviors [8]. Researchers have raised

concerns of malicious advertisers recently [9], [10], who can

obscure the apps’ background to hide malicious activities. In

response, ad networks are rapidly improving their screening

process to filter out malicious ads and require a minimum num-

ber of targeted audiences to prevent individual targeting [10].

Demetriou et al. [11] present the first measurement system

to reveal the potential risk of ad libraries in mobile apps.

Recently, researchers have discovered that the third-party ad

libraries in mobile apps misuse their inherited permission and

access rights to learn and track users’ private information

without explicit consent [6], [7]. Both static and dynamic

analyses tools have been developed to detect privacy leakage

in mobile apps.

Static analysis approaches. Static analysis is largely scal-

able and has a low overhead to perform, and it identifies

potential privacy leakage through application code analysis.

Static analysis of application binaries has been used to detect

malicious data flows [4], malware classification [12], and user

activity analysis [13]. The changes across different versions

of ad libraries [14] have made the mobile systems more

vulnerable because of the adjustments in permission requests

across platform/app versions.

Dynamic analysis approaches. Existing studies have pro-

vided useful tools to identify the misuse of privacy data

through dynamic tainting analysis [5]. The location leakage

through location-based services (LBS) has been analyzed [15],

[16]. In this paper, we analyze apps across different cities
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Fig. 1: Mobile advertisement ecosystem.

in United States to understand the behaviors of mobile ad

networks across different locations. We also consider cross-

application privacy leakage by aggregating the collected pri-

vate information from the same ad domain across multiple

apps. For improving the coverage of dynamic analysis, re-

searchers have developed “UI Monkeys” to automate the input

generation. Customizable tools like Android Studio’s Monkey1

and Appium2 allow researchers to provide a customized sim-

ulation of app interactions.

III. BACKGROUND

A. Mobile Advertisement Ecosystem

The digital advertising ecosystem consists of four types of

entities: audiences and publishers, sell-side platforms (SSPs),

demand-side platforms (DSPs), and advertisers, as shown in

Fig. 1. Audiences are the users who watch the ads when they

interact with the contents of a publisher. Publishers are the

owners of websites or apps that serve ads, which include SSP

toolkits, such as analytic scripts and advertising libraries (i.e.,

adSDKs for Mobile). DSPs facilitate purchasing ad slots and

serving ads on behalf of an advertiser. SSPs facilitate selling

the ad spaces to the highest bidder in a publisher’s content

by auctioning them to DSPs. Advertisers are entities that have

ads to display. Advertisers may upload the actual ad content,

known as ad creatives, to a DSP, or host them on their servers

and provide URLs for the DSP to display.

In the web ad environment, the third party cookie has been

the universal tool for tracking host information to provide tar-

geted ads. Any website that uses the ad domain can access the

cookie of this particular ad domain, which allows for cross-site

targeted advertising. In contrast, mobile in-app ad environment

does not use shared cookies for tracking. Instead, the mobile

advertisement ecosystem relies on application stimulus, which

collects private data protected by permissions. Our analysis

includes a detailed inspection of the tracking data that comes

through as macro parameters in the Uniform Resource Locator

(URL) of the network communications from mobile devices.

Apparently, the more information SSPs can provide to the

bidders, the higher bids they will get. Therefore, SSPs are

motivated to collect a variety of information, such as: mobile

1https://developer.android.com/studio/test/monkey
2http://appium.io/docs/en/about-appium/intro/



TABLE I: List of PII categories and types

Unique Identifier Advertising ID, Android ID (device ID),

hardware serial, IMEI, IMSI, MAC address

Personal Information data of birth (DOB), email address, first and
last name, gender

Location-related GPS location, IP address, zip code

User Credentials username, password

TABLE II: Supported location granularity of top 30 mobile ad

networks

Supported finest location granularity # of ad networks

Up to country level 7

Up to city and business address level 15

Up to zip code level 4

Precise Address level 4

advertising identifiers (MAIDs), locations, network profiles,

device types, etc.

B. Problem Definition

The goal of this research is to gain insights into the different

privacy leakage behaviors of multiple ad libraries across

different apps, organizations, and locations, and evaluate if

the cross-application ad libraries can correlate the multiple

instances of leaked private information for more precise ad

targeting. We combine and analyze traffic from different

domains that belong to the same organization to achieve a

more accurate estimation of collected information by these

organizations.

Personally identifiable information (PII) has been defined

by NIST in 2010 as “any information that can be used to

distinguish or trace an individual’s identity”. Such information

is often collected by the third-party services or ad networks

without users’ consent. Leveraging existing studies [6], [7],

[17], we summarize a PII list containing 15 elements. We

categorize these private elements into four categories, includ-

ing: (1) unique identifier, (2) personal information, (3) location

information, and (4) user credentials, as listed in Table I. As

shown in Table II, among the top 30 mobile ad networks

we surveyed, 23 ad networks provide fine-grained location-

based targeted ads tailored for different cities, zip codes, or

precise addresses, within which only 4 ad networks provide

targeted ads for precise addresses. Therefore, our measurement

switches across different cities for studying location-based

mobile tracking.

C. Threat Model

We define three main threats that induce users’ PII leaks for

mobile ad networks.

Threat from an organization with multiple domains. Popu-

lar ad networks usually contain multiple third-party services to

aggregate more comprehensive private information from dif-

ferent domains. Thus, the ad networks are able to collect users’

private information across multiple apps. The organization-

level privacy leakage study is of utmost importance to under-

stand the power of these organizations.

Threat from adware. Some app developers may collect

sensitive information via ad network libraries or other third-

party services either directly or indirectly. It is difficult to tell

whether such collection is necessary for the app’s functionality.

Specifically, adware has been designed to actively collect

private information to serve more ads.

Threat from network eavesdroppers. Network eavesdrop-

pers may get private information by monitoring the network

communications. Some of the private information may be

leaked in plaintext via HTTP. In our study, we try to evaluate

the severity of such privacy leakage and understand what

information an eavesdropper can obtain.

IV. LOCATION-BASED MEASUREMENT PLATFORM

Our measurement platform mainly consists of two compo-

nents: location-based traffic measurement and traffic analysis,

as shown in Fig. 2. In-app advertising and mobile web

advertising both have their advantages and limitations in the

eyes of advertisers. According to eMarketer [18], mobile apps

account for nearly 86% of time spent using smartphones. But

a few top apps dominate the app usage. Meanwhile, mobile

web advertising may have less usage time, but there are more

websites than apps on the market. Some large publisher either

do not have apps or their customers tend to use websites more.

Thus, in-app and mobile web advertising are both popular in

today’s mobile advertising ecosystem, which guide the design

of our traffic measurement system.

A. Traffic Measurement

Our traffic measurement consists of mobile devices, a

wireless router, and a workstation. Mitmproxy [19] is used

to intercept the traffic generated by mobile apps. We install

Mitmproxy certificate on the mobile device to decrypt the

HTTPs traffic. We also use Monkey, a popular input gen-

eration tool used extensively [7], [17], to automate the app

interaction by randomly injecting user event sequences. We

let Monkey interact with each app for five minutes in order to

generate enough traffic for analysis. Many apps require users

to log in with a username and password. To avoid excessive

manual efforts, we record and replay the login events using

RERAN [20] for such apps.

All the traffic between the app and its contacted server

would go through the Mitmproxy and the router, where the

traffic is intercepted and logged. Mitmproxy is capable of

performing TLS interception to record the plaintext of HTTPs

requests. For apps that prevent TLS interception using SSL

pinning, we use JustTrustMe [21] to pass certification verifi-

cation using SSL unpinning technique.

The location-based study requires a system to generate

genuine location information for large-scale measurement. We

use Inspeckage module in Xposed framework to change the lo-

cations. To automate the location change, we use Selenium to

automatically change the GPS locations through Inspeckage’s

web interface. Many ad networks cross reference the GPS

coordinates with the device’s IP address. Therefore, We set

up a VPN service using ExpressVPN to fake the IP addresses,

which are configured to match the faked GPS locations.

As for the study of mobile web tracking, we aim to identify

advertisers engaging in location-based ads. Thus, we query the
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Fig. 2: The proposed platform consists of traffic measurement and traffic analysis. Mitmproxy has been set up as a transparent

HTTPS proxy. ① The mobile client initiates a connection to the server. ② The router redirects the connection to mitmproxy. ③

mitmproxy dynamically generates certificates for the connected hosts and signs it with its own certificate. ④ The mitmproxy

connects to the server via router, and establishes a TLS connection. ⑤ The server with the matched certificate responds to the

client. ⑥ ⑦ ⑧ The router will redirect the response to the mitmproxy, and then forward it to the client.

Yelp Fusion API and select local businesses in different cities

whose websites support mobile browsers. We use the proxy

service Crawlera to query the websites with fake mobile user

agents, and record sites that return no user agent errors.

B. Traffic Analysis

During traffic analysis, we focus on identifying and ex-

tracting information from network traffic related to the ad

networks. We propose a comprehensive domain classification

mechanism to extract the third-party domains, ad network

domains, advertise domains, and location-based ad domains.

Third-party domain identification. Domains can be classi-

fied as first-party domains and third-party domains, and the

owner of first-party domains are the app’s owner. We propose

an empirical method utilizing domain counts to identify third-

party domains, based on the observation that third-party do-

mains appear more frequently across multiple apps than first-

party domains. Specifically, for each app in our dataset, we

first extract the developer information in the app’s webpage.

Then, we identify the maximal number of apps that have been

developed by the same developer, which we assume will use

the same first-party domains. This number is defined as the

threshold for identifying the third-party domains. After we

extract all the domains in the traffic of all apps, we count the

appearance of each unique domain across multiple apps. To

avoid bias, we only count once if the domain appears multiple

times in each app. We identify all the third-party domains,

whose number of appearance is higher than the threshold (in

our case, 9). As it is possible that potential third-party domains

may be counted less than the threshold, we use other methods

described below to help catch the missing third-party domains.

Ad network identification. We first generate a list of ad

network domains using the publicly available information and

two domain organization mapping list on GitHub [22], [23].

This list will be used to identify the ad networks appeared

in the collected traffic. There are some unpopular ad networks

that are not included in any lists. To identify all the possible ad

network domains in our traffic, we utilize the DuckDuckGo

search engine to query each domain and get corresponding

descriptive information if available. Bi-grams and tri-grams

of the descriptive texts are used as their features to classify

the domains into ad network domains and non-ad network

domains. We construct our training and testing set using 2,000

non-ad network domains from Alexa, and 2,000 randomly

picked ad network related domains from EasyList. In the end,

the domain classification accuracy reaches around 70%.

To improve the classification performance, we propose to

use three classification engines, i.e., VirusTotal, McAfee, and

OpenDNS, to generate the domain classification result to be

our ground truth. These engines are capable of categorizing the

domains and quantifying their overall safety. For each unique

domain we find in the traffic, we query the classification

engines and get the related information such as category,

subdomains, and the feedback of Whois lookup for the queried

domains. If any of the engines considers the domain as an ad

network domain, we add it to our ad network domain list.

We evaluate the performance using our ground-truth data

with labels, and the domain classification accuracy can reach

92%. Although this list may not cover all the ad networks

in the market since these engines cannot recognize all the

domains, we consider it to be sufficient for our study. The ad

network results contain not only all the popular ad networks in

AppBrain [24], but also many small ad networks which have

insignificant market shares.

Advertiser domain identification. The advertiser domains

can also be observed in the traffic served by the ad networks.

The advertiser domains are associated with businesses that

post ads through ad networks. In order to identify advertisers,

we refer to the three popular domain categorization services

mentioned above. If any of these three services categorize

the domain into advertisements (ad networks), application

and software download, web analytics, and other web related

categories, we consider them as non-advertisers. We consider

all the remaining domains associated with other categories

(shopping, education, travel, etc) as advertiser domains, and

remove the ones that could not complete the categorization

of all three engines. To further improve the accuracy of the

advertiser list, we utilize Yelp API and query the top 1,000

business domains for each category (if available) at different

locations. We add any domains that appeared in our Yelp

results to enrich our advertiser domain list.



Algorithm 1 PII Leakage Identification Algorithm

INPUT: Predefined PII list (according to Table I), Domain organization mapping list.

OUTPUT: PII leakage of each app

1: for each App do

2: for each location do

3: Extract Gets and Posts URLs from captured traffic flows

4: Extract key-value pairs from the URLs

5: Match the key-value pairs with hashed PII values in PII list

6: if find a match then

7: Log the key-value pair as a PII leakage for the app

8: Extract domains associated with the key-value pair

9: Match domains to the domain organization mapping list

10: if find a match then

11: Log the key-value pair as a PII leakage for the matched organization

12: else

13: Log the key-value pair as a PII leakage for “Others” organization

14: end if

15: end if

16: end for

17: end for

18: Return PII leakage results

Location-based ad domain identification. After classifying

the advertisers’ domains, we move on to identify whether the

advertiser’s related ads are location-based ads. Our goal is

to associate the location of the advertiser domain with the

location of the served ads. For example, if the ads appear in the

area served by the advertiser, it is considered as location-based.

The service area of the advertiser can be derived by querying

Yelp. But simply relying on Yelp’s query results may not be

sufficient in identifying the local businesses. To differentiate

between the local businesses and all other advertisers, we

crawl all the advertiser domains and check if the front page

of each domain contains the city name where the served ads

appear. By combining the yelp local business list and web

crawling result, we can identify the location-based ad domains.

PII leakage identification. Mitmproxy provides a standard

method of reading and parsing the captured traffic. We use

Mitmproxy to extract the information from the traffic flows

including the domains and any PIIs. The leakage identifi-

cation algorithm is presented in Algorithm 1. We first ex-

tract the HTTP/HTTPs request URL, response URL, and

request/response contents. By integrating the domain organiza-

tion mapping lists mentioned above [22], [23], we generate a

complete leakage parameter dictionary for every organization.

Then, we look up the leakage parameter dictionary to identify

the known PIIs values (including hashed values with MD5,

SHA1, SHA256, and SHA512) and evaluate the severity of

ad networks’ PII leakage at different levels including app-level

and organization-level across different locations.

V. MEASUREMENT RESULTS AND ANALYSIS

In this section, we present our measurement results based

on extensive experiments. We first compare the mobile web ad

tracking and in-app ad tracking behaviors. Then, we expose

the organization-level cross-app privacy leakage based on the

traffic analysis results. Finally, we study the ad networks’

data collection behaviors across different locations, i.e., dif-

ferent cities, rural/urban areas. We use 8 Moto G4 mobile

devices with the Android 4.4.4 (compatible with JustTrustMe)

or Android 7.1.2 framework to automatically launch traffic

measurement and analysis. For apps that fail to run on Android

4.4.4, we rerun them on Android 7.1.2 without SSL unpinning.

A. Measurement Dataset

We have collected two traffic datasets to facilitate the mea-

surement study. Dataset 1 contains traffic from 1,100 popular

apps running at two locations (i.e., Lincoln, Nebraska and New

York City), while Dataset 2 contains the traffic from 110 apps

(randomly selected from the 1,100 apps of Dataset 1) running

across 10 different locations, detailed in Table VIII. Within

these two datasets, we removed the apps that fail to generate

network traffic in all the locations. In the end, we collect 63.0

GB traffic data: Dataset 1 contains 814,117 traffic flows from

1,026 apps across 2 locations, and Dataset 2 contains 535,655

traffic flows from 110 apps across 10 locations.

B. Mobile Web Ad Tracking vs. In-app Ad Tracking

Mobile web ad tracking allows ad networks to collect users’

private information during web browsing activities. We collect

the HTTP request/response URLs related to mobile web ad

tracking and compare them against in-app ad tracking results.

Finding 1: mobile web ads and in-app ads contact a

similar set of popular third-party domains. For both types

of ad tracking, googleapis.com is the most popular third-party

domain. Despite such similarities, we also find some third-

party domains (especially these ad network domains) only

exist in the mobile traffic for in-app ads, such as flurry.com,

unity3d.com, applovin.com, mopub.com, etc. The reason is

that: different from in-app ad tracking that tracks both ad

networks’ and advertisers’ domains, web ad tracking only

tracks the advertisers’ domains.

Finding 2: mobile web ads have a significantly lower

adoption rate of HTTPs than mobile in-app ads. We also

compare the total percentage of HTTP/HTTPs traffic flows

originated from domains related to web and in-app location-

based ads. As shown in Table III, we can see that HTTP traffic

dominates in the mobile web ad traffic. The reason is that

many landing pages contain third-party HTTP content, which

can cause mixed-content errors if the landing pages upgrade

to HTTPs. The low adoption rate of HTTPs in mobile web ads

is likely to continue as long as third parties continue to use

HTTP by default. On the other hand, mobile in-app ads mostly

carry HTTPs traffic. The reason is that in-app ads do not use

HTTP referrer headers to indicate the sources of the redirected

traffic, and thus will not incur mixed-content errors. Without

such legacy issue, mobile in-app ads tend to adopt HTTPs for

secure app-server communications.

TABLE III: Comparison of HTTP/HTTPs traffic from web/in-

app advertiser domains

HTTP traffic (web/in-app) HTTPs traffic (web/in-app)

84.8% / 18.48% 15.2% / 81.52%

Finding 3: mobile web ads request location via landing

URLs leading to privacy leakage concerns. In our web

ad traffic, we discover a significant amount of advertisers
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of average leakage flow counts per app (i.e., total leakage

flow counts of an ad network divided by the number of apps

associated with this ad network) across all the locations. In

general, the result indicates that some popular ad networks

(e.g., Facebook) generate a large amount of PII leakage flows

per app. A considerable number of flows from LKQD, a

video ad platform (which is included in multiple apps, such as

cjvg.santabiblia and com.july.ndtv), leak private information,

although it only leaks three different types of PII information.

The top 5 ad organizations ranked by the number of unique

PII leakage types are: Google, Facebook, Amazon, ironSource,

and Tapjoy. This indicates that the big companies with popular

ad networks collect most types of privacy information. It is

worth noting that Amazon collects 11 types of PII information,

while we only find 736 flows carrying private information that

are associated with Amazon ad domain within our datasets.

TABLE VI: Location related privacy leakage observed in

Dataset 1

City name GPS IP address Zip code Total

New York 32,826 29,161 5,857 67,844

Lincoln 25,761 20,765 4,691 51,217

TABLE VII: The mean and standard deviation (STD) of PII

leakage flow across 10 locations

PII Type Mean STD

Advertising ID 7,762.22 2,311.37

IP address 1,585.85 922.73

GPS 2,072.31 804.21

MAC address 778.83 751.83

Android ID 1,214.82 245.68

email 407.72 103.26

gender 112.69 50.59

IMEI 93.35 46.13

Hardware serial 13.17 4.95

TABLE VIII: PII leakage severity at each location.

City name # of PII leakage Ad networks with maxi-
mal collected PII

Las Vegas 22,328 AdMob

Albuquerque 17,699 LKQD

Honolulu 16,996 LKQD

Washington, D.C. 16,005 LKQD

Charleston 14,576 AdMob

Blacksburg 14,069 AdMob

Houston 13,095 AdMob

Los Angeles 11,875 LKQD

Lincoln 10,808 AdMob

New York 10,140 AdMob

TABLE IX: The PII type that is most frequently leaked by the

ad networks based on 2 datasets.

PII Type Ad Network Collected Times

Advertising ID LKQD 72,185

IP Address LKQD 34,584

GPS LKQD 28976

MAC address Tapjoy 5,364

Android ID Tapjoy 7,690

email Google 4,403

gender Appodealx 343

IMEI Fyber 87

Hardware Series Charboost 27

D. Location-based Private Data Collection of Ad Networks

Ad networks extensively collect users’ location information.

Table VI shows that the ad networks collect location infor-

mation in the format of GPS, IP address, and zip code. We

observe that New York has more location-related leakage com-

pared with Lincoln. This result complies with our assumption

that ad networks in larger cities will initiate more location

related requests and collect more location data. The experiment

with Dataset 2 presents similar phenomenon, which we omit

here due to page limitation.

Before we unveil the details of ad network collection

behaviors across different locations, we evaluate the difference

among the leaked PIIs across different locations. Table VII

shows the mean and standard deviation for the number of

PII leakage flows of each PII type to measure the magnitude

of the differences across 10 locations. From this table, we

can see that the number of PII collections varies significantly

across locations, while the Advertising ID, IP address, and

GPS location are the most collected PII types for these mobile

ad networks. This observation indicates that the ad networks

behave differently in collecting users’ private information

across different locations.

Finding 6: The number of ad networks’ PII leakage flows

differs across different cities. To further identify the private

data collection behaviors of ad networks across different

locations, we extract the traffic flows related to the ad domains,

measure the total number of PII leakage flows and the number

of PII leakage types at each location. Table VIII shows the

number of PII leakage flows vary across different locations.

In addition, AdMob collects the maximal number of privacy-

leaking flows within 6 cities. It is worth noting that AdMob

collects the most privacy-leaking flows in almost all cities,

while LKQD collects the most privacy-leaking flows in 4

cities, but it keeps quiet (i.e., collects negligible amount of

privacy-leaking flows) in other cities, maybe due to its failure

in the ad space bidding in these cities. Fig. 5 shows the

different number of PII leakage types of ad networks across

different locations. Overall, AdMob collects the most types of

PIIs across all locations.

These ad networks present different behaviors across dif-

ferent locations, and we suspect that different ad networks

may be interested in different PII types. In Table IX, we

show the number of times that each ad network collects the

corresponding PII information. We show the ad network with

the maximal collection times, which indicates that the ad

network is most interested in the corresponding PII. LKQD

has the most interests in the Advertising ID, IP address, and

GPS, while Google is most interested in email address.

We examine the privacy policy of all the ad networks, and

we find that all the ad networks claim to collect both fine-

grained location (GPS) data and coarse-grained location (IP

address) data, which we have confirmed using our measure-

ment study. Even though all the ad networks claim to collect

both fine-grained and coarse-grained location data, they are

still different from each other in terms of the number of
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several apps which only work with high Android version.

Also, SSL unpinning does not work with all the apps, This

is a common limitation of traffic analysis on Android devices.

Our results are based on the traffic of the apps that could

be captured. We also use Monkey to automate the user input

generation, and the proposed study will benefit from the

advancement of input generation tools [25] to improve the

coverage.

App execution time. Our automated platform only executes

one app for 5 or 10 minutes. However, in location-based

advertising, the app’s execution time can be a key element that

impacts the traffic collection results. Some advertisers prefer

to provide their location-based ads during a specific time of

the day so that they can maximize the effectiveness of their ad

delivery. For future study, we will record all the timestamps of

our traffic and find out which period of time is the “golden”

collection time for different ad networks, and how these ad

networks’ behaviors will change at a different time.

Traffic obfuscation. Obfuscation has been used by apps to

encrypt users’ private data like username, password, or email.

As mentioned in Section IV-B, we hash all the known PII

values with different hash functions to match traffic. However,

if the malicious ad networks or attackers intentionally try to

evade our analysis, they can steal the users’ PII without getting

spotted by using customized hash functions or encryptions.

VII. CONCLUSION

In this paper, we present a measurement study for privacy

leakage in location-based mobile advertising service. We pro-

posed and implemented a transverse measurement platform

for mobile ad networks capable of location spoofing, domain

classification, and privacy leakage detection. We performed

extensive threat measurements and assessments with the col-

lected traffic data. Our findings show that mobile web tracking

and in-app tracking share a similar set of third-party domains,

and the exceedingly high percentage of HTTP requests in

mobile web ads becomes a vulnerable point inciting eaves-

dropping attacks. Our results verified that ad networks perform

differently across different locations, and most ad networks

can extract precise locations. Alarmingly, there is little corre-

lation between ad network size and their location information

leakage severity since both large and small ad networks could

collect or infer fine-grained location information.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their

valuable comments and feedback. This work was supported in

part by the NSF grants CNS-1566388, CNS-1717898, CNS-

1566443, DGE-1662487, and Louisiana Board of Regents

under grant LEQSF(2015-18)-RD-A-11.

REFERENCES

[1] “Digital advertising spending in the united states from 2011 to 2019, by

channel,” https://www.statista.com/statistics/260279/digital-advertising-

spending-in-the-us-by-channel/, Accessed on Jan. 2019.

[2] “U.S. consumers time-spent on mobile crosses 5 hours a day,”

http://flurrymobile.tumblr.com/post/157921590345/us-consumers-time-

spent-on-mobile-crosses-5/, Accessed on Jan. 2019.

[3] “Inside google marketing: How we use contex-

tual signals to break through with mobile users,”

https://www.thinkwithgoogle.com/marketing-resources/experience-

design/inside-google-marketing-how-we-use-contextual-signals-break-

through-mobile-users/, Aug., 2017. Accessed on Jan. 2019.

[4] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “Pios: Detecting privacy

leaks in ios applications.” in NDSS, 2011, pp. 177–183.

[5] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-

flow tracking system for realtime privacy monitoring on smartphones,”

ACM Transactions on Computer Systems (TOCS), vol. 32, no. 2, p. 5,

2014.
[6] A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez, S. Sundaresan,

M. Allman, C. Kreibich, and P. Gill, “Apps, trackers, privacy, and

regulators: A global study of the mobile tracking ecosystem,” in NDSS,

2018.
[7] J. Ren, M. Lindorfer, D. Dubois, A. Rao, D. Choffnes, and N. Vallina-

Rodriguez, “Bug fixes, improvements,... and privacy leaks–a longitudinal

study of pii leaks across android app versions,” in NDSS, 2018.

[8] J. Crussell, R. Stevens, and H. Chen, “MAdFraud: Investigating Ad

Fraud in Android Applications,” in Proc. of MobiSys, 2014, pp. 123–

134.
[9] S. Son, D. Kim, and V. Shmatikov, “What Mobile Ads Know About

Mobile Users,” in NDSS 2016.
[10] P. Vines, F. Roesner, and T. Kohno, “Exploring adint: Using ad targeting

for surveillance on a budget-or-how alice can buy ads to track bob,”

in Proceedings of the 2017 on Workshop on Privacy in the Electronic

Society, 2017, pp. 153–164.

[11] S. Demetriou, W. Merrill, W. Yang, A. Zhang, and C. A. Gunter, “Free

for all! assessing user data exposure to advertising libraries on android.”

in NDSS, 2016.
[12] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,

“Adversarial perturbations against deep neural networks for malware

classification,” arXiv preprint arXiv:1606.04435, 2016.

[13] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou, “Smart-

droid: an automatic system for revealing ui-based trigger conditions in

android applications,” in Proceedings of the second ACM workshop on

Security and privacy in smartphones and mobile devices, 2012, pp. 93–

104.
[14] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library detection

in android and its security applications,” in Proc. of CCS, 2016, pp. 356–

367.
[15] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks: auto-

matically detecting potential privacy leaks in android applications on

a large scale,” in International Conference on Trust and Trustworthy

Computing, 2012, pp. 291–307.

[16] N. Fruchter, H. Miao, S. Stevenson, and R. Balebako, “Varia-
tions in tracking in relation to geographic location,” arXiv preprint

arXiv:1506.04103, 2015.
[17] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes, “Recon:

Revealing and controlling pii leaks in mobile network traffic,” in

Proceedings of the 14th Annual International Conference on Mobile

Systems, Applications, and Services, 2016, pp. 361–374.

[18] “Smartphone apps crushing mobile web time,”

https://www.emarketer.com/Article/Smartphone-Apps-Crushing-Mobile-

Web-Time/1014498, Accessed at Jan. 2019.
[19] “mitmproxy suit,” https://mitmproxy.org/, Accessed at Jan. 2019.

[20] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “Reran: Timing-and

touch-sensitive record and replay for android,” in Proc. of ICSE, 2013,

pp. 72–81.

[21] “Justtrustme,” https://github.com/Fuzion24/JustTrustMe, Accessed at

Jan. 2019.
[22] “disconnectme disconnect tracking protection list,”

https://github.com/disconnectme/disconnect-tracking-

protection/blob/master/services.json/, Accessed on Jan. 2019.

[23] “webxray domain owners list,” https://goo.gl/zZRQfX, Accessed on Jan.

2019.
[24] “Android ad networks,” https://www.appbrain.com/stats/libraries/ad/,

Accessed at Jan. 2019.
[25] M. Y. Wong and D. Lie, “Intellidroid: A targeted input generator for the

dynamic analysis of android malware,” in Proc. of NDSS, 2016.

2019 IEEE Conference on Communications and Network Security (CNS)

231


